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Abstract 
 

Developmental Genetic Programming (DGP) algorithms explicitly enable the search 

space for a problem to be divided into genotypes and corresponding phenotypes.  The 

two search spaces are often connected with a genotype-phenotype mapping (GPM) 

intended to model the biological genetic code, where current implementations of this 

concept involve evolution of the mappings along with evolution of the genotype 

solutions.  This work presents the Probabilistic Adaptive Mapping DGP (PAM DGP) 

algorithm, a new developmental implementation that provides research contributions in 

the areas of GPMs and coevolution.  The algorithm component of PAM DGP is 

demonstrated to overcome coevolutionary performance problems as identified and 

empirically benchmarked against the latest competing Adaptive Mapping algorithm with 

both algorithms using the same (non-redundant) mapping encoding process.  Having 

established that PAM DGP provides a superior algorithmic framework given equivalent 

mapping and genotype structures for the individuals, a new adaptive redundant mapping 

is incorporated into PAM DGP for further performance enhancement and closer 

adherence to developmental modeling of the biological code.  PAM DGP with two 

mapping types is then compared to the competing Adaptive Mapping algorithm and 

Traditional GP with respect to three regression benchmarks.  PAM DGP using redundant 

mappings is then applied to two medical classification domains, where PAM DGP with 

redundant encodings is found to provide better classifier performance than the alternative 

algorithms.  PAM DGP with redundant mappings is also given the task of learning three 

sequences of increasing recursion order given a function set consisting of general (not 

implicitly recursive) machine-language instructions; where it is found to more efficiently 

learn second and third order recursive Fibonacci functions than the related developmental 

systems and Traditional GP.  PAM DGP using redundant encoding is also demonstrated 

to produce the semantically highest quality solutions for all three recursive functions 

considered (Factorial, second and third order Fibonacci).  PAM DGP is shown for 

regression, medical classification, and recursive problems to have produced its solutions 

by evolving redundant mappings to emphasize appropriate members within relevant 

subsets of the problem‘s original function set.  

 

Keywords: developmental genetic programming, genetic code, cooperative 

coevolution, genotype-phenotype mapping, redundant representation, neutrality, 

recursion 
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Chapter 1. Introduction 
 

1.1 Traditional Genetic Programming 

 Traditional genetic programming (GP) incorporates a group of machine learning 

techniques from the larger set of methods sharing a neo-Darwinian motivation known as 

―Evolutionary Computation‖ (EC).  EC methodologies will be described by the way that 

they address three machine learning issues: representation of the problem and potential 

solutions, specification of the problem objective, and issues involving the way that the 

search for a solution is conducted.  These elements of particular EC methodologies are 

explained in this section to the extent that they allow a brief background so that a reader 

who is unfamiliar with the EC field can understand the research presented in this thesis.       

In terms of the problem representation issue, EC algorithms are search and 

optimization techniques that artificially replicate a neo-Darwinian concept of natural 

selection.  As in actual biological models, a population of individuals is considered.  In 

EC, the individuals in the population represent a set of candidate solutions to an 

optimization problem.  In Genetic Programming (GP), as opposed to other EC methods, 

the structure of an individual is executable code, where the execution of the code 

determines the fitness of an individual.  In the most traditional GP model, the executable 

code took the form of a tree structure as specified by Koza [51].  The instructions in each 

individual were comprised of zero-argument instructions (members of a Terminal Set) 

and instructions with one or more arguments (the Functional Set).  In the tree structure 

implementation, the Functional Set members were present in the internal nodes of the tree 

and the Terminal Set members were at the leaves.  This work uses a more modern variant 

of genetic programming called ―linear genetic programming‖ or ―LGP‖ [15].  In this 
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variant, the individuals have the form of a linear list of instructions rather than a tree-

based structure.  Program execution is that of a simple register machine (Von Neumann 

computer), and instructions are made up of opcodes and operands (providing linear forms 

of Functional and Terminal sets, respectively).  Tree structural representation makes 

terminal and function set independent entities, however the linear model references both 

in every instruction.  As the program executes, it alters the contents of internal registers 

or a stack and solution register.  The structure of a linear GP individual is depicted below 

in Figure 1.1.  The internal registers or stack provide a means of storing sub-results and 

can reduce the need to introduce new operators into a problem‘s Functional Set.
1
  Linear 

GP is also more flexible than tree-structured GP, since each instruction in a linear GP 

individual does not necessarily contribute to the result in the solution register [15].  In 

contrast, in tree-structured GP, each node in the tree contributes to the final value found 

in the root node.  Linear GP thus allows for more redundancy and for the presence of 

detrimental code in a solution without it affecting the fitness of an individual.  An 

individual‘s program in linear GP consists of a string of bits.  These bit strings constitute 

the individual‘s raw genetic material, or genotype.  When the bit strings are interpreted, 

they correspond to members of the Functional (and sometimes Terminal) sets to produce 

a solution that makes semantic sense in terms of the original problem, also called the 

―phenotype.‖  For instance, the binary sequence ―011‖ in the individual‘s genotype could 

be interpreted as the functional set member ―addition‖ in the phenotype.  The phenotype 

is then evaluated to determine the corresponding fitness, bringing us to the second 

machine learning issue distinguishing GP algorithms from other methods.  

                                                 
1
 The terms ―function‖ and ―operator‖ are used in this discussion interchangeably, where ―operator‖ is 

sometimes used to refer to functions in the linear GP literature. 
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Figure 1.1. Structure of a Linear Genetic Programming (Linear GP) individual. 

 

The second issue is the specification of the problem objective, and the associated 

measure for determining how well an individual meets the stated objective.  The 

individuals in the population are ranked in their ability to perform the objective of solving 

the optimization problem based on some measure of error or success, called a ―fitness‖ or 

―cost‖ function.  The fitness functions are specified by the programmer a priori to reflect 

the nature of the problem.  In linear GP, the execution of the program determines an 

individual‘s fitness.  Unlike other machine learning methods, GP provides a lot of 

flexibility in the form of the fitness function.  That is to say, the user is typically free to 

specify a fitness function that directly reflects the goals of the problem domain, without 

having to incorporate constraints from the machine-learning model.  For example, 

smoothness constraints are required for kernel and neural network models.  A natural 

penalty for this freedom, however, might be a higher computational cost associated with 
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the training phase, where this may or may not be outweighed by providing a more 

appropriate solution (on account of more clearly defined goals). 

The third and final issue in machine learning is the way in which the search for a 

solution is conducted.  The individual candidate solutions in the population are ranked 

using the fitness function, and the fittest individuals are biased for selection as parents 

and used to create a new population of solutions.  The genetic material composing the 

parents is then manipulated (sometimes after being copied) to create children who 

typically replace some individuals originally in the population.  Population size thus does 

not change.  The manipulation of genetic material is accomplished through the use of the 

two operators of crossover and mutation in this work (and most others).  Crossover swaps 

the genetic material of the children (parent copies), thus exploiting genetic material 

already available.  Numerous types of crossover have been devised [15], but in this 

research two instruction segments of equal size from each of the children individuals, 

chosen with a uniform random probability, are exchanged if a particular probability 

threshold is exceeded.  The size of individuals is used as a constraint in the first problem 

considered in this thesis, and this type of crossover will always allow individuals to 

remain the same length.  The crossover operator is demonstrated in Figure 1.2 below.   
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Figure 1.2. Crossover of equal-sized instruction sequences. 

 

Mutation changes the genetic material already present in a child, providing new 

genetic material to be explored.  In this research, two types of mutation are used: The first 

type is called ―point mutation,‖ where each bit in a genotype string is processed 

sequentially and changed from a 0 to a 1, or vice versa, if a particular threshold is 

exceeded.  The other option for mutation is XOR mutation, where a bit string comprising 

an instruction is chosen with a uniform random distribution if a threshold is exceeded.  

The bits in that instruction then have a randomly generated bit mask applied to them, and 

the XOR operator is applied to each pairing of bits at each position in the instruction and 

the mask to generate a new bit sequence.  This new bit sequence then replaces the 
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instruction originally chosen for modification.  As such, this form of mutation tends to 

modify the entire instruction as opposed to a single field within an instruction.  Both 

procedures are given in Figure 1.3 below.  The basic algorithm for a GP incorporating 

these operators, as described in [51], is shown below in Figure 1.4. 

 

Figure 1.3. Point mutation and XOR mutation. 

 

Specify instruction set. 
Stochastically

2
 generate initial population of individuals. 

while (tournament not done && desired fitness not found) 
   Execute program comprising each individual to determine     
      fitness 
   Select two parent individuals 
   Apply crossover to parents’ genetic material to create     
      children with a priori probability 
   Apply mutation operator to children with a priori 
      probability   
    

Figure 1.4. Pseudocode for the general Genetic Programming (GP) algorithm. 

 

 

                                                 
2
 This typically takes the form of a series of stochastic decisions, selecting between different instruction 

types, and operand or opcode values depending on the instruction type [15]. 
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The general GP procedure just given can be specialized into two forms of 

tournament selection: generational and steady state.  In the generational approach, the 

fitness of an entire population is evaluated.  Every individual in the population is then 

ranked, and it is assigned a normalized probability of selection based on its fitness.  (The 

probability of selection of a given individual is its fitness divided by the fitness of the 

total population.)  Pairs of individuals are then iteratively selected, and tests for applying 

crossover and mutation are applied to them.  The iterative selection continues until there 

are sufficient children present to represent an entirely new population.  The operation of 

the generational tournament approach is shown below in Figure 1.5. 

 

Figure 1.5. Generational tournament selection. 
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The alternative to generational tournament selection is steady state tournament 

selection.  It relies more heavily on random selection than the generational tournament, 

and is the choice of the algorithm that is the main subject of this thesis, and its most 

modern predecessor [57-59].  In this type of selection mechanism, a small subset of 

individuals is randomly selected from the population to take part in a tournament round.  

The fitness of the chosen individuals is evaluated, and the fittest half of the individuals is 

selected as parents.  Individuals from the less fit half of the tournament become children, 

with their genotypes overwritten by those of the parents.  Mutation and crossover are then 

stochastically applied to the children to recombine existing genetic material and introduce 

new material, respectively.  The children then overwrite the corresponding number of 

worst fitness individuals in the population or in that tournament round.  The steady state 

tournament approach is shown below in Figure 1.6. 
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Figure 1.6. Steady state tournament selection. 

  

1.2 Separation of Genotype and Phenotype 

Given the explanation and background of GP above, it is evident that traditional 

genetic programming does not discern between a genotype and its corresponding 

phenotype in the search space.  Broadly speaking, the term ―developmental genetic 

programming‖ (DGP) includes methodologies that explicitly set out to separate the 

genotype space from the phenotype (or solution) space through a connection (or 

mapping) between the two spaces [45].  In the literature, the term has been used to 

encompass systems, such as the one presented in this work, that insert a genotype-



 

 

10 

phenotype mapping (GPM) as a genetic code to establish a relationship between the two 

spaces.  A genetic code in the context of this work follows the definition provided by 

Keller and Banzhaf in [45], that is, it is the encoding of a symbol by one or more codons 

where a codon is a non-zero contiguous bit sequence from a binary genotype.  In terms of 

describing the developmental context (the biological analogue) of the constructs in the 

algorithm produced in this thesis, the system can be considered to model the evolution of 

individuals and a shared ―genetic code‖ that maps codons to amino acids in biological 

organisms. 

This work conducts an investigation of the algorithmic framework used to 

coevolve populations of genetic code mappings and genotypes, as well as identifying the 

most appropriate GPM model for use in such a coevolutionary framework.  In the process 

of meeting these requirements, a new algorithm for the coevolution of efficient mappings, 

called Probabilistic Adaptive Mapping Developmental Genetic Programming (PAM 

DGP), is presented.  A preliminary version of PAM DGP was first presented in [95], with 

considerable improvements introduced in [96] (wherein the performance of PAM DGP 

was also demonstrated on two regression problems).  [94] served as the comprehensive 

introduction of PAM DGP to the literature, significantly expanding on [96] by 

introducing a superior (and more developmental) adaptive redundant mapping structure 

to the algorithm, comparing PAM DGP to other GP algorithms using medical 

classification benchmarks, and providing an extensive discussion of the developmental 

nature of PAM DGP and how it addresses coevolutionary pathologies in the previous 

work of Margetts and Jones [57-59].   



 

 

11 

The system described in this work has its roots in the DGP algorithm of Keller 

and Banzhaf [5, 45-47], but separates mapping from genotype (they are united in the 

implementation of Keller and Banzhaf).  Mappings and genotypes are separated into two 

populations that coevolve as in the subsequent algorithm of Margetts and Jones [57-59], 

called the Standard Adaptive Mapping DGP (or simply Adaptive Mapping DGP) in this 

thesis.  The system implemented here uses a mapping that can be seen as a table relating 

genotype segments (binary sequence codons) to symbol members of a function set, and in 

that respect it is similar to the mapping structure that serves as an analogue of the 

biological genetic code seen in the implementations produced by both groups of 

researchers.  Their collective work thus serves as the starting context for this work. 

The evolution of a genetic code is of great benefit when there is little or no 

information about the problem space, or when the problem space takes the form of a 

dynamic environment and adaptiveness is required for survival of individuals.  An 

evolved genetic code, or mapping, is used to adaptively emphasize symbols that are 

important for the solution and dictate which symbols are permitted for use in the 

construction of a solution.  The co-evolution of the mappings and genotypes thus 

dynamically reduces problem search space and biases solutions towards particular 

regions of the search space.  Furthermore, as noted by Keller and Banzhaf [47], the 

separation of the two spaces avoids the hindering effect of operators in traditional GP 

approaches that are restricted so that only legal phenotypes are generated.  This built-in 

restriction of the operators limits the search to the feasible areas of the search space.  

However, the infeasible regions may contain genetic diversity needed to quickly generate 

very high quality individuals within fewer generations.  The aim of this work is to 
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provide a system that efficiently generates mappings and their corresponding genotypes 

to realize the benefits of both a more efficient search and a better tailored solution that 

incorporates and emphasizes the correct symbols in a problem‘s function set. 

 

1.3 Objectives of Research 

There are three other systems that evolve genetic code-type mappings and 

solutions in a developmental GP approach.  Keller and Banzhaf [5, 45-47], Margetts and 

Jones [57-59], and O’Neill and Ryan [67, 69] all consider their approaches 

developmental systems that evolve a mapping that is an analogue of the biological 

genetic code.  Margetts and Jones [57-59] and O’Neill and Ryan [67, 69] both consider 

their systems to implement coevolution.  Keller and Banzhaf [45, 46] do not explicitly 

state that they implement coevolution, although their method of evolving both mapping 

and genotype solution (as paired individuals) is identical to O’Neill and Ryan.  Keller and 

Banzhaf are credited with using coevolution by O’Neill and Ryan in [69], where they 

state “studies [Keller and Banzhaf] provide strong evidence demonstrating the effective 

co-evolution of genetic code and solution.”  In any case, all research teams implement 

developmental systems like PAM DGP where genetic codes are evolved along with 

genotype solutions.  We make a significant contribution to the area of genetic code-based 

models of developmental GP, where the objectives of this thesis are to: 

 Identify, and empirically demonstrate, serious performance problems caused by 

coevolutionary pathologies and lack of exploration of the search space for the latest 

(Standard) Adaptive Mapping DGP algorithm.     
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 Introduce a robust new algorithm, Probabilistic Adaptive Mapping Developmental 

Genetic Programming, or PAM DGP, and show that it overcomes coevolutionary 

pathologies without incurring significant computational cost and avoiding premature 

convergence on local optima.  (To the author‘s knowledge, this is the first instance of 

a developmental GP algorithm based on evolution of genetic codes that was designed 

to avoid coevolutionary pathologies.  The overall means with which the algorithm 

avoids the pathologies is also novel.) 

 Establish empirically that PAM DGP provides a superior algorithmic framework, 

given equivalent genotype and mapping structures as the Standard Adaptive Mapping 

algorithm, on three regression benchmarks (MAX Problem, Hénon map, and Two 

Boxes). 

 Introduce a new adaptive redundant mapping for the PAM DGP algorithm for 

superior fitness-based performance on harder problems and closer adherence to 

developmental modeling of the biological code. 

 Empirically examine the performance of PAM DGP with adaptive redundant 

mappings on previous regression benchmarks.  

 Demonstrate the ability of PAM DGP with redundant mappings to generate higher 

accuracy classifier systems on medical classification benchmarks from the UCI 

repository than PAM DGP with alternate (less developmental) mappings, the 

Standard Adaptive Mapping algorithm, or Traditional GP. 

 Show that PAM DGP with redundant mappings learns recursive solutions given a 

function set consisting of general (not implicitly recursive) machine-language 
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instructions for three recursive sequences of increasing order (factorial, Fibonacci, 

and third order Fibonacci). 

 Demonstrate the PAM DGP provides the semantically highest quality solutions for 

every recursive function (factorial, Fibonacci, and third order Fibonacci) over all 

algorithms considered in this work. 

 Demonstrate that the redundant mapping PAM DGP algorithm produced its solutions 

to the regression, classification, and recursive functions through evolution of 

redundant mappings that effectively selected, and emphasized members of, particular 

subsets of the function set for higher fitness-based performance. 

 Showcase the robustness and customizability of the PAM DGP framework 

throughout the thesis using the chosen benchmarks, while making practical 

recommendations for parameterization of the PAM DGP algorithm when solving 

problems of various types and difficulties.   

 

1.4 Thesis Overview 

Chapter 2 of this work describes background literature relevant to developmental 

systems and coevolution of genetic code-type mappings and solutions.  In particular, the 

chapter describes the developmental nature of PAM DGP, briefly reviews other current 

avenues in developmental systems, examines proposed genotype-phenotype mapping 

models, and describes types of coevolution and their pathologies.  The chapter also 

reviews alternative mappings used in other coevolutionary implementations, with 

particular focus on the works of Keller and Banzhaf [5, 45-47] and Margetts and Jones 

[57-59] in which this work has its roots.   
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Chapter 3 details the drawbacks and coevolutionary issues of the earlier Standard 

Adaptive Mapping DGP algorithm of Margetts and Jones [57-59], proceeding to 

introduce the PAM DGP algorithm.  The chapter then examines how PAM DGP 

improves on the Standard Adaptive Mapping DGP and the computational complexity of 

the two algorithms is then discussed.  Chapter 4 compares the performance of the two 

algorithms on the simple regression Maximum Output (MAX) problem previously used 

to introduce the Standard Adaptive Mapping DGP to the literature [58], with Chapter 5 

comparing the two algorithms on the harder Hénon mapping and Two Boxes regression 

problems. 

  Having established performance comparisons of PAM DGP and Margetts and 

Jones‘s algorithm using equivalent genotypes and mappings, a more developmental 

adaptive redundant mapping is incorporated in PAM DGP in Chapter 6.  Chapter 6 also 

discusses the expected benefits of introducing an adaptive redundant mapping and briefly 

reviews literature on redundant representations in Evolutionary Computation and the 

theory of adaptation through neutral variation.  Computational complexity benefits for 

PAM DGP resulting from the introduction of the new mapping encoding is provided, and 

the chapter finishes with an analysis of the MAX problem using the new mapping.   

Chapter 7 compares PAM DGP (using both mapping types), Margetts and Jones‘s 

Standard Adaptive Mapping algorithm, and Traditional GP on two medical classification 

benchmarks.  The analysis in Chapter 7 demonstrates the effectiveness of the new 

adaptive redundant mapping in PAM DGP with respect to accuracy of the classifiers, and 

shows it is achieved through tailoring of the function set.  Chapter 8 applies PAM DGP 

with redundant encodings to learning recursive solutions given a function set consisting 
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of general (not implicitly recursive) machine-language instructions.  PAM DGP using 

redundant encodings is found to more efficiently learn second and third order recursive 

Fibonacci functions than the related developmental systems examined in this thesis and 

Traditional GP.  PAM DGP using redundant encoding is also demonstrated to produce 

the semantically highest quality solutions for all three recursive functions considered 

(Factorial, 2nd and 3rd order Fibonacci).  PAM DGP is then shown to have produced 

such solutions by evolving redundant mappings to select and emphasize appropriate 

subsets of the function set useful for producing the naturally recursive solutions. 

Chapter 8 provides discussion, including guidance for readers on setting 

appropriate parameters in PAM DGP and limitations of the algorithm.  Summary and 

conclusions follow, finishing with some directions for future work. 
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Chapter 2. Literature Survey and Background 
 

This chapter reviews previous work relevant to the contributions of this thesis, 

where the research presented here covers a number of research areas within the broader 

field of Evolutionary Computation.  These areas are covered in Section 2.1 of this work, 

where previous work in fields of developmental systems, genotype-phenotype mappings 

(GPMs), coevolution and its pathologies, and coevolved mappings are discussed.  

Sections 2.2 and 2.3 discuss in greater detail the two genetic code-based coevolutionary 

systems that are the most relevant background to this thesis.  We begin with a description 

of the biological nature of the developmental model used in this work. 

 

2.1 Context of this Work in the Current Literature 

 

2.1.1 The Developmental Nature of PAM DGP 

The biological process of decoding genes to produce proteins, called ―protein 

synthesis,‖ occurs in two stages: transcription and translation.  We provide here a very 

simple account of aspects of protein synthesis relevant to this thesis:  During 

transcription, sections of the double-helix deoxyribonucleic acid (DNA) are unwound to 

expose the genes.  The genes are then used as templates to create messenger copies of the 

genes (mRNAs) in the DNA‘s analogue chemical language ribonucleic acid (RNA).  

During the translation phase, the codons (triplets of nucleotides) on the mRNA molecules 

are recognized by one end (called the ―anticodon‖) of a transfer RNA (tRNA) molecule.  

The other end of the tRNA molecule corresponds to a binding for a specific amino acid.  
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The correct tRNA molecules continue to bind to successive codons, bringing together the 

required amino acids in a ―polypeptide chain‖ to form the protein product for which the 

gene was originally coded.  Multiple codons of the mRNA (and hence, multiple genes of 

the DNA) can specify the same amino acid.  However, each type of tRNA molecule can 

be attached to only one type of amino acid.  Thus, multiple types of tRNA molecules 

exist with identical anticodons that can carry the same amino acid.  All this amounts to a 

redundant code: each amino acid is specified by more than one codon [55].  The 

description of protein synthesis is depicted below in Figure 2.1. 

 

 

Figure 2.1.  Aspects of protein synthesis relevant to genetic code-based DGP. 

 

   

The biological development equivalent of a genotype-phenotype mapping 

individual in our DGP is technically the tRNA molecules—they are responsible for 
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mapping codon (via anticodon identifier on the tRNA) to amino acid.  (To the author‘s 

knowledge, O‘Neill and Ryan originally draw the analogy of modeling the tRNA 

molecule when using a genetic code-based GPM in [69].)  Another, simpler way of 

putting this is that the genetic code (biological codon to amino acid mapping) is being 

modeled.  Since the natural genetic code is redundant, a developmentally accurate DGP 

analogue ought to be redundant.  Regarding research groups to be discussed in this 

section, Banzhaf and Keller [5, 45-47] and O‘Neill and Ryan [67, 69] incorporate 

redundancy into their mappings, whereas the encoding of Margetts and Jones [57-59] is 

one-to-one (and hence neither redundant nor developmentally accurate).   

The purpose of the coevolutionary developmental system described in this thesis 

is to evolve both a good genetic code and an optimized solution.  But the genetic code is 

often assumed to by the layperson (and modeled in most traditional evolutionary 

algorithm systems) to be fixed.  As it turns out, modern biology indicates that the genetic 

code is adaptive: it is capable of evolving [28, 90].  Furthermore, the genetic code itself 

has evolved as a product of adaptive evolution [28], and its evolution is capable of 

explaining several problems in evolutionary biology [90].  In particular, it has been 

postulated that the genetic code adapts to minimize the negative effects of mutation and 

gene translation errors while also maximizing the rate of natural selection as a search 

algorithm [28].  Recent work in the field of molecular evolution argues that the particular 

mapping of codons to amino acids dictated by the current genetic code is a product of the 

continued coevolution of the genome and the genetic code [83].  Crick‘s widely-accepted 

theory actually always held that coevolution occurred between the genetic code and the 

genome, but that the coevolution ceased once the current associations between codons 
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and amino acids were established in the primitive genetic code.  Crick‘s theory [21] also 

held that as evolution of the primitive genetic code proceeded, the number of proteins in 

the genome increased and their design became more complex.  Crick believed that when 

the genetic code reached its current form, it was so highly developed that any change in it 

would have introduced new amino acids into the highly adapted proteins and spelt 

disaster for the organism.  The genetic code thus became a ―frozen accident.‖  Crick 

himself was critical of his own theory, finding it too accommodating.  Sella and Ardell 

[83] have since found that coevolution modeled with errors in replication and translation 

actually generate the codon-amino acid associations rather than simply preserving 

ancestral versions of the associations as Crick supposed.  In addition, the models of Sella 

and Ardell consistently generated the main organizational features of the standard genetic 

code.  The adaptive nature of the genetic code in biology justifies the application of 

selection to a population of genetic codes in a developmental system.  The fact that the 

mapping of the genetic code is suspected to co-evolve with the genome justifies the use 

of coevolution in the developmental model.   

It is still an open question how best to implement this coevolution.  The mappings 

(tRNA molecules) and genotypes (genes) are separate molecular entities within a single 

molecule, so it may seem to make sense to evolve them as being paired within an 

individual (as in [45-47]).  However, if we consider this a bit further, such an approach 

will not accurately model biological entities as a population.  At any given time in 

evolutionary history, each separate individual will possess unique DNA but undergo 

basically the same transcription / translation processes (with very rare exceptions that 

slowly forward the evolution of the genetic code).  That is, each individual does not 
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possess a unique genetic coding scheme that occurs within their own cells.  The aim of 

the developmental model is to determine how the genetic code has evolved to optimize 

for the collective population of genotypes.  In nature, a highly evolved and nearly 

universal standard genetic code developed very early in the history of life whereas our 

human genome is a much newer development.  As noted in by Freeland [28], natural 

selection processes approach optima asymptotically.  As the genetic code is now highly 

adapted, the changes occurring to it are practically negligible.  However, problems posed 

to an artificial DGP system cannot assume to have been handed a near optimal genetic 

code as a context in which to work.  The purpose of the coevolution of the genetic code 

and genotypes in DGP systems is to play ―catch-up‖—evolve an optimized (or as 

optimized as possible) genetic code in the context of the population of genotypes rather 

than an individual‘s genotype.  It would thus seem more appropriate to evolve candidate 

genetic codes (mappings) against a collective population of genotypes in a separate 

coevolutionary population.  Researchers who have opted for this approach include [57, 

58] and the authors.   

 

2.1.2 Other Developmental Research 

 

Other developmental approaches also include systems that involve types of 

constructs other than the genetic code between the genotype and phenotype spaces.  This 

Section very briefly covers such alternative approaches, and is included to give the reader 

a taste of current research and the direction of the exciting and expanding field of 

developmental and generative systems.  Detailed discussion of developmental systems 
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incorporating GPMs directly relevant to the algorithm introduced in this thesis will be 

provided in the upcoming Sections. 

Some GPMs in developmental systems incorporate a complex of relationships.  

One such system proposed by Banzhaf [4, 6, 7], called Artificial Regulatory Networks 

(ARNs), relates the genotype and phenotype spaces by mimicking the process of protein 

production in nature.  The genotype is used to encode information (located at a 

―promoter‖ site) regarding the amount of genotype to be read to produce proteins.  The 

proteins that are produced interact with either the genotype or other proteins.  The 

occupation of particular sites on the genotype (promoter or inhibitor sites) upstream from 

the promoter site by proteins dictates the efficiency of the expression of the gene 

downstream from those sites.  The system results in a regulatory network with genes as 

nodes and proteins creating links between the nodes.  The weight of the linkage between 

nodes is determined by the degree to which a protein and regulatory site on the genotype 

match.  Another well-known approach by Koza is to separate a genotype from a 

phenotype expressed as a circuit [50, 52].  An initial embryo consists of an unconnected 

wire, and it is developed into a circuit through the application of the functions in evolved 

tree-based genotypes.  Thus, the genotype serves as a design plan that is applied to the 

initial embryo wire to form a more complex circuit.  

The current research in the developmental GP field is so rich and varied that 

algorithms and associated structures are often unique to individual research teams and 

their associated projects.  Unique developmental models have been applied to the design 

of robots and robot controllers by prominent researchers in the field such as Bentley, 

Hornby, and Bongard [10, 13, 14, 35, 36].  Developmental systems have also been used 
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for the automatic design of circuits and hardware (such as antennae) by researchers 

including Lohn (with Hornby), Koza, and Gordon (with Bentley) [32, 50, 56], as well as 

used to provide self-repairing capabilities and graceful degradation to systems by Miller 

and Banzhaf, Miller and Tyrrell, and Bentley [11, 60, 61].  Lists of researchers and 

references associated with each area just mentioned are not meant to be exhaustive, but 

provide the reader with a starting point for current research applications of developmental 

GP as of this writing.   

The future of the developmental GP field seems to be headed toward a close 

adherence to evolutionary phenomena as they are understood from nature, and it is poised 

to impact the broader evolutionary computation field.  Since Banzhaf and Keller authored 

the pioneering work in which this thesis has its roots [5, 45-47], Banzhaf has formulated 

suggestions for the most promising direction for the future of the field.  A number of 

prominent researchers in evolutionary computation and biology, including Banzhaf, have 

recently called for a research program with the aim of creating a new field called 

―computational evolution (CE)‖ [8].  The new field will involve the creation of new 

algorithms to modernize current evolution-inspired implementations so that they more 

closely reflect a contemporary understanding of natural evolution.  The current 

implementations based on simplified models of biological evolution are dubbed ―artificial 

evolution (AE)‖ by Banzhaf et al., and are specified to include ―evolutionary 

programming, genetic algorithms, evolutionary strategies, and genetic programming‖ [8].  

In these implementations, the genomes (genetic content) of individuals are typically small 

and are directly mapped to simplified phenotypes (expressions of the genetic material).  

AE algorithms seldom use more sophisticated mechanisms such as self-modification or 
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feedback that are seen throughout nature, and AE algorithms typically proceed to a static 

objective that is defined a priori.  In contrast, natural evolution is now known to operate 

at numerous levels of complexity.  DNA, the genetic code, and control and feedback 

mechanisms are themselves now understood to be products of evolution; there is not a 

unidirectional flow of information from DNA to protein.  It has also long been known 

that there is differential gene expression and more than one genotype can map to more 

than one phenotype in nature.  Furthermore, evolution in nature is open-ended and fosters 

emergent phenomena such as re-use of genotypic and phenotypic structures for novel 

purposes, regulatory networks, dynamic mappings, and formation of new species.   

The hope of CE is that its algorithms, by a closer adherence to the intricacies of 

natural evolution, will be powerful tools for solving complex computational problems 

that have proven difficult for AE approaches.  Such problems include such features as: 

not being completely definable a priori, dependence on temporal variations, difficulty 

discerning relevant data from information available for the solution, and the requirement 

that a solution must be determined completely autonomously.  Examples of such 

problems for which CE could contribute cutting edge solutions include environmental 

sensing in robots that alter their own environment, data mining of complex dynamic data 

sets, innovative design (special purpose programs and hardware), autonomic software 

systems (systems of interacting software objects that collectively work toward a globally 

defined goal, while being able to react gracefully to perturbations such as damage and 

increased demand), problems with unknown or overly complex specification issues, and 

other open-ended (yet constrained) problems that could not previously be tackled.  It is 
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hoped that this work will prove to be a valued step in the direction of establishing this 

new paradigm. 

