
A COMPARISON OF TRAVERSAL STRATEGIES FOR
TANGLED PROGRAM GRAPHS UNDER THE ARCADE

LEARNING ENVIRONMENT

by

Alexandru Ianta

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2021

© Copyright by Alexandru Ianta, 2021

Pentru Aurel Bod̂ırnea

ii

Table of Contents

List of Tables . v

List of Figures . vii

Abstract . xiii

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Visual Reinforcement Tasks . 4

1.2 Training in TPG . 5
1.2.1 The Initial Population . 5
1.2.2 Evolution . 8

1.3 Graph Traversal Strategies . 9

1.4 Summary . 13

Chapter 2 Methods . 14

2.1 Training . 17

2.2 Evaluation . 20

2.3 Measurement . 20
2.3.1 Performance . 20
2.3.2 Static Properties . 21
2.3.3 Dynamic Properties . 22
2.3.4 Action Distributions . 22

Chapter 3 Research Environment . 24

3.1 Running Experiments . 26
3.1.1 Containerization . 26
3.1.2 Container Orchestration . 28
3.1.3 Infrastructure-as-Code . 30
3.1.4 Automatic Cloud Backups . 34

3.2 Capturing Results . 36
3.2.1 Metrics . 37
3.2.2 Ingestion . 43

iii

3.2.3 Storage . 45
3.2.4 Querying & Visualization . 45

3.3 Summary . 49

Chapter 4 Results . 51

4.1 Training . 51

4.2 Evaluation . 58
4.2.1 Performance . 59
4.2.2 Static Properties . 60
4.2.3 Dynamic Properties . 63
4.2.4 Action Distributions . 63

Chapter 5 Analysis . 67

5.1 Traversal Analysis . 68

5.2 Team & Action Utilization . 73

5.3 Learner Utilization . 76

Chapter 6 Conclusion . 79

6.1 Traversal Strategies . 79

6.2 Summary . 80

Bibliography . 82

Appendix A Supplementary Data from other Generations 87

Appendix B The Performance and Future of Looking Glass 106

iv

List of Tables

1.1 Operations found in program instructions and their function.
Note that [] denote that the value in the square brackets is
used as an index. For DESTINATION this is always an index into
the registers of the machine. For SOURCE this can refer to an
index into the registers of the machine, or into the input vector
depending on the MODE of the instruction. The NEG operation,
negates the value found in the register specified by DESTINATION
if that value is less than the one referenced by SOURCE. 6

2.1 The 20 Atari games chosen for the Lightbeam experiment . . . 14

2.2 Lightbeam TPG Parameters 18

2.3 Lightbeam TPG Probability Parameters 19

4.1 Champions Available refers to the number of champions that
achieved the respective generations of training. Balanced Cham-
pion Samples refer to the the portion of the available champions
which were used to produce the results. This filtering is done
because some metrics of interest are sensitive to the balance of
team and learner traversal samples. For example, when con-
sidering the frequency of some action for a given game, if we
compare 3 instances of team traversal with 1 instance of learner
traversal (as that is what we have available) we will skew the
data. So instead, in that situation, we would compare only a
single instance of team traversal to the learner traversal. . . . 58

4.2 Minimum, mean, standard deviation, normalized mean, max-
imum and normalized maximum fitness by environment and
traversal for champions after 500 generations of training. The
instance column refers to the number of champions tested for
each traversal type. 60

4.3 Static properties of champions after 500 generations of training. 62

4.4 Dynamic complexity measures averaged over all champions each
playing 20 evaluation episodes. Depth refers to the length of the
path from the root team to the returned action. 64

v

A.1 Minimum, mean, standard deviation, normalized mean, max-
imum and normalized maximum fitness by environment and
traversal for champions after 300 generations of training. The
instance column refers to the number of champions tested for
each traversal type. 88

A.2 Static properties of champions after 300 generations of training. 89

A.3 Static properties of champions after 300 generations of training
continued. 90

A.4 Dynamic properties of champions after 300 generations of training. 91

A.5 Minimum, mean, standard deviation, normalized mean, max-
imum and normalized maximum fitness by environment and
traversal for champions after 400 generations of training. The
instance column refers to the number of champions tested for
each traversal type. 97

A.6 Static properties of champions after 400 generations of training. 98

A.7 Static properties of champions after 400 generations of training
continued. 99

A.8 Dynamic properties of champions after 400 generations of training.100

vi

List of Figures

1.1 Basic Components of Tangled Program Graphs (TPG) 3

1.2 A visualization of TPG during its initialization phase. Two
actions have been sampled (A B) and two learners (with their
underlying programs) have been generated ’pointing to’ those
actions, but the first team has not yet been created. 6

1.3 The first root team produced during trainer initialization. The
dashed arrows for learners 1 and 2 signify that they were the
first two learners to be created, and are thus guaranteed to
reference two distinct actions from the action space. 8

1.4 a) We begin execution and the root team passes the input vector
along to another team. b) Bidding continues and the input
vector again passes to another team. c) Bidding continues, and
the input vector is passed along to the last team in this graph.
d) Bidding occurs and the learner pointing back to the team
in b) wins, but due to the rules of team traversal, we cannot
proceed there and therefore fall back to the next highest bid
pointing to action t. Figure sourced from [41]. 11

1.5 a) We begin execution and the root team passes the input vector
along to another team. b) Bidding continues and the input
vector again passes to another team. c) Bidding continues, and
the input vector is passed along to the last team in this graph.
d) Bidding occurs and the learner pointing back to the team in
b) wins, we proceed back. For the given input vector we already
know that the learner pointing to the team in c) will win the
bid, but by the rules of learner traversal we cannot proceed
there and therefore fall back to the next highest bid pointing
to action t. Figure sourced from [41]. 12

3.1 Kubernetes Architecture Figure sourced from: [26] 29

3.2 Looking Glass Architecture 36

3.3 The champion for Centipede using team traversal after 500 gen-
erations of training. The root team is in teal, while other teams
appear in light blue. Arrows represent learners. The teams are
arranged radially where their size and distance from the root
team is determined by the number of incoming learners. 40

vii

3.5 The fitness of each root team in from a TPG population playing
Venture using learner traversal at generation 500. 41

3.4 A path the champion from figure 3.3 used in making the deci-
sion to apply the ’FIRE’ action to the game environment. . . . 42

3.6 The publish-subscribe ingestion pipeline in Looking Glass. The
dashed arrows show the path a message containing Metric A
takes through the pipeline. Note the association with Topic A
in the Kafka broker and Index A in Elassandra. 44

3.7 Viewing metrics in the tpg.lightbeam.metrics.generation
index, automatically refreshed every five minutes by Kibana.
The histograms along the top show the volume of metrics com-
ing for a given day; individual records appear underneath. . . 46

3.8 The ’Lightbeam’ experiment dashboard. The top row charts,
from left to right, are the RAINBOW Normalized Maximum
Fitness, and the RAINBOW Normalized Average Fitness achieved
by TPG, plotted against time. The bottom left graph, shows
the average runtime (in hours) vs the # of generations com-
puted averaged across instances of a particular environment.
The bottom right Table shows various statistics about the paths
traversed to produce actions by champion teams at 50 genera-
tion increments during training. 47

