
PYTPG: A DISTRIBUTED AND MULTITHREADED
IMPLEMENTATION OF TANGLED PROGRAM GRAPHS FOR

REINFORCEMENT LEARNING

by

Bryce MacInnis

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Computer Science, Honours

at

Dalhousie University
Halifax, Nova Scotia

August 2024

© Copyright by Bryce MacInnis, 2024



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Gradient-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Evolutionary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.1 Tangled Program Graphs . . . . . . . . . . . . . . . . . . . . . 4

Chapter 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Celery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Diversity Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Environment Seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Multi-threading and Team Batching . . . . . . . . . . . . . . . . . . . 12

Chapter 4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 CartPole-v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 LunarLander-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 CarRacing-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ii



Chapter 6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



List of Tables

2.1 The PyTPG Instruction Set . . . . . . . . . . . . . . . . . . . . 5

4.1 The hyperparameters used in benchmarking the following exper-
iments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



List of Figures

2.1 A visualization of an evolved Tangled Program Graph [3] . . 7

4.1 Throughput for CartPole-v1 . . . . . . . . . . . . . . . . . . . 14

4.2 Time vs Generation for CartPole-v1 . . . . . . . . . . . . . . . 15

4.3 CPU Utilization of the first CPU of the 2 Distributed CPUs for
CartPole-v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 CPU Utilization of the second CPU of the 2 Distributed CPUs
for CartPole-v1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 CPU Utilization of 1 CPU running 8 parallel environments for
CartPole-v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.6 CPU Utilization of 1 CPU running 1 environment for CartPole-v1 18

4.7 Throughput for LunarLander-v2 . . . . . . . . . . . . . . . . . 19

4.8 Time vs Generation for LunarLander-v2 . . . . . . . . . . . . 20

4.9 CPU Utilization of the first CPU of 2 Distributed CPUs for
LunarLander-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.10 CPU Utilization of the second CPU of 2 Distributed CPUs for
LunarLander-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.11 CPU Utilization of 1 CPU running 8 parallel environments for
LunarLander-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.12 CPU Utilization of 1 CPU running 1 parallel environment for
LunarLander-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.13 Throughput for CarRacing-v2 . . . . . . . . . . . . . . . . . . 23

4.14 Time vs Generation for CarRacing-v2 . . . . . . . . . . . . . . 24

4.15 CPU Utilization of the first CPU of 2 Distributed CPUs for
CarRacing-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.16 CPU Utilization of the second CPU of 2 Distributed CPUs for
CarRacing-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.17 CPU Utilization of 1 CPU running 8 parallel environments for
CarRacing-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



4.18 CPU Utilization of 1 CPU running 1 parallel environment for
CarRacing-v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



Abstract

Tangled Program Graphs (TPG) have been shown to be competitive with Deep Q-

Learning Networks (DQN) at reinforcement learning benchmarks such as the Ope-

nAI’s Gym tasks and games in the Atari Learning Environment (ALE). This paper

presents pytpg, a multi-threaded and distributed open-source implementation of the

Tangled Program Graph genetic model. Previous single-threaded implementations

of TPG are limited by their slow training performance. This paper provides details

about the implementation of pytpg such that it can be reproduced by others, as well

as providing a benchmark of its performance compared to its single-threaded coun-

terpart. The benchmarks used for this paper are the CartPole-v1, LunarLander-v2,

and CarRacing-v2 tasks from OpenAI’s Gym. The metrics used for benchmarking

are throughput, time vs generation, and CPU utilization.

vii



Chapter 1

Introduction

Tangled Program Graphs (TPG) are a genetic programming model capable of solv-

ing reinforcement learning problems. In other papers, TPG has been shown to be

competitive with Deep Q-Learning (DQN) reinforcement learning models in bench-

marks such as the Atari Learning Environment (ALE) [1] [2] and VizDoom [4][5].