  

2.1.3 Genotype-Phenotype Mappings 

 

Any attempt to separate genotype and phenotype space, including the 

developmental systems discussed in the previous two sections, involve design decisions 

regarding the definition of the mapping between the two spaces.  Broadly construed, the 

literature has used the term ―genotype-phenotype mapping‖ (GPM) to indicate any means 

at all of allowing genotypes to translate to phenotypes.  Bentley and Kumar have 

endeavored to produce a classification of genotype-phenotype maps [12].  To be more 

specific, Bentley and Kumar prefer to consider mappings as growth processes, and 

alternately call them ―embryogenies.‖  The first type of embryogeny is the external (non-

evolved) type, which is user-designed, defined globally, and is external to genotypes.  

Such embryogenies are static during the evolutionary process.   

The second type of embryogeny is explicit (evolved).  This type is said to be a 

data structure or set of instructions that dictate how the genotype is to be interpreted to 

construct the phenotype.  Bentley and Kumar state that such systems typically combine 

the genotype and mapping and allow the evolution of both simultaneously.  While the 

work of Keller and Banzhaf [5, 45-47] combine genotype and mapping in a single 

individual, coevolutionary systems use one population of genotypes and one population 

of mappings as separate individuals.  This is the approach taken in this work, as well as in 

the implementations of Margetts and Jones [57-59] and O‘Neill and Ryan [67-69].  
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The third, and final, type of mapping in Bentley and Kumar‘s taxonomy is the 

implicit (evolved) embryogeny.  In this type of mapping, an indirect series of potentially 

interacting rules is used to generate the phenotype from the genotype.  These rules are not 

typically executed in a predetermined or preprogrammed order, but can be used in a 

dynamic, parallel, and adaptive way.  Examples of implementations of this type include 

Banzhaf‘s Artificial Regulatory Networks (ARNs) [6, 7], Koza‘s evolved circuits [50, 

52], and a number of evolvable hardware approaches such as those mentioned in Section 

2.1.2.  The term mapping is used in this thesis to refer to a correspondence of one set 

(genotype codons) to another (function set members), rather than complex networks or 

processes to relate the genotype and phenotype spaces.  A mapping, so construed, is of 

the explicit (evolved) embryogeny variety.  Furthermore, such mappings that relate 

codons to function set members (assuming they are properly constructed) can also be 

used in more complicated growth structures.  That is, well-constructed explicit 

embryogenies (if a correspondence of one set to another) can be incorporated into larger 

implicit embryogenies.  This would be analagous to the genotype-phenotype mapping 

mechanism (tRNA) being incorporated in the protein synthesis system of a cell. 

   A number of types of GPM alternatives exist, even when only construing 

mappings as a correspondence to relate genotype codons to traits of the phenotype (as 

opposed to complicated or dynamic developmental processes).  A simple external 

(globally applied) mapping example would be that of Bean [9], where he was attempting 

to provide solutions to a job shop scheduling problem such that each genotype 

represented a valid solution when interpreted as a phenotype.  His idea was to create a 

mapping that sorted the alleles (gene values) and sequence the jobs (one corresponding to 
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each allele) in ascending order of the sort.  The values given to the alleles were randomly 

chosen real probabilities in the interval [0, 1], and his representation technique was called 

―random keys.‖  His implementation was thus simply a sorting mechanism of randomly 

generated real numbers, amounting to a random search in the mapping space.   

Altenberg [1, 2] uses an external, globally defined genotype-phenotype mapping 

that is adapted with each new gene created in the genotype space.  Since the mapping is 

externally defined, but adaptive (not static) it does not appear to fit into Bentley and 

Kumar‘s taxonomy, being somewhere between external and explicit.  In Altenberg‘s 

representation, a genome consists of a number of genes with binary values that determine 

a number of phenotypic functions, which in turn contribute to a component of the total 

fitness.  Thus, each gene can have an effect on more than one function.  The mapping is a 

matrix, each element of which is a binary value indicating whether or not each gene 

(column index) affects a fitness component (row index).  In biology, polygeny is the 

phenomenon of one phenotypic trait being affected by more than one gene, while 

pleiotropy is one gene affecting more than one trait.  The matrix thus provides 

information analogous to those two biological mechanisms: The columns of the matrix 

give vectors of the genes controlling each fitness value (polygeny) and the rows provide 

the fitness components controlled by each gene (pleiotropy).  The motivation of his work 

was to demonstrate that the evolved mappings, given an appropriate selection operator 

for the inclusion of fitness-producing genes, kept genes that affected less fitness 

components (exhibited less pleiotropy) and created a smoother fitness landscape than an 

alternate approach. 
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Like Altenberg, Ohnishi [70] used a globally defined mapping that evolved during 

the course of the algorithm.  Ohnishi‘s aim was to adapt a genotype-phenotype mapping 

so that a neighborhood in the genotype space is mapped to a number of separate areas in 

the phenotype space around local and global optima.  In his implementation, the 

parameters of the mapping mechanism used to generate the phenotypes are part of the 

genotype space.  These parameters are used in a time-sequential process when the 

genotype is interpreted, and mimic biological development in that respect.  That is, the 

expression of the genes at a given time is affected by the expression of the genes that 

preceded them.  The mapping maps a neighborhood in the genotype space into separate 

areas of the phenotype space by hierarchically clustering decision variables and assigning 

labels corresponding to ranges of final values to the clusters.  Ohnishi shows the viability 

of his approach using two very simple test functions.  In summary, Ohnishi uses a 

globally defined mapping with adaptable parameters that evolve throughout the algorithm 

because they are in the genotype space.    

Kargupta and Ghosh [42, 43] introduced a mapping called a genetic code-like 

transformation (GCT) that is an analogy of the mapping of an mRNA sequence to a 

protein sequence.  A number of 3-bit mRNA codons map to a single-bit protein feature.  

Thus, the coding is redundant because a particular protein feature can be produced by 

more than one mRNA codon.  Reversing the usual order of translation, Kargupta‘s 

algorithm considers a protein sequence and transforms it into an mRNA space by 

assigning a codon sequence with uniform probability from the group that represents each 

protein bit.  The implementation was used to construct a representation of a non-linear 

problem (the XOR function) with an error surface that is easy to minimize so that the 
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representation is learnable by a linear classifier (a Perceptron).  Rather than attempting to 

refine or investigate mappings themselves, Kargupta and Ghosh are actually modeling a 

mapping in reverse to create a suitable training set in a binary problem domain. 

The type of mapping that this thesis investigates is the type that can be construed 

as a ―code book‖ or ―genetic code,‖ where the mapping is a direct relation that indicates a 

codon is associated with a symbol in the phenotype space.  The only approaches 

discussed so far that treat a GPM explicitly as a genetic code in that traditional way are 

Keller and Banzhaf [5, 45-47] and Margetts and Jones [57-59].  However, another 

approach that treats a GPM as a genetic code in a less traditional sense, called 

Grammatical Evolution (GE), has been introduced by O‘Neill and Ryan [68].  Their 

GPM maps a codon to a symbol in an output language by choosing a production rule 

corresponding to the current nonterminal in a Backus-Naur Form (BNF) grammar.  A 

BNF grammar can be construed as the tuple {N, T, P, S} where N is a set of 

nonterminals, T is a set of terminals, P is a set of production rules that maps N to T, and S 

is the start symbol (a member of N).  Binary string genomes are used with codons of 8 

bits.  The integer values corresponding to the codons map to numbered production rules 

from the set P based on the mapping function (codon integer value) modulo (number of 

rules for current nonterminal).  The interpretation of an individual‘s genome continues to 

loop over the genome until the mapping process produces an expression consisting 

entirely of terminals or the individual is determined to be invalid.  Since many codons 

interpreted as integers can represent the same production rule, the mapping is redundant 

(more than one genome can represent the same phenotype).  The mapping mechanism in 

GE is notably different than most other mapping studies, and represents a novel 
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contribution to that field that allows any computer language expressible in BNF form to 

be a GE solution.      

 

2.1.4 Coevolution: Models and Issues 

 A number of GPM implementations, including this work and those to be 

discussed in the following section, employ coevolution.  Research on coevolution is a 

broad and increasingly active area of research in its own right; for the purposes of this 

thesis we provide a brief introduction here with particular attention paid to 

coevolutionary pathologies and attempts to address them.  Coevolution is a process where 

a given individual is evaluated using interactions with other individuals that are evolving 

at the same time [22], and it is usually divided into two types: cooperative and 

competitive.  In the cooperative model, formulated by Potter and De Jong [78, 79], two or 

more populations are evolved where individuals only mate within their own population.  

The motivation behind cooperative coevolution is to decompose a complex problem into 

components, evolve the components in separate populations, and then assemble the 

components into a total solution.  Since the populations are separate, individuals can (but 

need not) have very different structures so long as they can collaborate.  To evaluate a 

member of one population, collaborations are formed with members of the other 

populations.  The best individual from each of the other populations was chosen as the 

collaborator in the initial work on cooperative coevolution, and a phenotype was formed 

by combining the chosen individuals from each population [80, 81].  In the competitive 

model [22] originally introduced by de Jong and Pollack, individuals (called learners) are 

evaluated by being tested against other individuals (called evaluators).  Learner and 
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evaluator are roles that individuals adopt during the course of an algorithm, and a 

particular individual can take on both roles in the course of the algorithm.  The evaluator 

and learner can be individuals of similar type and evaluate one another in a two player 

game (in this instance, there is no need for separate populations of different individual 

types).  However, separate populations of different types of individuals may be used in 

competitive coevolution, for instance where the evaluator is a test case (training 

exemplar) for the learner instance. 

 There are a number of problems that have been identified for coevolution in 

general.  One problem is disengagement, where the performance levels for one or more 

objectives is at too high or too low a threshold in individuals of one population for 

another population to effectively collaborate with them to progress toward a solution 

[22].  This problem causes loss of gradient [91], where one population of individuals can 

become quite good at a particular objective but the individuals who interact with them 

cannot effectively learn from their achievements.  (An example of this would be a 

beginner being unable to learn from a chess master.)  Disengagement also typically leads 

to ―over-specialization‖ or ―focusing‖ [91], where individuals progress toward some 

problem objectives but not others.  Another problem, specific to competitive coevolution 

among three or more populations, is intransitivity [22, 91].  In this situation, the 

preference measure between learners is not transitive: individual B appears preferable to 

A, C appears preferable to B, but A appears preferable to C.  (Since the PAM DGP 

system described in this work is a two population cooperative coevolution 

implementation, intransitivity is not applicable but is mentioned for completeness of the 

survey of coevolutionary pathologies.) 
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 A problem of concern in this work is referred to as the ―Red Queen Effect‖ [20], 

named for the Red Queen character in Lewis Carroll‘s Through the Looking Glass who 

ran perpetually without moving because the landscape kept up with her.  The Red Queen 

effect occurs in coevolution where traits in one population evolve against traits in the 

other population that are also evolving, thus little or no progress is made.  What is hoped 

for in a coevolutionary implementation is an arms race, where progress is made by 

―mutual and reciprocal adaptations between collaborating groups of individuals‖ [93].  

That is, what is needed is for each population to alternately build on the adaptations 

achieved by the other in order to mutually progress toward a solution.  This situation is 

also known as a parallel adaptive gradient [93].  If some semblance of an arms race does 

not occur, the alternative is little to no progress toward a solution, where the adaptation in 

one population can even undermine the progress of the other.  Another negative 

alternative to an arms race is collusion, or the occurrence of a mediocre stable state 

(MSS) [3, 27], where the individuals interact without actually creating improvement in 

one another with respect to an objective problem solution.  The manifestation of the Red 

Queen effect in the Standard Adaptive Mapping DGP will be discussed in the Chapter 3. 

 Theoretical analysis in the last decade has typically shown that cooperative 

coevolution evolutionary algorithm (CCEA) implementations are not well-suited for 

static optimization problems [93].  The problem is that CCEA are not necessarily 

attracted to the optimal collaboration, or finding the team composed of individuals with 

the optimal performance, in static optimization tasks.  This pathology can be referred to 

as relative overgeneralization [71].  A response to this for researchers Wiegand and 

Potter [93] was to point out very good performance for multiagent learning problems 
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(although Weigand also continuing to improve CCEAs for static optimization problems 

[71, 72]).  CCEAs are able to perform well in multiagent domains because the goal of the 

problem is not to find the optimal team, but to find a team that performs well and is 

robust to deviation in individual members.  In other words, CCEAs are well suited to 

finding individuals that combine well with a variety of individuals from the other 

populations.   

Other researchers have currently been working on modifying CCEAs to enable 

them to perform well on static optimization problems.  Bucci and Pollack [18] have 

attempted to accomplish this using a combination of Pareto selection and memory 

mechanisms.  Experimenting on two populations, a somewhat competitive angle is taken 

on CCEAs.  One population is cast as the candidate solutions (learners) and the other as 

the tests for the solutions (evaluators), with both populations taking turns alternating roles 

as candidates and solutions.  Using a steady state tournament size of 2, instead of adding 

the individual with the highest objective fitness function to the next generation, the 

algorithm adds the Pareto dominant individual to the next generation if a threshold is 

exceeded, otherwise the lower individual is added.  Both individuals are added in the case 

of incomparable individuals.  Furthermore, the Pareto front of each current population is 

carried forward to the next, with empty spaces filled using the selection mechanism just 

mentioned.  The highest valued individual of each generation is always carried forward to 

the next population as well.  Given this algorithm, the authors were able to find the global 

optimum of a popular maximum of two quadratics (MTQ) optimization problem.  MTQ is 

a class of functions simply defined as max(f1, f2) where f1 and f2 are two quadratic 

polynomials.   
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Panait, Luke, and Wiegand [71, 72] improve CCEA for the same MTQ problem 

using a different method.  In their approach, a member of a population is evaluated in the 

context of co-evolving members in each of the other populations (as in a typical CCEA), 

but the choice of collaborators is biased toward a globally optimal collaboration.  A 

hurdle to overcome for this approach was that the authors had provided the optimal 

assessment for a population to the algorithm a priori in [72], where this information 

would not be available in most real world domains.  The authors, however, have very 

recently improved the algorithm in [71] to include an implicit memory mechanism by 

embedding the populations in spatial geometries and choosing breeding and collaboration 

individuals using a notion of neighborhood.  A rote learning algorithm to learn biasing 

information was also implemented to create a more realistic implementation: if an 

individual picks an action a, the collaborator picks an action b that has so far exhibited 

the highest performance when paired with a.  The work in [71, 72] is also based on the 

assumption that a particular type of problem called a multipopulation symmetric 

cooperative coevolutionary algorithm (MPS-CEA) is being investigated, where for any 

collaboration used to evaluate an individual in a particular population, if the same 

collaboration were used to evaluate any of the other component individuals in the set of 

collaborators, those individuals would receive an equal payoff. 
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2.1.5 Alternative Mappings in Coevolution 

 In sections 2.1.3 and 2.1.4, we looked at alternative GPM structures, types of 

coevolutionary algorithms, and pathologies of coevolution.  This section discusses other 

coevolutionary approaches that involve evolving GPMs in a population, bridging the 

fields of GPMs and coevolution covered in the previous two sections.  The structures of 

the mappings discussed in this section, however, differ from genetic code mappings that 

directly relate genotype codons (sequences of genotype bits) to function set symbols as in 

this work and the more related works of Keller and Banzhaf and Margetts and Jones.  The 

work of those two groups thus warrants separate and more detailed discussion, which 

follows in Sections 2.2 and 2.3, respectively.    

 An alternative (not genetic code-based) GPM structure is used in the 

coevolutionary system SYMBIOT by Paredis, which was found to be capable of better 

fitness performance on a 3 bit deceptive problem [76] and problems of increasing degrees 

of epistasis [74] than single population approaches.  The 3 bit deceptive problem was 

described by Goldberg in [31], where deceptive problems are defined as those that tend to 

lead an EA toward a particular local optimum, when in fact the global optimum is located 

at that local optimum‘s complement.  Epistatic problems involve closely coupled 

alternatives during solution search, and typically result in an inability to decompose a 

problem into independent subcomponents.  Epistatic problems are thus difficult for GAs 

because most GA algorithms rely on forming solution subparts (or ―building blocks‖) and 

combining their features to form solutions.  Paredis‘s SYMBIOT system overcomes these 

difficulties by using a population of genotypes and a separate population of permutations 
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of the genes.  It is thus a cooperative coevolutionary implementation, since members of 

two populations must interact to generate a phenotype.  A mapping involves using the 

permutation to sort the genes into an ordered genotype, and the ordered genotype in turn 

is evaluated with the objective fitness function.  Thus, the mapping that is evolved by 

coevolution is actually only a specification of the ordering of genes, rather than the 

definition of the correspondence between genes and members of a function/terminal set.   

Every tournament round involves two parent genotypes being selected (where 

selection is always biased toward higher fitness) and their application to a permutation.  

The parents then generate a child, which is also applied to the permutation to give it an 

initial fitness value.  For each round, the permutation is given a fitness that is the mean 

fitness of the parents divided by the child‘s fitness.  Each permutation is given a lifetime 

fitness based on the mean of the last 20 collaborations in which it was involved, a 

technique known as Life-time Fitness Evaluation (LTFE).  Reproduction of permutations 

occurs every 20 collaborations, where a special genetic operator used to inherit gene 

adjacency information is used to form the child.  An initial fitness is determined by 

having the permutation child interact with two solutions, and the 20 LTFE elements of 

the child are initially given that fitness value.   

The LTFE is a measure of the partial fitness history of an individual, and is 

continuous in that it is updated with new collaborations.  LTFE is provided as an 

effective means of overcoming noise in fitness evalution during steady state tournaments 

due to the continuous feedback it provides to average out fitness evaluations [74, 76].  

LTFE is also claimed to be well suited to coevolutionary coupled fitness landscapes, 

where changes (through ranking or new individuals) in one population affect the fitness 
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of new members of the other population [74, 76].  However, later work (also by Paredis) 

shows that LTFE in a coevolutionary algorithm is unable to overcome the Red Queen 

Effect [75].  To combat the Red Queen Effect, the algorithm in [75] is changed by not 

allowing one population to evolve.  Instead, a member is selected randomly (rather than 

according to fitness) for removal from the population every round and a new, randomly 

generated, member takes its place.  By stopping the evolution of one of the populations, 

the two populations were no longer able to cause adverse effects on one another in their 

pursuit of higher fitnesses.  However, the reader should also note that obviously the 

opportunity for the evolution of one population to push the evolution of the other forward 

is also lost.  

A coevolutionary model such as Paredis‘s SYMBIOT enforces an explicitly 

hierarchical relation between the two populations, with fitness evaluation being 

performed on one population and a mechanism defined for propagating fitness back to 

the second population.  Such a scheme is generally referred to as symbiotic cooperative 

coevolution [64].  The symbiotic model of coevolution has been demonstrated to be 

particularly effective when evolving neural networks [63].  Specifically, one population 

represents neurons whereas the second defines the connectivity of neurons defined in the 

first.  Fitness is evaluated at the second population and propagated back to the first to 

establish fitness at the neural level.  No recognition of the potential negative contribution 

of coevolutionary factors such as the Red Queen effect was made.  Interestingly, a later 

work [89] recognizes that solving the gene context problem is central to providing an 

effective model for coevolution.  However, the solution adopted relies on the use of 
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historical markings in order to enforce suitable speciation policies, where search 

operators operate within the same species.   

The symbiotic model will also be used in this work; however, we explicitly 

address the Red Queen effect, which may detract from the desirable properties of the 

cooperative coevolutionary paradigm, as demonstrated in Chapter 3.  It should be noted 

that Paredis appears to be only author (aside from the current thesis) that has attempted to 

tackle coevolutionary design pathologies while also investigating the production of 

effective genotype-phenotype mappings (although her mappings simply specify orderings 

rather than modeling the genetic code).  Later works by Paredis [73, 77] moved away 

from studies with SYMBIOT and cooperative coevolution to investigate overcoming loss 

of gradient in competitive coevolutionary problems through maintenance of partial or 

entire fitness history of individuals and a mechanism called ―balanced coevolution‖ that 

gradually restricts the reproductive rate of one population as it outperforms the other. 

  Similar to Paredis‘s SYMBIOT, Murao et al.[65] use cooperative coevolution of 

one population of genes and another population dictating permutations of the genes.  As 

in the mapping mechanism of SYMBIOT, the genes are ordered by a permutation, and 

the newly ordered genome is then applied to a fitness function.  Murao et al.‘s system did 

differ from SYMBIOT in that LTFE was not used.  Instead, the fitness of a genotype is 

determined by applying it to all permutations, and the maximum of those values is taken 

to be the fitness of the genotype.  This greedy method of fitness evaluation only allows 

individuals to evolve in the context of the best individual in the other population, which 

(in the author‘s opinion) is a poor choice of fitness evaluation if that best individual is 

expected to change at all.  At that point, the context against which the original population 
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has been evolving will be lost and fitness will plummet in the original population.  This 

situation, a manifestation of the Red Queen Effect, will be discussed in much greater 

detail in Chapter 3 in relation to Margetts and Jones work.  The fitnesses of the 

permutations are determined using the same methodology.  Also, SYMBIOT used a 

steady state tournmament whereas Murao et al.‘s algorithm generated every combination 

of genotype and permutation and ranked them all in each round of a generational 

tournament.  The problem domain was again a 3 bit deceptive problem, where Murao et 

al.‘s coevolutionary system was shown to outperform a traditional GA.   

Bui et al. [19] have cooperatively coevolved two populations of matrices for use 

on rotated problems, or problems where a function ought to undergo a transformation 

operation with a fixed rotated matrix in parameter space prior to being evaluated using 

the fitness function.  One population is the genotypes and the other population is 

considered to be the mappings.  To evaluate the combination of genotype and mapping, 

the two matrices are multiplied and the result applied to the fitness function.  Evaluation 

of an individual in either population involves pairing it with the best individual in the 

other population, which (as mentioned above) is not robust to the issue of loss of context 

of the best individual in the alternate population. 

O‘Neill and Ryan have created an implementation of Grammatical Evolution 

(GE) that builds on the system described in [68] by cooperatively coevolving a 

population of genotypes and a population of mappings.  According to O‘Neill and Ryan 

in [69], the only study previous to their work at the time (2004) on evolution of genetic 

code in a developmental GP is that of Keller and Banzhaf [45, 46].  The author agrees 

that this is true if the term genetic code must model the natural genetic code in that it is 
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redundant, otherwise the efforts of Margetts and Jones [57-59] using a one-to-one 

Huffman-based mapping in a developmental algorithm ought to be included as 

background.  The algorithm is called ―grammatical evolution by grammatical evolution‖ 

or (GE)
2
.  Their algorithm coevolves two populations, one population of solution 

grammars and another population of solutions themselves.  By modifying the grammar 

used to construct a solution, the algorithm is directly modifying the genetic code by 

altering the mapping of codon values to different rules in the grammar.  A generational 

tournament is used, with each solution individual being paired with its own solution 

grammar.  Crossover only occurs between individuals of the same type; that is, solution 

grammar chromosome segments are not exchanged with solution segments.  To be 

precise, (GE)
2
 actually uses two distinct grammars, a static universal grammar and the 

solution grammar that evolves.  A globally applicable set of syntactic rules in the 

universal grammar dictates the construction of the evolving solution grammars.  A 

portion of every solution grammar is hard coded such that evolution occurs on the 

number of productions for specific nonterminals, with rule duplication permitted.  Thus, 

(GE)
2
 has the potential to produce redundant (degenerate) genetic codes.  The initial work 

on (GE)
2
 [69]  demonstrated that coevolution of genetic code (grammar) and solution was 

possible on both static and dynamic symbolic regression problems.  Follow-up work in 

[67] incorporated the principles of modularity and reuse into the universal grammar by 

constructing the universal grammar so that it dictated building blocks of various sizes be 

produced.  In other words, the universal grammar specifies the construction of another 

generative bitstring grammar that is used to incorporate building blocks in the generation 

of the phenotype.  The grammar-based mappings of O‘Neill and Ryan are versatile and 
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novel, but this work is based on more direct ―genetic code‖ type mapping constructs such 

as those of Keller and Banzhaf [5, 45-47] and Margetts and Jones [57-59].  Their work is 

now discussed in greater detail (Sections 2.2 and 2.3). 

 

2.2 Developmental Genetic Programming with Evolved Genetic Code Mappings 

 

2.2.1 Evolved Genetic Code Mapping Structure 

 Banzhaf and Keller‘s seminal work in [5, 45, 47] expands on DGP variants 

previous to their work which used a ―global code‖ where all genotypes are mapped onto 

phenotypes using the same mapping.  Banzhaf and Keller separate the genotype and 

phenotype spaces with a genetic code-based GPM (genotype-to-phenotype mapping) that 

directly maps bit sequences present in the genotype to members of the phenotype‘s 

function and terminal sets.  Their DGP algorithm evolves both genetic codes and 

genotypes, coupled together as a single individual, with the aim that artificial evolution 

will produce genetic codes that support the evolution of good genotypes.  

In their model, a phenotype is a syntactically legal symbol sequence where every 

symbol is a member of the function set F or terminal set T.  For a regression problem 

example, for instance, a member of the phenotype might be a legal sequence where {*} 

comes from F and {x, y} comes from T.  The genotype is composed of n > 0 contiguous 

bit sequences each with the same length b > 0 called codons.  The length b is selected 

such that for each symbol of the function and terminal set, there is at least one codon to 

map to that and only that symbol.  For instance, a genotype with n = 5 and b = 3 could be 

101 011 110 001 010 and encode the symbol sequence {x * y + /}.  The genetic code is 
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the codon-symbol mapping that defines the encoding of each symbol by one or more 

codons.  The only remaining piece to create a genotype-phenotype mapping (GPM) is to 

make sure the raw sequence of symbols that the genetic code encodes is actually a legal 

sequence.  (Only legal sequences are members of the phenotype.)  An illegal syntax error 

in a position of a symbol sequence is fixed using a repair algorithm such as replacing 

repair [47] or deleting repair [45].  (Repair mechanisms are not required in the further 

work of Margetts and Jones [57-59] or the algorithm presented in this thesis, and thus 

they are not detailed in this survey.)  Following repair, the genotype is then mapped to a 

member of the phenotype, and the GPM is complete.    

 In terms of solution search, the purpose of evolving the genetic code is a means of 

enhancing the search process so that it profitably adapts the fitness landscape.  Evolving 

the genetic code allows the implementation to isolate phenotype symbols (i.e., 

instructions) that are valuable in solving a particular problem and use them more often, 

while using irrelevant symbols less often.  In addition to the traditional genotype 

population, a population of individual genetic codes is used instead of a single global 

code.  Each individual is a coupling of its own genetic code along with its genotype.  The 

individual‘s code is an arbitrary codon-symbol mapping, and thus may map more than 

one codon onto the same symbol.  Redundant code can thus be used to produce a 

phenotype in their implementation, where the code redundancy allows the search to 

emphasize certain symbols and disregard symbols that are of little or no use in the 

problem solution.  The structure of a global and non-global code and the encoding 

process involved in each are given in Figure 2.2. 
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Figure 2.2. Fitness evaluation using typical global and Keller and Banzhaf’s non-

global genetic code-based mappings. 
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2.2.2 Evolved Genetic Code Mapping Algorithm 

Having established the nature of the mapping individual‘s structure and encoding, 

the components necessary for evolution of the code population in the implementation of 

Keller and Banzhaf [45] are defined in this section.  Mutation for the code population in 

is point code mutation.  For Keller and Banzhaf, a symbol in the mapping is 

stochastically selected and then replaced with a different symbol that is stochastically 

selected from the symbol set.  The mutation probability for the point code can be set at a 

different rate than the mutation rate for the individual‘s genotype.  A code population 

individual is reproduced when its connected genotype individual is reproduced, and 

different genotype individuals are permitted to carry the same code.  The authors use a 

generational tournament with fitness-based selection and a tournament size of two.  

Individuals are stochastically selected, and point mutation or simple reproduction is 

performed based on an execution probability (no crossover is used).   

 The genetic code carried by an individual determines, along with the genotype, 

the fitness of the individual‘s phenotype.  However, since the same genetic code carried 

by an individual with a different genotype will result in a potentially very different fitness 

for the individual‘s phenotype, the authors introduced an additional fitness measure for 

genetic code [45].  The code fitness measure relied on enumeration of the search space 

and a priori knowledge of an ideal solution for a simple regression problem.  The fitness 

of the genetic code is then defined as the portion of the search space that it maps onto an 

ideal solution under the GPM, including repair algorithm.  So if a genetic code maps 10 

genotypes out of a search space of 50 to the ideal solution, the fitness is 0.2. 
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 Using both phenotype fitness measure and code fitness measure simultaneously, 

[45] demonstrates that evolution works in principle on an easy synthetic problem.  

Research in [45] then extends the fitness measure to respond to the question of whether 

better individuals have better codes and vice versa.  A notion of coupled fitness is defined 

simply as the product of an individual‘s genotype fitness and their code fitness.  Using 

this measure, the authors find that better individuals have better codes when analyzing the 

behavior of coupled fitness using selection based on the previous fitness definition.  The 

authors attribute this code evolution to the propagation of codes defining better 

individuals, who propagate their attached codes.  The algorithm is extended to a harder 

synthetic problem in [46].  The fitness determination and selection procedure for their 

algorithm is shown below in Figure 2.3, with the associated pseudocode for their 

procedure in Figure 2.4 [45]. 

 

 

Figure 2.3. Selection mechanism for Developmental GP using Evolved Mappings. 
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Stochastically generate initial population of genotypes. 
Apply GPMs to genotypes to create phenotypes. 

Apply fitness function to population of phenotypes. 

 

while (desired fitness not found)  

   Select 2 genotypes based on fitness. (i.e. this is tourn. size) 

   Reproduce or apply point mutation to selected genotypes.  

   Apply GPMs to genotypes to create phenotypes. 

   Evaluate fitnesses of selected individuals. 

   Insert back into population. 

 

Figure 2.4. Algorithm for Developmental GP using Evolved Mappings. 

 

 

2.3 Developmental Genetic Programming with Adaptive Mappings 

 

2.3.1 Adaptive Mapping Structure 

Keller and Banzhaf‘s DGP [45] is composed of a single population of genotypes 

and an attached genetic code, Section 2.2.  In contrast, the DGP of Margetts and Jones 

described in this Section separates the mapping and genotypes into two populations in 

order to implement cooperative coevolution.  In [57], Margetts dubs the approach of each 

individual having their own mapping function the monolithic approach.  According to 

Margetts, one downside of this approach—as opposed to placing genotypes and 

mappings in separate populations—is that a single population is composed of individuals 

containing significant amounts of genetic material.  Also, each individual must 

effectively solve two problems at once:  it must simultaneously determine a good 

mapping and it must find a good solution to which the mapping is to be applied.  

Supposing that an individual is composed of a good solution and a poor mapping (or vice 

versa), the individual will only possess a single fitness value.  There would be no way of 
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knowing that a superior solution and poor mapping (or vice versa) are appended to one 

another without separating them anyway. 

Margetts goes on to say that the only way that an individual can achieve a high 

fitness is if both mapping and solution components are of high fitness.  He suggests in 

[57] that it may seem (at least on the surface) that this problem could readily be alleviated 

by specialized genetic operators.  But supposing that an operator guaranteed that a child 

inherits either the mapping or solution component of the parent and the remainder of the 

child genotype was generated with a crossover type operator, although the child has 

inherited a reasonable solution or mapping, it will likely still not have both at the same 

time.  After all, the ability to alter the mapping on an individual basis means that different 

individuals may represent entirely equivalent, yet entirely incompatible, high fitness 

solutions.  By modeling genotype and mapping as separate individuals, genotype 

solutions can evolve in the context of particular mappings. 