4.1 Average normalized fitness being monitored after runs begin on
January 13th 2021. 52

4.2 The number of seconds a generation would take to compute for
a given environment averaged over all instances. 53

4.3 The number of teams in purple and learners in blue across team
traversal instances for the Bowling environment plotted against
the generation when the graphs were sampled on the x-axis.
Bowling-TEAM-4, the fourth entry, reaches a staggering 50,184
learners and 3,250 teams compared to the 25,000 learners and
2,500 teams of its peers at the same generation. Note, the
apparent drop off in size immediately afterwards for Bowling-
TEAM-4 happens because the instance was stopped to conserve
computational resources. 54

viii

4.4 The number of teams in purple and learners in blue across
team traversal instances for the Asteroids environment plot-
ted against the generation when the graphs were sampled on
the x-axis. Asteroids-TEAM-4, the fourth entry, reaches 45,830
learners and 3,004 teams compared to the 20,000 learners and
2,000 teams of its peers at the same generation. The ’extra’ 6th
Asteroids-TEAM instance was started in an attempt to have 5
instances at generation 500 for this environment and traversal
type after it became clear Asteroids-TEAM-4 was not going to
finish in time. 55

4.5 The cumulative number of compute hours averaged over all in-
stances of an environment plotted against generations. 56

4.6 Fitness curves for the Asteroids environment during training,
averaged across all instances and split by traversal strategy. . . 57

4.7 Average fitness for the MsPacman environment averaged across
all instances and split by traversal strategy. 57

4.8 Average fitness for the MsPacman environment for each experi-
ment instance. The diverging purple curve is that of MsPacman-
LEARNER-4. 58

4.9 Action frequencies across all environments for champions after
500 generations of training. 65

4.10 Action frequencies for champions trained on the BattleZone
Atari game after 500 generations of training. Split by traversal
type. 65

5.1 Hold ’LEFT’ and smash ’LEFTFIRE’ as much as possible. A
TPG champion solution for the Asteroids Atari game. 67

5.2 First ’LEFT’, the ’UP’, then possibly, success! Venture-LEARNER-
8 moments before its demise at the hands of the green enemy
after stumbling into the first room and happening upon some
treasure. 68

5.3 Line them up, then strike them down. Champions perfect the
optimal shot in the Atari Bowling game after 400 generations
of training. 68

5.4 Action frequency distribution across all environments for cham-
pions with team traversal after 500 generations of training plot-
ted as a percent of the whole against the frame #. Note that
many actions occurred infrequently enough to be omitted. . . 69

ix

5.5 Action frequency distribution across all environments for cham-
pions with learner traversal after 500 generations of training
plotted as a percent of the whole against the frame #. Note
that many actions occurred infrequently enough to be omitted. 70

5.6 Action frequency distribution for champions trained on the Bat-
tleZone Atari game with team traversal after 500 generations
of training plotted as a percent of the whole against the frame
#. 71

5.7 Action frequency distribution for champions trained on the Bat-
tleZone Atari game with learner traversal after 500 generations
of training plotted as a percent of the whole against the frame #. 71

5.8 Learner traversal vertex cover analysis for generation 500
champions. In green, the percentage of vertices (teams and ac-
tions) covered by all paths traced over 20 evaluation episodes for
a given champion (listed on the x-axis). In blue, the percentage
of vertices within bid range of all paths traced over 20 eval-
uation episodes for a given champion. Champion graphs with
fewer than 50 teams were excluded as their 50% - 100% coverage
is a reflection of their uniquely small graph size. Square-root
y-axis scale used to highlight smaller differences in lower cover-
ages. 74

5.9 Team traversal vertex cover analysis for generation 500 cham-
pions. In green, the percentage of vertices (teams and actions)
covered by all paths traced over 20 evaluation episodes for a
given champion (listed on the x-axis). In blue the percentage of
vertices within bid range of all paths traced over 20 evaluation
episodes for a given champion. Champion graphs with fewer
than 50 teams were excluded as their 50% - 100% coverage is a
reflection of their uniquely small graph size. Square-root y-axis
scale used to highlight smaller differences in lower coverages. . 75

5.10 Learner Traversal edge cover analysis for generation 500 cham-
pions. In green, the percentage of edges (learners) covered by all
paths traced over 20 evaluation episodes for a given champion
(listed on the x-axis). In blue, the percentage of edges within
bid range of all paths traced over 20 evaluation episodes for a
given champion. Champion graphs with fewer than 50 learn-
ers were excluded as their 50%-100% coverage is a reflection of
their uniquely small graph size. Square-root y-axis scale used
to highlight smaller differences in lower coverages. 77

x

5.11 Team Traversal edge cover analysis for generation 500 cham-
pions. In green, the percentage of edges (learners) covered by all
paths traced over 20 evaluation episodes for a given champion
(listed on the x-axis). In blue, the percentage of edges within
bid range of all paths traced over 20 evaluation episodes for a
given champion. Champion graphs with fewer than 50 learners
were excluded (ex: Pitfall, DoubleDunk, etc.) as their 50%-
100% coverage is a reflection of their uniquely small graph size.
Square-root y-axis scale used to highlight smaller differences in
lower coverages. 78

A.1 Action frequencies across all environments for champions after
300 generations of training. 92

A.2 Action frequencies for champions trained on the BattleZone
Atari game after 300 generations of training. Split by traversal
type. 93

A.3 Action frequency distribution across all environments for cham-
pions with team traversal after 300 generations of training plot-
ted as a percent of the whole against the frame #. Note that
many actions occurred infrequently enough to be omitted. . . 94

A.4 Action frequency distribution across all environments for cham-
pions with learner traversal after 300 generations of training
plotted as a percent of the whole against the frame #. Note
that many actions occurred infrequently enough to be omitted. 95

A.5 Action frequency distribution for champions trained on the Bat-
tleZone Atari game with team traversal after 300 generations
of training plotted as a percent of the whole against the frame
#. 96

A.6 Action frequency distribution for champions trained on the Bat-
tleZone Atari game with learner traversal after 300 generations
of training plotted as a percent of the whole against the frame
#. 96

A.7 Action frequencies across all environments for champions after
400 generations of training. 101

A.8 Action frequencies for champions trained on the BattleZone
Atari game after 400 generations of training. Split by traversal
type. 102

xi

A.9 Action frequency distribution across all environments for cham-
pions with team traversal after 400 generations of training plot-
ted as a percent of the whole against the frame #. Note that
many actions occurred infrequently enough to be omitted. . . 103

A.10 Action frequency distribution across all environments for cham-
pions with learner traversal after 400 generations of training
plotted as a percent of the whole against the frame #. Note
that many actions occurred infrequently enough to be omitted. 104

A.11 Action frequency distribution for champions trained on the Bat-
tleZone Atari game with learner traversal after 400 generations
of training plotted as a percent of the whole against the frame
#. 105

A.12 Action frequency distribution for champions trained on the Bat-
tleZone Atari game with learner traversal after 400 generations
of training plotted as a percent of the whole against the frame
#. 105

xii

Abstract

Tangled program graphs provides a framework for constructing modular genetic pro-

gramming solutions to visual reinforcement learning tasks. In order to guard against

the development of cycles within the resulting graph, and therefore introduce the

halting problem, a traversal strategy forbidding the revisiting of vertices was origi-

nally assumed. In this thesis an alternative traversal strategy wherein vertex revisits

are allowed but edge revisits are not is explored. An empirical study is performed

using 20 game titles from the Arcade Learning Environment in order to assess the

relative impact of the different traversal strategies on the resulting agent behaviours

and underlying graph characteristics. Ultimately both strategies appear to result in

behaviours that are statistically very similar. The most notable differences appear in

distributions of actions used to reach the same performance.

xiii

Acknowledgements

This work would not have been possible without the advice and guidance from my

supervisor Dr. Malcolm Heywood. Your encouragement helped me take the plunge

with an honor’s thesis, and now a master’s, can’t wait to find out where this rabbit

hole goes.

A special thank you to Dr. Mike Smit who was generously flexible on my work

commitments as this thesis was being written.