Unlike Deep Q-learning models which are trained by each step (an interaction with

the environment), as a genetic model, TPG is trained only after the completion of

each episode. To achieve performance parity with state-of-the-art DQN methods, it

is required to train TPG models exhaustively.

While some research interest has been found in improving the computational ef-

ficiency of the Tangled Program Model itself, such as by implementing the TPG

algorithms through CUDA. The direction of research in this paper addresses another

bottleneck which limits the training even more so than the algorithms’ implementa-

tions. This bottleneck is the interaction with the task environments.

To address the vocabulary used in this paper, a step is a single interaction between

the model and the task environment. An episode is a consecutive series of steps taken

until the task environment terminates signalling that the task is complete. A policy

is a chosen set of actions for a given set of observations provided by the task domain.

A team is the fundamental unit of TPG. Teams are candidate policies for interacting

with the environment. Finally, a generation is a set of episodes where each team in

the Tangled Program Graph attempts to solve the problem.

To train the Tangled Program Model until it is competitive with other state-of-the-

art reinforcement learning models, the model needs to interact with the task domain

through hundreds or even thousands of generations. Single-threaded implementations

of Tangled Program Graphs start each episode serially. In other words, the next

episode does not begin until the preceding episode finishes. In order to overcome this

lost time efficiency, this paper proposes a multi-threaded implementation of Tangled

1



2

Program Graphs where multiple episodes train simultaneously. This would allow for a

vertically scaleable improvement in training efficiency proportional to the hardware’s

ability to parallelize the execution of the training environments.

As a novel contribution, this paper extends the performance of the multi-threaded

implementation by leveraging distributed hardware. Such that the burden of running

environments in parallel can be distributed among multiple CPUs on a network which

would allow for TPG to train in even further reduced time. In Chapter 2, a high-

level overview of what reinforcement learning is provided, the difference between

Gradient-based methods and Evolutionary Algorithm methods are explained, and

Tangled Program Graphs are explained in detail. Chapter 3 details how experiments

are conducted. These details include the hardware used to run the experiments, a

description of the database, details on the distributed computing framework are given,

as well as details on diversity maintenance, environment seeding, and some concerns

around multi-threading. In Chapter 4, the results of the experiments are provided.

These experiments benchmark the performance of three metrics: throughput, time

per generation, and CPU utilization. In Chapter 5, a summary of the results and

findings of this paper is provided and potential areas of future research are detailed.

In Chapter 6, there is a small appendix providing the source code to pytpg.



Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning is an emerging subfield of machine learning. Where an agent

must learn how to interact with a dynamic environment. Problems are formally

modelled as Markov Decision Processes. A Markov Decision Process is a set of states

S, a set of actions A and a transition matrix of probabilities that each action will be

taken from each state SXA. When an action is taken, a reward (positive or negative)

is provided to the agent. Reinforcement learning is finding the optimal actions to

take from a given state in order to maximize the reward. Markov Decision Processes

may be finite or infinite. In the case of a finite Markov Decision Process, there is a

terminal state such that when an agent reaches this state, the interaction with the

environment is finished.

2.2 Gradient-based Methods

While reinforcement learning is formulated around Markov Decision Processes. Typi-

cally, the set of states and the transition matrix are unknown a priori. An agent must

interact with the environment to learn the complete set of states and the rewards for

taking each action while in a given state.

In one of the seminal reinforcement learning works, Andrew Barto and Richard

Sutton proposes using the Bellman Optimality equation [6] to calculate V(s), the

expected reward of being in that particular state. From this, it is possible to derive a

Q-value, Q(s,a), which is the expected reward for taking an action a from the given

state s.

There are many reinforcement learning algorithms that learn the Q-values for

each state. One solution to reinforcement learning is to choose the action with the

maximum Q-value for a given state.