In addition to modeling the placement of the genetic code as a separate entity 

instead of inclusion in the genotype, the structure of the genetic code itself is also 

addressed by Margetts and Jones in [58, 59].  Earlier work allowed bit strings of equal 

lengths as codons and used the redundant encoding of symbols in order to emphasize and 

de-emphasize certain symbols.  Margetts and Jones chose an alternative representation in 

an attempt to improve the symbol emphasis component of DGP search.  In [58] they 

introduce their alternative representation where they use binary strings of dynamically 

determined length each corresponding to a symbol, although all symbols need not be 

encoded.  The algorithm chooses its own one-to-one assignment of binary sequences to 

symbols using Huffman encoding.  (As we noted previously, such a non-redundant 
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encoding is unfortunately not developmentally accurate.)  Huffman encoding is 

traditionally a means of allowing frequently-used symbols in a message to be transmitted 

using a proportionally lower number of bits so that message lengths are reduced for the 

purpose of compressed transmission.  The Huffman algorithm also ensures that for a 

given bit length, the most frequent bit sequences correspond to the most frequent 

symbols.  The pseudocode for the Huffman algorithm as presented in [82] is given below 

in Figure 2.5. 

 

for (i = 0; i <= noInFunctionSet; i++) 

 if (count[i] >= 1) priorityQueue.add(count[i], i); 

 

while (!priorityQueue.isEmpty()) 

 i++; 

t1 = priorityQueue.remove(); 

t2 = priorityQueue.remove(); 

parent[i] = 0; 

parent[t1] = i; 

parent[t2] = -i; 

count[i] = count[t1] + count[t2] ; 

if (!priorityQueue.isEmpty())  

priorityQueue.add(count[i], i); 

 

for (j = 0; j <= noInFunctionSet, j++) 

 j = 0; x = 0; k = 1; 

 if (count[j]) 

  for (t = parent[j]; t; t = dad[t] ; k += k, i++) 

   if (t < 0)  

x += k ;  

t = -t ; 

 code[j] = x ; 

 len[j] = i ; 

  
 

Figure 2.5. The Huffman encoding algorithm. 

 

 In the pseudocode above, the algorithm starts with an array ―count‖ that is filled 

with the frequency counts for each of the members of the functional set.  (Typically 
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Huffman‘s algorithm would have to count the number of occurrences of each character 

token in a message and produce the count array itself.  In the adaptive mapping 

algorithm, the mapping individual itself provides the frequency information.)  The first 

statement in the pseudocode above inserts all nonzero frequency counts into 

priorityQueue.  Next, inside the while loop, the two smallest elements are removed 

from the priority queue, their counts are added together, the result is placed back into the 

priority queue.  The condition of the while loop produces a tree of frequencies, where 

parent[t] holds the index of the parent of the node whose frequency is in 

count[t].  The sign of parent[t] indicates whether the node is a left or right child 

of the parent.  The final for loop in the pseudocode creates the encoded representation of 

the function set, represented by the arrays len[] and code[]:  the rightmost len[j] 

bits in the binary representation of the integer code[j] is the code for the jth function 

in the set.  For instance, the function ADD could be the fourth function, so j = 4 and 

code[4] = 6 with len[4] = 3, indicating that the code for ADD is the rightmost 4 bits 

of the binary representation of the number 6, or 0110.  (Note that 0s are prefixed if j 

exceeds the length of the binary representation of code[j].) 

 The Margetts and Jones algorithm that uses the Huffman representations is 

described in [57, 58] and introduces the concept of an ―adaptive mapping.‖  Given a 

function set with s symbols, each individual in the population of mappings consists of s 

10-bit binary string segments each representing a frequency.  Each segment of 10 bits is 

converted to a real valued frequency in the interval [0, 1] using the normalized 

countingOnes function that simply sums all the ones in a given binary string:   
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   (2.1) 

where binaryString is  an array of binary characters and L is the length of binaryString. 

In [59], the use of the countingOnes function is justified over more intuitive choices 

(such as binary to decimal conversion) for its ability to produce small changes in 

phenotype to correspond to small changes in genotype in later phases of search.  The 

symbols, associated frequencies, and genotype are provided as arguments for utilizing 

Huffman‘s algorithm, and it returns a one-to-one mapping of varying-length bit strings to 

symbols.  The Huffman mapping encoding process is depicted in Figure 2.6.  In [58], the 

authors demonstrate that their algorithm and associated adaptive Huffman-encoded 

mapping outperform a fixed mapping on a DGP variant of the Maximum Output 

problem.  As mentioned in Chapter 1, the adaptive mapping and associated algorithm will 

be denoted the Standard Adaptive Mapping (or simply Adaptive Mapping) DGP in this 

thesis.  

 

 

Figure 2.6. The Adaptive Mapping structure and encoding. 
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 No repair mechanism is introduced for the Adaptive Mapping structure [57, 58].  

The way in which the genotype is parsed and the nature of the mapping does not create 

illegal sequences.  The number and sequence of bits to be read from the genotype to 

represent a member of the functional set is always changing under Huffman‘s algorithm, 

but the encoding always corresponds to a function.  The appropriate number of bits is 

first parsed corresponding to the function, and then any required bits needed to address a 

target or source register, retrieve a variable from the problem definition, or generate a 

constant, are parsed from the genotype.  A genotype string is continually parsed until 

there are insufficient bits to parse the next instruction.  If there are insufficient arguments 

for a function, it does nothing.  Given that a program is a series of function calls, 

guaranteed to execute only if there are appropriate arguments, there are no illegal symbol 

sequences generated.  Thus, the Adaptive Mapping method does not require a repair 

phase. 

 We can explore why this is the case in a bit more detail, since Yu and Bentley 

[103] have identified a classification system for methods used to ensure that phenotypes 

are legal (satisfy problem constraints).  Eleven methods/classifications are discussed, 

each corresponding to the stage at which they are incorporated into the design and 

execution of an evolutionary algorithm.  Using their classification system, the adaptive 

mapping using Huffman encoding does not restrict the search space, since genotypes are 

always interpreted in a different way and cannot be designed to be only capable of 

representing legal solutions.  It therefore does not fall under the ―legal search space‖ 

classification, where constraints are addressed at the very beginning of the design of the 

algorithm.  This is beneficial, since it allows free exploration of the genotype space 
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without avoiding infeasible regions, which Keller and Banzhaf recognize as one of the 

main benefits of separating genotype and phenotype spaces [47].   

Instead, the function set for the phenotype itself does not allow illegal phenotypes.  

Phenotypes using these adaptive mappings are sequences of functions with 

accompanying arguments, and no sequence of functions is invalid.  This mapping thus 

uses Yu and Bentley‘s ―legal solution space‖ method of satisfying constraints, where a 

legal phenotype is provided during the actual design of the phenotype.  In addition, the 

adaptive mapping using Huffman encoding of course provides the mapping rules that 

transcribe the binary content of the genotype to a phenotype (which we have already 

stated is legal).  The adaptive mapping thus uses the ―legal map‖ classification of 

constraint satisfaction:  The phenotype solutions produced from the mappings applied to 

genotypes satisfy constraints, but genotypes are not disrupted or constrained because they 

are not directly connected to the phenotypes due to the intermediate mapping.  In 

summary, the adaptive mapping uses a legal map to a legal solution space to separate 

phenotype and genotype spaces without need for repair, allowing unrestricted 

evolutionary search of the genotype space. 

 

2.3.2 Adaptive Mapping Algorithm 

 The Adaptive Mapping DGP algorithm uses a population of mapping individuals 

and a population of genotype individuals.  The two populations co-evolve so that a search 

is conducted for both a useful mapping and a desired solution simultaneously.  In order to 

evaluate a particular genotype, a member of the mapping population is selected to 

produce the phenotype for fitness evaluation.  The mapping individual chosen for 
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application to a genotype is the mapping individual with the current highest fitness in the 

population.  To evaluate a mapping individual, the current best member of the genotype 

population is used.  There is thus only one mechanism for fitness evaluation for genotype 

and mapping in this implementation: fitness of both mappings and genotypes is evaluated 

given a phenotype produced from a mapping individual applied to a genotype individual.  

The authors speculate that the best way to evaluate the fitness of a mapping individual 

would be to evaluate it in the context of all genotypes and take the average fitness as the 

fitness of the mapping, but acknowledge that such measures are too computationally 

expensive to be feasible. 

 In [57], the algorithm is explained in greater detail than in [58].  The fitness of a 

member of one population cannot be evaluated without a member of the other, and there 

is initially no information about the best mapping or genotype to use.  The members of 

each population are thus evaluated with random members of the other to accomplish 

initialization.  A steady state tournament is then used with members of each population 

evaluated alternately.  In the Adaptive Mapping algorithm, two parents are chosen from a 

population and the mutation and crossover operators are applied to them to create 

children.  The children are evaluated using the best member of the other population.  The 

children then stochastically replace individuals in the population selected with a 

probability inversely proportional to fitness.  For the purposes of implementing the 

Standard Adaptive Mapping DGP in this thesis, we use a steady state tournament that 

selects four individuals each round, replacing the worst two individuals with children of 

the winning two parents (parent copies subject to mutation and crossover based on 

associated thresholds).  This approach is comparable, but more straightforward.  Also, it 



 

 

54 

protects the best individual in either the mapping or genotype population at any given 

time, whereas the approach of replacing individuals in a population selected with a 

probability inversely proportional to fitness does not.  As we will see in the upcoming 

chapter, the Standard Adaptive Mapping algorithm requires every benefit it can get in 

terms of protecting its best individual to the greatest degree possible.  In other words, this 

subtly different (but still steady state) selection mechanism is intended to cast the 

Standard Adaptive Mapping algorithm in the best possible light.  The selection 

mechanism is depicted in Figure 2.7 below, with pseudocode provided in Figure 2.8. 

 

 

Figure 2.7. The Standard Adaptive Mapping algorithm selection mechanism. 
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Stochastically generate initial population of genotypes. 
while (tournamentNotDone && solutionNotFound) 

   Select 4 genotypes with uniform probability 

   Rank selected genotypes using bestMapping 

   Verify or set current bestGenotype     

   for 2 loserGenotypes  

      if (mutation threshold is met) 

         mutate(loserGenotype = copy of parent) 

      if (xover threshold is met) 

         xover(loserGenotypes = copy of parents) 

   Select 4 mappings with uniform probability 

   Rank selected mappings using bestGenotype 

   Verify or set current bestMapping 

   for 2 loserMappings  

      if (mutation threshold is met) 

         mutate(loserMapping = copy of parent) 

      if (xover threshold is met) 

         xover(loserMappings = copy of parents) 

 

 

Figure 2.8. The Standard Adaptive Mapping Algorithm. 

 

 

2.4 Where this Work Stands on the DGP Design Issues 

It should be noted that this work will show that neither the Adaptive Mapping 

Structure described in Section 2.3.1 nor the algorithm that accompanies it (Section 2.3.2) 

are a good choice for many regression and classification problems.  The design issues 

surrounding the mapping will not be discussed until Chapter 6, but we believe that 

redundancy in mappings (as implemented by Keller and Banzhaf) is a better alternative 

than Huffman encoding for most interesting problems (for performance reasons, as well 

as theoretical and developmental arguments).  However, addressing this problem is not 

the initial step of this work. 

For now, we implement genotypes and mappings as described by Margetts and 

Jones in [57-59], for we aim to show in the following chapter that their particular 

coevolutionary algorithm suffers from various inherent drawbacks (some of which are 
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documented in the coevolution literature).  To make sure that the design issues explored 

are a product of the algorithm process itself and not the structure of individuals, the 

representation of individuals must be kept constant for now.  We also describe how the 

problematic design issues for their algorithm are solved in our implementation.  To be 

clear, our algorithm adopts a two population coevolutionary approach rather than a 

pairing of genotype and mapping in a single individual for the benefits as cited by 

Margetts [57] (Section 2.3.1) and for the developmental coevolution reasons cited in this 

chapter (Section 2.1.1).  While we believe the two population coevolutionary approach to 

hold more promise than the pairing, we believe that it must be properly implemented to 

overcome problems of separating the populations.  The cooperative coevolutionary 

algorithm that is proposed in this thesis to create better solutions and mappings represents 

a novel and efficient new algorithm to overcome the problems that malign the current 

implementation (and likely other similar approaches).  



 

 

57 

Chapter 3. Introducing the PAM DGP Algorithm 
 

3.1 Introducing the MAX Problem 

The problem selected to introduce the Standard Adaptive Mapping DGP in the 

literature was a version of the MAX problem introduced in [29, 53], as described by 

Margetts and Jones [57, 58].  This version of the MAX problem is to create a program 

that returns the largest value possible using the functional set within the given program 

size limit (rather than a tree depth limit as in [29, 53]).  An ideal solution to the problem 

is a program that repeatedly duplicates a large number and multiplies it by itself, 

effectively squaring the number repeatedly as many times as possible.  Margetts and 

Jones actually experiment with five versions of their MAX problem, where the 

population of genotypes consists of 50, 100, 150, 200 and 250 bit length individuals.  By 

having more bits available for a solution, it is easier to generate a larger number by the 

end of the interpretation of the individual‘s instructions.  MAX problem difficulty thus 

decreases with increasing bit length of the genotypes. 

 In the Adaptive Mapping DGP, the MAX problem is posed to a linear (bit string) 

stack-based version of GP.  Each individual is a stack-based machine composed of a 

general-purpose stack and an output register [57, 58].  A program that changes the state 

of the machine is a list of instructions from the function set in Table 3.1 below.  The 

function set can also have default codons that are used for a non-mapping benchmark 

implementation to which the Adaptive Mapping DGP algorithm performance is 

compared.  (Fixed mappings with the default encodings correspond to evolution without 

a population of mappings, and thus correspond to a traditional GP.)  There is no terminal 
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symbol set for this problem specification.  Each instruction in the program is processed 

sequentially, with each having an associated function.  For each function call, the 

required number of arguments is taken from the stack, they are presented to the function, 

and the return value (if any) is pushed back onto the stack.  If there are insufficient 

arguments on the stack, the function does nothing. 

 

Table 3.1. Stack-based GP Maximum Output Problem function set. 

 

Symbol Function Explanation 

Plus Pop 2 items, add, push onto stack. 

Times Pop 2 items, multiply, push onto stack. 

Const Interpret next 10 bits as number, push onto stack. 

Dup Duplicate item on top of stack, push onto stack. 

Pop Remove item at top of stack. 

S2R Copy item at top of stack into output register;  

does not affect stack contents. 

R2S Push item in output register onto stack. 
 

 

3.2 Drawbacks for the Standard Adaptive Mapping Algorithm 

 

3.2.1 Drawback 1: A Manifestation of the Red Queen—Repeated Loss of Context and 

Fitness Spiking 

 

While the Adaptive Mapping DGP algorithm was shown to outperform the fixed 

mapping algorithm corresponding a traditional non-mapping GP in [57, 58], we show in 

this section that there are two major drawbacks associated with the scheme.  The 

implementation uses the cooperative coevolution of a population of genotypes and a 

population of mappings, as described above in Section 2.1.4.  An individual from one 

population cannot be evaluated without a member of the other population.  To evaluate 

the fitness of an individual in either population, the individual is evaluated with respect to 
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the best individual in the other population.  This is done to avoid the impractical 

computational expense of taking the individual we want to know the fitness of and 

evaluating them against every member of the other population.  The authors also state in 

[58] that evaluating an individual in a population with the best individual in the other 

creates an algorithm that is ―pleasantly symmetric.‖ 

The first drawback is that the methodology of evaluating an individual in either 

population with respect to the best individual in the other population leads the algorithm 

to regularly disrupt the progress it makes toward a solution.  The reason for this is that, 

for a given individual in a population, the context of the best individual in the opposite 

population changes throughout the algorithm.  If a brand new best genotype appears, 

evolution of the mapping population must start its search anew to match it (with the 

exception of the mapping individual that caused it to happen).  That is, every mapping 

except the one that produces the best fitness with the new best genotype will now likely 

produce a poor fitness with the new best genotype.  The proceeding evolution of the 

mappings can eventually create a new best mapping in light of the new best genotype, but 

the previously best genotypes will then fail in the context of this new mapping.  The two 

populations end up struggling to synchronize their search to each other‘s best individual 

while at the same time causing the best individual in each other‘s population to change.  

The mutual contexts that created a high fitness can quickly become lost with the 

uncoupling of the relationship of best genotype to best mapping.  The same phenomenon 

can occur with respect to either population.  This is a textbook case of the Red Queen 

Effect: each population struggles against and undermines the progress of the other instead 
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of building on one another‘s progress.  The steps in which this happens are depicted 

below in Figure 3.1. 

 

Figure 3.1. Loss of context in the Standard Adaptive Mapping Algorithm. 
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While elitism to protect the best individuals in ranking ties (or in general) is not a 

part of the Standard Adaptive Mapping DGP algorithm, it would be an ad hoc addition 

that would likely hinder the exploration phase of the search considerably given the 

frequency with which context changes were seen to occur.  Despite the problems 

changing contexts cause, the algorithm depends on the changing of the context of the best 

individual for exploration of the search space to progress toward a solution.  Attempting 

to correct the problem by protecting the best individuals in either population would 

adversely impact the algorithm.  The fitness cycles are a necessary effect of the function 

of the Adaptive Mapping algorithm, and are seen in a typical run of a tournament below 

in Figure 3.2 for a population size of 8.   

 

Figure 3.2. Best fitness per round for the Standard Adaptive Mapping DGP for the 

MAX Problem.  This graph represents a typical run for 200 bit individuals and a 

population of 8.  Breaks in the graph indicate fitness points ≤ 1 on the log scale. 
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 Previous results reported for the Adaptive Mapping DGP algorithm do not plot 

the fitness of individuals participating in each round of the MAX tournament in [57, 58]; 

only final numerical results are shown for a low number of tournaments.  Conversely, 

data for maximum fitness at each round is provided in [57].  However, such a reporting 

scheme masks the wide variation in fitness resulting from the loss of context between the 

two populations.  As such, steady monotonic improvement in fitness is reported, wherein 

the fitness spiking of Figure 3.2 cannot be recognized. 

 

3.2.2 Drawback 2: Lack of Exploration of the Search Space 

 Even if there were not an issue involving constant changes in context, the 

standard Adaptive Mapping algorithm has a second major drawback that is related to the 

first.  This second major drawback was actually noted before the first was discovered, 

and was the original motivation for creating a new algorithm to improve on the standard.  

Since the standard is always evaluating the individuals chosen in genotype tournaments 

against only one mapping and vice versa, the individuals in either population do not get 

an adequate chance to evolve in the contexts of other individuals in the opposite 

population during an arbitrarily chosen stage of evolution.  While all members of a 

mapping population or genotype population may serve their term in establishing a context 

for the other population, while each is serving their term the members of the other 

population do not have an opportunity to achieve higher fitnesses by combining with the 

non-best members.  Such combinations could yield higher fitness schemas that go 

unnoticed in the search conducted by the Standard Adaptive Mapping algorithm, where a 

greedy mechanism for relating the two populations is assumed to be the best design 
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choice.  The nature of the limited possible combinations of the Standard Adaptive 

Mapping DGP involved in the search space is depicted below in Figure 3.3. 

 

Figure 3.3. Possible combinations during solution search for the Standard Adaptive 

Mapping Algorithm. 

 

3.2.3 Drawback 3: Lack of Fitness-Based Performance 

 Experiments using the Adaptive Mapping DGP were reported in [57, 58] to 

outperform a traditional GP using a default encoding for each function symbol on the 

MAX problem for most program size limits (bit lengths of individuals).  Given the 

performance obstacles in the Adaptive Mapping algorithm, it is of interest to determine 
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how it outperformed GP with default encodings (traditional GP with a fixed mapping).  

The results in [57, 58] were reported for experiments up to 5000 function evaluations, 

with just 10 experiments run for each of five program size limits (50, 100, 150, 200, and 

250 bits).  Adaptive Mapping using a limit of 5000 function evaluations leads to a very 

low number of rounds per tournament: Assuming an average of 3 genotype bits per 

function call, this meant a tournament length range of 15 rounds (for 250 bit individuals) 

to 75 rounds (for 50 bit individuals).  We decided to run a tournament for more rounds 

for the Adaptive Mapping algorithm and a fixed, default encoding GP with a population 

of fifty 250 bit individuals.  The results are given in Figure 3.4 below, plotting up to 

tournament round 20 (where the cited results of [57, 58] go up to 15 rounds for 250 bit 

individuals).  We can see in the graph on the left side that the Adaptive Mapping DGP 

does indeed outperform the GP with default mappings.  However, if the tournament 

continues just to round 100 (Figure 3.5), it is quite evident that the default encoding GP 

overtakes the Adaptive Mapping DGP.  Loss of context and fitness spiking associated 

with the Red Queen effect does indeed hinder the performance of the Adaptive Mapping 

algorithm compared to Traditional GP.   
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Figure 3.4. Best fitness per round for Traditional GP and Adaptive Mapping DGP 

for the MAX problem, population of 50 individuals of size 250 bits, up to 

tournament round 20. 

 

 

Figure 3.5. Best fitness per round for Traditional GP and Adaptive Mapping DGP 

for the MAX problem, population of 50 individuals of size 250 bits, up to 

tournament round 100. 
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In summary, there is an additional implicit overhead in systems employing 

evolved mappings in that these systems need to discover both the appropriate genotype 

and the best function set, whereas traditional GP need only concentrate on locating the 

relevant genotype.  It is thus more difficult problems than the MAX problem, often 

involving function sets including extraneous symbols, which are best suited to evolved 

mapping algorithms.  Under such conditions, DGP might be able to better the Traditional 

GP approach by discovering relevant subsets of symbols and concentrating on forming 

solutions from this subset of the function set, i.e., the size of the DGP search space 

decreases.  The MAX problem will be used hereafter only as a basis to demonstrate how 

the PAM DGP algorithm overcomes the drawbacks of the Standard Adaptive Mapping 

algorithm and its associated Huffman-based mapping structure.  The purpose of the 

adaptive mapping algorithm we present in the following section is to create fitted 

function sets to handle difficult problems, not to solve more trivial problems quickly.  

Later chapters in this thesis will further improve the algorithm presented in the next 

section and investigate its application to more challenging problems to which it is better 

suited. 

 

3.3 The PAM DGP Algorithm 

With the above drawbacks of the Standard Adaptive Mapping DGP algorithm in 

mind, an alternative architecture is proposed in which genotype and mapping population 

are coevolved through a probabilistic model.  Specifically, each individual in the 

genotype population is allotted a column on the x axis of a probability table, and each 

individual in the adaptive mapping population is allotted a row on the y axis.  The table is 
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initialized so that each column sums to unity, or for each genotype each mapping is 

expressed in terms of a probability.  At initialization all cells in each column are assigned 

the same probability, or 1/(number of mappings).  This forms a symbiotic model for 

relating genotype and mapping, where fitness ranking is performed in terms of the 

genotype but the likelihood of selecting individual mappings is defined by the structure 

of the probability table.  For direct comparison with the Standard Adaptive Mapping 

algorithm, genotype and mapping structures remain identical.  The Huffman based 

encoding in the mapping population [57-59] is used; however, in Chapter 6, the case of a 

more developmental adaptive redundant mapping is introduced. 

As per the Standard Adaptive Mapping algorithm, a steady state tournament is 

retained.  Individuals are selected using roulette wheel selection to choose a position in 

the table, with four separate genotype individuals selected in each tournament round, 

Figure 3.6.  Each entry in the table indexes a genotype-mapping pair.  The genotypes are 

ranked by fitness after being interpreted in the context of the corresponding mapping.  

With a steady state tournament size of four, the two best genotype individuals (the 

parents) are left untouched while the remaining two (genotype) individuals become 

children.  The children become copies of the parents and are subjected to mutation and 

crossover with corresponding likelihood probability thresholds.  (Crossover and mutation 

operators and associated rates will follow, being discussed with individual problem 

parameterizations.)  The mappings associated with the ranked genotypes receive the 

ranking of their partnering genotypes during competition in the aforementioned 

tournament round (Figure 3.6).  The mappings associated with the top two genotype 

parents are ranked as the top two tournament mappings and kept as the parent mappings, 
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while the mappings associated with the two (genotype) children become copies of the 

corresponding parent mappings and are subject to mutation and crossover.  Since there is 

only a guarantee during selection that different genotypes will be selected, naturally, the 

above process may result in mapping individuals appearing more than once in the ranked 

list for a tournament round.  A mapping appearing twice or more in the ranking list may 

(and will likely) have a different fitness each time, in virtue of being associated with a 

different genotype at each placement in the list.  If a single mapping is associated with 

both losing genotypes, the crossover operation is, of course, not performed with respect 

to mappings for that ranking. 

 

 

Figure 3.6. PAM DGP algorithm and data structures. 
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The algorithm also features elitism in that the genotype individual and the 

mapping that produces the current highest fitness cannot be replaced.  Note that unless 

both members of that pairing are explicitly protected, either member of the pairing can be 

selected as a child by being coupled with an alternate member of the other population 

during roulette wheel selection on the probability table.  The position on the table 

associated with the two winning genotype-mapping combinations is updated according to 

(3.1), while the losing combinations in the same column are updated according to (3.2)
3
 

 

Winning Combination:  



P(g,m)new  P(g,m)old(1P(g,m)old)  (3.1) 

Other Combinations:  )),((),(),( oldoldnew mgPmgPmgP    (3.2) 

 

where g is the genotype index, m is the mapping index,  is the learning rate (or how 

much emphasis is placed on current values as opposed to previous search), and P(g,m) is 

the probability in location [g, m] of the table.  Recall that four separate genotypes, not 

necessarily four separate mappings, are chosen per tournament round.  Therefore, the 

genotype-associated columns are updated rather than the rows.  Equation 3.1 increases 

the future probability of choosing the winning combination by a value proportional to the 

learning rate  and to the previous value allotted to the combination.  Given a particular 

, smaller probabilities will be increased proportionally more than larger probability 

values to provide expedient biasing toward selection of newly discovered pairings of 

greater fitness.  Equation 3.2 causes the other values in the column to be allotted a 

negative reinforcement implicitly by normalization.  Roulette wheel selection for the 

                                                 
3
 Equations 3.1 and 3.2 are adapted from [24], where their original use was for an ant-based network 

routing domain. 
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probability table operates by adding the probabilities across the rows associated with 

mapping individuals, although the manner in which the table is traversed does not matter 

because each cell is equally likely to be chosen by uniform selection. 

After a period of search depending on the learning rate, it was discovered that the 

probability table can prematurely converge on particular genotype-mapping pairings 

while other locations in the table have no (or practically no) probability associated with 

them.  In order to allow the algorithm to continue to explore all genotype-mapping 

combinations and the underlying binary sequences they make available to the search 

space, an additive noise source is introduced (Figure 3.6).  This is accomplished by 

examining each (genotype-associated) column when it is updated to see if any location in 

that column has exceeded a user-defined threshold .  If it has, each member of the 

column has a uniform probability P(1 – ) of having a standard Guassian probability 

adjustment in the interval [0, 1] added to its current value.  (In rarer cases where the 

Guassian value is outside the interval [0, 1], it is simply re-chosen until it falls in the 

interval.)  The values in the column are then re-normalized so that they sum to unity.  For 

completeness, a summary of the algorithm pseudocode is given in Figure 3.7.  
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Initialize size P mapping & genotype populations 

Initialize each value in P x P probTable = 1/P 

while (tournamentNotDone && solutionNotFound) 
   Use probTable mapping rows for roulette selection of 4     
      genotype-mapping pairings  
   Rank selectedGenotype & associatedMapping pairings  
   Verify or set current bestGenotype & bestMapping 
   Update probTable according to Eq. (3.1) & (3.2) 

   if (element of winning genotype column > ) 
      for (each column element)  
         Add Guassian noise value to element 
      Normalize column contents to unity 

   for 2 loserGenotypes  
      if (mutation threshold is met) 

         if (loserGenotype ≠ bestGenotype)  
            mutate(loserGenotype = copy of parent) 
      if (xover threshold is met) 

         if (both loserGenotypes ≠ bestGenotype)  
            xover(loserGenotypes = copy of parents) 
   for 2 loserMappings 
      if (mutation threshold is met) 

         if (loserMapping ≠ bestMapping)  
            mutate(loserMapping = copy of parent) 
      if (xover threshold is met) 

         if (both loserMappings ≠ bestMapping)  
            xover(loserMappings = copy of parents) 

 

Figure 3.7. Pseudocode for the Probabilistic Adaptive Mapping Developmental 

Genetic Programming (PAM DGP) Algorithm. 
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3.4 How PAM DGP Addresses the Drawbacks of the  

Standard Adaptive Mapping Algorithm 

 

 

 PAM DGP addresses the problem of loss of context and fitness spiking (the Red 

Queen effect) using two components of the algorithm: elitism and the probability table.  

Firstly, fitness spiking is stopped by protecting the best genotype mapping combination 

(elitism): PAM DGP introduces a small degree of elitism that protects the genotype and 

mapping in the current best combination from being overwritten, mutated, or crossed 

over until it is replaced with a new, better genotype/mapping combination.  This is 

accomplished in the algorithm by checking if a losing individual happens to be the best 

genotype or mapping, and if it is, it does not have its genotype replaced and is not 

mutated or subject to crossover.  The result of this protection of the current best 

combination is a much more robust algorithm where the evolutionary progress is always 

retained.  This behavior is shown in Figure 3.8 and can be contrasted with the behavior 

for the Standard Adaptive Mapping algorithm on the same experimental trial shown in 

Figure 3.2.  Dips in best fitness per round occur in PAM DGP as seen Figure 3.8 even 

though every genotype is present in every round because they can be coupled with any 

mapping combination, i.e., from the same mapping each to separate mappings for each 

individual.  When the combinations in a round are such that suboptimal mappings are 

selected across all genotypes, the best fitness in the round dips.  However, the individuals 

in the current highest fitness genotype-mapping pairing are still protected so overall 

progress is not lost, hence PAM DGP is robust to the fitness dropping (also evidenced by 

Figure 3.8).   
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When comparing performance of the algorithms, note that each round of PAM 

DGP evaluates 4 genotype-mapping pairings as does each round of the Standard 

Adaptive Mapping implementation.  Actually, all algorithms discussed in this thesis use 4 

evaluations per round.  At any point in this thesis, readers interested in performance 

based on evaluations need only multiply the tournament round metric by a factor of 4.  

The difference between the algorithms is simply that each round of the Standard 

Adaptive Mapping is either a genotype or mapping tournament round (as described in 

Section 2.3), where there is no such distinction in PAM DGP.  

 

Figure 3.8. Best fitness per round for PAM DGP applied to the MAX Problem.  This 

graph represents a typical run for 200 bit individuals and a population of 8.  Breaks 

in the graph indicate fitness points ≤ 1 on the log scale.  Some fitness spikes will still 

be apparent due to the mapping selection mechanism that avoids purely greedy 

behaviour. 
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Loss of context leading to the Red Queen Effect is due to reliance on a single 

individual (that may change) in one population to set the context for the entirety of the 

other population.  The Red Queen loss of context is minimized by the use of the 

probability table because the algorithm no longer relies on a single individual from the 

one population as the fitness context for all the individuals in the second population.  This 

also means that the Standard Adaptive Mapping algorithm suffers from a lack of 

adequate exploration of the search space by not providing a mechanism for evaluating 

alternative combinations of genotypes and mappings at multiple stages of evolution.  The 

PAM DGP algorithm features a probability table that guides solution search while 

allowing the combination of any genotype individual with any mapping during a 

tournament round, with the selection of the combination made in a fitness-proportionate 

way.  A quantification of the search space considered during a tournament round for each 

algorithm is provided as a proof in Figure 3.9. 
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Let n be the number of individuals in either the genotype population 

or the mapping population. 