I would also like to thank the TPG team in the NIMS Lab, Robert Smith, Ryan

Amaral, and Caleidgh Bayer for sharing their input, TPG implementations, visualiza-

tion designs and moral support throughout the process of putting this work together.

It was a pleasure working with all of you!

And of course, a big thank you to my family and friends who delightfully tolerated

my insanity.

xiv

Chapter 1

Introduction

Machine learning (ML) requires that three basic questions need answering: 1) how to

express a candidate solution, or the representation problem; 2) how to characterize

the performance of a candidate solution, or the cost function; 3) how to modify a can-

didate solution once its performance has been established, or the credit assignment

problem. Naturally, there are many approaches to addressing these questions and

corresponding trade-offs once a decision is made to answer each design question in a

particular way. In this thesis we are particularly interested in the case of genetic pro-

gramming [52]. Genetic programming might address the aforementioned ML design

questions in the following way:

• Representation: an instruction set as applied to a simple register machine

under a variable length representation, or linear GP [48, 44]. Thus, we assume

that decisions are made a priori regarding what instructions are supported (al-

though that need not be the case [60]). Specifically, instructions take the form

of a simple register transfer language of the form R[x] = R[x]〈op〉(R[y] ∪ ~s(y)).

R[x, y] ∈ R are references to a finite set of MaxReg general purpose registers, R.

~s(y) represents a reference to attribute y from the state space (inputs defined by

the task). 〈op〉 are the set of two argument operations.1 The ∪ operator is used

to indicate that the second argument can be one of two forms, a reference to

the state space (an input from the task environment) or a reference to the value

of a general purpose register. Each instruction is therefore represented as an

integer that is ‘decoded’ to a legal instruction given prior knowledge regarding

the number of instructions in the instruction set, maximum number of registers

(MaxReg) and dimension of the state space (N). In addition, rather than a

single candidate solution/agent being maintained at a time, multiple candidate

solutions/agents are maintained simultaneously (or the ‘population’).

1Dummy references can be used to extend this to single argument operations.

1

2

• Cost function: tends to reflect properties of the task. Thus, classification

problems might reflect a desire to maximize detection rate on multiple classes of

classification whereas function approximation might reflect a desire to minimize

the mean square error. In this thesis we are interested in applying GP to episodic

reinforcement learning tasks in which state is defined by pixel values sampled

from a video frame (§1.1). This means that candidate solutions/agents are

required to interact with a task at discrete points in time, t = 0, 1, · · ·T , or an

episode. At each interaction the agent selects a discrete action that potentially

results in a change to the task environment. Task environments in this case

are defined by a video game engine (§1.1). The process repeats until either

a maximum number of interactions is encountered, or the agent encounters

a ‘terminal state’ (i.e. game won, lost, drawn). The goal of the agent is to

maximize the average cumulative reward received over the episode. The cost

function can also quantify other performance issues such as solution complexity

and computational budget to make a decision.

• Credit assignment: encompasses three factors in genetic programming: 1)

who in the population of candidate solutions are selected to ‘reproduce’ or the

parents; 2) how to produce ‘offspring’ from the parents, and; 3) who are replaced

in the original population by the offspring. In this work a ‘breeder’ formulation

will be assumed, which is to say that the population as a whole are first evaluated

in the task using the cost function. The population is ranked using the relative

performance under the cost function. The bottom Gap percent individuals are

deleted, and a copy made of Gap parents selected from the surviving members of

the population with uniform probability. Variation operators are then applied

to the cloned parents. The resulting offspring are then added to the survivors

to define the new population. This defines an iteration or generation of GP.

This process is elitist if the task definition is stationary and complete.

The specific formulation of GP assumed in this thesis is that of Tangled Program

Graphs or TPG [49, 50, 51]. TPG explicitly composes solutions from multiple pro-

grams, thus there can never be less than two programs per agent. The underlying

motivation is to decompose a task such that different programs are associated with

different aspects of a task, as opposed to assuming that solutions take the form of a

3

single monolithic program. To facilitate this TPG assumes a representation consist-

ing of program and action; hereafter the ‘learner’. Such a paradigm was previously

demonstrated to scale to visual reinforcement learning tasks (Section 1.1), a theme

that will be continued in this thesis.

The TPG reinforcement learning framework coevolves programs responsible for

sampling an input space into groups called teams. Programs are encapsulated in

learners, and thus, a team has a set of learners. Learners, in addition to containing a

program, also hold a reference to either an action or another team. In graph theoretic

terms, teams and actions represent vertices and learners represent edges. A team not

referenced by any learner (no incoming edges) is considered a root team.

Figure 1.1: Basic Components of Tangled Program Graphs (TPG)

During training, TPG constructs a complex graph using these components (see

figure 1.1). The end result is a population of root teams who use their underly-

ing graphs to decide what action to apply to an environment given an input vector

describing the environment’s current state.

The decision making process works as follows: When an input vector is given to

a root team, the root team passes the vector to each of its learners. A simple register

machine is used to execute the learner’s program. These programs are composed

of ADD, SUB, MUL, DIV, and NEG instructions whose arguments are either fixed values,

register values, or values from the input vector. After a program’s execution, whatever

value is left in register 0 of the machine is returned. This value represents a learner’s

bid. The bids of all learners on a team are compared, and the learner with the

4

highest bid earns the right to ’suggest’ its reference as the action to be applied to

the environment. If the learner is referencing another team instead of an action, this

process repeats using the learners associated with that team, and so on, until an

action is returned [49, 41].

This work describes the first attempt to collect empirical measurements at scale

from the inner mechanisms of TPG during evolution and evaluation. This undertaking

was motivated by a desire to determine the effect of a different graph traversal strategy

for root teams to decide on actions. What follows in this chapter is a brief description

of visual reinforcement tasks (1.1), TPG’s evolutionary process (1.2), and a deeper

look at the role of graph traversal strategies(1.3). Chapter 2 describes the methods

used to test the alternate traversal, while chapter 3 dives into the software platforms

and hardware infrastructure that allowed us to collect and produce the results in

Chapter 4 on the basis of millions of data points. Finally, Chapters 5 & 6 provide

analysis and concluding remarks.

1.1 Visual Reinforcement Tasks

In this work we use a set of visual reinforcement tasks to benchmark TPG’s perfor-

mance. In these kinds of tasks reinforcement learning is driven by interactions with

an environment that can be visually observed. In our case these environments are

a selection of games released for the Atari game console [43]. Through the use of a

framework described later in chapter 2, we receive the current state of a game as a

vector of pixel values. These pixels are defined as triplets whose values correspond

with those of the red, green and blue (RGB) color channels [41]. For our Atari games

the size of this vector is 210 × 160 × 3 (height × width × RGB) [6]. Before passing

this vector to TPG we first downsample it to 105 × 80 × 3 using the mean function

over 2 × 2 × 1 blocks. Then we flatten the vector to 8400 × 1 by first mapping the

RGB triplet to a single unique value and then flattening the result.

Our Atari game environments also have action spaces defined by the actions a

player can perform on the joystick and the subset of those which are valid for the

game in question. For example, if there are five valid actions in the game, the action

space might look like this: {0,1,2,3,4}. Where each value corresponds with a given

action like FIRE,LEFT,RIGHT,UP,DOWN.

5

This downsampled, flattened, input vector is passed to a root team in TPG which

returns an action back to the script driving the interaction. The returned action is

applied to the game state and the subsequent state as well as a reward produced by

the environment (i.e. change in game score at that frame) is emitted by the game

environment. This process then repeats until such time that the game reaches an

end condition like winning, losing, or reaching the frame limit for this play session

(the episode). The sum of the reward accrued over the course of an entire episode is

the fitness achieved by that root team. In the case of our Atari games this reward

corresponds to the same score a human player would receive playing the game [41]. To

mitigate the effect of ‘lucky’ outliers, our experiments play multiple episodes during

each period of evaluation, and the mean fitness a root team achieves over these

episodes is used during the process of evaluating the cost function.