3



4

Many solutions use neural networks to learn an estimator function for V(s) and

Q(s,a), these are called Q-learners. The neural network is initialized with random

weights. Then the output of the neural network is used for the Q-value of each action

for the state that the agent is in. The /Temporal Difference/ error, which is the

difference between the estimated Q-value and the actual reward received from the

environment is computed after each step of interacting with the environment.

The neural network is trained by gradient descent to minimize the temporal dif-

ference error until the neural network becomes a good approximator of the Q(s,a)

function.

2.3 Evolutionary Models

Unlike gradient-based methods, evolutionary models are Monte-Carlo based solutions.

An evolutionary model is initialized with a population of agents, where each agent is

initially a random solution to the task domain. After the entire population of agents

interacts with the environment, the total cumulative reward is assigned to the agent

as a score, usually called fitness. Then each agent is ranked by their fitness. The

best-performing agents are kept while a percentage of agents are removed from the

population. This is inspired by nature’s natural selection. The removed percentage

of agents is then replaced by clones of the best-performing agents and mutation is

applied to them. After each generation, the average fitness improves. The final action

selection policy is the policy of the best-performing agent in the final generation.

2.3.1 Tangled Program Graphs

In this paper, we are implementing Tangled Program Graphs (TPG). TPG is an

example of the previously mentioned Monte-Carlo based evolutionary models. In

TPG, we have two co-evolving populations of teams and programs. The agents of the

TPG model are known as root teams. Where root teams are defined as teams that

are not referred to by any other teams. A root team represents a candidate solution

to the task domain.



5

Teams and Programs

In a Tangled Program Graph, a team has two components, the first is a set of registers

capable of storing double-precision floats. The second is a set of programs that

when executed modify the team’s registers. A program is a set of register-based

instructions. Each instruction is made up of a source register, a destination register,

and an operation to be applied to the destination register. The destination register

defines which register within the team is being modified, while the source register

may either be one of the team’s internal registers or it can be an observation from

the set of observations provided by the environment after each step.

The implementation of Tangled Program Graphs in this paper has a limited in-

struction set that allows programs to add, subtract, multiply, divide, take the cosine,

and negate based on a condition. This instruction space allows for programs to alter

their team’s registers in both linear and non-linear ways.

Operation Description
1 R[X] = R[X] + Source[Y ]
2 R[X] = R[X] − Source[Y ]
3 R[X] = R[X] ∗ Source[Y ]
4 R[X] = R[X] ÷ Source[Y ]
5 R[X] = COS(Source[Y ])
6 IF R[X] < Source[Y ] THEN R[X] = −R[X]

Table 2.1: The PyTPG Instruction Set

Within the team, each program is assigned an action from the task domain’s action

space. A team chooses which action to use for each step by a bidding process. Each

program’s first register, R[0], is assigned a special role. The first register represents

the program’s confidence that given the observations provided to the program, the

action assigned to the program is the most optimal to choose. This confidence value

is dubbed the program’s bid.

Training

Given the set of observations provided by each step, the observations are fed by the

team to its programs. The programs execute their instructions using the observations

and internal registers as source and destination registers. The first register of each



6

program is then populated with a bid. After all programs have been executed, the

program with the largest bid provides the action that the team will use to interact

with the environment. The programs are trained to assign high bids with actions

most correlated with greater cumulative reward and likewise, are trained to assign

low bids with suboptimal actions. The correct bidding behaviour is an emergent

property gained during the training of the model.

When the generation has been completed, teams are ranked by their cumulative

reward. A fixed subset of the population is deemed survivors and remains unchanged.

While teams outside of that subset are considered uncompetitive and removed from

the population. The surviving population is uniformly sampled. The sampled teams

are cloned copies of the originals. Finally, variation is introduced to the model by

applying mutation to the clones. This mutation changes the instructions, the pro-

grams and the team itself for each cloned team. After each episode, this natural

selection and mutation process changes the bidding behaviour of the programs. This

is repeated after every generation such that the teams converge on an optimal policy

for solving the task domain.