Let k be a number < n corresponding to a particular individual in 

either population. 

Gi denotes an individual in the genotype population, where i < n. 

Mi denotes an individual in the mapping population, where i < n. 

Standard Adaptive Mapping DGP: 

For any given mapping round in the Standard Adaptive Mapping 

Algorithm, the genotype in all combinations produced is fixed (the 

best genotype). 

A combination thus takes the form (Gk, Mi…n) where Gk has 1 possibility 

and Mi…n has n possibilities. 

There are thus 1 x n = n possible combinations for (Gk, Mi…n). 

With 4 combinations selected per round, with no duplication of 

mappings and one genotype, this gives four combinations: 

1. (Gc, Mi…n)  →  1 x n = n possibilities 

2. (Gc, Mi…n-1)   → 1 x (n-1) = n-1 possibilities 

3. (Gc, Mi…n-2)   → 1 x (n-2) = n-2 possibilities 

4.  (Gc, Mi…n-3)   → 1 x (n-3) = n-3 possibilities 

Result 1.  During each mapping round, then,  

n + (n-1) + (n-2) + (n-3) = 4n-6 possibilities are considered. 

The same argument applies to any genotype round, only substituting G 

for M. 

Probabilistic Adaptive Mapping DGP: 

 

For any given round in the Probabilistic Adaptive Mapping DGP, 

separate genotype individuals are picked and combined with any 

mapping. 

A combination thus takes the form (Gi…n, Mi…n) where Gi…n has n 

possibilities and Mi…n has n possibilities. 

There are thus n x n = n2 possible combinations for (Gc, Mi…n). 

With 4 combinations selected per round, with no duplication of 

genotypes and duplication permitted for mappings, this gives four 

combinations: 

1. (Gi…n,  Mi…n)  →  n x n = n2 possibilities 

2. (Gi…n-1, Mi…n)  → (n-1) x n =  n2 -- n possibilities 

3. (Gi…n-2, Mi…n)  → (n-2) x n =  n2 -- 2n possibilities 

4.  (Gi…n-3, Mi…n)  → (n-3) x n =  n2 -- 3n possibilities 

Result 2.  During each mapping round, then,  

n2 + (n2 -- n) + (n2 -- 2n) + (n2 -- 3n) = 4n2 -- 6n = n(4n-6)  

possibilities are considered. 

Comparing Result 1 and 2, we see that for mapping and genotype 

populations of size n, the Probabilistic Adaptive Mapping DGP allows 

n times as many possible combinations as the standard (n(4n-6) and 

4n-6, respectively) to be considered in any given tournament round. 
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Figure 3.9. Quantification of the combinations considered by the Standard Adaptive 

Mapping Algorithm and PAM DGP. 

 

Figure 3.9 demonstrates that the PAM DGP algorithm considers n times as many 

combinations for a population of size n as the Adaptive Mapping algorithm during any 

given tournament round.  The computational expense of evaluating an individual‘s fitness 

by considering every individual in the alternate population is avoided by using the 

probability table to provide a guided selection of fruitful combinations, but the solution 

search can still consider any combination of genotype and mapping, with no duplication 

of genotypes but duplication of mappings permitted, at any given tournament round.
4
  An 

example of the type of possible combinations that PAM DGP selects in a given 

tournament round is shown pictorially below in Figure 3.10, which can be contrasted 

with the selection combinations depicted in Figure 3.3.  Recall that there is no distinction 

between genotype and mapping rounds in PAM DGP.   

 

 

                                                 
4 That is, provided the noise threshold is set to anything less than 1.0, so that no column in the probability table will 

ever completely exclude any combination by setting the probability of its roulette selection it to 0. 
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Figure 3.10. One set of possible combinations selected for a tournament of PAM 

DGP. 

 

 

To summarize, elitism in PAM DGP allows the algorithm to keep the best 

genotype and mapping pair that currently generates the best fitness; thus neither the 

mapping nor the genotype that contribute to the highest fitness can be lost due to 

changing contexts.  The retained top fitness genotype and mapping are not replaced until 

a better combination appears.  The increased exploration of the search space using the 

probability table allows the exploration of any genotype-mapping combination at any 

time.  This means that a higher fitness combination can be much more readily discovered 

during the algorithm.  Furthermore, the search context for each population is the entirety 

of the other population throughout the algorithm, preventing the loss of an individual that 

is central to the context of the other population.  PAM DGP thus minimizes an overall 

lack of fitness-based performance caused by the Red Queen Effect in virtue of its elitism 

and probability-based selection table.  In Chapter 4, we empirically confirm the 

performance of PAM DGP over the Standard Adaptive Mapping DGP using the 

Maximum Output benchmark introduced above. 

 

3.5 Computational Complexity Considerations 

 

In addition to increasing exploration of the search space and preventing the loss of 

context behind the fitness spiking phenomenon of the Standard Adaptive DGP, PAM 

DGP is no more computationally expensive than the Standard Adaptive Mapping GP.  

We begin with the complexity analysis of Traditional GP as a benchmark, using the 

variable n to denote any relevant variable in the algorithms that will scale up with 
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problem size to produce generalized Big O notation.  Assume that a GP tournament runs 

for n rounds before the ending or success criterion is met.  The evaluation of n 

individuals for each of n rounds in Traditional GP only involves execution of some 

constant number of instructions n times, giving linear time O(n) for evaluation of 

individuals.  Following evaluation in each round, we will assume that an efficient sorting 

mechanism is used in each tournament round for ranking of n individuals, such as heap 

sort which is known to have complexity O (n log n).  Breeding operations (reproduction 

on n/2 individuals, crossover and mutation on n/2 individuals given n individuals per 

tournament round) are then performed in linear time O(n) following ranking.  The overall 

complexity of the Traditional GP can thus be said to be O(n (n + n log n+ n)), or, adding 

and removing constants 

O(n
2
 + n

2 
log n)  O(n

2 
log n).    (3.3) 

Standard Adaptive Mapping GP involves n tournament rounds, where each 

alternating round involves either a genotype or mapping population round.  For each 

genotype round there is a linear time (O(n)) evaluation of n genotypes, with an O (n log 

n) sort and linear (O(n)) breeding time (as described for Traditional GP above).  For each 

mapping round, the evaluation of individuals is no longer in linear time.  The evaluation 

of each mapping individual actually involves execution of Huffman‘s compression 

algorithm (only without the usual preliminary step of computation of frequencies for each 

symbol because the mappings themselves contain that information.)  The complexity of 

Huffman‘s algorithm used in the Standard Adaptive Mapping GP, implemented as 

described in [82] and in Section 2.3.1, is computed as follows: The Huffman algorithm 

essentially creates a single-node tree out of each symbol, giving a set of trees.  The two 
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trees with the smallest probabilities are chosen and combined to form a new tree with a 

head node specifying the combined probabilities of the nodes, and the two small trees are 

removed from the set.  The Huffman algorithm assigns one frequency node per symbol, 

with n -1 steps to combine the nodes to build the tree.  If a heap is used to store the set of 

trees as they are combined, the heap can find the largest head node in the set of trees in 

log n time.  Tree construction thus takes O(n log n) time.  The symbols are then translated 

into their Huffman codes, taking O(n) time for n symbols.  The overall complexity of the 

Huffman encoding is thus O(n + n log n).  For the Standard Adaptive Mapping GP, a 

Huffman encoding occurs for the evaluation of each of n mapping individual during the 

mapping turn in each round of the tournament.  The cost of evaluation of a mapping 

individual overall is thus O(n(n +  n log n)) =  

O(n
2 

+ 
 
n

2 
log n).  The sorting of the evaluated mapping individuals is O(n log n), and 

breeding is again O(n).  Combining the complexity of the genotype and mapping turns in 

a n round tournament, the overall complexity of the Standard algorithm of Margetts and 

Jones is O(n(n + n log n + n + n
2
 + n

2
logn + n log n + n)), or 

O(n
3
log n + n

3
 + n

2
log n + n

2
)  O(n

3
log n).  (3.4)  

PAM DGP involves n tournament rounds of n genotype-mapping pairings rather 

than separate genotype and mapping turns in each tournament round as in the Standard 

Adaptive Mapping GP.  Each pairing will be evaluated in linear O(n) time by executing 

the genotype‘s program to determine fitness based on the genotype program, but the 

preliminary translation of the n Huffman mapping components for each of the n pairings 

must take place before the genotype program can be interpreted (even if the mapping 

individuals need not be explicitly evaluated for fitness as in the Standard Adaptive 
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Mapping Algorithm).  The determination of each of the n mapping encodings will 

involve Huffman‘s algorithm using O(n + n log n) time.  Combined, each pairing takes 

O(n + n(n + n log n)), or O(n
2
log n + n

2
 + n) time to evaluate.  There is only one sort of 

n pairings rather than separate genotype and mapping sorts in each tournament round, 

giving a complexity of O(n
 
log n) for heap sort.  Breeding of the pairings is done in linear 

O(n) time.  The PAM DGP algorithm also maintains a table of probabilities in memory 

that is associated with the pairings, and does n/2 updates for each of the winning n/2 

pairings and n/2 updates for each of the losing n/2 pairings, giving n updates for each of n 

individuals.  The complexity of the table update is thus O(n
2
).  The overall complexity of 

PAM DGP using Huffman encodings is thus  

O(n (n + n + n
2
log n +  n

2
 + n + n log n + n + n

2
)), or 

O(n
3
log n + n

3
 + n

2
log n + n

2
)  O(n

3
log n).  (3.5) 

The computational complexity of the PAM DGP algorithm, when it uses Huffman 

encoding for the mappings, is thus of the same order as the Standard Adaptive Mapping 

and no more computationally complex.  An alternate direct encoding scheme for the 

mappings that will be presented in Chapter 6 that will not use the computationally 

expensive Huffman algorithm with each evaluation, but instead will evaluate individuals 

in linear O(n) time.  The complexity of that algorithm will be shown to be less 

computationally expensive than the Standard Adaptive Mapping Algorithm (and PAM 

DGP using Huffman) with complexity of O(n
3
) rather than O(n

3
log n).  The relevant 

components of each algorithm and their associated computational complexities used in 

the analysis in this Section are summarized below in Figure 3.11. 
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Traditional GP      Complexity 

For n rounds       O(n) 

   Evaluate n genotypes     O(n) 

   Rank n genotypes      O(n log n) 

   Breed n genotypes      O(n) 

 

Overall complexity:  

O(n
2
 + n

2
log n)  O(n2logn) 

 

Standard Adaptive Mapping DGP: Complexity 

 

For n rounds       O(n) 

   Evaluate n genotypes     O(n) 

   Rank n genotypes      O(n log n) 

   Breed n genotypes      O(n) 

  Evaluate n mappings     O(n) 

 Huffman’s algorithm       O(n + n log n) 

   Rank n mappings      O(n log n) 

   Breed n mappings      O(n) 

 

Overall complexity:  

O(n
3
log n + n

3
 + n

2
log n + n

2
)  O(n3log n) 

 

PAM DGP using Huffman:    Complexity 

 

For n rounds       O(n)    

  Execute mapping encodings        O(n) 

Huffman’s algorithm       O(n + n log n) 

  Evaluate geno-map pairs    O(n) 

  Rank n geno-map pairs     O(n log n) 

   Breed n geno-map pairs     O(n) 

  Update table         O(n
2
) 

 

Overall complexity:  

O(n
3
log n + n

3
 + n

2
log n + n

2
)  O(n3log n) 

 

Figure 3.11. Derivation of computational complexities for Traditional GP, Standard 

Adaptive Mapping GP, and PAM DGP using Huffman-encoded mappings. 
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Chapter 4. Results using PAM DGP on the MAX Problem 

 
 

4.1   Problem Definition and Parameterization 

As described in the Adaptive Mapping DGP implementation of the MAX problem 

in Section 3.1, the MAX problem is implemented in PAM DGP with a linear (bit string) 

stack-based version of GP.  Each individual is a first-in first-out (FIFO) stack-based 

machine composed of a general-purpose stack and an output register.  A program that 

changes the state of the machine is a list of instructions from the function set in Table 4.1, 

where the program lengths of 50, 100, 150, 200, and 250 bits are tested as in Margetts 

and Jones [57, 58].  When an instruction in the program is processed sequentially, the 

required number of arguments is taken from the stack, they are presented to the function, 

and the return value (if any) is pushed back onto the stack.  If there are insufficient 

arguments on the stack, the function does nothing.  The mapping individuals consist of 70 

bits, with 10 bits representing a frequency to be associated with each of the seven 

members of the function set. 

 In PAM DGP, the dimensions of the probability table are the respective mapping 

and genotype population sizes.  Parameterization of the algorithm thus involves 

considering a trade off between the quantity of initial genotype and mapping material you 

want available for the search and the sparseness of the probability grid.  What choice will 

work best depends on the nature of the problem, where we show problems that benefit 

from choosing either side of the trade-off in this work.  The smallest population under 

which the tournament can still be conducted was found to work best for the simple MAX 

problem for PAM DGP.  PAM DGP and the Adaptive Mapping thus will both initially 
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use a population of 8 (4 genotypes and 4 mappings).  A tournament is stopped when the 

maximum round limit of 1250 is reached or the success criterion is met.  In these 

experiments, the MAX problem was considered solved when an individual generated a 

number large enough that it is given the double value of ―Infinity‖ by the Java 2 Runtime 

Environment, build 1.5.0, on a 1.25 GHz PowerPC G4 running Mac OS X Version 10.4.4 

(Tiger).  The algorithm was found to work well with a high crossover rate of 0.9, letting 

the operator do the work of exploring combinations of genetic material to find a solution 

given smaller starting populations.  The mutation operator was found to work well at a 

conservative rate of 0.1 to prevent disruption of beneficial building blocks.  The learning 

parameter was set to 0.1, indicating that prior search should be emphasized over the latest 

evaluations.  The noise threshold of 0.95 allows the search to very closely search optima 

without actually being trapped in local optima.  All algorithm parameters are summarized 

below in Table 4.1 for both DGP algorithms (with learning rate and noise threshold only 

applicable to PAM DGP).  As a final remark, general guidelines will be reviewed for 

establishing PAM DGP parameters in Section 9.1, once the entire PAM DGP model has 

been presented and empirical evaluation over a wide range of problem domains 

completed.   
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Table 4.1. Maximum Output Problem parameterization. 

 

Tournament Style Steady State, 4 individuals for each round 

Maximum Rounds 1250 (5000 individuals processed) 

Experiments 50 independent runs 

Function Set +, *, const, dup, pop, stack2Register, register2Stack 

Genotype structure Stack-based with register; 50, 100, 150, 200, 250 bits 

Mapping structure Adaptive, 70 bits (10 bits per function set member) 

Genotype, mapping 

mutation 

Point mutation, threshold = 0.1 

Genotype, mapping 

crossover 

Equal-sized blocks, threshold = 0.9 

Population size 4 or 25 individuals in each population, traditional 

population of 50 

Fitness Output register content after evaluation. 

Objective Generate largest number possible. 

Termination Infinity (success) or maximum rounds. 

Learning rate 0.1 

Noise threshold 0.95 
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4.2   MAX Problem Results 

 

4.2.1 Results for Equal Population Sizes for Both Implementations 

The number of experiments out of 50 independent trials that solved the problem is 

given below in Figure 4.1, with the mean best fitness for each tournament round over all 

50 experiments plotted below in Figures 4.2 to 4.6 for both algorithms using a population 

of 8 for 50, 100, 150, 200, and 250 bits.  Since a successful value of ―infinity‖ is 

impossible to plot, the fitness measure for any experiment not yet achieving success at a 

round is used to determine the mean.   
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Figure 4.1. Number of Maximum Output solutions in 50 independent experiments, 

given a PAM DGP population of 8 and standard population of 8. 
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Figure 4.2. Mean best fitness per round on the MAX problem over 50 independent 

runs for PAM DGP and the Standard Adaptive Mapping algorithm, both with a 

population of 8, using 50 bit individuals. 

 

 
Figure 4.3. Mean best fitness per round on the MAX problem over 50 independent 

runs for PAM DGP and the Standard Adaptive Mapping algorithm, both with a 

population of 8, using 100 bit individuals. 
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Figure 4.4. Mean best fitness per round on the MAX problem over 50 independent 

runs for PAM DGP and the Standard Adaptive Mapping algorithm, both with a 

population of 8, using 150 bit individuals. 

 
Figure 4.5. Mean best fitness per round on the MAX problem over 50 independent 

runs for PAM DGP and the Standard Adaptive Mapping algorithm, both with a 

population of 8, using 200 bit individuals. 
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Figure 4.6. Mean best fitness per round on the MAX problem over 50 independent 

runs for PAM DGP and the Standard Adaptive Mapping algorithm, both with a 

population of 8, using 250 bit individuals. 

 

 

4.2.2  Results for Optimal Population Size for Each Implementation 

It is evident from Figure 4.1 and Figures 4.2 to 4.6 that PAM DGP is clearly 

much better able to generate solutions to the MAX problem and exhibits higher best 

fitness per round as the algorithm executes.  It should be noted that all functions in the 

function set potentially contribute to the production of larger numbers, that is, there are 

no detrimental function operators.  This means that as the bit length of an individual 

increases, there is an increased chance of the individual generating a large number.  Note 

that in Figures 4.2 to 4.6, as bit size of individuals increase, the Adaptive Mapping DGP 

performance approaches PAM DGP across tournament rounds.  This is simply a 

reflection of the problem becoming easier with increasing bit lengths, meaning that the 

lowest bit length (50 bits) represents the most difficult version of the problem.  The fact 
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that PAM DGP is the clear performance winner in Figure 4.2 is the most meaningful of 

the plots in Figures 4.2 to 4.6, even though neither algorithm generated solutions for that 

bit length (Figure 4.1).  Naturally, the reflection of increased difficulty with lower bit 

lengths is also reflected by the number of solutions found by both algorithms in Figure 

4.1.  However, the general magnitude with which PAM DGP outperforms that Standard 

Adaptive Mapping DGP across all bit lengths suggests that restricting the Standard 

Adaptive Mapping DGP to a population of 8 to match PAM DGP may have unfairly 

hindered its performance.   

To achieve fairness for the Standard Adaptive Mapping DGP, it was permitted a 

starting population of 50 (25 individuals in each population).  A population of 50 was 

found to be a good balance between search space size and genetic material available for 

search for that algorithm.  A Traditional (fixed mapping) GP was also run with a 

population of 50 individuals for the purpose of comparison.  Even with the larger 

population size, PAM DGP still dramatically outperforms the Standard Adaptive 

Mapping DGP (see Figure 4.7 below) in terms of number of solutions found.  PAM DGP 

does not outperform traditional GP on this metric, but this is a simple problem where the 

exploration of the mapping space naturally causes additional search time to be required 

by PAM DGP.  Considering the additional overhead used by PAM DGP, the performance 

in comparison to Traditional GP is actually rather competitive (compare black and grey 

bars of Figure 4.7).  The MAX problem is used by Margetts as the benchmark when 

introducing the Standard Adaptive Mapping algorithm; the main focus of this Section is 

to demonstrate the performance advantages of PAM DGP over the Standard Adaptive 

Mapping DGP, not yet necessarily outperforming Traditional GP.  Traditional GP is thus 
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provided in this section (when pertinent) because it is an expected benchmark 

comparison.   
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Figure 4.7. Number of Maximum Output solutions in 50 independent experiments, 

given a PAM DGP population of 8, Standard Adaptive Mapping population of 50, 

and Traditional population of 50. 

  

The mean best fitness for each tournament round over all 50 experiments is 

plotted below in Figures 4.8 to 4.12 for both algorithms using their respective optimal 

populations for 50, 100, 150, 200, and 250 bits.  The PAM DGP algorithm (solid line) 

outperforms the Standard Adaptive Mapping DGP consistently throughout all tournament 

rounds for all bits levels.  The algorithm is also more robust, as far fewer fitness spikes 

are evident in the PAM DGP trend line. 
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Figure 4.8. Mean best fitness per round over 50 independent runs for PAM DGP, 

population of 8, and the Standard Adaptive Mapping algorithm, population of 50, 

on the MAX problem, 50 bit individuals. 

 

 

Figure 4.9. Mean best fitness per round over 50 independent runs for PAM DGP, 

population of 8, and the Standard Adaptive Mapping algorithm, population of 50, 

on the MAX problem, 100 bit individuals. 
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Figure 4.10. Mean best fitness per round over 50 independent runs for PAM DGP, 

population of 8, and the Standard Adaptive Mapping algorithm, population of 50, 

on the MAX problem, 150 bit individuals. 
 

 

Figure 4.11. Mean best fitness per round over 50 independent runs for PAM DGP, 

population of 8, and the Standard Adaptive Mapping algorithm, population of 50, 

on the MAX problem, 200 bit individuals. 
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Figure 4.12. Mean best fitness per round over 50 independent runs for PAM DGP, 

population of 8, and the Standard Adaptive Mapping algorithm, population of 50, 

on the MAX problem, 250 bit individuals. 

 

The operator content of the optimal population solutions as a percentage of total 

operators is shown in Figure 4.13 along with p-values to indicate acceptance or rejection 

of the hypothesis that the symbol frequencies in solutions of the PAM DGP and Standard 

Adaptive Mapping DGP are equal.  To be as stringent as possible with error bar 

estimates, each bar corresponds to a 95% confidence interval (CI) using the two tailed t-

distribution rather than the standard uniform distribution.  There is no significant 

difference at the 0.95 confidence intervals for 5 out of 7 operators, where PAM DGP 

used less constants and more multiplication than the Standard Adaptive Mapping (both 

significant at the 99% CI).  Since the best solutions only require repeated 

duplication/multiplication following initial presence of a constant, the difference in 

symbols would only give PAM DGP more ideal solutions than the Standard.  Traditional 

GP only differs from PAM DGP at the 0.95 CI with respect to TIMES and PLUS, with 
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Traditional GP providing a greater emphasis on TIMES than the other algorithms.  While 

TIMES is a good operator to emphasize, the Traditional GP does not manage to place as 

much emphasis on the equally important operator DUP as on TIMES, while the mapping 

algorithms allow for a more balanced allocation of DUP to TIMES for effective repeated 

squaring. 
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Figure 4.13. Mean operators as proportion of total solution for 200 bit, PAM DGP, 

population 8, and Standard Adaptive Mapping DGP and Traditional GP, 

population 50, MAX Problem over 50 trials.  P-values for the comparison of PAM 

DGP and Standard Adaptive Mapping algorithms are displayed above data for each 

operator.  Error bars reflect two-tailed t-distribution for the 0.95 confidence 

interval. 

 

 A final performance metric to be considered is how quickly each algorithm found 

a solution (or how efficient they were).  Figure 4.14 below shows the final number of 
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tournament rounds (either due to success or reaching maximum rounds) for all bit 

lengths.  As before, each bar corresponds to a 95% confidence interval using the two-

tailed t-distribution rather than the standard uniform distribution.  PAM-DGP is 

definitively more efficient than the Adaptive Mapping DGP for bit lengths 150 to 250 at 

the 0.99 CI, and in no case is outperformed by the standard.  PAM DGP is also 

competitive with Traditional GP, but there is no statistically significant difference at the 

0.95 confidence interval between Traditional GP and PAM DGP in the most constrained 

(difficult) versions of the problem (50-200 bits).  The easiest version (250 bit) has a p-

value of 0.0203 (not shown) with respect to PAM DGP and Traditional GP. 
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Figure 4.14. Mean number of tournament rounds (reaching maximum rounds or a 

solution) for PAM DGP, population 8, and Standard Adaptive Mapping DGP, and 

Traditional GP, population 50, in 50 trials for the Maximum Output problem.  

Error bars reflect two-tailed t-distribution for the 0.95 confidence interval.  

Corresponding p-values with respect to Standard Adaptive Mapping and PAM 

DGP are displayed above each pair of data points. 
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4.3  MAX Problem Summary and Discussion 

 In this chapter, the Standard Adaptive Mapping and PAM DGP were compared 

on the Maximum Output problem.  PAM DGP was found to solve this simple problem 

well with the smallest population required to conduct the steady state tournament (4 

genotypes and 4 mappings).  PAM DGP, however, was found to considerably outperform 

the Adaptive Mapping DGP at this population level, so the Adaptive Mapping DGP was 

permitted a population of 50 individuals that was found to be approximately optimal.  

Based on respective optimal populations, PAM DGP was found to generate more 

solutions and exhibit best fitness per round trends that outperformed the Standard 

Adaptive Mapping DGP.  Furthermore, it was found to be competitive with Traditional 

GP but was unable to outperform it on this simple artificial problem 



 

 

97 

Chapter 5. Results using PAM DGP on  

Harder Regression Problems 

 

 
In this chapter, we examine the performance of PAM DGP compared to the 

Standard Adaptive Mapping DGP for regression problems that are harder than the MAX 

problem: the Two Boxes problem and the Hénon Mapping.  Both problems are harder 

than the MAX problem in that function sets of both problems involve operators that are 

extraneous to the problem.  That is, not all symbols in the function set are required in an 

ideal solution.  Also, in contrast to the MAX problem, some members of the function set, 

if not used properly, can be detrimental to producing a solution.  Aside from function set 

considerations, both problems present a considerably more complex optimization goal 

than simply generating the largest number possible: In both cases, a reasonable 

approximation to a function is to be produced as a solution and neither function is 

considered trivial for GP search. 

5.1   Two Boxes Problem 

5.1.1 Problem Definition and Parameterization 

 The Two Boxes problem is to relate six independent variables (L0, W0, H0, L1, 

W1, and H1) through the equation for the difference in volume of two boxes: 

0 0 0 1 1 1
LW H LW H      (5.1) 

Although of an artificial nature, the problem has repeatedly been demonstrated to be a 

challenging problem.  The problem is structured as described by Koza in [49] with ten 

fitness cases that are created using uniform sampling of integers over the interval [1, …, 
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10].  Fitness is measured as the summed absolute error over all fitness cases, where in 

each case an absolute error ≤ 0.01 counts as a hit.  The success criterion is to produce 10 

hits.  Four function operators were used: addition (+), subtraction (-), multiplication (*), 

and division protected against underflow and overflow (%).  Only multiplication and 

subtraction (Equation 5.1) are required for the ideal solution.  

 The algorithm parameterization is changed from the previous problem to better 

suit a considerably harder regression problem, with the salient differences being a 

separation of genotype/mapping crossover rates and mutation type and rates.  The 

crossover rate in mappings is lowered to provide a more stable mapping background 

against which the genotypes could evolve.  Increased mutation rates are used in the 

genotypes to allow exploration against the backdrop of the more persistent (due to lower 

operator rates) mappings.  Point mutation at a rate of 0.1 is still used in the mappings to 

ensure a number of frequencies per operator are explored conservatively; whereas an 

instruction-level XOR mutation operator (the instruction chosen with uniform 

probability) is now used for the genotype mutation operator to allow enhanced 

exploration through introduction of additional new genotype material than the point 

mutation alternative.  Furthermore, the genotype mutation operator‘s rate is raised from 

0.1 to 0.5 to expedite exploration of genotype material.  Both algorithms perform best 

with a population of 50 individuals (25 genotypes and 25 mappings) in this problem, 

benefiting from the additional genetic material with which to perform a search (although 

we also report results for the minimalist case of a population size of 8).  Parameterization 

for the Two Boxes problem is summarized in Table 5.1 below. 
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Table 5.1. Two Boxes Problem parameterization. 

 

5.1.2 Interpretation of Instructions 

 An explanation of instruction interpretation was not required for the MAX 

problem, as each instruction was a single command with a bit sequence entirely dictated 

by the Huffman encoding.  The command always operated on whatever happened to be 

included in the individual‘s stack, with the function not performing any operation when 

there were insufficient operators on the stack.  In contrast, the Two Boxes problem 

individuals include fixed registers and there are problem fitness case elements that must 

be referenced by an individual‘s instructions, so a scheme for interpreting the bit content 

of the instructions is required.  The instruction interpretation is depicted below in Figure 

5.1, and is described in the rest of this section. 

Tournament Style Steady State, 4 individuals 

Maximum Rounds 50 000 (initial experiments), 150 000 

Experiments 50 independent runs 

Function Set +, *, -, %   (protected against underflow/overflow) 

Terminal Set L0, W0, H0, L1, W1, H1 

Genotype structure Instruction sequence with 4 registers; 320 bits 

Mapping structure Adaptive, 40 bits (10 bits per function set member) 

Genotype mutation XOR mutation, threshold = 0.5 

Mapping mutation Point mutation, threshold = 0.1 

Genotype crossover Equal-sized blocks, threshold = 0.9 

Mapping crossover Equal-sized blocks, threshold = 0.1 

Popultation size 4 or 25 individuals in each population (traditional 

population of  50) 

Fitness Cases 10 sets of 6 integers in [1, …, 10], output value 

Fitness Summed absolute error. 

Objective Fit equation to L0W0H0 - L1W1H1 

Hits Number of fitness cases with absolute error ≤ 0.01 

Termination 10 hits (success) or maximum rounds. 

Learning rate 0.1 

Noise threshold 0.95 
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Figure 5.1. Interpretation of instructions for the Two Boxes problem. 

 

 

 Each genotype individual in the Two Boxes problem consists of up to 320 bits 

and 4 registers.  The first segment of an instruction in any algorithm involving Huffman-

encoded adaptive mappings (Standard Adaptive Mapping DGP or PAM DGP) identifies 

one of the possible function operators where the length of this function identifier is 

dictated by Huffman‘s algorithm.  More emphasis is generally placed on an operator by 

having a shorter identifier.  In Traditional GP, the function identification segment of the 

instruction is of a fixed length (2 bits), where the integer representation of the bits in this 

segment is simply used to specify one of the four operators.  A single ‗flag‘ bit following 

the function identifier determines where the operand to the right of the operator is loaded 

from: if the flag bit is set to ‗1,‘ the operand is loaded from the registers, and if the flag 

bit is set to ‗0,‘ the operand is loaded from one of the six variables from the current 

fitness case.  In the case where the operand is loaded from the registers, the integer 

representation of the two bits following the flag bit specify one of the 4 registers as the 

destination register, and the last two bits specify one of 4 registers as the source register.  

In the case where the operand is loaded from the current fitness case, the two bits 
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following the flag bit specify one of the 4 registers as the destination register, and the 

three bits following the flag bit specify the one of the six variables from the current 

fitness case as the operand (where the binary representations of the integers wrap back to 

the first attribute after the last attribute).  All instructions are initialized to random binary 

sequences and all registers are initially set to ‗1‘.   

 

5.1.3 Two Boxes Results 

 

 Neither algorithm provided a solution with a population of 8, with only PAM 

DGP providing one solution during 50 trials with a population of 50 based on 50 initial 

trials of 50 000 rounds each.  From these initial results, it was evident that for this harder 

regression problem the larger population of 50 would be beneficial to provide initial 

genetic material on which to perform solution search.  Fitness performance for both the 

Standard Adaptive Mapping and PAM DGP were thus compared for both starting 

populations to determine if the larger population would reduce the performance of PAM 

DGP when compared to the Standard Adaptive Mapping algorithm.  Mean best fitness 

produced over 50 trials is shown below in Figure 5.2.  For both starting populations of 8 

and 50, PAM DGP outperformed the Adaptive Mapping algorithm (lower fitness values 

are better).  To determine whether providing PAM DGP with a larger starting population 

led to any performance loss for the PAM DGP algorithm itself, a t-test was performed to 

compare the two populations in PAM DGP (dark grey bars).  The result yielded a p-value 

of 0.331, indicating that there is no statistically significant difference between the fitness 

of the two algorithms at the 95% confidence interval.  It could thus be expected that 

overall fitness performance of PAM DGP would not be affected by raising population 
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size to handle harder problems with more obscure solutions, such as the Two Boxes 

problem. 
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Figure 5.2. Mean best fitness achieved (after maximum rounds or a solution) for 

PAM DGP and Standard Adaptive Mapping algorithm for 50 trials for the Two 

Boxes problem.  Error bars reflect two-tailed t-distribution for the 0.95 confidence 

interval.  Corresponding p-values are displayed above each pair of data points. 