1.2 Training in TPG

Training in TPG is the process in which a population of root teams are evaluated on

a common task, and this performance information used to rank each root team. This

is then used to generate a new population of root teams based on the best performing

teams of the current generation or the breeding process described above for credit

assignment under GP. This section describes how the initial population is created,

and how the evolutionary process works on a population to create the subsequent

generation’s population.

1.2.1 The Initial Population

TPG is an evolutionary reinforcement learning framework based on genetic program-

ming. The exact mechanisms of evolution depend on the implementation of TPG

used, in this section we will focus on the the python implementation (pyTPG) used

in this work.2 PyTPG uses a trainer object to manage the data structures and states

of the algorithm. During the initialization of the trainer, we must pass it the ac-

tion space of the task at hand, the trainer then samples two unique actions from that

space. It will then create two learners, each of which will reference one of the sampled

actions, see figure 1.2.

2https://github.com/Ryan-Amaral/PyTPG

6

Figure 1.2: A visualization of TPG during its initialization phase. Two actions have
been sampled (A B) and two learners (with their underlying programs) have been
generated ’pointing to’ those actions, but the first team has not yet been created.

During the process of initializing the learners we create programs for each learner

by generating register machine instructions of the form 〈MODE〉〈OP〉〈DESTINATION〉〈SOURCE〉.
MODE can take the value of either 0 or 1. If it is 0, the SOURCE value will be inter-

preted as an index into one of the registers of the machine. If it is 1, the SOURCE value

will be interpreted as an index into the input vector upon which the program is run.

The number of registers and the size of the input vectors are part of the parameters

required to create a trainer. OP can take on a value between 0 and 4 inclusively,

corresponding to the operations: ADD,SUB,MUL,DIV and NEG. ADD and SUB are binary

operations, while MUL,DIV and NEG are unary operations. Table 1.1 describes the

behavior of each of these operations.3

Operation Function
ADD [DESTINATION] + [SOURCE]

SUB [DESTINATION] − [SOURCE]

MUL [DESTINATION] ×2
DIV [DESTINATION] ÷2
NEG IF [DESTINATION] <[SOURCE] THEN [DESTINATION] ×= -1

Table 1.1: Operations found in program instructions and their function. Note that
[] denote that the value in the square brackets is used as an index. For DESTINATION
this is always an index into the registers of the machine. For SOURCE this can refer to
an index into the registers of the machine, or into the input vector depending on the
MODE of the instruction. The NEG operation, negates the value found in the register
specified by DESTINATION if that value is less than the one referenced by SOURCE.

3The multiplier in MUL and the divisor in DIV are fixed to 2, as a result of prior work demonstrating
negligible benefit from allowing them to vary [56, 53].

7

Thus an instruction can be generated by first randomly choosing a MODE between 0

and 1, an OP between 0 and 4, a DESTINATION between 0 and the number of registers

in the machine minus 1, and a SOURCE between 0 and the number of registers in the

machine minus 1 or between 0 and the size of the input vector minus 1, depending

on what value was chosen for the MODE. We define an algorithm parameter initMax-

ProgSize which is given to the trainer at initialization, to determine the number of

these instructions to generate for the initial learner population. Once each learner

has generated a program of the desired length we create a team that references both

of the learners. Because no learners point to this team, it is a root team. Finally,

we continue to sample actions from the action space, create learners (and their cor-

responding programs) until we reach the initMaxTeamSize. Figure 1.3 shows a root

team generated during initialization. The first two learners are identified by dashed

lines, they are important because they ensure that despite the stochastic nature of

the initialization process there are at least two distinct actions associated with the

team. There is no rule dictating that multiple learners may not reference the same

action, as can be seen in figure 1.3 through learners 2 and 3. This is because learners

2 and 3 are still unique due to differences in their underlying programs.

8

Figure 1.3: The first root team produced during trainer initialization. The dashed
arrows for learners 1 and 2 signify that they were the first two learners to be created,
and are thus guaranteed to reference two distinct actions from the action space.

This whole process repeats to create as many root teams as defined in the team-

PopSize parameter, thus creating the population for generation 0.

1.2.2 Evolution

In pyTPG, evolution is a two step process. First we select the members of the root

team population which are to be retained, and purge the rest of them (as per above

‘breeder’ model of credit assignment). Then we generate new root teams by cloning

from the selected root teams and mutating their clones. New root teams are generated

in this manner until we again reach our desired teamPopSize.

The selection process works by ranking root teams by the fitness they’ve achieved

during the last round of episodes. A gap parameter represents the number of teams

to drop after this ranking takes place. For example, with a gap of 0.5, half of the root

teams would be purged during this step. The only exception to this rank and purge

procedure, occurs if the algorithm parameter elitist is set to true. In that case, the

9

root team that has achieved the highest fitness thus far is always preserved, even if

it performed poorly compared to its peers in the last round.

During the generation process, random root teams that survived selection are

chosen to be cloned. Their clones then under go iterations of mutation in which,

learners may be added, removed, or themselves mutated. Multiple things can occur

when a learner is mutated. There is a chance that the underlying program will be

mutated by adding, deleting, or swapping its instructions. There is also a chance

that a learner will mutate its reference, this can happen in one of two ways: either a

new action from the action space is sampled and referenced, or a random team (not

necessarily a root team) is chosen from the global population as the new reference of

the learner.

A process we call rampant mutation dictates how many iterations of mutation

occur on these clones. Rampancy parameters allow us to configure this process.

Rampancy parameters take the form: <INTERVAL>,<MIN>,<MAX> where INTERVAL

specifies the number of generations between rampancy, MIN specifies the minimum

number of mutation iterations, and MAX specifies the maximum number of mutation

iterations. For example the rampancy parameters 5,3,10 indicate that every 5th

generation will be subject to rampant mutation, where a random number of muta-

tion iterations between 3 and 10 will be performed. On generations where rampancy

does not occur, only one iteration of mutation takes place, thus the parameters 1,1,1

would be analogous to no rampancy at all. For this work we used the parameters

1,5,5 resulting in every generation being subject to 5 iterations of mutation to pro-

duce the subsequent generation’s population. Rampant mutation was developed by a

colleague in the NIMS lab, Robert Smith, while working on ways to increase genetic

diversity throughout training in TPG.

1.3 Graph Traversal Strategies

In section 1 we showed how a root team in TPG, given an input vector, decides on

what action to apply to the environment. Because teams, learners and actions can

be thought of in graph theoretic terms as vertices and edges, this decision making

process amounts to a graph traversal, beginning at the root team, and descending

through learners until an action is found. When considering a single root team, it is

10

tempting to think of these graphs as trees. However during evolution it is possible for

a learner to mutate in such a way that its new reference points to a team which has

a learner pointing to the team whose learner is currently mutating, thus introducing

the possibility of entering a cycle which would result in no action being returned.

Two mechanisms exist within TPG that aim to prevent this from happening. The

first happens during evolution, where we ensure that all teams have at least one

learner pointing to an action. The second happens at execution time, that is when

an action is being decided upon as a function of an input vector, here we keep a list

of teams that we have already visited on our traversal path, and we forbid following

a learner whose action returns us to a previously visited team. This is the default

behavior of TPG and will henceforth be referred to as team traversal, figure 1.4

demonstrates team traversal in action.

We now arrive at the motivation for this thesis. In this thesis the question posed

is to ask what happens if we allow TPG to revisit previously visited teams during

execution, and instead prevent cycles from occurring by stipulating that no learner

should be visited twice. This approach will be referred to as learner traversal, and

is shown in action by figure 1.5.