Mutation

Teams in TPG can be mutated at the instruction level, the program level, and the

team level itself. The following mutations may occur.

1. Instructions may be mutated, such that the operation may be randomly changed

to any other operation supported in the instruction set.

2. Instructions may have their source registers changed to any other register which

could be a state value coming from the observation space, or another internal

register within the program.

3. The destination register, similarly, can be changed to any other register includ-

ing state values from the observation space or another internal register.

4. Programs may be mutated by adding instructions

5. Programs may be mutated by removing instructions

6. Programs may be mutated by swapping instructions



7

7. Teams can be assigned more programs from programs that already exist in the

population.

8. Teams can be given new programs that are created during the mutation phase.

9. Teams may have programs randomly deleted.

10. Teams may point to other teams, such that the team’s action is the pointed

team’s action

The most significant mutation that can occur is when a team changes its action

to that of another team. This allows teams to significantly grow in complexity. It

has also been found that specialist teams develop at solving specific parts of the task

domain, which other teams can later reuse by pointing to those specialists. [2] This

effectively allows for problem decomposition.

Figure 2.1: A visualization of an evolved Tangled Program Graph [3]



8

Training Algorithm

Algorithm 1 TPG’s Action Selection Algorithm

1: Input: All teams, current team, programs, state

2: Add the current team to the visited list

3: Execute programs with the given state

4: Sort programs by bid in descending order

5: Set highestBidProgram as the program with the highest bid confidence

6:

7: Set secondHighestBidProgram as the program with the second highest bid con-

fidence

8: for each program in sorted programs do

9: if program.action is atomic then

10: Return program.action

11: else

12: Find the team referenced by program.action

13: if referenced team is not in visited list then

14: Add referenced team to visited list

15: Return getAction(referenced team)

16: else

17: Return the action of secondHighestBidProgram

18: end if

19: end if

20: end for



9

Algorithm 2 TPG’s Training Algorithm

1: Initialize model, teams, and programs

2: for each generation from 1 to num generations do

3: for each team in the population do

4: Reset the environment with initial observation obs

5: while environment is not terminated do

6: Send the observation to the team

7: Select the action as determined by the team

8: Step the environment to get new state, reward, and the termination

boolean

9: end while

10: end for

11: Rank teams by fitness (cumulative reward)

12: Select the top POPULATION GAP percentage of teams

13: Remove teams that were not selected

14: while number of root teams < POPULATION SIZE do

15: Clone a selected team

16: Mutate the clone

17: Add the mutated clone to the population

18: end while

19: end for



Chapter 3

Methodology

3.1 Hardware

All experiments were conducted on machines hosted in Azure. The worker machines

are running on Standard D8s v3 virtual machines using the Intel(R) Xeon(R) CPU

E5-2673 v3. The clock speed for that processor is 2.4GHZ and it has 8 vCPUs. Each

machine is given 32 GiB of RAM. The supervisor, database and message broker are

running on a separate Standard D2s v3 virtual machine with 2 vCPUs and 8GiB

of memory. The Standard D2s v3 virtual machine uses a Intel(R) Xeon(R) CPU

E5-2673 v3 CPU with a clock speed of 2.40GHz

3.2 Database

To make the training data collected from the simulators more accessible to visual-

ization and further analysis. A centralized database is used to store the information

collected from the environments. In order to minimize the performance impact of I/O,

all data is collected in a buffer until the entire batch of parallel teams is completed

then all data is inserted in a batch operation before starting the next generation.

3.3 Celery

In order to facilitate training on multiple CPUs, a Python framework called Celery is

used. Celery handles the back-end communication between computers on a network.

In order to train the model with the simulators, it is required that each simulator

receives a copy of the model. Celery transmits this data through a message broker

running in the background. In this implementation, Redis is chosen as a message

broker but the choice is arbitrary.