 

 Once it was established that increasing population size was not likely to affect 

performance for PAM DGP on interesting problems, additional tournaments of 150 000 

rounds were run to provide the algorithms with a longer tournament count (more 

evolutionary steps) in which to solve the problem and provide better analysis.  The mean 

best fitness achieved for Traditional GP, PAM DGP, and the Standard Adaptive Mapping 

DGP is shown below in Figure 5.3.  PAM DGP and Traditional GP clearly outperform 
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the Standard Adaptive Mapping, with Traditional GP just outperforming PAM DGP.  

Considering the additional overhead of mapping search in the PAM DGP algorithm, its 

performance can be considered competitive with Traditional GP (especially considering 

the PAM DGP generated more actual solutions that Traditional GP).   
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Figure 5.3. Mean best fitness achieved (after maximum rounds or a solution) for 

PAM DGP, Standard Adaptive Mapping DGP, and the Traditional GP algorithm 

for 50 trials for the Two Boxes problem.  Error bars reflect two-tailed t-distribution 

for the 0.95 confidence interval.   

 

The final fitness measure for this problem is a useful, but not necessarily most 

informative, performance measure.  Investigation of the problem solution files show that 

all of the algorithms can either approach the solution gradually in terms of best fitness or 

can solve the problem suddenly after jumping from a lower fitness.  Table 5.2 below 

provides the number of solutions found in 50 trials of 150 000 rounds each, and how 

many tournament rounds were required to reach the solution for each algorithm.  PAM 
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DGP finds more solutions to the problem over 50 trials, and has the fastest time to 

solution (36 161 rounds), despite the additional overhead of mapping exploration in 

addition to the exploration of the genotype-based search space. 

 

Table 5.2. Two Boxes solutions for Traditional GP, Standard Adaptive Mapping 

and PAM DGP. 

 

Algorithm Solutions per 50 Trials Round Solution Found 

Traditional GP 1 42004 

Standard Adaptive Mapping 0 n/a 

PAM DGP 2 134743, 36161 

 

 

 The operator content of the solutions as a percentage of total operators is shown in 

Figure 5.4 below along with p-values for the hypothesis that the symbol frequencies of 

the two algorithms are the same.  There is no significant difference at the 0.95 confidence 

interval for all operators, indicating that both algorithms were fairly similar in their 

ability to choose useful function set symbols and that overall the algorithms chose similar 

solution content.  Traditional GP, on the other hand, selected different numbers of 

operators from PAM DGP at the 0.95 confidence interval for MULT, ADD, and 

DIVIDE.  Namely, the proposed Traditional GP ‗solutions‘ feature more addition and 

less multiplication, which is not an effective trade-off for this problem. 
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Figure 5.4. Mean operators as percentage of total solution over 50 trials for the Two 

Boxes Problem using PAM DGP, Standard Adaptive Mapping algorithm, and 

Traditional GP.  Error bars reflect two-tailed t-distribution for the 0.95 confidence 

interval.  Corresponding p-values are displayed above each pair of data points for 

PAM DGP and the Standard Adaptive Mapping DGP. 

 

5.2 The Hénon Map 

5.2.1  Problem Definition and Parameterization 

Our third regression problem is the astronomer Hénon‘s famous equation that 

represented an attempt to model the orbits of stars around a galactic centre [30] which 

produced a time series resulting in a chaotic attractor.  The chaotic time series means that 

the value of each consecutive result of the equation appears in a disorderly manner, but 

the two and three dimensional plots of the equation produce an orderly curve through 

space (a chaotic attractor).  The equation is expressed as   
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)()(1 2

2

1   ttt xbxax  (5.2) 

where x0 = 0, x1 = 0,  a = 1.4, and b = 0.3.  A two-dimensional and three-dimensional plot 

of the chaotic attractor produced by the 2000 points of the time series is shown below in 

Figure 5.5.  The first 100 points of the Hénon time series xt against t are plotted in Figure 

5.6. 

 

Figure 5.5. The Hénon Map plotted in two (top) and three (bottom) dimensions. 
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Figure 5.6. First 100 points (t, xt) in the Hénon time series. 

 

Margetts [57] used the Adaptive Mapping algorithm with a stack-based structure 

of genotype individuals on this problem to extract an equation based on 500 fitness cases 

using 2 successive times as inputs and the result of Equation 5.2 as the output.  No 

significant improvement over traditional GP (global, fixed mapping) performance was 

found in his thesis based on current maximum fitness achieved at each round.   

To compare PAM DGP‘s performance to the Adaptive Mapping algorithm, we 

use a genotype individual structure similar to that which was successful for the Two 

Boxes Problem.  That is, each individual consists of 4 registers and a binary encoded 

program.  The setup of Margetts‘s experiment in [57, 58] was replicated:  500 fitness 

cases were used, and each experiment was run for 10 000 fitness evaluations (or 2500 
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rounds given 4 fitness evaluations per round).  Each fitness case used xt-2 and xt-1 from 

Equation 5.2 as inputs and xt as the output.  The aim of the experiment is similar to the 

goal of Two Boxes; that is, generate the original formula using the series of data points.  

Fitness was measured as the summed squared error over all fitness cases, where in each 

case an absolute error ≤ 0.01 counted as a hit.  The success criterion was to produce 500 

hits (a hit for every fitness case).  Eight functions were used for this problem: addition 

(+), subtraction (-), multiplication (*), load constant (CONST), protected division (%), 

square (SQUARE), square root (SQRT), and no operation (NOOP).  Hénon‘s equation 

only requires the first four of these operators; the others are added to make the problem 

more difficult.  Emphasis of functional operators is again achieved by the Huffman 

mapping varying bit lengths and combinations used to start each instruction.  The 

parameterization is similar to the Two Boxes problem in relation to mutation and 

crossover rates and types to suit a harder regression problem, and a population of 50 was 

used to provide adequate genetic material for the search.  The parameter values used are 

shown in Table 5.3 below. 
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Table 5.3. Hénon Mapping Problem parameterization. 

 

 

 

 

 

 

 

 

 

5.2.2  Interpretation of Instructions 

 Each genotype individual in the Hénon problem consists of up to 320 bits and 4 

registers.  The first segment of an instruction identifies one of the eight possible 

operators, where the length of this function identifier is dictated by the encoding it is 

allotted by Huffman‘s algorithm.  More emphasis is generally placed on an operator by 

having a shorter identifier.  In Traditional GP, the function identification segment of the 

instruction is of a fixed length (3 bits), where the integer representation of the bits in this 

segment is simply used to specify one of the eight operators.   

Tournament Style Steady State, 4 individuals for each round 

Maximum Rounds 2 500 

Experiments 50 independent runs 

Function Set +, *, -, CONST, %  (protected), SQUARE, SQRT, 

NOOP 

Terminal Set xt-1, xt-2 

Genotype structure Instruction sequence with 4 registers; 320 bits 

Mapping structure Adaptive, 80 bits (10 bits per function set member) 

Genotype mutation XOR mutation, threshold = 0.5 

Mapping mutation Point mutation, threshold = 0.1 

Genotype crossover Equal-sized blocks, threshold = 0.9 

Mapping crossover Equal-sized blocks, threshold = 0.1 

Population size 25 individuals in each population (50 for traditional) 

Fitness Cases 500 sets of 2 values in time series with  x0=0, x1=0, and 

output value 

Fitness Summed squared error. 

Objective Fit equation to xt = 1  – 1.4(xt-1)
2
 + 0.3(xt-2) 

Hits Number of fitness cases with absolute error ≤ 0.01 

Termination 500 hits (success) or maximum rounds 

Learning rate 0.1 

Noise threshold 0.95 
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 For the operators { +, -, *, %, SQUARE, SQRT}, a single ‗flag‘ bit following the 

function identifier determines where the operand to the right of the operator is loaded 

from: if the flag bit is set to ‗1,‘ the operand is loaded from the registers, and if the flag 

bit is set to ‗0,‘ the operand is loaded from one of the five variables from the current 

fitness case.  In the case where the operand is loaded from the registers, the integer 

representation of the two bits following the flag bit specify one of the 4 registers as the 

destination register, and the last two bits specify one of 4 registers as the source register.  

In the case where the operand is loaded from the current fitness case, the two bits 

following the flag bit specify one of the 4 registers as the destination register, and the bit 

following the destination register specification identifies one of the two variables (xt-1 or 

xt-2) from the current fitness case as the operand.  The exceptions to this parsing are the 

CONST (constant) function and NOOP (no operation) functions.  For the CONST 

operator, following the interpretation of the functional bits, the next 16 bits in the 

instruction are translated into a decimal in the range [0, 1] (as was the case for Margetts 

[57, 58]).  The NOOP operator simply performs no action; only the functional bits are 

interpreted and nothing more.  The final answer following the execution of the 

instructions is located in the first register.  All instructions are initialized to random 

binary sequences and all registers are initially set to ‗1‘.  Interpretation of an instruction 

for the Hénon problem is shown below in Figure 5.7. 
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Figure 5.7. Interpretation of instructions for the Hénon problem. 

 

 

5.2.3  Hénon Mapping Results 

 No algorithms were able to solve the problem in all of the 50 independent trials, 

although low mean squared error rates indicate that reasonable approximations to the 

Hénon mapping were produced.  Margetts also did not achieve a solution, but did 

produce good approximations in [57].  Mean best fitness among individuals competing in 

each tournament round (restricted to the interval [0.35, 1.0] for clarity) is shown below in 

Figure 5.8 to compare the two mapping algorithms.  PAM DGP began the tournament 

with higher mean squared error rates, but was exploring solutions with lower error rates 

than the Standard Adaptive Mapping DGP within the final half of the tournament.  This 

can be noted by both a general trend towards low cumulative error rates in the PAM DGP 

graph from mid-tournament onwards.  The Adaptive Mapping DGP, in contrast, actually 
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lost search progress it had made in earlier tournament rounds in the later rounds.  

Adaptive Mapping DGP also exhibited considerable spiking into regions of higher error 

levels indicating frequent loss of progress in the solution search throughout the 

tournament. 

 
Figure 5.8. Mean best fitness per round over 50 independent runs for PAM DGP 

(right) and the Standard Adaptive Mapping algorithm (left), population of 50, for 

the Hénon Mapping problem.  Graph is restricted to the fitness interval [0.35, 1.0] 

for clarity. 
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 The mean final fitness for Standard Adaptive Mapping, PAM DGP, and 

Traditional GP is given below in Figure 5.9.  No algorithms produce statistically different 

average mean squared errors over 50 independent trials given a 0.95 confidence interval.  

PAM DGP and Standard Adaptive Mapping perform on par with Traditional GP for this 

problem given the metric of mean final fitness: there is no statistical difference at the 0.95 

confidence interval (p-value of 0.891 for PAM DGP and Traditional, 0.933 for PAM 

DGP and Standard).   
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Figure 5.9. Mean best fitness achieved after maximum rounds for PAM DGP, 

Standard Adaptive Mapping DGP, and the Traditional GP algorithm over 50 trials 

for the Hénon problem.  Error bars reflect two-tailed t-distribution for the 0.95 

confidence interval.   

 

 Given the fitness/error rate of PAM DGP on this problem, it is worthwhile to 

determine whether the algorithm is able to generate a reasonable approximation to the 
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Hénon mapping.  The program of the individual produced by the PAM DGP trial with 

lowest error rate (mean squared error 0.0650), with introns (non-effective code) omitted, 

is shown in Figure 5.10 below.  To contrast with the results of Margetts, he found a best 

mean squared error of 0.07 in 25 independent trials.  Following the instruction 

interpretation in Section 5.2.2, the left argument for each function is one of four 

destination registers {r0, r1, r2, r4}, and the right argument is either an element of the 

fitness case {xt-1, xt-2} or a source register {r0, r1, r2, r4}.  

SQRT r3 xt-1   

SQUARE r1 xt-1   

* r1 r3   

CONST(0.8398565651941711) r0  

- r0 r1   
 

Figure 5.10.  Best program produced by PAM DGP. 

 

The program yields the uncomplicated mathematical function 

1 1

20.8399 ( )
t t

x x
 

  
 

   (5.3) 

The equation seems overly simplistic, for it uses only the last time step (xt-1) of each 

fitness case in the calculation of xt.  (The original equation uses two time steps back for 

the calculation of the current xt.)  The plot of the solution in Figure 5.11 below, however, 

shows that it provides an accurate approximation to the Hénon mapping.  The following 

chapter will present an alternative PAM DGP implementation that improves the accuracy 

further by providing an even closer fit to the actual function.  
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Figure 5.11. First 100 points (t, xt) in the Hénon time series for the actual Hénon 

mapping and the best solution found by PAM DGP in 50 independent trials.  The 

PAM DGP solution produced a mean squared error of 0.0650.  

 

 

 The operator content of the solutions as a percentage of total operators is shown in 

Figure 5.12 below along with p-values for the acceptance or rejection of the hypothesis 

that the symbol frequencies of the PAM DGP and Standard Adaptive Mapping 

algorithms are the same.  There is no significant difference at the 0.95 confidence interval 

for all operators between PAM DGP and the Standard Adaptive Mapping.  Overall, all 

algorithms chose a fairly even distribution of operator content to form solutions for the 

Hénon mapping problem.  The actual Hénon mapping equation uses five out of the eight 

possible operators, so no pronounced emphasis on a small subset of operators was 

expected from these algorithms for this application.   
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Figure 5.12. Mean operators as percentage of total solution over 50 trials for the 

Hénon Mapping Problem using PAM DGP, Standard Adaptive Mapping algorithm, 

and Traditional GP.  Error bars reflect two-tailed t-distribution for the 0.95 

confidence interval.  P-values for PAM DGP and the Standard Adaptive Mapping 

are displayed above each set of data points. 

 

 

 

5.3  Harder Regression Problem Summary 

 

This chapter compared the performance of the Standard Adaptive Mapping DGP 

and PAM DGP on regression problems of increased difficulty compared to the MAX 

problem investigated in the last chapter.  Upon application of PAM DGP to the Two 

Boxes problem, it was determined that performance of PAM DGP was not compromised 

by increasing population size from 8 to 50.  At the higher population level, PAM DGP 

found more solutions to Two Boxes (2) than the Standard Adaptive Mapping DGP (0) or 

Traditional GP (1) following 50 trials of up to 150 000 rounds each.  PAM DGP 
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outperformed the Standard Adaptive Mapping with respect to mean best fitness achieved 

over 50 independent trials, and performed competitively compared to Traditional GP 

considering the additional search overhead of PAM DGP.  PAM DGP was also able to 

make better emphasis of the appropriate function set operators than Traditional GP, with 

comparable choices made to the Standard Adaptive Mapping DGP.  For the challenging 

chaotic attractor Hénon problem, PAM DGP exhibited better long term performance of 

mean best fitness per tournament round over 50 trials than the Standard Adaptive 

Mapping DGP.  However, no statistical difference was determined between any of the 

algorithms in terms of mean final fitness or with respect to the emphasis of operators in 

their solutions.  

In terms of both harder regression problems in this Chapter, it is evident that 

PAM DGP continues to outperform the Standard Adaptive Mapping DGP on a number of 

metrics across three regression problems of increasing difficulty.  The goal of Chapters 4 

and 5 was to demonstrate that the PAM DGP algorithm empirically is able to outperform 

the Standard Adaptive Mapping DGP algorithm independent of genotype and mapping 

structures.  We have clearly achieved this goal.  We now move to further improve the 

PAM DGP algorithm by introducing a more developmental adaptive redundant mapping 

to take the place of Huffman-encoded mappings. 
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Chapter 6. An Investigation of an Adaptive Redundant 

Mapping Structure in the PAM DGP Framework 

 

6.1   On Mapping Design: Redundancy and Neutrality 

 So far, the only structure used for mapping individuals in the PAM DGP 

framework has been the adaptive mapping scheme based on binary strings interpreted to 

yield a frequency for Huffman‘s compression algorithm.  Keeping the mapping structure 

in PAM DGP and the Adaptive Mapping algorithm constant thus far has allowed a 

comparison of the algorithm component of PAM DGP with the algorithm component of 

the Adaptive Mapping DGP independent of differing mapping types.  Having 

demonstrated the superiority of PAM DGP‘s algorithm component in the previous two 

chapters, we now move to improving the encoding process of its mapping individuals.   

As mentioned in Chapter 2, Margetts‘s justification for the use of his Huffman-

encoded mappings using the countingOnes function (Equation 2.1) is that small changes 

to the genotype will produce small changes in the phenotype [57, 59].  (In other words, 

the mapping is phlegmatic.)  The usefulness of this property (for most problems) is 

expected to appear when, as genetic search progresses, the search closes in on an 

optimum.  When this happens, there is less opportunity for the crossover operator to 

combine useful portions of individuals into a better solution.  Thus, the mutation operator 

ought to be emphasized more in these later ―exploitation‖ stages of search than the 

crossover operator to better implement local search.  In addition, a small change in 

genotype causing a small change in phenotype (small change in fitness) ought to support 

the search around local optima.  Given this line of reasoning, a small change in genotype 
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producing a large change in phenotype would discourage the necessary fine-tuned search 

at this stage. 

 There are a number of benefits that alternative mappings (encoding schemes) 

could provide that are not considered in works defining the Standard Adaptive Mapping 

DGP [57-59].  The most obvious of the benefits that are overlooked is that the Huffman 

encoding provides one and only one unique binary encoding to each member of the 

function set.  For any given unique genome (binary permutation) in the genotype space, 

then, there is only one phenotype (binary permutation) in the phenotype space that 

corresponds to it.  That is, there is a one-to-one mapping from genotype to phenotype and 

the mapping is not redundant at all.  As mentioned in Chapter 2, the genetic code in 

nature is redundant (or, as biologists say, it is ―degenerate‖).  Practical algorithm 

engineering considerations aside, then, redundant mappings are more developmentally 

accurate.  But we will see that these mappings will prove more empirically beneficial 

when incorporated in PAM DGP.    

Given the description of a redundant mapping provided by Keller and Banzhaf in 

[45], we consider a mapping (encoding) to be redundant if it can map more than one 

codon (genotype binary sequence) onto the same symbol.  We should be careful to be 

clear here; we are speaking of redundancy at the level of the encoding.  That is, a 

mapping/encoding is redundant when it allows more than one binary sequence to map to 

a single symbol.  However, if any member of the function set is mapped to by more than 

one genotype, then it is the case that more than one distinct genotype (entire binary 

sequence representing an individual) can map to the same phenotype.  (All that is 

necessary for this to occur is that the two genotypes be identical except for a single binary 
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subsequence where the differing subsequences corresponding to the same function.)  

Thus, if a representation is redundant at the mapping encoding level, then it is also 

redundant at the level of the genotype-phenotype individuals themselves.  There is thus 

little concern about confusion, for the literature typically calls a genotype-phenotype 

mapping redundant if it maps multiple genotypes to the same phenotype [5, 25, 26, 45-

47, 84-87].   

The genotype-phenotype mapping is highly redundant in nature: many different 

genotypes result in phenotypes of comparable functionality [5].  According to the 

neutrality theory of evolution [48], most of natural evolution at the molecular level is due 

to mutations that are practically neutral with respect to selection.  That is, variations in 

genetic material are typically neither advantageous nor disadvantageous, allowing 

evolutionary exploration of alternative genomes without a severe fitness cost to 

individuals possessing the alternate genomes.  Examples of redundancy in nature include 

64 codons of our genetic code mapping to only 20 amino acids, and the interaction of 

molecules to form an organism [87].  The artificial analogue of this neutrality allows the 

escape of local optima in search space [25, 26, 84-87].  This is accomplished by the 

neutrality allowing transitions between phenotypes that would not have been possible 

without being neutral with respect to the current phenotype.  (That is, the mutation would 

not have been able to survive via the individual due to the likely lower fitness it would 

have caused the individual had the phenotype not remained unchanged following the 

mutation.)  Given changes elsewhere in the genotype, however, a new and potentially 

fitter phenotype can now be reached given the presence of the neutral mutation.  In the 

search space, these neutral mutations produce sets of genotypes that map to the same 
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phenotype and are connected via single point mutations.  By moving throughout these 

neutral networks that permeate the search space, a population can find an area of the 

genotype space that allows increases in fitness and entrapment in local optima is 

prevented.  Banzhaf‘s original work [5] proposing the redundant genetic code-based 

GPM established that genotypic diversity across high fitness individuals is afforded by 

the GPM‘s redundant representation using a measure of Hamming distance between all 

genotypes to the best genotype.  Shipman, Shackleton, Ebner and colleagues [25, 26, 84-

87] have also performed several investigations on quantifying redundancy and 

determining the correct types of redundancy to produce, and facilitate traversal of, neutral 

networks to escape local optima.  

By introducing a redundant encoding into the PAM DGP framework, we can 

expect the added benefit of neutral mutations.  However, the main motivation behind the 

introduction of redundant mappings is to facilitate search by better emphasizing 

particular members of the function set over others by actually reducing the number of 

functions in the set that are considered.  That is, we look at the direct benefit of 

redundancy at the level of the genetic code.  Indeed, redundancy in the genetic code itself 

is believed to reduce the exponentially scaling search for an optimal genome (related to 

fitness) to a polynomial scaling search [42].   While potentially including the benefits of 

increased connectivity in search space and more efficient search via neutral mutations, 

the investigation of this work aims to show that redundant mappings in DGP directly 

cause the search to become more efficient by eliminating unnecessary or detrimental 

functions as the function set is adapted for the problem.  In terms of a developmental 

analogue, the investigation simply focuses on demonstrating that better genetic codes are 
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produced by only permitting particular amino acids to be represented collectively by 

codons rather than allotting an amino acid for each of 64 available codons (instead there 

are only 20 amino acids for the mapping in nature).  The analysis on the benefit of the 

redundancy in mappings has used fixed mappings [25, 26, 84-87], with the exception of 

Keller and Banzhaf‘s DGP implementation with individual pairings of mapping and 

genotype [45, 46].  We now introduce, for the first time, an adaptive redundant mapping 

for use in a coevolutionary system of separate populations.  

 

6.2   Introducing an Alternate Mapping Choice for PAM DGP:  

The Adaptive Redundant Mapping 

 

 To review, the only scheme used for mapping individuals in the PAM DGP 

framework has been the adaptive mapping scheme that uses binary strings interpreted 

with the countingOnes function (Equation 3.1), which simply sums the ones in a binary 

string, to yield a frequency.  The frequencies correspond to each member of the function 

set, and the Huffman encoding scheme determines the encodings of each symbol of the 

function set using those frequencies.  The Huffman encoding, based on the frequencies 

dictated by the countingOnes function, thus determines the emphasis placed on each 

member of the function set.  The complete structure and process was described in Section 

2.3.1, with the interpretation of Huffman-encoded individuals reviewed conceptually in 

Figure 6.1 below. 
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Figure 6.1. Huffman mapping encoding process.  

 

 In contrast to Huffman encoding, the mapping scheme of Keller and Banzhaf [5, 

45-47] provides a more transparent, but severe, method of emphasizing members of the 

function set.  As described in Section 2.2.1, each member of the function set may be 

encoded with more than one bit sequence.  In other words, any given member of the 

function set can be redundantly encoded.  The emphasis of a member of the function set 

then results from the number of bit sequences corresponding to it, as well as the content 

of those bit sequences (the more times the sequence is occurring in the building blocks of 

the fittest individuals, the better).  It is possible for a mapping to dictate that certain 

function set symbols are never to be read when interpreting the genotype, or even in the 

extreme case that only one function is ever to be read.  In contrast, the adaptive mapping 

scheme using Huffman encoding always allows some possibility that the symbol which 

ought to be read the least (has the lowest frequency in the mapping) still gets interpreted 

from a genotype individual‘s code.  That is, Huffman encoding ensures that every 

member of the function set gets some unique encoding assigned to it, although members 
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of the function set with low frequencies in the mapping will be given more obscure, often 

longer, encodings.   

 Keller and Banzhaf introduced the concept of redundant mappings where each 

genotype individual is paired with its mapping for the entire tournament [45-47, 57].  

This scheme is not compatible with either the coevolutionary architecture of the Adaptive 

Mapping algorithm or the PAM DGP framework.  Thus, we design an adaptive 

redundant mapping for the PAM DGP framework with an associated encoding 

mechanism and structure suited to the PAM DGP algorithm.  The proposed adaptive 

redundant mapping is summarized by Figure 6.2.  Firstly, a list of binary sequences is 

chosen so that each symbol of the function set has the potential to be represented by one 

or more unique fixed length bit sequences.  That is, a mapping individual is set to consist 

of b  s binary strings of length 10, where b is the number of binary sequences required 

to represent a function set of size s.  For example, a function set of size 4 would require a 

list of four sequences of 2 bits each, and a function set of size 7 would require a list of 

eight sequences of 3 bits each (with one extra encoding).  Instead of each of the binary 

strings in the mapping individual representing frequencies, as in the Huffman encoding, 

they directly represent indices of the ordered function set.  Each of the b 10-digit binary 

strings is interpreted by converting them to their decimal representation and normalizing 

to the range [0…1].  They are then mapped onto an ordered function set index (where 

indices are numbered 0 to s - 1 for a function set of size s) by multiplying them by s and 

truncating to an integer value.  (In the rare case where the normalized decimal for a 

binary string is 1, a reference beyond the last index is avoided by referencing the last 
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index.)  The ordering of the function set is arbitrary upon initialization and remains 

unchanged throughout the algorithm.
5
   

 The countingOnes method is not used to interpret the mappings, because when 

mapped onto the ordered function set it would greatly favor members at the centre of the 

function ordering and very rarely choose members at the start or end of the ordered 

function set.  (Consider that in a countingOnes interpretation of 10 bits, there are many 

possibilities of encoding a frequency of 0.5 where five of the ten bits are ones, but only 

one possibility of encoding the frequency of 1.0 where all bits are set to one.)  Using 

normalized binary to decimal conversion, however, there is a uniform chance of choosing 

any value from 0.0 to 1.0.   

 

 

Figure 6.2. Adaptive redundant mapping encoding in PAM DGP. 

 

 

                                                 
5
 Note that this approach is a direct binary encoded mapping, and is not at all similar to Bean‘s Random 

Keys GA [9] that uses a random search space as an intermediary between genotype and phenotype.  
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6.3   Properties and Benefits of the Adaptive Redundant Mapping 

 

   An elaboration on the term redundancy as it applies to the adaptive redundant 

mapping may be helpful to avoid confusion.  As mentioned previously, we adopt the term 

redundant in the sense of Keller and Banzhaf [45] in particular: a mapping is redundant if 

it ―may map more than one codon onto the same symbol.‖  We call our adaptive mapping 

redundant because it has the potential to map more than one genotype to a single 

phenotype; although it may not do so in all cases.  By allocating distinct binary encodings 

to each symbol of the function set when the problem‘s function set can be represented by 

exactly s binary sequences (s = b), there is no redundancy introduced at all.  If the 

problem‘s function set cannot be represented by exactly s binary sequences (it is required 

that b  s), then there will be some problem-dependent minimal degree of redundancy.  

The maximum redundancy for every function set of size s (every problem) is always the 

case where every function set symbol has the same encoding (although this would not 

allow a very fit solution in most cases). 

Because the mapping is adaptive, it can range from the problem-dependent lower 

limit of redundancy to the upper limit throughout the algorithm.  Thus, the adaptive 

redundant mapping can trim the function set when necessary or keep all function set 

symbols.  Moreover, the adaptive redundant mapping has the added benefit that it can 

adaptively set its level of redundancy and may for some problem cases produce solutions 

that opt not to use redundancy at all—recalling the definition adopted from Keller and 

Banzhaf [45], it may (or may not) map more than one encoding onto the same symbol.  

Mathematically speaking, the mapping is non-injective and non-surjective: every element 
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of the function set can be mapped to by one or more binary sequences, but not every 

element of the function set will necessarily have a binary sequence mapped to it, 

respectively.   

 A justification of the nature of the encodings and the structure of mapping 

individuals presented in this section may be in order.  The encodings described use 

strings of ten binary digits that map directly to an index of an ordered function set.  The 

representation of digits could be shortened so that only the required number to enumerate 

the indexed function set is used.  However, for the purpose of easily adapting new 

problems of various function set sizes to the algorithm, the binary representation of reals 

in the interval [0, 1] is used.  Another reason behind this choice of 10 binary digits to 

specify each index is that it increases the chance of neutral mutations in the mapping 

space: point mutations have less of a chance of causing a change of index with respect to 

each binary encoding.  That is, a point mutation in a space of ten binary digits (if in the 

lower portion/rightmost of the string) will not likely change the index to which the binary 

digits correspond.  However, if there are only enough binary digits at each location to 

cover the binary representations of the indices of the function set, each point mutation 

will definitely cause a change in context.  To put it another way, the representation of the 

redundant mappings allows for higher redundancy between the mapping ―genotype‖ and 

the mapping ―phenotype‖ (mapping phenotype actually being the genotype-phenotype 

mapping for the overall problem).  There are actually two levels of redundancy/neutrality 

in the PAM DGP algorithm that can be considered:  there is a level between the genotype 

population and phenotype for the overall problem, and for the mapping genotype and the 

genetic code it represents (an intermediary phenotype, if you will).  The effect of using 
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this higher redundancy in the problem representation (letting genotypes map to more than 

one phenotype) is that there will be the opportunity for neutral mutations to escape local 

optima.   

    

6.4   Computational Complexity Considerations 

 

Since the Redundant mapping directly maps to indices of the ordered function set, 

and Huffman‘s algorithm need not be employed to evaluate the content of the mappings, 

there are savings in terms of computational complexity in addition to the anticipated 

benefit of the new mapping reducing the function set size in difficult problems.  Figure 

6.3 below shows the relevant portions of the PAM DGP algorithm and the computational 

complexity now that Redundant mappings are used.  The computational expense 

difference between PAM DGP using Redundant mappings shown below in Figure 6.3, 

and PAM DGP using Huffman mappings shown in Figure 3.11, is essentially that there is 

no call to Huffman‘s algorithm.  Now that a direct mapping into the function set is used, 

there is a computation saving of O(n + n log n).  

The overall computational complexity can be broken down as follows:  There are 

n tournament rounds of n genotype-mapping pairings.  Each pairing will be evaluated in 

linear O(n) time by executing the genotype‘s program to determine fitness based on the 

genotype program.  Translation of the mapping components for each of the n pairings 

must take place before the genotype program can be interpreted (even if the mapping 

individuals are not explicitly evaluated for fitness).  The determination of each of the n 

directly mapped encodings is done in O(n) time.  Combined, each pairing takes  

O(n + n)  O(n) time.  There is a sort of the n pairings in each tournament round, giving a 
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complexity of O(n
 
log n) for heap sort.  Breeding of the pairings is done in linear O(n) 

time.  The table of probabilities does n updates for each of n individuals, done in O(n
2
) 

time.  The overall complexity of PAM DGP using Redundant encodings is thus  

O(n (n + n + n log n + n + n
2
)), or 

O( n
3
 + n

2
log n + n

2
)  O(n

3
),    (6.1) 

which is a savings of O(log n) time compared to PAM DGP using Huffman-based 

mappings. 