11

Figure 1.4: a) We begin execution and the root team passes the input vector along
to another team. b) Bidding continues and the input vector again passes to another
team. c) Bidding continues, and the input vector is passed along to the last team in
this graph. d) Bidding occurs and the learner pointing back to the team in b) wins,
but due to the rules of team traversal, we cannot proceed there and therefore fall
back to the next highest bid pointing to action t. Figure sourced from [41].

12

Figure 1.5: a) We begin execution and the root team passes the input vector along
to another team. b) Bidding continues and the input vector again passes to another
team. c) Bidding continues, and the input vector is passed along to the last team
in this graph. d) Bidding occurs and the learner pointing back to the team in b)
wins, we proceed back. For the given input vector we already know that the learner
pointing to the team in c) will win the bid, but by the rules of learner traversal we
cannot proceed there and therefore fall back to the next highest bid pointing to action
t. Figure sourced from [41].

It is unclear what kind of effect this change in graph traversal strategy would have.

Perhaps this new freedom to re-visit teams could manifest in smaller overall graph

sizes as more information could be encoded in fewer vertices. Performance gains

could arise from the fact that revisits do not incur additional computational cost

13

through program execution. The revisited team has by definition already performed

its bidding round for the current input vector, so we can simply store and reuse the

bids to determine the next learner without having to execute any new programs.

1.4 Summary

TPG is a reinforcement learning framework based on genetic programming and the

co-evolution of teams of programs that sample the input space, and learners who stitch

these teams together to create a tangled program graph. In this graph a population of

root teams exist each of which we will use to play a variety of Atari games, observing

what kind of effect different graph traversal strategies have on the global graph, the

fitness of the root teams, performance and other characteristics of TPG.

In order to develop this topic, we first introduce the OpenAI gym distribution for

the Atari reinforcement learning tasks and establish how TPG interfaces to the game

engine (§2). Also addressed are the criterion for performance evaluation and met-

rics employed for describing/distinguishing between static and dynamic properties of

TPG solutions. Section 3 summarizes how we addressed the management of large

amounts of information generated by the resulting performance evaluation. Which

is to say that over 20 game titles for two different marking schemes and five initial-

izations per title, terabytes of performance/save data were collected. Developing a

framework to scale to the management and recovery of the runs as well as supporting

the post training analysis and organization of the resulting data was a significant

undertaking. Section 4 details the results of the empirical evaluation. To do so, both

training and test performance is considered, as are static and dynamic properties of

the TPG graphs under the two marking schemes. Performance relative to two deep

learning frameworks is also included in order to provide further context to these re-

sults. Section 5 summarizes findings from the empirical study and overall conclusions

are drawn in Section 6.

Chapter 2

Methods

The OpenAI Gym is a python toolkit for reinforcement learning research that pro-

vides, amongst other things, dozens of Atari games under a standard API wrapper

which AI agents can interact with[45, 16]. The base TPG implementation used for

this work was developed by a fellow lab member, Ryan Amaral[42]. It is a python

implementation dubbed ’pyTPG’. The primary experiment, henceforth, ’Lightbeam’,

would consist of testing pyTPG’s performance playing a selection of 20 Atari games,

(see Table 2.1) that straddle the performance from two benchmark deep learning al-

gorithms: RAINBOW and DQN [47, 54]. For example, DQN represents the original

demonstration of visual RL using deep learning in which DQN performed significantly

better than ‘human play’ on 3 of the 20 titles and worse on 11 of the 20 titles [54].

Rainbow represents a deep learning framework that incorporated six different opti-

mizations developed since DQN and returned the best benchmarking performance

against 6 other deep learning approaches [47], was the best algorithm on 6 of the 20

game titles from Table 2.1. In short, the 20 titles span a combination of games that

deep learning still find challenging.1

Environment
Asteroids-v0 FishingDerby-v0 Kangaroo-v0 Robotank-v0
BattleZone-v0 Freeway-v0 Krull-v0 Skiing-v0
Bowling-v0 Frostbite-v0 MsPacman-v0 TimePilot-v0
Centipede-v0 Gravitar-v0 Pitfall-v0 Tutankham-v0
DoubleDunk-v0 IceHockey-v0 PrivateEye-v0 Venture-v0

Table 2.1: The 20 Atari games chosen for the Lightbeam experiment
.

PyTPG provides a mechanism for modifying aspects of the internal algorithm

through a configuration system that leverages python’s ability to swap functions at

1Montezuma Revenge is often considered difficult on account of not rewarding intermediate puzzle
solving steps. However the ‘Pitfall’ title also has this property and is included in the 20 titles used
in the benchmarking conducted in this thesis.

14

15

run-time. To use this system, one determines which functions of the algorithm must be

changed to implement the desired customization, then one implements the customized

versions of these functions in a separate python script. Finally, new command line

parameter(s) are added to allow switching between the customized functions and

the default implementations provided by pyTPG. When the configuration system is

passed the command line arguments, it determines which underlying functions should

be used during execution.

We use this mechanism to implement learner traversals in pyTPG. When a game

state is returned by an Atari Gym environment, it is passed to a root team through

its act(self,state,visited,...) function which returns the action to be applied.

This ’act’ function passes the game state to all learners attached to the root team so

they may return bids determining which of the learners earns the right to ’suggest’

its action. The default implementation of this function (see Listing 2.1) implements

team traversal.2

Listing 2.1: Act function in Team.py implementing team traversal. Parts of this

function have been omitted or truncated for brevity.

def act(self , state , visited):

Throw an exception on revisit

if str(self.id) in visited:

raise(Exception("Already visited team!"))

Add this team’s id to the list of visited ids

visited.append(str(self.id))

’’’

Valid learners are ones which:

* Are action atomic

* Whose team we have not yet visited

’’’

2Both traversal code samples make use of lambdas. These are anonymous function that are
defined inline following the lambda keyword.

16

valid_learners = [lrnr for lrnr in self.learners

if lrnr.isActionAtomic () or

str(lrnr.getActionTeam ().id) not in visited]

Find the learner with the highest bid

top_learner = max(valid_learners ,

key=lambda lrnr: lrnr.bid(state))

Return the action suggested by that learner

return top_learner.getAction(state , visited=visited)

Note how the function keeps track of which teams have already been visited

through a list dubbed ’visited’. If the top_learner returns another team as its

action, this list is passed to that team’s act function. When using learner traversals

we would like this function to instead keep track of learner ids in the visited list,

and only collect bids from learners that have yet to be visited. act_learnerTrav in

Listing 2.2 implements these changes.

Listing 2.2: act_learnerTrav replaces the act function when --traversal learner

is passed as a command line parameter.

def act_learnerTrav(self , state , visited):

’’’

Valid learners are ones which:

* Are action atomic

* We have not yet visited

’’’

valid_learners = [lrnr for lrnr in self.learners

if lrnr.isActionAtomic () or

str(lrnr.id) not in visited]

Find the learner with the highest bid

top_learner = max(valid_learners ,

key=lambda lrnr: lrnr.bid(state))

17

Add the top_learner ’s id to the visited list

visited.append(str(top_learner.id))

Return the action suggested by that learner

return top_learner.getAction(state , visited=visited)

2.1 Training

500 generations of training were done with team traversal for each of the 20 environ-

ments in Table 2.1; the same was done with learner traversal. The number 500 was

chosen in part through a result of informal test trials on earlier versions of pyTPG

which showed fitness plateauing around the 500 mark. These tests however were

performed before the addition of rampant mutation. To mitigate the influence of

outliers, 5 instances of each environment-traversal combination were run for a total

of (2 traversal types × 20 games × 5 instances) 200 runs performing a cumulative

100,000 generations of training. ’Lightbeam’ refers to the final set of these experiment

instances, distinguishing them from several previous attempts at running this same

experiment which failed as a result of the complexities in operating the Looking Glass

platform for the first time, integrating with ACENET, or human error. This distinc-

tion is necessary as partial data from past attempts, as well as data from unrelated

experiments using Looking Glass, would also exist on the platform and would have

to be excluded from our analysis.