10



11

3.4 Diversity Maintenance

As with any genetic programming model, it is essential that the population is suffi-

ciently diverse in its phenotypic presentation. This means that in TPG, each team

should have an independent bidding behaviour and accordingly, its own solution to

solving the problem. Through the process of natural selection, it is possible to lose

the diversity of the population in a period of premature convergence if the model

remains stuck in a point of local optima.

In this situation, the majority of TPG’s team population may exhibit the same

bidding behaviour. Any novel solutions that are not fully developed yet would be

out-competed by the locally optimal teams with higher fitness. If no novel solutions

are allowed to develop, and after each round natural selection is applied. Then it is

possible for each team to converge to similar bidding behaviour.

Special care is taken throughout this experiment to ensure that diversity is main-

tained in the team population. In order to do so, a diversity cache is implemented. In

this diversity cache, the last 50 observations received from the environment is stored

within the database. During the mutation that follows after to the natural selection,

the bidding profile of each team will be determined by feeding the observations from

the diversity cache to each team. A profile of a team in the team population will be

the actions selected over the last 50 observations received from the environment.

If a team has the same profile as another team in the population, then the second

team will experience an additional round of mutation. This effectively is the same as

having similar teams mutate twice as fast. Thus encouraging the TPG model towards

having more diversity than without the diversity cache.

Additionally, to further prevent the premature convergence of the model. A tech-

nique called rampant mutation is applied to the model’s team population. Rampant

mutation will increase the mutation rate, such that the team mutates N times as

much every M generations. This shakes the teams up sufficiently such that if the

model was stuck in a local optimum before the rampant mutation then after the

series of mutations diversity is re-introduced.



12

3.5 Environment Seeds

In order to fairly evaluate the fitness of teams in a generation, the OpenAI simulators

are initialized with the same random seed given to each team in the generation. A

new seed is provided every generation. Setting the seed for the environment ensures

that each starting state is the same for each team and the stochasticity inherent to

each environment is consistent among each episode. The end result is such that each

team is given the same starting state. All teams will receive the same subsequent

observations and rewards when their action policy is the same. When the action

policies diverge, it is only at that point that the observations and rewards will change.

This is a necessary adjustment to each simulator for natural selection. Otherwise,

if teams were evaluated using different starting states, then it would be possible for

some teams to be provided with an objectively easier starting position than others.

Because of this, the fitness of the teams would skew not by the efficacy of the action

policy but instead by luck.

3.6 Multi-threading and Team Batching

Each environment is run in parallel but choosing the number of environments to run

simultaneously remains a hyperparameter. To maximize CPU utilization, the number

of environments to run simultaneously is determined by the number of CPU cores the

hardware provides. It is ideal to run as many simulators as possible in parallel but

due to context switching, it is recommended to dedicate one core per environment.

Since hundreds of teams need to be run per generation, it is required to run

hundreds of simulators per generation. This means the implementation of Tangled

Program Graphs must batch the teams into groups with the same size as the number

of cores of the CPU to prevent said context switching.



Chapter 4

Experiments

4.1 Parameterization

Parameter Value
MAX NUM STEPS 1500
POPULATION SIZE 360
POPGAP 0.5
DELETE INSTRUCTION PROBABILITY 0.7
ADD INSTRUCTION PROBABILITY 0.7
SWAP INSTRUCTION PROBABILITY 1.0
MUTATE INSTRUCTION PROBABILITY 1.0
ADD PROGRAM PROBABILITY 0.7
DELETE PROGRAM PROBABILITY 0.7
NEW PROGRAM PROBABILITY 0.2
MUTATE PROGRAM PROBABILITY 0.2
TEAM POINTER PROBABILITY 0.5
MAX INSTRUCTION COUNT 96
MAX INITIAL TEAM SIZE 5
MAX PROGRAM COUNT 200
DIVERSITY CACHE SIZE 50
RAMPANT MUTATION INTERVAL 10
RAMPANT MUTATION COUNT 10

Table 4.1: The hyperparameters used in benchmarking the following experiments

The MAX NUM STEPS parameter defines the maximum number of steps the agent

can have with the environment before timing out. The POPULATION SIZE parameter

defines the number of root teams (candidate solutions) to keep at every generation.