 

For n rounds       O(n)    

  Execute mapping encodings        O(n) 

  Evaluate geno-map pairs    O(n) 

  Rank n geno-map pairs     O(n log n) 

   Breed n geno-map pairs     O(n) 

  Update table         O(n
2
) 

 

Overall complexity:  

O(n
3
 + n

2
log n + n

2
)  O(n3) 

 

Figure 6.3. Derivation of computational complexity for PAM DGP using Redundant 

mappings. 

   

 

6.5 Comparative Mapping Performance for Previous Regression Problems 

6.5.1  MAX Problem 

 The remainder of this chapter compares Huffman encoded mappings and 

Adaptive Redundant mappings just introduced in the PAM DGP framework for all 

regression problems previously examined: MAX, Two Boxes, and the Hénon map.  All 

algorithm parameters remain identical to those described in previous chapters 
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(particularly in Tables 4.1, 5.1, and 5.3); only the mapping structures are being compared.  

Traditional GP is shown in all results as a benchmark against which to gauge 

performance.  Figures 6.4-6.8 show the mean best fitness over 50 independent trials per 

tournament round for the MAX problem for a population of 8.  Since infinity cannot be 

plotted, the fitness for any trial not yet achieving success at a given round is used to 

determine the mean.  Figure 6.9 indicates the efficiency with which Traditional GP and 

the two mappings in PAM DGP located solutions in terms of mean tournament rounds.     

 
Figure 6.4. Mean best fitness per round over 50 independent runs for PAM DGP 

with Huffman and Redundant mappings, population of 8, on the MAX problem for 

50 bit individuals. 
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Figure 6.5. Mean best fitness per round over 50 independent runs for PAM DGP 

with Huffman and Redundant mappings, population of 8, on the MAX problem for 

100 bit individuals. 

 

 
Figure 6.6. Mean best fitness per round over 50 independent runs for PAM DGP 

with Huffman and Redundant mappings, population of 8, on the MAX problem for 

150 bit individuals. 
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Figure 6.7. Mean best fitness per round over 50 independent runs for PAM DGP 

with Huffman and Redundant mappings, population of 8, on the MAX problem for 

200 bit individuals. 

 

 
Figure 6.8. Mean best fitness per round over 50 independent runs for PAM DGP 

with Huffman and Redundant mappings, population of 8, on the MAX problem for 

250 bit individuals. 
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Figure 6.9. Mean number of tournament rounds (reaching maximum rounds or a 

solution) for Traditional GP, population 50, and Huffman and Redundant mappings 

in PAM DGP, population 8, over 50 trials for the Maximum Output problem.  Error 

bars reflect two-tailed t-distribution for the 0.95 confidence interval.  

Corresponding p-values are displayed above each set of points for Huffman and 

Redundant mapping comparison. 

 

 Figures 6.4 to 6.8 show that the Huffman encoding (dotted line) achieves 

consistently higher fitness results across all tournament rounds, indicating that its more 

conservative symbol emphasis is more beneficial in the PAM DGP framework than the 

redundant mapping that emphasizes and eliminates function symbols throughout the 

search.  Figure 6.9, using respective optimal populations for PAM DGP and Traditional 

GP, indicates that the Huffman encoding typically leads the PAM DGP framework to a 

solution faster than the redundant mapping, with that trend being more evident at higher 

bit levels where more solutions are readily found.  P-values shown correspond to 

Redundant and Huffman mappings, indicating all results are significant at the 0.95 
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confidence interval.  However, PAM DGP with either mapping typically does not 

outperform Traditional GP for this simple problem.   

 The number of total solutions found is in Figure 6.10 for the same trials.  Figure 

6.10 shows that the Huffman mapping produces more solutions than the redundant in the 

PAM DGP framework at all bit levels, but fails to outperform Traditional GP at any bit 

level.  The results indicate that the Huffman mapping generates solutions more efficiently 

than the redundant mapping in this very simple problem instance by not eliminating 

function set members. 
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Figure 6.10. Number of Maximum Output solutions in 50 independent experiments, 

given Huffman-based and Redundant mappings in PAM DGP with a population of 

8, and Traditional GP with a population of 50. 

 

  

 An analysis of function set operator content as a percentage of total operators in 

the solutions (with accompanying p-values) is below in Figure 6.11.  Figure 6.11 shows 

that there is no significant difference in the operator content of the solutions for the two 
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mappings at the 0.95 confidence interval for 5 out of the 7 operators.  Traditional GP has 

a similar distribution of operators to Huffman, with differences for PLUS and TIMES.  

Both Huffman and Redundant operators place a healthy emphasis on the DUP, PLUS, 

and TIMES functions—all very useful for creating large outputs.  The redundant 

mapping uses more load constant to register (CONST) operators (significant at the 0.99 

confidence interval), while the Huffman encoding uses more register to stack (R2S) 

transfers (also significant at the 0.99 confidence interval).  Numerous CONST references 

are not necessary to solve the MAX problem, only an initial loading of a constant to be 

duplicated and multiplied is required.  Further additional loading of constants are not 

necessarily detrimental, since the value for a loaded constant is placed at the top of the 

stack and could be used to increase the current output value by contributing to it when 

followed by the correct operators.  The R2S operator favored by the Huffman mappings 

is not overly detrimental either; it simply pushes the item in the output register onto the 

stack where this number will tend to be large as a program of reasonable fitness is 

executed.  In any case, the R2S operator is responsible for the third lowest proportion in 

the Huffman mapping solutions.  Both mappings types in PAM DGP thus seem to make 

reasonable function set choices.   
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Figure 6.11. Mean operators as proportion of total solution over 50 trials for the 

MAX Problem using optimal populations for Traditional GP (population 50), and 

Huffman and Redundant mappings in PAM DGP (population 8).  Error bars reflect 

two-tailed t-distribution for the 0.95 confidence interval.  Corresponding p-values 

are displayed above each pair of data points with respect to Huffman and 

Redundant mapping results for each operator. 

 

 Given the expected benefit of the redundant mapping trimming the size of the 

function set (in addition to appropriate symbol emphasis) to reduce search space, we now 

consider the number of unique operators used by each algorithm to form a solution.  The 

boxplot is used to show the spread of data and the lowest operator cases produced to 

better indicate the function trimming tendency of the redundant mapping (simply plotting 

the mean and error would hide these outliers).  Figure 6.12 below shows the boxplot for 

the number of unique operators used in a solution for Traditional GP, Huffman mapping 

PAM DGP, Redundant mapping PAM DGP, and the Standard Adaptive Mapping DGP of 
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Margetts and Jones.  (The latter algorithm is included in this and similar boxplots in the 

following two sections, despite having already demonstrated that superiority of the PAM 

DGP algorithm, because this particular analysis was prompted by the introduction of the 

new mapping and hence has not yet been performed on the Adaptive Mapping DGP.)  

The Huffman mapping uses all 7 operators except for one solution containing 6.  The 

Traditional GP uses 6-7 operators for all solutions, as does the Standard adaptive 

mapping algorithm.  The redundant mapping typically uses only about 4-5 of the 7 

operators, with one solution actually using 2 operators.  Those 2 operators were actually 

the best two operators for the fastest generation of large numbers: R2S (register to stack) 

and DUP (duplication).  The 2 operator solution was not discovered in time to generate 

the value of infinity within the 1250 round limit tournament, but it is significant that the 

most succinct and effective means of solving the Maximum Output problem was 

discovered using the redundant mappings.  Overall, Traditional GP with static, globally 

applied mappings and Huffman mappings that used the bulk of the function set produced 

solutions more efficiently for this simple version of MAX problem than the Redundant 

mapping.    
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Figure 6.12. Boxplot indicating number of operators constituting each solution over 

50 trials for the Maximum Output Problem using Traditional GP, Standard 

Adaptive Mappings, and Huffman and Redundant mappings in PAM DGP.  Each 

box indicates the lower quartile, median, and upper quartile values.  If the notches 

of two boxes do not overlap, the medians of the two groups differ at the 0.95 

confidence interval.  Points represent outliers to whiskers of 1.5 times interquartile 

range. 

 

 

 The Maximum Output problem, as construed in these experiments, is not a 

difficult problem for the adaptive mapping developmental systems to solve (Figures 4.7 

and 6.10).  The Huffman encoding seems to solve this simpler problem more quickly than 

Redundant encoding by using the entire (or near entire) mix of operators available.  It is 

also noteworthy that none of the operators used in this problem are actually detrimental to 

accumulating large outputs—that is, there are no operators to decrement the accumulated 

value such as subtraction or division.  There is thus less of a demand on the algorithm to 
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carefully select its operators; which is the real advantage behind the redundant mapping.  

It is also suspected that a lower number of solutions are found by the redundant mapping 

implementation due to the search time required in exploration of trimming the operator 

set, whereas the Huffman encoding only really needs to search for a solution while using 

all (or nearly all) of the available operators.  A harder, more practical challenge is likely 

required to showcase the benefit of the adaptive redundant mapping where the search 

time spent in trimming the operator set is of benefit. 

 

6.5.2 Two Boxes Problem 

 The harder regression benchmark, Two Boxes, is now attempted with redundant 

mappings.  Parameterization of PAM DGP remains the same as outlined in Section 5.1.1, 

with the comparison of the two mappings in PAM DGP being done with a population of 

50.  The mean fitness of the best individual after the maximum number of rounds (150 

000) or finding a solution over 50 independent trials is shown in Figure 6.13 below 

(lower fitness is better).  As Figure 6.13 would indicate, no algorithm outperforms any 

other at the 0.95 confidence interval.  However, Huffman encoding (as before, Section 

5.1.3) and Redundant encoding both produce two solutions within the 50 trials of 150 000 

rounds, whereas Traditional GP (as before) only produced one (Table 6.1). 
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Figure 6.13. Mean best fitness achieved (after maximum rounds or a solution) for 

Traditional GP, Huffman mapping PAM DGP, and Redundant mapping PAM DGP 

over 50 trials for the Two Boxes problem.  Error bars reflect two-tailed t-

distribution for the 0.95 confidence interval.  The p-value for the Redundant and 

Huffman mappings is 0.791. 

 

 

Table 6.1. Two Boxes solutions for Traditional GP, Redundant mappings and 

Huffman mappings in PAM DGP. 

 

Algorithm Solutions per 50 Trials Round Solution Found 

Traditional GP 1 42004 

Redundant PAM DGP 2 130892, 113046 

Huffman PAM DGP 2 134743, 36161 
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Figure 6.14. Mean operators as a percentage of total solutions over 50 trials for the 

Two Boxes Problem, population 50, using Traditional GP, Huffman mapping PAM 

DGP, and Redundant mapping PAM DGP.  Error bars reflect two-tailed t-

distribution for the 0.95 confidence interval.  P-values corresponding to Huffman 

and Redundant mappings are displayed above each set of data points. 

 

  

 Operator content of the solutions as a percentage of total operators is shown 

above in Figure 6.14.  There is a significant difference in the symbol content of solutions 

for the two mappings on the Two Boxes problem.  All operator proportions for Huffman 

and Redundant are dissimilar at the 0.95 confidence interval, indicating that the mappings 

caused PAM DGP to choose different solution content.  The redundant mappings 

successfully emphasize the only necessarily operators for the ideal function 

(multiplication and subtraction) to a greater degree than the other algorithms.  Figure 6.15 

below indicates that even with such a low number of available operators for the Two 
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Boxes problem (4 operators), the redundant mapping still managed to trim the median 

number of operators used in a solution to 3.  In one case, the Redundant mapping PAM 

DGP used only the 2 correct operators (lower outlier in rightmost boxplot).  The other 

algorithms used all 4 operators in all solutions.   

 

Figure 6.15. Boxplot indicating number of operators constituting each solution over 

50 trials for the Two Boxes Problem using Traditional GP, Standard Adaptive 

Mappings, and Huffman and Redundant Mappings.  Each box indicates the lower 

quartile, median, and upper quartile values.  If the notches of two boxes do not 

overlap, the medians of the two groups differ at the 0.95 confidence interval.  Points 

represent outliers to whiskers of 1.5 times interquartile range. 
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6.5.3 Hénon Mapping Problem 

As expected based on previous results (last chapter), the Redundant mapping did 

not generate a solution for the Hénon mapping problem.  However, this section will show 

that the redundant mapping did efficiently generate good approximations to the true 

function.  The average best fitness per tournament round over 50 independent trials 

generated for both types of mappings (Huffmand and Redundant) is shown below in 

Figure 6.16.  The Redundant mapping (right) begins with a better fitness (lower mean 

squared error) and maintains that lower fitness throughout the tournament and reaches 

lower error rates by later tournament rounds when compared with Huffman.  This trend 

indicates that the Redundant mapping solution search is more efficient than its Huffman-

based counterpart.   

 
Figure 6.16. Mean best fitness per round over 50 independent runs for Redundant 

mappings (right) and Huffman mappings (left), population of 50, for the Hénon 

problem. 
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 The best average fitness at tournament close over 50 independent trials is shown 

below in Figure 6.17.  There is no statistically significant difference between the 

algorithms at the 0.95 confidence interval as evidenced by the plot.  More precisely, the 

p-value for Huffman and Redundant is 0.111, between Traditional and Redundant it is 

0.187.  Considering the implications of both Figure 6.16 (above) and Figure 6.17 (below), 

despite the efficiency of the redundant mapping implementation during search, the final 

best fitnesses of the two mapping techniques (and fixed mapping of Traditional GP) 

discovered over the course of the tournament do not significantly differ.  This is a 

reflection of the problem difficulty; the equation, after all, contains non-repeating real 

values and models a chaotic attractor whose orbit is not easily described [30].       
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Figure 6.17. Mean best fitness achieved after maximum rounds for Redundant 

mappings, Huffman mappings, and Traditional GP over 50 trials for the Hénon 

Problem.  Error bars reflect two-tailed t-distribution for the 0.95 confidence 

interval.   
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 While final fitness was not statistically different among algorithms, the fit of the 

best solution to the Hénon map produced by the Redundant encoding was found to 

improve over Huffman.  The program corresponding to the best solution (effective code 

only) produced by redundant mappings in PAM DGP is given below in Figure 6.18.  The 

left argument for each function is one of four destination registers {r0, r1, r2, r4}, right is 

either an element of the fitness case {xt-1, xt-2} or a source register {r0, r1, r2, r4}.  The 

operation is performed using the value in the source register as the right operand, 

destination as the left.  The result is placed in the destination register. 

 

SQUARE r2 xt-2   

+ r2 xt-2   

SQRT r3 r2   

SQRT r0 r3   

SQUARE r3 xt-1   

- r0 r3   

 

Figure 6.18.  Best program produced by Redundant mapping PAM DGP. 

 

 The solution can also be expressed mathematically as  

2 2 1

2 24
t t t

x x x
  
      (6.2) 

The mathematical equation reflecting the redundant mapping solution uses two previous 

time steps (xt-1 and xt-2) to determine current value of xt, in contrast to the Huffman 

solution (Equation 5.3) that only used the previous time step.  In its use of the fitness case 

information, then, it is a more accurate reflection of the true Hénon mapping equation 

(Equation 5.2).  This redundant encoding PAM DGP solution achieved a mean squared 

error of 0.0443, bettering the 0.0650 of Huffman encoding in the last chapter.  The 
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redundant mapping also produces a better fit: the best redundant solution results in 164 

hits where a hit is a raw error of ≥ 0.01 for a fitness case.  In contrast, the best Huffman 

solution in terms of error that was examined in the last chapter only produced 87 hits.  

The redundant mapping solution is shown graphically to be a good approximation to the 

true formula in Figure 6.19. 

 
Figure 6.19. First 100 points (t, xt) in the Hénon time series for the actual Hénon 

mapping and the best solution found by Redundant mapping PAM DGP in 50 

independent trials.  The PAM DGP solution produced a mean squared error of 

0.0443.  

 

 Figure 6.20 indicates what subsets of operators are being emphasized by the 

redundant mapping trials.  It is evident from Figure 6.20 that the redundant mapping does 

emphasize particular operators over others.  No other algorithm significantly emphasizes 

particular operators (see also Figure 5.12 and associated discussion in Section 5.2.3).  At 
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the 0.95 confidence interval, Redundant mappings result in the emphasis of subtraction 

and squaring compared to Huffman.  It is also statistically significant (0.99 confidence) 

that the Redundant mapping puts less emphasis on multiplication and division compared 

to Huffman.  All of the operators emphasized or used sparingly by the Redundant 

mapping PAM DGP feature in the actual equation, but observations regarding operator 

emphasis must be weighed with the fact that there are many ways of modeling the 

equation that do not necessarily require use of the operators in the true Hénon equation 

(consider Equations 5.3 and 6.2 for instance).   
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Figure 6.20. Mean operators as percentage of total solution over 50 trials for the 

Hénon Mapping Problem using Traditional GP, Huffman and Redundant 

mappings.  Error bars reflect two-tailed t-distribution for the 0.95 confidence 

interval.  Corresponding p-values are displayed with respect to Huffman and 

Redundant comparison. 

 

 



 

 

148 

 Having completed the analysis of the operator composition of the solutions; the 

associated statistic of how many operator types are used in a solution completes the 

analysis of the effects of the redundant mapping on solution composition.  Figure 6.21 

shows the boxplot corresponding to the number of operators constituting a solution for all 

algorithms, verifying the trimming effect of the redundant mapping on the operator set.  

The redundant encoding does not produce a single solution that uses all 8 operators, using 

a maximum of 7 operators and as few as 4.  In contrast, the Huffman encoding uses 8 

operators in all cases except for three consecutively lower outliers.  Traditional GP and 

Margetts‘s Standard Adaptive Mapping typically use 8 operators as well, with the 

Standard Adaptive Mapping having a smallest total of 6 operators used in a solution.  

Figure 6.21 shows clearly that the redundant mapping is producing good approximations 

by trimming the operator set included in solutions: the median for the Adaptive 

Redundant mapping algorithm (5 operators) actually corresponds to the lowest outlier of 

any other algorithm. 
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Figure 6.21. Boxplot indicating number of operators constituting each solution over 

50 trials for the Hénon Mapping Problem for each algorithm.  Each box indicates 

the lower quartile, median, and upper quartile values.  If the notches of two boxes 

do not overlap, the medians of the two groups differ at the 0.95 confidence interval.  

Points represent outliers to whiskers of 1.5 times interquartile range. 

 

 

6.6 Adaptive Redundant Mapping PAM DGP Summary  

 

 This chapter opened with motivations behind the introduction of an adaptive 

redundant operator to replace one-to-one (non-developmental) Huffman-encoded 

mappings in PAM DGP, followed by a description of the redundant mapping‘s structure 

and encoding procedure.  PAM DGP with the new redundant mapping was then applied 

to all the regression problems of the previous chapters, namely the MAX problem, Two 

Boxes, and the Hénon map.  The adaptive redundant mapping in PAM DGP did not 

outperform the other algorithms on the simple MAX problem.  However, the MAX 
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problem actually involves a function set containing no operators that are directly 

detrimental to finding a solution, so any search using redundant mappings to trim the 

function set would be unnecessary and actually waste search time.  This is not typical of 

most interesting problems, where the function set may contain symbols that ought to be 

emphasized or even eliminated from consideration.  Analysis of the more difficult Two 

Boxes and the Hénon map regression benchmarks indicate that the adaptive redundant 

mapping performs better, and in no case is outperformed, by Huffman-encoded mappings 

on fitness-based metrics such as time (rounds) to solution, number of solutions (where 

applicable), and mean final fitness.  Across all three regression problems, it is evident 

that PAM DGP using adaptive redundant mappings effectively trims function sets and 

emphasizes appropriate members of those trimmed sets to produce its solutions. 
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Chapter 7. Results using PAM DGP on  

Medical Classification Problems 
 

 

7.1 Problem Definitions and Parameterizations 

 Having used regression benchmarks of increasing difficulty to establish the 

superiority of PAM DGP‘s underlying algorithm over the Standard Adaptive Mapping 

DGP (Chapters 4 and 5) and to investigate the benefits of an adaptive redundant mapping 

(Chapter 6), we now move to new problem domains in the present and the following 

chapter to showcase the abilities of PAM DGP using the adaptive redundant mapping.  In 

this chapter, we examine two well known classification benchmarks using medical data 

sets from the UCI machine learning repository [66].  The first data set used contains 

Heart Disease data collected at the Cleveland Clinic Foundation [23].  The database 

contains 303 instances (164 negative, 139 positive), each consisting of 13 attributes, with 

a 14
th

 indicating positive or negative diagnosis.  The second data set is 699 instances of 

Breast Cancer data (458 negative and 241 positive) obtained at the University of 

Wisconsin Hospitals, Madison [97].  Each instance contains 9 useful attributes, with a 

10
th

 classifying it as positive or negative.  The Heart and Breast data sets were selected 

from the repository because they were relatively small, have established performance 

levels (in [16] and others), and represent real world (rather than artificial) data. 

 Additional parsing of the file was performed prior to the experiments:  Unknown 

values were replaced by the mean value of data recorded for the relevant attribute in the 

database, and a positive or negative classification was changed to ‗1‘  or ‗0‘ for all 

instances.  Finally, the experiments used four-fold cross-validation to verify accuracy of 

the findings.  The data set was partitioned so that 25% was used as a test set, with 75% 
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being used as the training set.  Each of the four partitions used a unique set of instances 

for the training and test partitions, and both the training and test set retained a class 

distribution of the entire data set.  For partitions 1-3 of the Breast data set, this resulted in 

524 training instances and 175 test instances; for partition 4, there were 525 training 

instances and 174 test instances.  For partitions 1-3 of the Heart data set, this resulted in 

227 training instances and 76 test instances; for partition 4, there were 228 training 

instances and 75 test instances.   

 The division of the data and parameterization of PAM DGP are shown in Table 

7.1 below.  Mutation and crossover rates and types are kept the same as for the harder 

regression problems, with lower mutation and crossover rates for the mapping population 

than the genotype population providing a more stable background for solution search 

among genotypes.  Preliminary experiments showed that no gain in training was 

accomplished for the Heart Disease data after 30 000 rounds, so this was chosen as the 

tournament limit for training the classifier.  Breast Cancer was given a limit of 50 000 

rounds for training.  Note that the function set is larger than would typically be employed 

for a classification problem (for instance [16]), since we are interested in evaluating the 

ability of the mapping to suitably focus the search on the most applicable subset of 

instructions.   
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Table 7.1. Medical Classification Problems parameterization. 

 

 

  

 

 

 

 

 

 

 

 

Tournament Style Steady State, 4 individuals for each round 

Training Rounds Heart=30 000, Breast=50 000  

Cross validation 4-fold, each with 75% Training and 25% Test 

Data Set 

Characteristics 

Heart: 303 instances, Breast: 699 instances 

Function Set +, *, -, %  (protected), SIN, COS, EXP,  

LOG (base 10),   SQRT, NATLOG 

Genotype structure Instruction sequence with 4 registers; 320 bits 

Mapping structure 100 bits (10 bits per function set member) 

Genotype mutation XOR mutation, threshold = 0.5 

Mapping mutation Point mutation, threshold = 0.1 

Genotype crossover Equal-sized blocks, threshold = 0.9 

Mapping crossover Equal-sized blocks, threshold = 0.1 

Population size 25 genotypes, 25 mappings (50 for traditional) 

Fitness Cases Heart: 14 attributes, the last specifies class (0 or 1) 

Breast: 10 attributes, the last specifies class (0 or 1) 

Fitness Raw correct classifications 

Objective Highest classification accuracy possible on test set. 

Learning rate 0.1 

Noise threshold 0.95 
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7.2 Interpretation of Instructions 

Each genotype individual for the Medical problems consists of up to 320 bits and 

4 registers to store sub results.  The first segment of an instruction in the Standard 

Adaptive Mapping GP or Huffman mapping PAM DGP identifies one of the ten possible 

operators, where the length of this function identifier is dictated by Huffman‘s algorithm.  

More emphasis is generally placed on an operator by having a shorter identifier.  In the 

Traditional (linear) GP algorithm and the Redundant mapping PAM DGP, the function 

identification segment of the instruction is of a fixed length (4 bits) where the integer 

representation of the bits in this segment is simply used to specify one of the ten 

operators.  The binary representations of the integers wrap back to the first operator after 

the final operator for the default encoding of the Traditional GP. 

A single ‗flag‘ bit following the function identifier determines where the operand 

to the right of the operator is loaded from: either the operand is loaded from the registers, 

or the operand is loaded from one of the variables from the current fitness case.  In the 

case where the operand is loaded from the registers, the integer representation of the two 

bits following the flag bit specify one of the 4 registers as the destination register, and the 

last two bits specify one of 4 registers as the source register.  In the case where the 

operand is loaded from the current fitness case, the two bits following the flag bit specify 

one of the 4 registers as the destination register.  The integer representation of the last 

following bits specify the one of the variables from the current fitness case to be loaded 

into the destination register, where the binary representations of the integers wrap back to 

the first attribute after the last attribute.  The interpretation of an instruction is shown 
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below in Figure 7.1 for each of the four GP algorithms (Traditional GP, Standard 

Adaptive Mapping GP, Huffman PAM DGP, and Redundant PAM DGP). 

 

 

Figure 7.1. Parsing of instructions for the Medical classification problems. 

 

 

7.3 Medical Classification Performance Results 

 

 

 The classification accuracy of the Heart and Breast classifiers after 30 000 and 50 

000 rounds of training, respectively, over 50 independent trials are shown in Figures 7.2 

and 7.3, respectively.  Results describe performance for Traditional (linear) GP 

(Traditional), the Adaptive Mapping algorithm (Standard), PAM DGP using Huffman 

encoding (Huffman), and PAM DGP using adaptive redundant mappings (Redundant).  

The results are based on four-fold cross-validation, so the median and spread shown in 

the boxplot correspond to the mean accuracy across all four unique test sets over the 50 

trials.  Each box indicates the lower quartile, median, and upper quartile values.  If the 

central notches of two boxes do not overlap, the medians of the two groups differ at the 
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0.95 confidence interval.  Points represent outliers to whiskers of 1.5 times the 

interquartile range. 

 

Figure 7.2. Boxplot of mean classification accuracy for the Cleveland Heart data set 

over 50 trials using four-fold cross-validation.  Each partition was 75% training, 

25% test.  Each box indicates the lower quartile, median, and upper quartile values.  

If the notches of two boxes do not overlap, the medians of the two groups differ at 

the 0.95 confidence interval.  Points represent outliers to whiskers of 1.5 times 

interquartile range. 

 

 

It is evident from Figure 7.2 that the adaptive redundant mapping outperforms the 

Huffman mapping in PAM DGP at the 0.95 confidence interval, as well as outperforming 

all other algorithms examined at the 0.95 confidence interval (there is no overlap between 

Redundant‘s notch and the other algorithms).  In fact, the redundant mapping also boasts 

the best median, general spread of data, and best accuracy achieved (note top of upper 

whisker).  The Standard (Original) Adaptive Mapping algorithm of Margetts and Jones is 

the worst performer of all the algorithms at the 0.95 confidence interval, as well as when 

considering both median and general spread of the data. 
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Figure 7.3. Boxplot of mean classification accuracy for the Wisconsin Breast data set 

over 50 trials using four-fold cross-validation.  Each partition was 75% training, 

25% test.  Each box indicates the lower quartile, median, and upper quartile values.  

If the notches of two boxes do not overlap, the medians of the two groups differ at 

the 0.95 confidence interval.  Points represent outliers to whiskers of 1.5 times 

interquartile range. 

 

 

In the case of the easier Breast data set, Figure 10, while redundant mappings do 

not actually outperform Huffman mappings at the 0.95 confidence interval, the redundant 

mapping does outperform the Huffman mapping when considering median and general 

spread of the data (two rightmost box plots).  It is certainly the case that the redundant 

mapping is not outperformed by the Huffman alternative in any respect.  The redundant 

mapping, however, outperforms the two other algorithms at the 0.95 confidence interval.  

As was the case for the Heart Disease data, the Standard Adaptive Mapping, followed by 

Traditional GP, had the worst performance out of all four algorithms given 0.95 

confidence interval, median, and general spread of the data.  The PAM DGP 

implementations thus clearly outperform the other GP alternatives in both the Breast and 

Heart medical classification domains, with the redundant mapping being preferable.   
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7.4 Function Set Analysis 

While redundant mappings are shown to outperform other algorithms, it remains 

to be shown that the redundant encoding is trimming the members of the function set to 

yield this improved performance (recall that Huffman encoding cannot trim the function 

set).  It is also of interest to see whether or not there is any significance to the particular 

functions chosen by the redundant mappings to remain as useful members of the function 

set.  The average number of unique function set members (unique operators) used in the 

classification solutions to the experiments described above is given below in Figures 7.4 

and 7.5.   

 

Figure 7.4. Boxplot of mean number of unique operators used in the classifier for 

the Cleveland Heart data set over 50 trials using four-fold cross-validation.  Each 

partition was 75% training, 25% test.  Each box indicates the lower quartile, 

median, and upper quartile values.  If the notches of two boxes do not overlap, the 

medians of the two groups differ at the 0.95 confidence interval.  Points represent 

outliers to whiskers of 1.5 times interquartile range. 
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Figure 7.5. Boxplot of mean number of unique operators used in the classifier for 

the Wisconsin Breast data set over 50 trials using four-fold cross-validation.  Each 

partition was 75% training, 25% test.  Each box indicates the lower quartile, 

median, and upper quartile values.  If the notches of two boxes do not overlap, the 

medians of the two groups differ at the 0.95 confidence interval.  Points represent 

outliers to whiskers of 1.5 times interquartile range. 

 

 

It is evident in both Figures 7.4 and 7.5 that the redundant mapping provided a 

considerable reduction to the size of the function set used in the evolved solutions.  In 

both datasets, the highest outlier (most symbols of the function set) is still below the 

lowest number of function set symbols used in all other algorithms.  In some cases, in 

both classification problems the average over the 4 partitions was fewer than 3 operators 

used in a solution.  The redundant mapping is definitely improving classification 

performance (beyond any algorithm using Huffman encoding or Traditional GP) by 

trimming the function set.  Part of the contribution to the performance may also be rooted 

in appropriate function emphasis, to which we now turn. 

In terms of the functions chosen to remain in the function set, the results are 

shown in Figures 7.6 and 7.7 below for Heart and Breast data, respectively.  The 
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Standard Adpative Mapping DGP has been dropped from Figures 7.6 and 7.7 for clarity, 

since it also uses Huffman encoding just like one of the implementations of PAM DGP 

and was shown in Section 7.3 to produce poor classifiers compared to it competitors.)  

We can see in Figure 7.6 that for the Heart classification problem that the Redundant 

mappings produce a statistically significant difference in operators for solution 

composition at the 99% confidence interval for every operator when compared to 

Huffman.  Thus, the redundant mappings for the Heart problem not only tend to use less 

operators in a solution on average (Figure 7.4), but the operators it chooses for a solution 

are radically different than the Huffman encoding.  We can also see that the Redundant 

mapping makes operator set choices, to its advantage, that are significantly different than 

Traditional GP: Figure 7.6 indicates that the Huffman mapping simply produces a very 

even distribution of the available operators across all solutions, which is not, as we have 

seen in previous fitness analyses, particularly advantageous.  The Huffman mapping has 

an even more uniform distribution of function set members than the Traditional GP!  In 

contrast, the Redundant mapping favors a distinctive combination of operators, using 

MULTIPLY, BASE 10 LOG, and NATURAL LOG to create its superior classifier (all 

significant at the 0.99 confidence interval).   
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Figure 7.6. Mean operators as a proportion of total solutions over 50 trials for the 

Cleveland Heart Problem, population 50.  Error bars reflect two-tailed t-

distribution for the 0.95 confidence interval.  P-values corresponding to Huffman 

and Redundant mappings are displayed above each set of data points. 
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Figure 7.7. Mean operators as a percentage of total solutions over 50 trials for the 

Wisconsin Breast Problem, population 50.  Error bars reflect two-tailed t-

distribution for the 0.95 confidence interval.  P-values corresponding to Huffman 

and Redundant mappings are displayed above each set of data points. 