Aside from the environment, traversal type and instance identifier, the rest of the

algorithm parameters remained fixed to the values used by Stephen Kelly in earlier

work [50, 49] (see Table 2.2 and 2.3).

18

Parameter Value Description
Episodes 5 The number of times a root team

plays the game after evolution. The
average fitness achieved across these
playthroughs are used to evaluate the
root team.

End Generation 500 The number of generations at which
training should stop.

Run Key lightbeam The experiment to which this run be-
longs.

Frames 10000 The maximum number of frames in a
single playthrough of a game. If the
game doesn’t reach an end state by this
number of frames it is terminated.

Initial Team Pop. 360 The number of root teams in generation
0.

Initial Max Team Size 5 The maximum number of learners a
root team at generation 0 will have.

Initial Max Program Size 128 The maximum number of instructions
a program at generation 0 will have.

Gap 0.5 The percentage of root teams to elimi-
nate during selection at evolution-time,
expressed as a decimal.

Input Size 8400 The size of the game state vector passed
to TPG after downsampling and flat-
tening.

Register Count 8 The number of registers in the state
machine on which programs are run.

Eliteist true If true, ensures the highest scoring root
team is never eliminated during selec-
tion.

Rampancy Params. 1,5,5 Dictates that every generation, during
evolution, the mutation step should be
applied 5 times.

Table 2.2: Lightbeam TPG Parameters

19

Parameter Value Description
Learner Delete Prob. 0.7 The probability that learners are

deleted from a team during mutation.
Learner Add Prob. 0.7 The probability that learners are added

to a team during mutation.
Learner Mutate Prob. 0.3 The probability that a learner is mu-

tated during mutation.
Program Mutate Prob. 0.66 The probability that a program is mu-

tated during mutation.
Action Mutate Prob. 0.33 The probability that an action associ-

ated with a learner is mutated.
Atomic Action Prob. 0.5 The probability that an action mutates

to an atomic action.
Instruction Mutate Prob. 1.0 The probability that an instruction is

mutated by flipping a bit.
Instruction Add Prob. 0.5 The probability that an instruction is

added to a program.
Instruction Delete Prob. 0.5 The probability that an instruction is

deleted from a program.
Instruction Swap Prob. 1.0 The probability than an instruction is

swapped from a program.

Table 2.3: Lightbeam TPG Probability Parameters

The bulk of these experiments were run on the ’Cedar’ compute cluster provided by

the Atlantic Computational Excellence Network (ACEnet) program. The ACENET

program is a collaboration between academic institutions in Atlantic Canada which

aims to support computationally intensive research[2]. Cedar itself is a compute

cluster that makes thousands of Intel cores, terabytes of RAM and storage space, as

well as hundreds of NVIDIA GPUs available to researchers [8]. A script was written

encoding the above parameters while provisioning compute nodes with 24 cores and

8GB of RAM for each experiment instance. The maximum amount of time a single job

is allowed to take on Cedar is 28 days. Thus, a mechanism for saving and restarting

an experiment was implemented (further discussed in section 3.1.4). The job priority

of these experiments varied over time as a function of resources used. Users that have

used fewer resources had higher priority [21, 8]. Given that we had 200 experiments

to run, we found our jobs queuing less often as our experiments progressed. To

supplement our computational needs jobs were also started on the NIMS cluster (our

local hardware resources, further described in Chapter 3) though using only 5 cores

20

per job there.

2.2 Evaluation

Once we trained a champion for 500 generations, it would be run through an eval-

uation phase consisting of 20 playthroughs (episodes) of the game it was trained

on. To evaluate the generalized performance of of a champion, in contrast to the

playthroughs done in training, a random number of frames between 1 and 30 were

skipped at the start of the game. This aims to control for champions who merely

’memorized’ one series of actions that maximize fitness.

This phase is significantly less computationally intensive compared to training and

as such was run on a single workstation.

2.3 Measurement

To capture the effects different graph traversals might have, data was gathered about

as many characteristics of the algorithm as possible within time, computational and

creative constraints. This was deemed necessary as the traversal change is subtle and

it is unclear where its impacts may manifest. Measured characteristics fall within the

following categories: performance, static properties, dynamic properties, and action

distributions. All the statistics measured are with respect to their environment and

traversal type unless otherwise stated. The majority of these statistics are computed

from the evaluation phase, however some, in particular those with respect the com-

puted generations (such as fitness curves) necessarily come from the training phase.

2.3.1 Performance

Performance data primarily encompasses the measurement of fitness and related

statistics.

• Minimum Fitness

• Mean Fitness

• Maximum Fitness

21

• RAINBOW Normalized Maximum Fitness

• RAINBOW Normalized Mean Fitness

Normalizing performance, fscore, relative to the results from Rainbow provides a

relative measure of performance and enables the display of results across different

game titles using a common performance plot. The normalization is adopted from

that in the original DQN benchmarking [54], but with the Rainbow final performance

as the normalizing factor. Thus, the normalization has the form,

fscore(i) = 100× TPG(i)− rnd(i)

RB(i)− rnd(i)
(2.1)

where TPG(i) is the average TPG agent score on game title i, RB(i) is the equivalent

performance for Rainbow, and rnd(i) the average score for a random policy on title

i (see [54, 46] for random agent performance).

2.3.2 Static Properties

These are properties of the champions at a given generation which do not vary between

episodes. They are primarily comprised of measurements of the champion’s graph.

• Champion Graphs

• Champion graph diameter with respect to root 3

• # of Learners

• # of Teams

• # of Instructions

• # of Learners per Team

• # of Instruction per Team

3Diameter with respect to root refers to the ’longest shortest path’ to any vertex from the vertex
representing the root team [17].

22

The objective of collecting these properties is to characterize the overall complexity

of the TPG graphs. However, they do not reflect the complexity of a root team’s

decision making. Which is to say that in order to suggest an action on any given

state, TPG execution begins at the root team’s vertex. All learners are evaluated,

resulting in the selection of one action. Such an action might be atomic or a reference

to another team in the root team’s graph. In the former case this would be the end of

the TPG graph evaluation. In the latter the learners associated with the next team

are all evaluated, with the process repeating until an atomic action is encountered.

This implies that there is a considerable difference between the ‘static’ complexity

of a TPG graph (i.e. the graph containing all root teams, everything) and what is

evaluated in order to map from a root team to an atomic action or the ‘dynamic’

complexity.

2.3.3 Dynamic Properties

These are properties of the champions at a given generation which vary between

episodes, they are collected by recording individual paths taken by champions through

their graphs from their root team to the atomic action they return.

• Maximum Path Depth

• Mean Path Depth

• Minimum Path Depth

• Average Instructions per Action

• Average Execution Time

As noted above these metrics are designed to characterize how much of a root

team’s graph is actually ‘visited’ in order to make a decision.

2.3.4 Action Distributions

Action distributions refer to the frequencies of actions during play. Frames here refers

to an index into the number of frames played during an episode, it functions as a proxy

for time. The raw number of appearances is the most basic measurement, while the

23

frequency over frames data shows us if the different traversals use different actions at

different points in the game.

• Action Frequency

• Action Frequency over Frames

The action distribution metrics will be used to imply whether there is any signifi-

cant difference in the overall ‘behaviour’ between team and learner marking schemes.