The POPGAP parameter defines what percentage of the root teams to keep during a nat-

ural selection phase. The following parameters DELETE INSTRUCTION PROBABILITY,

ADD INSTRUCTION PROBABILITY, and SWAP INSTRUCTION PROBABILITY define the prob-

abilities that an instruction is deleted, added, or swapped respectively when an in-

struction is mutated. The MUTATE INSTRUCTION PROBABILITY defines the probabil-

ity that an instruction is mutated. Likewise, parameters ADD PROGRAM PROBABILITY,

13



14

DELETE PROGRAM PROBABILITY, NEW PROGRAM PROBABILITY, and MUTATE PROGRAM PROBABILITY

do the same at the program level. The parameter TEAM POINTER PROBABILITY de-

fines the probability that a team will reference another team during a round of

mutation. The parameters MAX INSTRUCTION COUNT, MAX INITIAL TEAM SIZE, and

MAX PROGRAM COUNT constrain the size of Tangled Program Graphs by setting a cap

on the number of instructions, capping the number of programs assigned to a team

upon creation, and the maximum number of programs assigned to a team respec-

tively. The DIVERSITY CACHE SIZE defines the number of observations to retain to

generate diversity profiles for. The RAMPANT MUTATION INTERVAL parameter specifies

how frequently rampant mutation occurs and the RAMPANT MUTATION COUNT parame-

ter defines how many mutations are applied during a round of rampant mutation.

4.2 CartPole-v1

Figure 4.1: Throughput for CartPole-v1

As shown in Figure 4.1, a total of approximately 80,000 steps are performed by the

agents, although this number varies since each run is independent of each other. In



15

the single-threaded implementation of TPG, 78,832 steps were performed in 4452

seconds. This is a throughput rate of 17.7 steps per second. In the multi-threaded

implementation of TPG, 76,794 steps were performed in 928 seconds for a throughput

rate of 82.8 steps per second. This is an overall throughput speed up of 4.67x over the

single-threaded implementation. The multi-threaded and distributed implementation

processed 76,866 steps in 602 seconds for a rate of 127.7 steps per second. Which is

1.54x higher than just the multi-threaded implementation alone and 7.2x higher than

the single-threaded implementation. Given that the multi-threaded and distributed

model is theoretically capable of performing 16x faster as 8 parallel environments are

running simultaneously on 2 machines, the actual speed up of 7.2x underperforms.

This can be explained both by network latency, where the overhead of coordinating

work between two machines would slow down the training performance, and Amdahl’s

law where despite increasing the training performance the time to send the informa-

tion to the database remains the same as the single-threaded implementation.

Figure 4.2: Time vs Generation for CartPole-v1



16

In Figure 4.2, each implementation is trained for 10 generations. The single-

threaded implementation is capable of training 10 generations within 4452 seconds or

74 minutes. The multi-threaded implementation takes 928 seconds or 15 minutes to

train 10 generations. This makes the multi-threaded implementation 4.8x faster to

train than the single-threaded implementation. The distributed and multi-threaded

implementation takes 602 seconds or 10 minutes to train 10 generations which is

1.5x faster than the multi-threaded implementation and 7.4x faster than the single-

threaded implementation.

Figure 4.3: CPU Utilization of the first CPU of the 2 Distributed CPUs for CartPole-
v1



17

Figure 4.4: CPU Utilization of the second CPU of the 2 Distributed CPUs for
CartPole-v1

Figure 4.5: CPU Utilization of 1 CPU running 8 parallel environments for CartPole-
v1



18

Figure 4.6: CPU Utilization of 1 CPU running 1 environment for CartPole-v1

In Figures 4.3, 4.4, 4.5, 4.6 we see that across all implementations the CPU is

under-utilized. Because CartPole-v1 has only four observations, it does not require

a tremendous amount of CPU effort. This means that we can overcome the time

inefficiency of running a single environment without placing any additional load on

the computer, which demonstrates how inefficient the single-threaded implementation

can be.