 

 

Figure 7.7 for the Breast classification data again shows a comparatively uniform 

utility of function set symbols when using a Huffman mapping, compared to Traditional 

GP or the Redundant mappings.  The classifier produced using the redundant mappings 

has again favored the function set members multiplication, base 10 log, and natural log 

(again, all at the 0.95 confidence interval).  We can see that for both classification 

problems, the adaptive redundant mapping has led to reduced function set size and 

greater emphasis of particular function set symbols to produce higher performance 

classifiers.  It is also interesting that across both of these classification problems that the 
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redundant mapping implementations have chosen to heavily emphasize the same subset 

of three particular symbols to generate higher fitness classifiers. 

 

7.5 Classification Problems Summary 

 

This chapter describes classification problem domains where the benefits of using 

the Adaptive redundant mapping encoding scheme in PAM DGP are quite definitive.  On 

the Heart benchmark medical classification problem, the redundant mapping was shown 

to produce definitively better classifiers than all other GP-based algorithms for the 

metrics of median, general spread of data, best result, and it was superior at the 0.95 

confidence interval.  On the Breast medical classification problem, the redundant 

mapping has the best median and general spread of data compared to all other algorithms.  

The Standard Adaptive Mapping, followed by Traditional GP, is the worst performer for 

both problems.  Thus, PAM DGP in general is found to be a valuable framework for 

improving on the performance of existing GP algorithms on Medical classification 

problems featuring comprehensive function sets.  Furthermore, given the use of PAM 

DGP, redundant mappings provide better classifiers using all (Heart) or a number 

(Breast) of metrics and in no case are outperformed by Huffman encoding.  Thus, 

Redundant PAM DGP is the obvious choice for the Medical classification domains 

presented here.   

This chapter also demonstrates that the redundant mapping is providing higher 

accuracy solutions by trimming the function set.  An examination of the particular 

operators chosen by the end solution of each algorithm also provided the interesting 

result that the redundant mapping chooses the same three functions to construct the 
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classifiers in both the Heart and Breast problem instances.  The next chapter will further 

explore the benefits of the Adaptive redundant mapping in PAM DGP over existing 

algorithms through its application to difficult sequence learning problems involving 

recursive solutions. 
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Chapter 8. Using PAM DGP to Evolve Recursive Functions 

using Machine Language Instructions 
 

 

 

8.1 Problem Definitions and Parameterization 

 

 The results in this chapter examine the abilities of different adaptive mappings 

and algorithms to effectively choose the appropriate members of a function set consisting 

of general (not implicitly recursive) instructions to efficiently discover solutions to 

recursive problems, i.e., instructions explicitly implementing loop or subroutine calls are 

not provided.  Huelsbergen has published several papers on evolving machine language 

solutions, using generic instructions so as to automatically produce iteration for 

applications including recursion, sorters, the parity problem, and most recently custom 

compilers [37-41].  The machine language-based function set for his work on recursion 

[40], which we adopt, has the property that it does not require domain-specific recursive 

operators to be introduced in order to create programs that generate a general recursive 

solution.   

 No approaches known to Huelsbergen (or this author) prior to the publication of 

[40] in 1997 (as stated in said work) were able to generate recursive solutions without 

introduction of operators to the function set in order to explicitly enable recursion.  

Works mentioned by Huelsbergen include early works of Koza [49, 51] and Handley 

[33], where both authors introduce specialized operators into their function sets and thus 

avoid the challenge of automatically synthesizing recursion.  Koza has recently continued 

to implement more specialized functions (automatically defined functions, or ADFs) to 

perform recursion in [50].  Other authors such as Brave [17] and Yu [100, 102] have 
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opted in the past to evolve recursive programs by including the name of the function in 

the function set.  Similarly, Wong and colleagues [98, 99] have implemented GP systems 

using logic grammars capable of recursion.  Whigham [92] has used directed mutation 

operators to evolve a recursive function, but operators are both problem specific and 

incorporate knowledge of the solution.  Yu has also presented an interesting technique 

that uses implicit recursion via higher order functions to achieve recursion without 

explicit recursive calls [101, 104].  In her solution, the code content of a recursive 

program is passed as an argument to the higher-order function that iteratively applies the 

code.  While avoiding explicit recursion calls, the recursive mechanism is built into the 

higher order function and is thus not automatically generated.  (The use of higher order 

functions does have the nice benefit that it implicitly provides a termination mechanism 

for recursion.)  It seems that, as of this writing, Huelsbergen has been the only researcher 

to attempt automatic generation of recursion using only a ‗low level‘ machine language-

based function set.  In contrast, the focus of other researchers has been the issue of 

measuring good ―semantics‖ in recursive solution program structures and handling non-

terminating recursive cases [101, 104].  His concern (and that of this chapter) is to 

actually discover recursive solutions using a function set that does not imply recursion in 

any way.  This chapter does address the issue of semantics through a simple metric 

(correct sequence output length prior to program termination) to indicate semantic 

goodness of solutions.  The termination issue of recursive solutions is handled in the 

usual way—by reaching a maximum number of program steps executed (this method is 

used in most of the literature on recursion, with the notable exception of [101, 104]). 
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 Huelsbergen‘s function set is generic such that it consists only of instructions for 

primitive register manipulation, conditional and unconditional branching, arithmetic 

operators, and generation of an output stream.  Each individual consists of a program 

with a number of external registers, and internal state trackers including a program 

counter (PC) and a flag (Flag).  Flag corresponds to the last execution of a special 

comparison instruction (Cmp(Rsource, Rdest)) that returns one of the values {greater, less, 

equal}; it serves as a basis on which to perform conditional branching.  The program 

counter is an integer that points to the instruction to be currently executed; branching 

(jump) instructions cause the PC to point to the target of the branch, while remaining 

instructions cause PC to point to the following instruction.   

 The function set is designed to correspond to a virtual register machine (VRM).  

The Output function places an integer from a register on the output stream Stdout; if no 

output is generated by an individual the Stdout stream contains no values (no output is 

produced by the program).  The function set uses the CMP function to compare registers 

to generate a value for the flag state, and MOV copies a value from a source register to a 

specified destination register.  J is an unconditional branch instruction, whereas JL, JG, 

and JE branch conditional on the value of Flag.  The offset of the jump operation is 

relative to the current location of the program counter, with a negative offset being a 

backward branch and a positive offset a forward branch.  The definition of the branching 

functions corrects a branch to a location PC < 0 to PC = 0, and a branch past the end of 

the program (PC > n-1 where n is the number of instructions in the program) to the index 

of the final instruction (PC = n-1, or termination).  SET and CLEAR instructions reset 

register values to 1 or 0, respectively, while INC and DEC increment and decrement, 
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respectively, the values in their register arguments.  The arithmetic operators ADD, SUB, 

MUL, and DIV perform their operation between a source and destination register with the 

result left in the destination register.  The arithmetic operators DIV and SUB are 

protected against divide-by-zero and underflow exceptions, respectively.  NEG negates 

the value in its specified register.  Huelsbergen adds a NOP function which performs no 

operation, which we opt to omit because it is not a useful function for a final solution and 

its omission provides an appropriate number of function set members (16) for the default 

encoding of the Traditional GP implementation.  The pseudocode for the function set is 

given in Figure 8.1 below. 
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Figure 8.1. Function set of 16 instructions for creation of generalized recursive 

solutions.  Sub and Div are protected against underflow and divide-by-zero 

exceptions. 
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 In [40], Huelsbergen investigates four integer sequence problems: a sequence of 

squared numbers, cubed numbers, and the factorial and Fibonacci sequences.  We focus 

on the more difficult and naturally recursive Factorial and Fibonacci sequences in this 

work, which are defined with the same initial values as Huelsbergen.  We then increase 

the difficulty of determining a program for the sequence by increasing the depth of the 

recursion to third order.  The functions that are thus chosen to produce sequences for this 

investigation are Factorial (fact), Fibonacci (fib), third order Fibonacci (fib3).  The 

function definitions, including base cases, are  

1 if x = 0
( )

( ) otherwise
fact x

x fact x


 


     (8.1) 

 

1 if x = 0 or x = 1
( )

( 2) ( 1) otherwise
fib x

fib x fib x


 

  
   (8.2) 

 

1 if x = 0, x = 1, or x = 2
3( )

3( 3) 3( 2) 3( 1) otherwise
fib x

fib x fib x fib x


 

    
 (8.3) 

 

The fitness evaluation scheme is reproduced from [40] as described by Huelsbergen.  The 

functions are used to generate the first ten values of each sequence (a ten value function 

prefix), which serves as the test case.  The Stdout stream generated by the OUT 

instruction is matched against the ten values of the test case using the following fitness 

function: 

1

0

( ) ( ) ( )
l

i

i

fitness p s f i scale i






      (8.4) 

where p is the program in the form a binary string, l is the maximum length of the 

recursive sequence  (10 in these experiments), f(i) is the value of the recursive function 

for integer i, and scale(i) is defined as    
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max

max

if ( ) 0
( )

/ ( ) otherwise

S f i
scale i

S f i


 


    (8.5) 

where Smax = max{f(0), …, f(l-1)} for the recursive sequence defined by f.  The sequence 

{s0, …, sl-1}  is the first l values of Stdout, if the output contains at least l values.  If it 

does not, the j < l values Stdout contains (that is, {sj, …, sl-1}) are given the value Smax.  

The fitness function effectively measures amplified raw error, so lower fitness is better.   

   The full summary of the GP parameters used in these experiments is given 

below in Table 8.1.  As usual, a population size of 50 (25 genotypes and 25 mappings) is 

used, with equal crossover and mutation rates (0.9 and 0.5, respectively) to allow high 

levels of exploration and a moderate introduction of new material to explore in both 

populations.  Learning rate was kept the same as other experiments (0.1), but the noise 

threshold was lowered to 0.8 from previous experiments to prevent trapping of 

algorithms in local optima.  Since Huelsbergen‘s results indicated that a larger number of 

tournament rounds would likely be necessary to generate recursive solutions compared to 

previous experiments, each trial was allowed to run for 500 000 rounds. 
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Table 8.1. Recursive Problems parameterization. 

 

 

  

 

 

 

 

 

 

 

 

 

Tournament Style Steady State, 4 individuals for each round 

Maximum Rounds 500 000 

Function Set OUT, SET, CLEAR, INC, DEC, NEG, MOV, 

ADD, SUB, MUL, DIV, CMP, J, JL, JG, JE 

Genotype structure Instruction sequence with 4 registers; 320 bits;  

PC and Flag for internal program state 

Mapping structure 160 bits (10 bits per function set member) 

Genotype mutation XOR mutation, threshold = 0.5 

Mapping mutation Point mutation, threshold = 0.5 

Genotype crossover Equal-sized blocks, threshold = 0.9 

Mapping crossover Equal-sized blocks, threshold = 0.9 

Population size 25 genotypes, 25 mappings (50 for traditional) 

Test Case First 10 values of function sequence 

Fitness Scaled raw error between Stdout and test case 

Objective Stdout produces the first ten natural numbers 

specifed in the test case (fitness/error of 0). 

Learning rate 0.1 

Noise threshold 0.8 
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8.2 Interpretation of Instructions 

 

 

 Genotype individuals take the form of virtual register machines (VRMs) including 

a set of instructions (program), four external registers, the program counter (PC), and flag 

variable to track internal state as outlined above.  Each genotype individual consisted of 

320 bits for the genotypes.  Since there were 16 members of the function set, the mapping 

individuals consisted of 160 bits to provide ten bits per function.  As was the case in 

Huelsbergen‘s experiments in [40], the program in each genotype individual terminates 

after running all instructions (PC = n-1 for n instructions with indices 0 to n-1) or after 

the execution of 100 steps. 

 The interpretation of each instruction begins with parsing the starting bits to 

identify a member of the function set.  As usual, the number of bits required for this step 

is variable for all implementations using the Huffman encoding (Standard Adaptive 

Mapping GP and Huffman mapping PAM DGP) and is fixed for those implementations 

not using Huffman (Traditional GP and adaptive redundant mapping PAM DGP).  There 

are three types of functions in the set with respect to number and type of arguments, each 

requiring a separate interpretation scheme following the initial identification of the 

function.  The first type of function takes two arguments, specifying a destination and 

source register.  The functions included in this group are {MOV, ADD, SUB, MUL, 

DIV, and CMP}.  In this case, the two bits following the function bits are the binary 

representation of the integer specifying one of four registers as the source, with the 

following two bits specifying the destination register.  The second type of function takes 

a single argument determining value of the register to which the action specified by the 
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function is applied.  Functions using this format include {OUT, SET, CLEAR, INC, 

DEC, and NEG}.  The last type of function accepts a single argument as well, but it is an 

offset indicating the location to which the program counter (PC) should currently point.  

Only the branching instructions {J, JL, JG, and JE} follow this format.  In this case, the 

five bits following the function specifier are interpreted as an integer, and that is taken as 

the offset.  The first of those five bits is a sign indicator:  If it is set to 0, the offset is 

negative; if it is set to 1, the offset is positive.  The remaining four bits constitute the 

absolute binary representation of the offset, so the offset can take one of sixteen integer 

values in the interval [0, 15].  The interpretation of the instructions is depicted below in 

Figure 8.2. 

 

Figure 8.2. Parsing of instructions for the recursive problems. 



 

 

175 

8.3 Recursion Performance Results 

8.3.1 Terminology and Classification of Solutions 

 In [40], Huelsbergen compares the abilities of random search (Random), 

traditional genetic programming using solely the crossover operator (XO), exhaustive 

iterative hill climbing (EIHC), and a hybrid system of his own design that uses both 

techniques (XO-EIHC).  He found that the simple genetic search (XO) performed the best 

out of all algorithms for the factorial function, but the more sophisticated EIHC and XO-

EIHC algorithms outperformed the other algorithms definitively for the Fibonacci series: 

10 solutions were found given the first of either 10 solutions or 5 x 10
7
 evaluations for 

each of EIHC and XO-EIHC, and no solutions were found for Random and XO.  Sample 

solutions from the XO-EIHC algorithm were then shown to produce general solutions to 

the recursive problems through use of an infinite loop constructed from the branching 

functions.  Our analysis of the recursive functions will examine the number of solutions 

generated by each algorithm, as well as an in depth analysis (and associated definitions) 

of solution generality and quality. 

 In this section we compare the efficiency, solution content, and solution quality of 

Traditional GP (Traditional), the Standard Adaptive Mapping DGP of Margetts and 

Jones (Standard), PAM DGP with Huffman encodings (Huffman), and PAM DGP with 

Adaptive Redundant encodings (Redundant).  Some discussion of the recursive solutions 

produced by the algorithms covered in this work is in order before proceeding with the 

analysis of the results.   

 Following Huelsbergen [40], a solution is said to have been located when the 

output stream of an individual‘s program produces the first ten digits of the required 
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sequence (which is the test case).
6
  Given this definition of solution, if the program 

produces incorrect digits or no digits after getting the initial ten digits correct, it is still 

technically a solution.  In this work, a program is considered a general solution if and 

only if both all the members of the sequence of length l ≥ 10 generated by the output are 

correct and if the program were permitted to run beyond the maximum number of steps 

(100 in [40] and these experiments), then the program would continue to correctly 

generate the correct members of the sequence.  All solutions (programs that generated the 

first ten members of the recursive sequence correctly) in these experiments were 

inspected by hand for generality.  In practice, given the function set for these problems, a 

solution could only be general if it included an appropriate instruction sequence using a 

reverse branch (jump instruction with negative offset) at the end of the sequence.  

Furthermore, the repeated sequence would have to include appropriate manipulation of 

register contents and an output to the Stdout stream in its body such that the correct 

outputs were produced.  The results focus on the ability of the algorithms to produce not 

just solutions, but general solutions.  

  

8.3.2 The Factorial Function 

The first recursive function we examined was the factorial sequence (Equation 

8.1), which is a first order recursive function.  That is, each iteration of the recursive 

function only references the value produced by the previous recursive step.  In this 

                                                 
6
 To be precise, a small number of the subset of solutions that produced ten correct members of the 

sequence actually actively generated only nine correct sequence members.  This was accomplished by 

taking advantage of a loophole in Huelsbergen‘s scaling aspect of the fitness function (Eq. 8.5).  If the 

output does not contain at least l=10 values, the j < l values Stdout contains (that is, {sj, …, sl-1}) are given 

the value Smax.  Smax for the functions investigated is the largest—and last—number in each sequence, 

automatically setting Stdout‘s last member to the correct value.  
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respect, the Factorial problem is the simplest of the recursive functions considered.  As 

mentioned earlier, Huelsbergen found that it was most efficiently solved by simple 

genetic search using only two-point crossover rather than his more sophisticated search 

techniques [40].  We similarly found that the less complex algorithms generated more 

solutions: given 50 independent trials, all trials for Traditional, Standard, and Huffman 

PAM DGP solve the factorial problem, as does 33 trials of Redundant PAM DGP.  The 

number of solutions found by each algorithm are shown in Figure 8.3 immediately below.  

In the case of the factorial problem, every solution for all algorithms was general.   
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Figure 8.3. Number of solutions produced by each algorithm over 50 independent 

trials for the factorial function. 

 

The tournament round when the solution was located for each solution in 50 

independent trials is given in Figure 8.4 for the factorial problem.  Each box indicates the 

lower quartile, median, and upper quartile values.  Central notches indicate the 0.95 

confidence interval, with points representing outliers to whiskers of 1.5 times the 
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interquartile range.  Given the overlap of the notches for the boxplots, there is actually no 

statistical difference at the 0.95 confidence interval in the median round at which a 

solution is found for any of the four algorithms.  Huelsbergen‘s hybrid algorithm had a 

mean of 5.55 x 10
6 

evaluations required per solution (over 9 solutions) for the factorial 

function, while Redundant PAM DGP had a mean of only 6.81 x 10
4
 evaluations (4 

evalutions per round) required per solution (over 33 solutions). 

 

 

Figure 8.4. Tournament round at which a solution to the factorial problem was 

located for all solutions found over 50 independent trials for all algorithms. 

 

While Redundant PAM DGP did not produce as many solutions as the other GP 

algorithms for this simple recursive function, it outperforms the other algorithms on 

solution quality.  The programs that are of interest are those that have truly discovered 

recursive solutions, and are thus general.  One way to measure the quality of these 

general solutions is to examine how many members of the function‘s sequence the 

solution can produce before it reaches the program step limit.  That is, efficiency of the 
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program at generating the sequence is measured.  The efficiency of sequence generation 

is an important measure:  If the body of the loop(s) that produce the sequence contain 

junk code (introns), program steps will be (at best) wasted if the junk code is innocuous 

in so far as it does not disrupt the production of the sequence.  A loop with innocuous 

junk code will produce a less lengthy sequence.  In fact, introns must be innocuous in 

general solutions or the solutions would not be able to generate the repeated sequence 

indefinitely.  Efficiency also reflects that the algorithm may be generating multiple 

outputs per iteration to avoid wasting steps on the jump instructions.  Thus, the higher the 

value of the correct number of sequence members generated, the lower the content of 

junk code within the program loop(s) and/or the more efficient the loop(s) contents.  The 

number of sequence members produced is thus a simple and informative measure of the 

quality of general recursive solutions.  The number of sequence members produced by 

the general solutions to the factorial problem of each algorithm is shown in Figure 8.5. 

 

Figure 8.5. Number of sequence members output by the general solutions to the 

factorial problem produced over 50 independent trials by all algorithms.  
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 It is evident that the Redundant PAM DGP algorithm produces the longest 

sequences among its general solutions at the 0.95 confidence interval compared to all 

other algorithms.  Given the aim of discovering a program to produce quality general 

recursive solutions, rather than sheer quantity of solutions regardless of quality or even 

generality, Redundant PAM DGP clearly provides the best results on the factorial 

problem.  The best general solution produced the first 32 members of the factorial 

sequence, and can be seen as the upper outlier for Redundant PAM DGP in Figure 8.5.  

The program code for the individual is given in Figure 8.6.  This solution contained no 

introns.  The loop responsible for the indefinite repeated production of the series is 

italicized.  Any instructions that are not reached by the program counter (instructions that 

are never read by the hypothetical interpreter) are not displayed.  Instruction addresses 

are enumerated on the left of each instruction to help the reader better interpret branching 

commands.   
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 0 INC Reg 2  

 1 OUT Reg 0  

 2 OUT Reg 1  

 3 OUT Reg 2  

 4 INC Reg 1  

 5 INC Reg 2  

 6 MUL Reg 1 * Reg 2  

 7 OUT Reg 1  

 8 INC Reg 2  

 9 MUL Reg 1 * Reg 2  

 10 OUT Reg 1  

 11 INC Reg 2  

 12 MUL Reg 1 * Reg 2  

 13 OUT Reg 1  

 14 INC Reg 2  

 15 MUL Reg 1 * Reg 2  

 16 OUT Reg 1  

 17 J(to 8) using offset -9 

 

Figure 8.6. Program code for the individual that produced the longest factorial 

sequence.  Instructions that constitute the loop are italicized.  

 

In the solution above, instructions 1 to 7 generate, via sequential non-looping 

instructions, the first four values of the factorial series (1, 1, 2, 6) and thus set up the base 

case (first value) prior to entering the loop.  Instruction 8 begins the loop body that 

contains three consecutive INC, MUL, OUT sequences that maintain the function‘s x and 

x-1 values in registers 2 and 1, respectively.  The loop efficiently uses all instructions in 

its body to output three members of the factorial solution with each iteration.  This 

solution demonstrates the nature of the efficiency and generality of the solutions 

produced by Redundant PAM DGP, as quantified in Figure 8.5. 

 

 

8.3.3 The Fibonacci Series 

We now move to measuring the capability of the algorithms on a more 

challenging recursive problem: the Fibonacci series.  The Fibonacci series uses, by 

definition, second order recursion.  In other words, the current value of the function (with 
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the exception of the base cases, of course) depends on the values of the two previous 

recursive steps.  Huelsbergen found that only his more sophisticated algorithms (EIHC 

and XO-EIHC) were able to produce solutions to the Fibonacci series; the other 

algorithms (XO and Random) produced no solutions given a limit of 5 x 10
7
 evaluations.  

The number of solutions found by each algorithm we have been considering is provided 

below in Figure 8.7. 
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Figure 8.7. Number of solutions produced by each algorithm over 50 independent 

trials for the Fibonacci function. 

 

 Redundant PAM DGP produces the largest number of solutions (46), with 

Standard and Huffman PAM DGP producing comparable numbers of solutions (45 and 

44, respectively).  Traditional GP produced the least number of solutions (42).  The 

boxplot for the tournament rounds at which a solution was located over 50 independent 

trials is below in Figure 8.8. 
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Figure 8.8. Tournament round at which a solution to the Fibonacci problem was 

located for all solutions found over 50 independent trials for all algorithms. 

 

Redundant PAM DGP finds the Fibonacci series within fewer rounds than the 

Standard Adaptive Mapping and Huffman PAM DGP at the 0.95 confidence interval.  

Redundant PAM DGP also has a lower median than Traditional GP, but due to the large 

error level in the Traditional GP boxplot, the difference is not statistically significant.  

The spread of the Redundant PAM DGP boxplot also indicates that it solves the problem 

more consistently than any other algorithm.  Huelsbergen‘s hybrid algorithm in [40] had 

a mean of 1.02 x 10
6 

evaluations required per solution (over 10 solutions), while 

Redundant PAM DGP had a mean of only 2.12 x 10
5
 evaluations required per solution 

(over 46 solutions) . 

Considering the raw number of general solutions found, all algorithms actually 

generated comparable results.  Redundant PAM DGP had 38 general solutions, Huffman 

PAM DGP had 42, Standard Adaptive Mapping found 43, and Traditional GP located 41.  

Despite having the lowest (but competitive) raw number of general solutions, Redundant 



 

 

184 

PAM DGP definitively generated the highest quality (most general) solutions.  The 

sequence length of the solutions generated by each algorithm over 50 independent trials 

is shown in Figure 8.9.  

 

Figure 8.9. Number of sequence members output by the general solutions to the 

Fibonacci sequence over 50 independent trials by all algorithms.  

 

 Redundant PAM DGP, as was the case for the factorial problem, outperforms all 

other algorithms in terms of efficiency of solutions in generating the series.  For the 

Fibonacci series, however, the degree to which Redundant PAM DGP outperforms the 

other algorithms is more considerable:  The lower end of the interquartile range for 

Redundant PAM DGP‘s output length is above the top of the interquartile range for all 

other algorithms.  It was noted that almost all of the solutions found by Traditional GP 

were general solutions (41 of 42 solutions); however, we can see in Figure 8.9 that 

Traditional GP achieved a median of only 11 sequence members.  This means that 

Traditional GP was typically barely able to generate its minimum output length within its 
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solutions—its solutions are thus not efficient despite their generality.  The median 

performance of the Standard Adaptive Mapping and Huffman PAM DGP were also 

significantly lower than Redundant PAM DGP, indicating that despite generating more 

general solutions, their solutions were also not as efficient.  The longest solution 

Redundant PAM DGP generated was 42 members of the Fibonacci series, of which there 

were two distinct instances.  The programs that produced these solutions are given in 

Figure 8.10.  As before, any instructions of the individual‘s program that were never 

reached by the program counter (never interpreted or executed) are not displayed. 

 

SOLUTION 1 

 

 0 OUT Reg 3  

 1 ADD Reg 0 + Reg 3  

 2 OUT Reg 2  

 3 ADD Reg 2 + Reg 0  

 4 OUT Reg 0  

 5 OUT Reg 2  

 6 ADD Reg 0 + Reg 2  

 7 J(to 3) using offset -4 

  

SOLUTION 2 

 

 0 ADD Reg 2 + Reg 1  

 1 OUT Reg 3  

 2 OUT Reg 0  

 3 ADD Reg 1 + Reg 2  

 4 OUT Reg 2  

 5 OUT Reg 1  

 6 ADD Reg 2 + Reg 1  

 7 J(to 3) using offset -4 

 

 

Figure 8.10. Program code for the individuals that produced the longest Fibonacci 

sequence.  Instructions that constitute the loop are italicized. 
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 In both of these solutions, there is a similar structure and neither solution includes 

any intron code in the body of the loop or otherwise.  PAM DGP thus produces intron-

free solutions to factorial and Fibonacci, whereas Huelsbergen‘s featured solutions for 

both functions in [40] contained introns.  Both cases represent succinct, general recursive 

programs for generation of the Fibonacci series.  Two of the first three instructions in 

each of the solutions establish the two required base case values, and the third performs a 

constructive addition instruction.  Instructions 3 to 7 in both solutions comprise the loop 

that would indefinitely generate the Fibonacci series (in the absence of an upper limit of 

execution steps).  Both loops generate two consecutive members of the series per 

iteration through a pair of addition and output instructions.  Both of these solutions 

represent very efficient use of the available execution steps. 

 

8.3.4 The 3
rd

 Order Fibonacci Series 

 The final function we consider is the third order Fibonacci series as defined in 

Equation 8.3.  The equation simply involves summing the results of the past three values 

in the series as opposed to the classic, second order, Fibonacci series where the previous 

two values in the series are summed to determine the current value.  The number of 

solutions generated by each algorithm is shown below (Figure 8.11). 
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Figure 8.11. Number of solutions produced by each algorithm over 50 independent 

trials for the third order Fibonacci function. 

 

  

Over 50 trials, neither Standard Adaptive Mapping nor Huffman-encoded PAM 

DGP produced any solutions.  Traditional GP produced only one solution, and Redundant 

PAM DGP produced 14 solutions.  Redundant PAM DGP is clearly better able to 

generate solutions to a recursive problem of this depth with a significantly higher degree 

of reliability than any other algorithm.  The tournament round when the solutions were 

located is shown below in Figure 8.12; only algorithms that produced a solution are 

presented. 
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Figure 8.12. Tournament round at which a solution to the third order Fibonacci 

problem was located for all solutions found over 50 independent trials for 

Traditional GP and Redundant PAM DGP algorithms. 

 

The single solution that was located by Traditional GP was found close to the 

maximum number of allowable tournament rounds.  In comparison, Redundant PAM 

DGP located its solution much more efficiently across all of its 14 solutions.  Only one 

general solution was found among all converging trials for both Traditional GP and 

Redundant PAM DGP, and it was one of the 14 solutions of Redundant PAM DGP and 

generated 25 members of the third order Fibonacci series.  The program expressing that 

general solution is given below in Figure 8.13, with the associated values for the first 

iteration beside each instruction to aide the reader in comprehension of the solution.  

Only the instructions that were executed are displayed, and the solution contained no 

introns. 
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 0 OUT Reg 0 value = 1.0 

 1 OUT Reg 2 value= 1.0 

 2 OUT Reg 0 value= 1.0 

 3 ADD Reg 3 + Reg 2 now= 2.0 

 4 ADD Reg 2 + Reg 0 now= 2.0 

 5 ADD Reg 0 + Reg 3 now= 3.0 

 6 ADD Reg 0 + Reg 3 now= 5.0 

 7 INC Reg 2 now= 3.0 

 8 OUT Reg 2 value= 3.0 

 9 ADD Reg 3 + Reg 2 now= 5.0 

 10 OUT Reg 3 value= 5.0 

 11 ADD Reg 3 + Reg 2 now= 8.0 

 12 J(to 4) using offset -8 

 

Figure 8.13. Program code for the individual that produced the longest third order 

Fibonacci sequence in a general solution.  Instructions that constitute the loop are 

italicized. 

 

 The methodology used by this solution is actually an interesting, less direct 

approach than simply adding the previous three values to generate the value for the 

current time step.  The first four instructions generate the three required base cases by 

placing three 1.0s in the sequence and placing an initial value in Register 3.  The loop 

actually causes repeated pairwise output of the values in Register 2 and 3 to produce all 

values following the base cases.  Register 2, in addition to holding values to be output, 

helps Register 3 to generate its next sequence member two values in advance.  That is, if 

Register 3 has output sequence member nt (instruction 10), Register 2 adds the last 

member it output (nt-1) to Register 3 in instruction 11, and then Register 2 adds the 

necessary difference to generate nt+2 (instruction 9) in the following iteration of the loop 

just prior to Register 3‘s output.  Register 2 generates its next value following output in 

instruction 8 by having the correct difference to its next value added to it (instruction 4) 

from a subresult in Register 0 from a previous iteration of the loop (instructions 5 and 6), 
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along with an increment in the current iteration (instruction 7).  Because Register 3 relies 

on Register 2, sequence members generated by Register 3 indirectly rely on all the 

instructions that contribute to Register 2.  There is an indirect interwoven relationship 

among the instructions to create an innovative solution to the harder recursive problem. 

 

8.4 Function Set Analysis 

 

 It has been demonstrated empirically in Section 8.3 that Redundant PAM DGP 

produces the most efficient general solutions over the factorial, Fibonacci, and third order 

Fibonacci recursive functions.  This section investigates whether there was an underlying 

trimming of the function set to contribute to these quality solutions.  Figure 8.14 shows 

the mean distribution of operators within factorial function solutions for Traditional GP 

and the two mapping types in PAM DGP.  (Standard is dropped for clarity since it also 

uses Huffman encoding, like Huffman-based PAM DGP, for function emphasis.) 
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Figure 8.14. Mean operators as a proportion of total solutions for the factorial 

sequence when the success criterion is met or after 500 000 rounds over 50 trials.  