Thus, for example, it might transpire that the two marking schemes result in agents

that have the same quality of play (as defined by game score), but do so using different

action distributions.

Chapter 3

Research Environment

A major challenge in exploring the effect of adaptations on TPG are the logistics of

running experiments at scale. To produce sound data we would like to run multi-

ple instances of the algorithm both with and without an adaptation, holding other

parameters the same.

For popular machine learning algorithms there exist tools and frameworks that

help one develop experiments, producing desired metrics and figures [32][20]. However

TPG has been implemented from scratch in the NIMS (Network Information Man-

agement and Security) lab, and therefore lacks the feature support of these popular

frameworks.

The lab has produced several implementations over the years, however two imple-

mentations in particular get the most use. TPG-J a java implementation, and pyTPG

a python implementation. These implementations are not interchangeable, each dif-

fer in some aspects from each other and the original TPG paper by Stephen Kelly

(implemented in C++). This work leveraged pyTPG as the OpenAI Gym toolkit

integrates best with python and provides a test bed of dozens of Atari games to train

and evaluate TPG on.

Initial experimentation involved forking the pyTPG git repository, patching in the

necessary adaptions to support learner traversals and then adding in code which would

measure the metrics of interest and output them to a file. With over 23 algorithm

parameters and many more auxiliary parameters dictating the number of threads to

use, paths to result files, etc. starting even a few experiments was error prone. Once

results were produced, the task of collating them together for comparison was not

trivial.

To run a simple experiment, say testing an adaptation on three different Atari

games, one would require six instances. One per game, with the adaptation, and

one per game without the adaptation. While the pyTPG implementation does offer

24

25

some parallelization, computing several hundred or thousands of generations could

still take a few weeks. Thus, to perform this experiment on a reasonable timescale

one would like to start six instances of the algorithm on six different machines. This

meant installing pyTPG’s dependencies on six different machines, running the mod-

ified implementation, and later coming back to each of the six machines to retrieve

the results.

It became evident that it would not be possible to produce correct results at scale

in this manner, much less analyze them on the timeline of a master’s thesis. The

issues described above can be summarized into the following broad categories:

Execution Challenges:

1. Installing pyTPG dependencies was time consuming, and had to be done on as

many machines as one wanted to use in parallel.

2. Each instance in an experiment had to be started manually.

3. Starting a TPG instance was error prone due to the number of parameters.

4. If an instance was interrupted it would have to be restarted from scratch.

Analysis Challenges:

1. Metrics produced by each instance had to be retrieved manually.

2. Visualizing metrics involved the creation of experiment specific scripts that

parsed result files.

3. Analyzing metrics was time consuming and error prone.

The following sections describe the systems and infrastructure provisioned to ad-

dress these challenges and perform the experiment central to this thesis. However,

these systems were designed to be as flexible and extensible as possible, and could

therefore be leveraged with minimal effort by other researchers working on custom

machine learning algorithms to create a research environment conducive to producing

robust results at scale.

26

3.1 Running Experiments

The NIMS lab owns around 10 geographically co-located servers with varying amounts

of CPU, RAM, and Disk resources. This is our primary deployment environment for

tooling, testing and light experimental computation. In addition, a separately provi-

sioned virtual machine (VM) hosted on the Dalhousie Open Stack cloud environment

acts as a control plane (see section 3.1.2). Together these make up what will be

referred to as the NIMS Cluster.

The bulk of the experimental computation for this work was executed on the Cedar

cluster provided by the Atlantic Computational Excellence Network (ACENET) un-

der the Compute Canada program.

Four technologies are leveraged together to address the execution challenges de-

scribed. Containerization, container orchestration, infrastructure-as-code, and auto-

matic cloud backups.

3.1.1 Containerization

Containerization is the process of creating discrete run-time environments setup with

the bare necessities required to execute an application (containers). They package

up code and dependencies so that applications can be deployed quickly and reliably

from one computing environment to another [35].

The Docker container engine was the base of our containerization effort. In the

process of containerizing an application, one produces an image, which is then run

in a container. In Docker, images are built using a ’Dockerfile’ which describes the

execution environment that the application requires to run. Listing 3.1 is an ex-

cerpt from the Dockerfile used to create the pyTPG docker image used to run an ex-

periment instance. The command docker build . -t nimslab/tpg-v2:lightbeam

tells docker to build an image using the Dockerfile found in the current directory and

tag it with the name nimslab/tpg-v2:lightbeam.

Listing 3.1: Excerpt of PyTPG Dockerfile

FROM python :3.6

#Update & get sudo & cmake

27

#Need sudo for llvm install

#Need cmake for gym[’atari ’] install

RUN apt -get update &&

apt -get -y install sudo &&

apt -get -y install cmake

#Install llvm as pre -req for llvmlite python module

RUN apt -get update && sudo apt -get -y install llvm

RUN python -m pip install --upgrade pip

RUN pip install numpy

RUN pip install llvmlite

... # Other dependencies truncated for brevity

RUN pip install numba

RUN pip install gym[’atari ’]

#Copy NIMS Python library files into image

COPY . .

ENTRYPOINT ["python3" ,"./nims/experiments/atari.py"]

This Dockerfile sits in the working directory of the NIMS Python Library which

contains a collection of utilities and the atari.py script which initializes pyTPG and

runs it on the Atari Gym environment.

To simplify the creation of complex application environments Dockefiles allow one

to build upon other images. Popular frameworks, tools, libraries, languages, etc.

provide base images from which to build on Docker Hub [13]. In the excerpt we begin

with FROM python:3.6 to specify that our image should build upon the the python

image tagged with version 3.6. The python image is itself built upon a Debian image

[31].

The next portions of listing 3.1 execute commands that install the system depen-

dencies required by some of the python dependencies used by PyTPG and then the

28

python dependencies themselves.

The COPY . . command is used to copy the files from the working directory into

the docker image. Importantly this includes the atari.py script that actually runs

an experiment instance.

Finally ENTRYPOINT ["python3","./nims/experiments/atari.py"] tells Docker

what command to run when a container is created using the nimslab/tpg-v2:lightbeam

image.

The final step is to run docker push nimslab/tpg-v2:lightbeam, which uploads

the image to the NIMS lab docker hub account. This allows us to pull our image onto

other machines, sparing us the trouble of building the image on every machine we

would like to run pyTPG on.

At this point, we have addressed the first execution challenge. Running pyTPG

is now trivial on any machine with docker installed. We simply execute:

docker run -it nimslab/tpg-v2:lightbeam <params>

and Docker will automatically pull the image from docker hub and start a container in

which the atari.py script is executed using the parameters passed in the docker run

command.

3.1.2 Container Orchestration

Container orchestration refers to the process of automating the deployment, manage-

ment, scaling and networking of containers [36].

The challenge that orchestration allows us to address is that, even with container-

ization, we still have to manually logon to every server we would like to run pyTPG

on and execute the docker run command. With orchestration we can configure all

our available servers into a cluster and let an orchestration engine distribute the ex-

ecution of containers in the most efficient way possible given the compute resources

available on each cluster member, henceforth referred to as a node(s).

The NIMS cluster is a Kubernetes (K8) cluster. In kubernetes, a special subset of

node(s), called ’control-planes’ act as the command and control nodes for the cluster.

29

Figure 3.1: Kubernetes Architecture Figure sourced from: [26]

To improve the reliability of the NIMS cluster, the control plane in the cluster

is not actually co-located with the rest of the NIMS nodes, and instead is hosted

as a VM on Dalhousie’s Open Stack cloud. The role of the VM is strictly that of

orchestration, and no other workloads are run on it.