19

4.3 LunarLander-v2

Figure 4.7: Throughput for LunarLander-v2

In Figure 4.7, the single-threaded implementation processes 302,192 steps in 4233

seconds. This is a throughput rate of 71.4 steps per second. The multi-threaded

implementation processes 255,178 steps in 677 seconds for a throughput rate of 376.9

steps per second. Which is an overall rate increase of 5.3x that of the single-threaded

implementation. Finally, the multi-threaded and distributed implementation pro-

cesses 284,409 steps in 371 seconds for a rate of 766.6 steps per second. This means

that the multi-threaded and distributed implementation has a speed up of 2.0x that

of the multi-threaded implementation and 10.7x that of the single-threaded imple-

mentation.



20

Figure 4.8: Time vs Generation for LunarLander-v2

In Figure 4.8, the single-threaded implementation completed 10 generations in

4233 seconds or 71 minutes. The multi-threaded implementation completed 10 gen-

erations in 677 seconds or 11 minutes. This is a speed up of 6.4x compared to the

single-threaded implementation. The distributed and multi-threaded implementa-

tion completed 10 generations in 371 seconds or 6 minutes. This is a speed up 1.8x

compared to the multi-threaded implementation and 11.4x compared to the single-

threaded implementation.



21

Figure 4.9: CPU Utilization of the first CPU of 2 Distributed CPUs for LunarLander-
v2

Figure 4.10: CPU Utilization of the second CPU of 2 Distributed CPUs for
LunarLander-v2



22

Figure 4.11: CPU Utilization of 1 CPU running 8 parallel environments for
LunarLander-v2

Figure 4.12: CPU Utilization of 1 CPU running 1 parallel environment for
LunarLander-v2

In Figures 4.9, 4.10, 4.11, 4.12 we see that while all CPUs remain underutilized, the

multi-threaded implementations utilize approximately twice the CPU as the single-

threaded implementations demonstrating that parallelizing the environments is using

the hardware more efficiently.



23

4.4 CarRacing-v2

Figure 4.13: Throughput for CarRacing-v2

In Figure 4.13, the single-threaded implementation processes 2,453,637 steps in 36,950

seconds. That is a throughput rate of 66.4 steps per second. The multi-threaded im-

plementation processes 2,663,340 steps in 11,027 seconds for a throughput rate of

241.5 steps per second. This is an increase of 3.6x from the single-threaded im-

plementation. Finally, the distributed and multi-threaded implementation processes

2,613,253 steps in 7875 seconds. This is a throughput rate of 331.8 steps per second

which is a speed up of 1.37x compared to the multi-threaded implementation and

5.0x that of the single-threaded implementation. This does; however, seem skewed

by an event where the throughput dropped for some time and no steps were being

processed possibly due to a network disruption during training.



24

Figure 4.14: Time vs Generation for CarRacing-v2

In Figure 4.14, the single-threaded implementation completes 10 generations in

36,950 seconds. The multi-threaded implementation completes 10 generations in

11,027 seconds or 3 hours and 4 minutes. This is a speed-up of 3.4x. The dis-

tributed implementation completes 10 generations in 7875 seconds or 2 hours and 11

minutes. This is a speed-up of 1.4x to that of the multi-threaded implementation and

4.7x that of the single-threaded implementation.