Error bars reflect two-tailed t-distribution for the 0.95 confidence interval.  P-values 

corresponding to Huffman and Redundant mappings are displayed above each set 

of data points. 

 

It is statistically significant at the 0.95 confidence interval that Redundant PAM 

DGP avoids move, set, subtract, and divide to a greater degree than all the other 

algorithms.  All of those operators could be disruptive to the production of the factorial 

series which requires repeated multiplication and addition.  Also significant at the 0.95 

confidence interval is Redundant PAM DGP‘s emphasis on addition, and the top five 

operators given the most emphasis by Redundant PAM DGP are potentially useful in 

generating the factorial sequence (multiplication, addition, increment, jump, and output).  
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The number of operators used by each algorithm over 50 trials is given below (Figure 

8.15). 

 

Figure 8.15. Boxplot indicating the number of operators constituting each solution 

for the factorial function when the success criterion is met or after 500 000 rounds 

over 50 trials.  Each box indicates the lower quartile, median, and upper quartile 

values.  If the notches of two boxes do not overlap, the medians of the two groups 

differ at the 0.95 confidence interval.  Points represent outliers to whiskers of 1.5 

times interquartile range. 

 

 Redundant PAM DGP uses a significantly lower number of operators per solution 

(leftmost boxplot), obviously statistically significant at the 0.95 confidence interval.  The 

lowest number of operators used by Redundant PAM DGP was two (bottom outlier), 

producing a non-general (in particular, non-branching) attempt at a solution using 

repeated output and addition.  Overall, Figures 8.14 and 8.15 indicate that Redundant 

PAM DGP generated its efficient general solutions through a reduction in function set 

size and appropriate emphasis of function set members. 
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The Fibonacci series represented a more difficult (second order) recursive 

function, and required only three operators in its natural recursive form (Equation 8.2): 

addition, output, and a jump operator.  The Fibonacci series solutions‘ allocation of 

operators over 50 independent trials is shown below in Figure 8.16.  Redundant PAM 

DGP placed a much higher level of emphasis on addition, output, and increment than the 

other algorithms (all very useful instructions for generating the Fibonacci series, and 

significant at the 0.95 confidence interval).  The fourth most emphasized operator was the 

unconditional jump (with other jump variants close behind), allowing Redundant PAM 

DGP‘s top four operator choices to include the three required functions for the natural 

recursive solution of the Fibonacci series.  The other algorithms failed to create the 

degree of preferential function emphasis exhibited by Redundant PAM DGP.   
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Figure 8.16. Mean operators as a proportion of total solutions for the Fibonacci 

series when the success criterion is met or after 500 000 rounds over 50 trials.  Error 

bars reflect two-tailed t-distribution for the 0.95 confidence interval.  P-values 

corresponding to Huffman and Redundant mappings are displayed above each set 

of data points. 

 

 

The spread of data corresponding to raw number of operators used in each 

solution is given below in Figure 8.17.  Redundant PAM DGP clearly finds solutions 

using a significantly more succinct function subset, with Traditional GP (fixed mapping) 

attempting to create solutions using a large number of the available functions.  Redundant 

PAM DGP‘s ability to produce the largest number of solutions and the most efficient 

general solutions to the Fibonacci series (discussed in Section 8.3.3), indicates that it is 

creating better solutions through use of a smaller subset of the available functions than 

the other algorithms (Figure 8.17) and/or emphasis on appropriate operators in those sets 

(Figure 8.16). 
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Figure 8.17. Boxplot indicating the number of operators constituting each solution 

for the Fibonacci series when the success criterion is met or after 500 000 rounds 

over 50 trials.  Each box indicates the lower quartile, median, and upper quartile 

values.  If the notches of two boxes do not overlap, the medians of the two groups 

differ at the 0.95 confidence interval.  Points represent outliers to whiskers of 1.5 

times interquartile range. 

 

 

The third order Fibonacci series represents the highest order of recursion 

investigated in this work.  As was the case for the regular (second order) Fibonacci series, 

the operators used in the natural recursive solution are a jump, addition, and output.  The 

allocation of operators over 50 independent trials for the third order Fibonacci series is 

shown below in Figure 8.18. 
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Figure 8.18. Mean operators as a proportion of total solutions for the third order 

Fibonacci series when the success criterion is met or after 500 000 rounds over 50 

trials.  Error bars reflect two-tailed t-distribution for the 0.95 confidence interval.  

P-values corresponding to Huffman and Redundant mappings are displayed above 

each set of data points. 

 

Figure 8.18 clearly shows that Redundant PAM DGP correctly emphasizes the 

addition and output operators in its solutions to a much greater degree than Traditional 

GP and Huffman PAM DGP (significant at the 0.99 confidence interval).  It also has a 

healthy emphasis of the unconditional jump function (as well as emphasizing increment, 

which can also be useful in solution construction and was actually incorporated in 

Redundant PAM DGP‘s general solution in Section 8.3.4).  Traditional GP and Huffman 

PAM DGP have a comparatively even distribution of functions across their solutions.  

The raw number of unique function types used in solutions for every algorithm is given 

below in Figure 8.19. 
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Figure 8.19. Boxplot indicating the number of operators constituting each solution 

for the third order Fibonacci series when the success criterion is met or after 500 

000 rounds over 50 trials.  Each box indicates the lower quartile, median, and upper 

quartile values.  If the notches of two boxes do not overlap, the medians of the two 

groups differ at the 0.95 confidence interval.  Points represent outliers to whiskers 

of 1.5 times the interquartile range. 

 

Redundant PAM DGP once again clearly produces the most parsimonious 

solutions, using the fewest function types per solution.  For this problem, where 

Redundant PAM DGP produced considerably more solutions than the other algorithms as 

shown in Section 8.3.4, the beneficial effect of the reduced function set size and 

appropriate function emphasis is the most salient. 
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8.5 Recursion Problems Summary 

 

In this chapter, the abilities of Traditional GP, Standard Adaptive Mapping DGP, 

Huffman PAM DGP, and Redundant PAM DGP algorithms to automatically discover 

recursive solutions to progressively more difficult (higher order) recursive functions were 

investigated.  Furthermore, these solutions were composed of a set of functions that did 

not include implicitly recursive operators defined a priori; thus the algorithms 

automatically learned to perform recursion.  The factorial function was found to be easily 

solved by Traditional GP, Standard Adaptive Mapping, and Huffman PAM DGP; 

Redundant PAM DGP produced less overall solutions.  All solutions for the factorial 

series were general, but Redundant PAM DGP was found to produce better quality (more 

efficient) general solutions capable of generating more of the factorial sequence within 

the maximum number of execution steps.   

Redundant PAM DGP produced more solutions for the Fibonacci series, which is 

by definition second order recursive.  Furthermore, it located those solutions in less 

tournament rounds than the other algorithms and produced more efficient general 

solutions capable of generating longer Fibonacci sequences within program termination 

constraints.  Redundant encoding in PAM DGP was needed to solve the third order 

Fibonacci series problem with even partial repeatability: it found 14 solutions, while the 

only other algorithm to locate a (non-general) solution was Traditional GP.  Redundant 

PAM DGP also found its solutions sooner than Traditional GP and created a novel 

mechanism for generating its sequence.  The program content of the highest quality 

(capable of producing the longest sequence) solutions were examined for each function, 
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and the solutions produced by Redundant PAM DGP were entirely intron free.  This 

indicates very efficient use of the function set to produce the best general solutions. 

The number of unique functions used and the proportion of each solution 

allocated to each function were also examined.  In each problem, Redundant PAM DGP 

was found to place more appropriate emphasis on relevant functions than Traditional GP 

or Huffman PAM DGP.  For all problems Redundant PAM DGP also included less 

function types in its solutions.  The collective analysis contained in this chapter 

demonstrated the ability of Redundant PAM DGP to automatically generate high quality 

recursive solutions, and indicated that these benefits were due to both trimming of the 

available function set and/or appropriate emphasis of the best available operators in the 

function set. 
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Chapter 9. Conclusion 

 

 
9.1 Discussion: Parameterization and Limits of PAM DGP 

 

The parameterization of PAM DGP typically changed between problems in this 

thesis, so some guidance and considerations for parameter selection in PAM DGP are in 

order as a basic guide to future application of the algorithm to new problems.  The first 

problem investigated was the fairly trivial Maximum Output problem as posed by 

Margetts and Jones and used to introduce their Standard Adaptive Mapping algorithm 

[58].  From that analysis, the most obvious consideration is the size of the population 

used to solve a problem.  PAM DGP used a population of 8 (4 mapping and 4 genotypes, 

the minimum required to conduct the steady state tournament of size 4) to solve the 

Maximum Output problem, with increased population size being detrimental to the 

solving of such a simple problem.  On the other hand, for the harder Two Boxes 

regression problem, a population of 50 individuals (25 mappings and 25 genotypes) was 

required to produce a solution given the tournament round limits.  There is a trade-off 

between population size in PAM DGP and the size of the probability table used for 

genotype-mapping combinations in the tournament, where a population of size P yields a 

grid of size (P/2)
2
.  In other words, there is a consideration required regarding the amount 

of initial genotype material so that there is a sufficient amount on which to perform 

search for harder problems, but not too much so that simpler problems are given an 

unreasonably large search space.  The reasonable search space of 50 (25 genotypes, 25 

mappings) was also found to perform well for medical classification benchmarks and 
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learning of first through third order recursive sequences.  If the user is faced with an 

unknown problem, it is unknown whether the search space will be difficult or hard to 

traverse, and the user does not wish to experiment with preliminary runs, a 

recommendation would be to use a larger search space:  if the problem requires the larger 

amount of initial genotype material to explore, it will be present; if the problem is more 

trivial, it may not be solved as quickly, but it will likely be solved. 

Genotype and mapping mutation and crossover rates and types are a design 

decision that warrants some discussion as well, as PAM DGP is a flexible algorithm that 

allows different mutation and crossover rates, and even types, for either genotype or 

mapping.  In the MAX problem, a fairly straightforward approach was taken to 

benchmark against Margetts and Jones, namely, equivalent mutation and crossover rate 

were used for both mappings and genotypes.  In particular, point mutation was used at a 

rate of 0.1 and crossover of equal-sized segments was performed at a rate of 0.9.  Point 

mutation in the mapping population for the countingOnes function (Equation 3.1) 

allowed smaller changes in frequency nicely by changing individual bits as opposed to 

applying an XOR mask to an entire frequency segment.  The high rate of crossover in the 

mapping population allowed expedient exploration of the existing search space.  This 

somewhat naïve parameterization worked well enough for the trivial MAX regression 

domain.   

The genetic operator parameterizations were then changed from the MAX 

problem to better suit the considerably harder Hénon mapping and Two Boxes regression 

problems, with the salient differences being a separation of genotype/mapping crossover 

rates and mutation type and rates between the two populations.  Increased mutation and 
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crossover rates (0.5 and 0.9, respectively) were used in the genotypes to allow 

exploration against the backdrop of more persistent (due to lower genetic operator rates) 

mappings.  Crossover type was the same for both populations, but mutation type differed 

between genotype and mapping individuals: Point mutation was still used in the 

mappings to ensure a number of frequencies per function set member were incrementally 

explored for both Huffman and Redundant (rather than the radical change afforded by an 

XOR mask); whereas an instruction-level XOR mask mutation operator (the instruction 

chosen with uniform probability) was used for the genotype mutation operator to enhance 

the exploration of the genotype against the more persistent mapping contexts.  Identical 

rates and types, with the same rationale, were used for genotypes and mappings in the 

medical classification benchmarks.   

Learning recursive functions, however, involved raising the mutation and 

crossover rates from 0.1 each to 0.5 and 0.9, respectively, for the mapping population.  In 

this case the more stable context in the mapping population against which the genotypes 

could evolve was traded for greater exploration of mapping alternatives.  As 

demonstrated in Chapter 8, this was rewarded with tuned function sets that reflected the 

function set members required for the natural recursive functions for the sequences 

provided.  In the harder regression and medical classification problems, however, higher 

rates such as these were found to provide too unstable a mapping environment for 

effective genotype search in preliminary experiments.  If it is suspected that a problem 

requires, or the user simply desires, a function set that will be highly tuned and/or 

reduced in size, higher genetic operator rates would be appropriate for the mapping 



 

 

203 

population.  This is another element of the flexibility and power of the PAM DGP 

algorithm, but it does mean another design choice for the user. 

PAM DGP also introduces two parameterizations that are unique to this 

algorithm‘s probability table and thus affect selection and search: learning rate () and 

noise ().  To review, the learning rate dictates how much emphasis is placed on current 

fitness values as opposed to previous search, and noise is introduced to the probability 

table columns representing genotype-associations if the noise threshold is exceeded by 

any row (mapping) of the column in order to prevent premature convergence.  The 

learning rate was set at a conservative rate of 0.1 for all algorithms, where higher rates 

could disrupt effective search using the table.  The noise threshold was set at 0.95 for all 

problems except for learning or recursive sequences, where it was set at 0.8.  Generally, 

lower settings for the noise threshold would result in a more stochastic search (i.e., 

exploration), but this is to be balanced against concerns about wasting search time around 

local optima.  A lower noise threshold more readily allowed avoidance of local optima at 

the risk of not exploring space around those optima, which proved more effective in 

preliminary trials of the recursion problem and thus resulted in the choice of lowering the 

rate a small degree.  The parameters of PAM DGP, it should be noted, are fairly robust 

and not sensitive to small changes.  That is, users need not be concerned that small 

changes (at the second decimal place, for instance) in the parameters will perturb the 

quality of solutions greatly, and users can expect gradual fitness change with incremental 

parameter changes. 

Aside from design choices involving specific parameterizations of PAM DGP, the 

algorithm does have its limitations—after all, no single algorithm is best for all problems 
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according to the No Free Lunch theorem.  As mentioned earlier, there is additional 

overhead associated with developmental systems that evolve mappings because these 

systems must discover both the appropriate genotype solution and the best mapping for a 

function set to match, whereas traditional GP need only focus on locating the appropriate 

genotype.  It is thus more difficult problems, often complex function sets or those 

involving potentially extraneous symbols, which are best suited to evolved mapping 

algorithms.  For such problems, PAM DGP is able to outperform Traditional GP by 

discovering relevant subsets of symbols and concentrating on forming solutions using 

appropriate emphasis of symbols and selection of the relevant subset of the function set, 

decreasing the size of the DGP‘s search space.  Regression problems, where a number of 

alternative combinations of choices from the function set can provide sufficient 

approximations to the fitness cases, may not be most efficiently handled using PAM 

DGP.  However, this is simply due to increased overhead of mapping selection.  PAM 

DGP thus may take more time to find the solution than, say, Traditional GP, but the 

function set will be appropriately large (or small).  The flipside of this point is that the 

ability of PAM DGP, especially using the adaptive redundant mapping, to tailor the 

function set (and thus the search space) to a problem will allow it to more quickly solve 

difficult and more complex problems than traditional alternatives and leave the task of 

determining an appropriate function set to the algorithm rather than assuming that all 

members of a function set are equally relevant in a problem space which is not fully 

understood.  We have shown that the adaptive redundant mapping in PAM DGP is a far 

more effective mapping choice than Huffman-encoded mapping for trimming, and 

emphasizing appropriate members of, function sets in such interesting problem domains. 



 

 

205 

Aside from choosing when to favor PAM DGP and developmental systems over 

Traditional GP approaches, there is also the consideration of when to use PAM DGP over 

other machine learning (ML) techniques in general.  All ML approaches can be seen to 

address three basic design principles: cost function (goals/objectives), representation, and 

credit assignment policy for search.  Design decisions based on these issues determine the 

quality and transparency of solutions, the computational efficiency of the ML paradigm, 

and the applicability of the technique to a problem domain. 

All machine learning approaches involve a metric to express the suitability of the 

current solution.  In the example of training a classifier as in Chapter 7, a distance metric 

(error measure) is evaluated over a set of training exemplars.  Depending on the ML 

model, there may be implicit constraints dictating the design of the distance metric.  As 

an example, the smoothness constraint of neural networks and kernel methods implies 

that the relation between the objective function and the model‘s specifiable parameters be 

differentiable [34, 62].  In contrast, evolutionary computation representations have no 

such constraint on the formulation of the goals and representation.  The price for this 

flexibility in EC is that the method for credit assignment is not as direct, and exploration 

of the search space is emphasized over exploitation during search.  The inherent 

flexibility of EC paradigms also means that there is a natural mechanism for 

incorporating multiple objectives.  This allows a way of minimizing both false positive 

and detection rates in a classification domain, which is of particular interest when the 

data is unbalanced. 

Machine learning paradigms incorporate their own specific models for 

representing a solution.  For instance, neural networks use a connected topology of 
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neurons, and kernel methods rely on the ―kernel trick,‖ where a non-linear mapping of 

the original input space to a very high dimensional space is used, after which linear 

separability allows recombination into a final solution [34].  Constraints in the 

representation of a solution from the ML model are a source of both strengths and 

limitations that ought to be considered when applying the model to a problem domain.  

Neural networks and kernel methods explicitly use all input features rather than search 

for the best subset of applicable features, giving an efficient mechanism for credit 

assignment.  However, these models are not particularly transparent and involve limiting 

properties, such as not providing support for learning temporal relationships.  EC 

methods such as GP, however, are applicable to both non-temporal and temporal problem 

domains (such as the recursion problems of Chapter 8), and are biased against 

incorporating the entire feature set of a problem within a solution (unlike neural nets and 

kernel methods).  Also, EC methods allow the flexibility of adopting a discrimination-

based or novelty detection (appropriate for single class learners) policy when building 

classifiers.  In contrast, decision trees will always use a discrimination-based 

classification policy [62].  EC models, in summary, provide flexibility in representation 

leading to the discovery of novel and transparent solutions, but this may come at the 

expense of computational overhead. 

The ―credit assignment‖ problem is the process by which a ML paradigm adapts 

the free parameters associated with the representation (such as weights in neural networks 

and kernel methods, and tests in a decision tree).  Means of effectively adapting 

parameters in neural networks are based on classical numerical optimization algorithms 

such as Quasi-Newtonian, quadratic programming, and Lagrangian methods [34], and 
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decision trees use entropy-based partitioning algorithms [62].  Both means of credit 

assignment use an exploitation or greedy policy, so they are particularly effective in 

classification and function approximation domains.  Problem domains where there is a 

considerable delay between actions proposed by the model and pay off from the problem 

environment (such as control problems or environments with incomplete information 

such as network routing and path planning) can benefit from a more exploratory approach 

to credit assignment.  Such exploratory approaches mean that model parameterizations 

may be accepted that perform worse than the current model.  Machine learning models 

that are biased toward exploratory approaches to credit assignment include Evolutionary 

Computation, simulated annealing, and Boltzman machines.  It is also possible to address 

credit assignment using hybrid models, such as Genetic Algorithms with numerical 

optimization or evolving neural networks with Evolutionary Computation (which 

incorporates design of both neural network connectivity and weight value optimization). 

As a general procedure to guide the choice of ML paradigm for an application 

domain, a first step would be to apply a simple linear model trained using a greedy credit 

assignment mechanism to establish a performance baseline.  If performance is not found 

to be satisfactory, the practitioner ought to move to a non-linear ML model.  This 

procedure will permit advantages in terms of determining computational efficiency, 

transparency, and qualification of properties inherent in an unknown problem domain 

prior to the application of increasingly complex ML models that are more expensive to 

both build and analyze. 
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9.2  Summary and Conclusions 

 

This work presented a new developmental GP algorithm that models the 

symbiotic coevolution of the genetic code (biological codon to amino acid) and genotype 

in nature.  Previous similar developmental systems were discussed, as were pathologies 

of cooperative coevolution that require addressing in order to ensure the design of an 

efficient search algorithm.  Shortcomings of the most relevant previous coevolutionary 

algorithm, the Standard Adaptive Mapping algorithm of Margetts and Jones [57-59], 

were exposed and illustrated empirically.  In particular the previous Adaptive Mapping 

algorithm was demonstrated to suffer from a lack of exploration of the search space and 

the Red Queen Effect, with associated repeated loss of context, fitness spiking, and an 

overall lack of fitness-based performance. 

The PAM DGP algorithm was then introduced, initially operating on populations 

of genotypes and mappings using the same structure and encoding process as the 

Adaptive Mapping algorithm.  The PAM DGP algorithm components responsible for 

overcoming the drawbacks of the Adaptive Mapping algorithm, and the Red Queen 

Effect in general, were combined elitism and a novel probability table that allowed 

dynamic fitness proportionate selection of promising genotype-mapping pairs.  The PAM 

DGP algorithm was shown to outperform the Adaptive Mapping algorithm on the simple 

Maximum Output benchmark used to introduce the latter algorithm to the literature [58], 

and the Two Boxes and Hénon map regression problems.  Having established empirically 

that the algorithm behind PAM DGP provided considerable design benefits, a population 

of novel (more developmentally sound) adaptive redundant mappings were incorporated 

into the PAM DGP framework to replace the Huffman-encoded mappings.  While PAM 
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DGP with the adaptive redundant mappings provided too much search overhead to be 

effective at simple regression problems, it was found to perform better than Huffman 

encoding on harder regression problems and yield highly effective classifiers for the more 

difficult benchmark medical classification problems, in both cases by tailoring the 

available function set and emphasizing appropriate members.  In effect, by concentrating 

on explicitly identifying the most suitable symbols from the function set, the PAM DGP 

algorithm (with redundant mapping) was able to provide an efficient mechanism for 

reducing the size of the search space relative to Traditional GP, Standard Adaptive 

Mapping DGP, and PAM DGP using Huffman encoding.   

PAM DGP also produces the most efficient general solutions over the factorial, 

Fibonacci, and third order Fibonacci recursive functions compared to the competing 

algorithms just listed.  That is, it produced the solutions that were best able to generate 

the longest correct function sequence up to the allowed execution limit.  Furthermore, its 

best (most general) solutions for each problem were shown to be entirely intron-free.  

Given higher order recursion problems (2nd and 3rd order Fibonacci), PAM DGP also 

generated the largest number of solutions and did so in less tournament rounds than any 

algorithm it was tested against.  Redundant PAM DGP was also shown to evolve its 

genetic code mappings so as to emphasize the operators useful for the natural general 

recursive solutions for each function‘s sequence.  

 

9.3  Future Work 

 

   

 PAM DGP is a developmental system that models the coevolution of genetic code 

and genotype, as well as the redundant nature of the biological genetic code.  In so doing, 
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PAM DGP provides an effective means of dealing with the Red Queen Effect in two 

population cooperative coevolution and yields solutions to non-trivial regression, medical 

classification benchmarks, and learning of recursive sequences using generic machine 

language-based function sets by emphasizing appropriate members of the function set 

and reducing it to a problem-tailored subset.  There are a couple of directions that present 

themselves as an application of this algorithm in future work.  The first would be to 

utilize the algorithm to fit a function set to a difficult problem type where the best 

function set choices are not known, and then allow Traditional GP to use the finished 

function set to solve similar problems in the future (provided the problem is suitable and 

static).  The algorithm could be used to determine appropriate function sets for problem 

domains, in essence.  The second natural extension of the work would be to incorporate 

the ability to efficiently evolve appropriate genetic codes into a larger developmental 

framework.  After all, in biology, our gene translation process that has evolved over time 

is only a small component of the developmental processes in our cells, let alone our entire 

body.  There is currently a strong movement toward shifting the focus of traditional 

evolutionary algorithms to the construction of algorithms that have more of a basis on our 

current understanding of molecular and evolutionary biology.  In other words, there 

appears to be a shift underway from engineering-based ―artificial evolution‖ to 

biologically inspired ―computational evolution‖ systems that incorporate more advanced 

biological notions such as self-modification and feedback that are not implemented in 

most current algorithms [8].  It is hoped that this work on properly and efficiently 

evolving the genetic code may contribute to more extensive developmental systems in the 

future.   



 

 

211 

 In addition to using the algorithm in larger frameworks, there are a number of 

opportunities for future work in refining and building on the PAM DGP algorithm itself.  

Extensions to the algorithm with the goal of improving the general usability are a 

possibility: while the algorithm is robust and flexible, this comes at a cost of having the 

user make a number of parameterization choices.  Future implementations could examine 

the potential for automatic and adaptive parameterization of variables such as mutation 

and crossover rates for mapping and genotypes populations while maintaining reciprocal 

contexts for efficient evolution of both types of individuals.  Another possibility for 

increased automation of parameterization is dynamically setting PAM DGP‘s learning 

rate and noise threshold throughout the execution of the algorithm for particular 

problems.   

There is also the potential for additional investigation of the theory behind the 

performance benefits of PAM DGP that were discovered in this thesis.  The fitness-based 

and efficiency metrics were shown to be associated with both a reduction in size of the 

function set and emphasis of particular function set members.  To study on the effect of 

the interpretation of instructions from the genotype, and the effect of the complexity of 

instructions or uniformity in instruction interpretation on problem difficulty, would be 

enlightening to determine how to best set up the problem space for efficient PAM DGP 

search.  That is, the ability of PAM DGP to trim the function set and explicitly emphasize 

function set members may be affected not only by function set size, but by the nature of 

the instructions themselves, where the uniformity with which they are interpreted 

contributes to more efficient mapping search.   
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Another theoretic issue is that while it is evident that adaptive redundant 

mappings are effectively reducing search space through their evolution of the function 

set, it is not known whether they introduce solution programs of increased sizes in some 

cases while using the reduced function sets to more effectively solve problems.  

Individuals in these experiments were fixed in terms of the length of their binary strings, 

but if variable sized individuals were attempted in the future, it would be of interest to 

investigate the length of the solutions using the reduced function set compared to static, 

globally defined mapping solutions.  For the fixed string genotypes used here, it would 

very likely be the case that Huffman encoded mappings would produce longer solution 

lengths simply by virtue of the Huffman algorithm being a compression algorithm—it 

will attempt to make the binary genotype include as many instructions as it possibly can 

with variable sized encodings.  In contrast, our adaptive redundant mapping uses fixed 

size encodings, as would Traditional GP.  Thus, it is expected that the adaptive redundant 

mapping-based individuals would produce solution lengths on par with Traditional GP. 

 It is very promising that PAM DGP with redundant encodings was found to 

produce semantically high quality (meaning efficient and succinct) recursive solutions 

given a generic machine language function set.  These studies relied on a preset limit of 

execution steps to terminate recursive loops.  In fact, this limit was indirectly used as a 

means of roughly measuring semantics: semantically better solutions generated more 

correct values prior to forced termination (and were even found to be intron-free).  Thus, 

in our search for a semantically good solution from a generic function set, we turned 

concern for termination on its head.  Future work could continue to involve measuring 

semantic goodness in the same way in a first stage of an algorithm, followed by providing 
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the semantically best solution‘s loop contents to a higher order function (as described by 

Yu in [101, 104]) with ensured termination.  PAM DGP has proved capable of learning 

recursive functions and emphasizing appropriate function set members, so future work 

will naturally investigate the use of the adaptive redundant mappings in PAM DGP to 

solve additional, more difficult, optimization tasks from real world domains with function 

sets consisting of higher level mathematical operators (such as square root, log, et 

cetera).  If successful, such a system would finally provide semantically high quality 

recursive solutions capable of self-termination—all while allowing the recursion process 

to definitively be evolved and not introduced as a recursion-enabling operator within the 

function set. 

 In terms of future work regarding applying PAM DGP to difficult recursive 

problems, readers may have noted that the Hénon mapping was posed as a regression 

problem rather than a recursive sequence, even though the equation is recursive in nature.  

As mentioned in Chapter 4, the Hénon mapping was evaluated by Margetts [57] in 

regression form, so we wished to compare performance.  Also, the Hénon mapping was 

found to be a very challenging problem when posed as a recursive sequence.  As a 

―chaotic attractor,‖ by its nature, the values it produces in sequence appear to have little 

or no underlying pattern—it is only when plotted in two or three dimensions that an 

overarching pattern can be observed.  An algorithm learning the sequence would thus 

require a considerably longer prefix of the sequence than the 10 used by Huelsbergen or 

this work.  Even given a considerably longer prefix, the function still appears to generate 

a mostly random sequence.  Difficulty in error calculation is compounded by the fact that 

the sequence is a set of real-valued numbers rather than an integer sequence.  Finally, the 
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machine language function set does not possess all the higher level operators used in the 

Hénon equation (Equation 5.2), so the algorithm must figure out not only the solution to 

the Hénon equation, but how to form the required constants and square operator used 

within it.  A starting point would be to handle the Hénon equation with a function set 

including higher level operators, and a significant sequence prefix with which to learn the 

function (perhaps 500 values instead of 10).  The recursive solution to the Hénon 

mapping from a general function set poses a very interesting and challenging real world 

problem.   

 Another real world application that could be attempted involves application of 

PAM DGP to network intrusion detection systems (IDSs).  Some of my research 

colleagues have produced IDS systems using linear GP (LGP), showing LGP to be a 

promising approach to classification for IDS.  The work of Song, Heywood, and Zincir-

Heywood using GP IDS for wired networks [88] has used TCP dump data provided by 

DARPA, or the KDD-99 data set, which consists of a large collection of connection 

statistics.  The work on wireless systems in LaRoche and Zincir-Heywood [54] was 

generated by the researchers.  In the work on wired networks [88], the learning problem 

was to create a detector (a classifier) that could distinguish between good (normal) and 

bad (intrusion or attack) connections.  Each connection was described by 41 features, 9 

basic features and 32 derived features.  Work on wireless networks [54] used 

management frame packets for the IEEE 802.11 standard, with 7 features used to label a 

connection as an attack (de-authentication attack only) or a normal connection.  The 

choice of the features from the packet in both cases was made based on a priori 

knowledge of the attack type.   
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 In a PAM DGP-based IDS, features from the packets could be incorporated as 

members of the function set, with the adaptive mapping being able to choose relevant 

packet features via trimming of the function set.  The system would thus determine 

relevant packet features, where the user has to typically do this a priori.  The set of 

available operations for the packet features would remain constant in this application 

scenario.  The system would automatically determine connection features indicative of an 

attack without any decisions by the user.  With the ability of PAM GP to handle large 

function sets and emphasize certain elements in those sets to provide tailored solutions, 

the IDS system may even have the potential to be expanded to not only simply classify a 

connection as normal or an attack, but refine the diagnosis to specify the type of attack. 

In a related development, Kayacik, Heywood, and Zincir-Heywood [44] use a GP 

system to create an attack of system calls that cannot be recognized by a targeted IDS 

because it appears sufficiently similar to normal behavior.  By generating better attacks, 

the design of detectors can be improved.  The implementation uses only anomaly rate 

feedback from the detector, where other approaches have assumed additional knowledge 

of privileged detector information.  In the implementation, the function set of instructions 

used to construct the attack is based on a particular use case.  In [44], the top 15 system 

calls of the Traceroute application are chosen as the set with which to build the attack.  

By incorporating PAM DGP and evolving a function set of system calls in the IDS, it 

would be possible to tune the function set to the detector during the evolutionary process.  

This would automatically provide the appropriate system calls for attack of the use case 

on which the detector is built without the necessity of attempting to provide the most 

common system calls of the exploited application in advance. 
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 This chapter presents a number of ideas for theoretical and practical application of 

PAM DGP and adaptive redundant mappings in possible future work.  The author has 

endeavored to produce a novel developmental genetic programming algorithm capable of 

overcoming cooperative coevolutionary pathologies, and an associated adaptive 

redundant mapping capable of handling complex function sets.  It is hoped that the 

robustness and flexibility of PAM DGP and its associated redundant mapping, as well as 

the lessons learned in this thesis based on its construction and application, will provide a 

useful contribution to future work in the area of modeling and efficiently evolving the 

genetic code in developmental systems. 
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