25

Figure 4.15: CPU Utilization of the first CPU of 2 Distributed CPUs for CarRacing-
v2

Figure 4.16: CPU Utilization of the second CPU of 2 Distributed CPUs for
CarRacing-v2



26

Figure 4.17: CPU Utilization of 1 CPU running 8 parallel environments for
CarRacing-v2

Figure 4.18: CPU Utilization of 1 CPU running 1 parallel environment for CarRacing-
v2

In Figures 4.15, 4.16, we see that running 8 environments in parallel utilizes

the entire CPU. This could explain why the parallelization was not as effective for

CarRacing-v2 as it was LunarLander-v2. Potentially, decreasing the batch size from

8 to 6 may show improvement if the batch size was too large for the CPU to handle.

In Figures 4.17, 4.18, we see that running only one environment does not effectively

utilize the CPU while running 8 environments is possibly overloading the CPU.



Chapter 5

Conclusion

In conclusion, we’ve demonstrated that by running multiple environments simulta-

neously. We can significantly reduce the time required to train TPG models. We

have shown that it is possible to increase the training throughput and benchmarked

this by comparing the single-threaded and multi-threaded implementations using the

Steps vs Time metric. We have also shown through the Time vs Generation metric

that we significantly reduce the training time per generation. We also demonstrate

through the comparison of the CPU utilization graphs, that we make more efficient

use of our hardware leading to the previously mentioned improvements.

Beyond multi-threading, we show similar improvements by distributing the train-

ing among multiple CPUs. This allows us to horizontally scale the performance out.

We show that doing so is capable of improving the training time by orders of magni-

tude.

5.1 Future Work

Future research could explore more environments than that of the three Gym en-

vironments tested in the experiments. These new environments could include the

VizDoom [4] environment, the Atari Learing Environment [1] and also the Mujoco [7]

environments.

In order to demonstrate, the true capability of the multi-threading that this im-

plementation offers, future work in this area should be done to benchmark the per-

formance on the model on better, more specialized hardware. By introducing a CPU

with hundreds of cores, you could get much better performance than the 8-core CPUs

used in this paper.

Other areas of research would include a focus on increasing the performance of

the Tangled Program Graph model. Currently, all of the program execution is being

done through the CPU. However, this program execution would be much faster on

27



28

specialized hardware such as a GPU. An implementation of the Tangled Program

Graph model through CUDA would be a significant enhancement.

Finally, a significant limitation of the Tangled Program Graphs is its sample ineffi-

ciency. Tangled Program Graphs are an online machine-learning model which requires

interaction with the environment for training. After each episode, all observation data

is no longer used. By utilizing historical data to train the model without interacting

with the environment directly, the bottleneck of interacting with the environment

would be largely removed.



Chapter 6

Appendix

6.1 Source Code

The source code for pytpg is available at: https://github.com/bmcnns/distributed-tpg

29

https://github.com/bmcnns/distributed-tpg


Bibliography

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[2] Stephen Kelly and Malcolm I. Heywood. Emergent tangled graph representations
for atari game playing agents. In Proceedings of the 20th European Conference on
Genetic Programming, pages 101–117. Springer, 2017.

[3] Stephen Kelly and Malcolm I. Heywood. Emergent solutions to high-dimensional
multitask reinforcement learning. Evol. Comput., 26(3), 2018.

[4] Micha l Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech
Jaśkowski. Vizdoom: A doom-based ai research platform for visual reinforcement
learning, 2016.

[5] Robert Smith and Malcolm Heywood. Scaling Tangled Program Graphs to Visual
Reinforcement Learning in ViZDoom, pages 135–150. 03 2018.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. The MIT Press, second edition, 2018.

[7] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012.

30


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Reinforcement Learning
	Gradient-based Methods
	Evolutionary Models
	Tangled Program Graphs


	Methodology
	Hardware
	Database
	Celery
	Diversity Maintenance
	Environment Seeds
	Multi-threading and Team Batching

	Experiments
	Parameterization
	CartPole-v1
	LunarLander-v2
	CarRacing-v2

	Conclusion
	Future Work

	Appendix
	Source Code

	Bibliography