Kubernetes allows one to deploy resources on a cluster of nodes. Two common

resource types relevant to our work are Deployments and Jobs. Both types ultimately

manage ’pods’, which are the smallest deployable units of computing on Kubernetes.

Pods are collections of containers that share storage and network resources and im-

portantly, are all co-located and co-scheduled on the same node[29].

Deployments are resources which describe a desired state and through the use of

a controller maintain that state on the cluster[12]. When we want to host something

like a TPG visualization tool we would use a deployment to specify that a container,

with the visualization tool’s docker image, should always be running on the cluster.

Jobs are similar to deployments, however, they manage pods who are expected to

do something and then terminate. They can be configured to automatically restart

crashed containers up to a certain number of retries, or to keep queuing containers

until a certain number complete execution successfully[22]. Training TPG on an

environment using an experiment image like the one discussed in section 3.1.1 is an

example of how job resources can be used on a k8 cluster.

With our NIMS cluster we are now able to deploy containerized versions of TPG

30

across our hardware resources in an efficient, automated manner, addressing the sec-

ond execution challenge.

3.1.3 Infrastructure-as-Code

Infrastructure-as-Code (IaC) is the management of IT infrastructure in a descrip-

tive model, using the same versioning as source code. The same way source code

traditionally produces a binary, IaC reliably produces computing environments [37].

Modern cloud providers like Azure, Google Cloud Platform and Amazon Web

Services provide some form of IaC solution [7, 37, 18]. However, the NIMS cluster

is on premises at Dalhousie, and operated by our lab, so we leveraged a provider

agnostic IaC solution called Terraform.

Terraform allows us to create configuration files written in terraform language.

These files describe a desired infrastructure state[34] and have a ’.tf’ file extension.

They are similar to resource configuration files that kubernetes uses natively but

terraform’s configuration language is much more powerful than static configuration

files. We will leverage this to generate the command-line parameters for sets of related

experiments in an human-error free fashion.

Terraform modules are packages of resources that are used together and can easily

be reused in other modules. They consist of main.tf, variables.tf, outputs.tf

files. The core syntax of the language as given from the terraform documentation is

shown in listing 3.2

Listing 3.2: Terrafrom Language Syntax [34]

<BLOCK TYPE > "<BLOCK LABEL >" "<BLOCK LABEL >" {

Block body

<IDENTIFIER > = <EXPRESSION > # Argument

}

Once one defines resources in this manner one can use terraform to deploy, update

or destroy infrastructure in a reliable, repeaTable, reusable way. Terraform achieves

this by manipulating the state of infrastructure resources through a provider. In our

case the provider is the kubernetes NIMS cluster. If one issues the terraform plan

command in the working directory of a terraform module, the terraform engine will

31

parse the configuration files in the module and query the current state of infras-

tructure resources through the provider. It will then compare the state described

in the configuration files against the current state and determine what changes need

to take place to bring the current state to the desired state. Finally the plan com-

mand will output the list of changes terraform intends to execute. Executing the

terraform apply command actually performs the planned changes.

Below are key excerpts from the resource block describing a pyTPG experiment

job as it appears in its main.tf file.

Listing 3.3: A pyTPG experiment deployed as a kubernetes job as expressed in ter-

raform language

resource "kubernetes_job" "lightbeam_job"{

count = length(local.tasks)

metadata{

name =

"lightbeam -

${lower(local.tasks[count.index][0])} -

${lower(local.tasks[count.index][1])} -

${lower(local.tasks[count.index][2])}"

}

spec {

template{

spec{

container {

name = "lightbeam -container -${count.index}"

image_pull_policy = "Always"

image = "nimslab/tpg -v2:lightbeam"

command = [

"python3",

"/app/nims/experiments/atari.py",

"--environments", local.tasks[count.index][0],

"--instance", local.tasks[count.index][2],

32

"--episodes", "5",

"--end_generation", "500",

"--run_key", "lightbeam",

"--frames", "18000",

"--threads", "5",

"--initial_team_population", "360",

"--initial_max_team_size", "5",

"--initial_max_program_size","128",

"--gap", "0.5",

"--input_size", "8400",

"--register_count", "8",

"--learner_delete_probability", "0.7",

"--learner_add_probability", "0.7",

"--learner_mutate_probability", "0.3",

"--program_mutate_probability", "0.66",

"--action_mutate_probability", "0.33",

"--atomic_action_probability", "0.5",

"--instruction_mutate_probability", "1.0",

"--instruction_add_probability", "0.5",

"--instruction_delete_probability", "0.5",

"--instruction_swap_probability", "1.0",

"--elitist",

"--rampancy_parameters", "1,5,5",

"--max -no-ops", "0",

"--checkpoint", "1",

"--trainer -checkpoint", "25",

"--path -trace -checkpoint", "50",

"--traversal", local.tasks[count.index][1]

]

}}}}}

Note how parameters that stay fixed for all experiments in a set are defined in

the command identifier. Text inside ${} are evaluated as language expressions. In

33

listing 3.3 these expressions make references to a local block, the contents of this

block are shown in listing 3.4 below.

Listing 3.4: Local variables in the main.tf file

Compute the cartesian product of the experiment variables.

tasks = tolist(

setproduct(

var.games ,

var.traversal ,

var.instances

)

)

The games, traversal, instances are defined in the variables.tf file described

in listing 3.5

Listing 3.5: Global variables in the variables.tf file

variable "traversal"{

type = set(string)

default = ["team", "learner"]

}

variable "games" {

type = set(string)

default = [

"Robotank -v0",

"Skiing -v0",

"TimePilot -v0",

"Tutankham -v0",

"Venture -v0"

]

}

variable "instances" {

type = set(string)

default = ["1","2","3","4","5"]

34

}

Putting it all together, when one applies these configurations to the NIMS clus-

ter, the cartesian product of traversals, games, and instances are computed. Using

the default values shown in the listings above that will result in a list of 5 × 5 ×
2 (or 50) records that end up stored in the local.tasks variable. These records

will look something like Skiing-v0-learner-1, Skiing-v0-learner-2,.... The

length of this list is used to determine the number of kubernetes jobs to create

count = length(local.tasks). Finally the values for the command-line parame-

ters --environments, --instance, and --traversal are populated from the records

in the list for each of the 50 jobs.

In this fashion we address execution challenge three, because terraform is respon-

sible for determining the number of experiments and generating the command-line

values. We have eliminated the possibility of human-error when starting experiments

and trivialized the task of launching hundreds of experiments efficiently on our cluster.

3.1.4 Automatic Cloud Backups

The last execution challenge deals with restarting runs that were interrupted. PyTPG

allows us to encode the current state of the algorithm to a binary format using ’pickle’,

an object serialization module in python [28]. To leverage this feature, we bind the

command line parameters, and other run-time information from the instance to the

primary object being serialized. Thus, when we load the object not only is the

evolutionary work on the graph preserved, but we also have all the information we

need to resume the run (like the last computed generation for instance).

There are two other key issues at play.

1. For ease of use we would like the command that starts a new instance to be the

same one that loads an existing instance if one exists.

2. Just because a run was interrupted on one machine, does not mean that it will

be restarted on the same machine.

We address both problems using a Microsoft Office 365 Business subscription

which allows us 1TB of cloud storage on Onedrive[9]. The Microsoft Graph API

35

allows us to communicate with our Onedrive storage space programmatically [39].

Finally, use the simple encoding shown in listing 3.6 to uniquely identify an experi-

ment instance.

Listing 3.6: Encodings used to identify instances through the automated cloud backup

and restart processes. The ’run digest’ is designed to uniquely identify the combina-

tions of parameters we are interested in testing in an experiment set. The ’run key’

gives a name to the experiment set, in this case ’lightbeam’. These together combine

with the last computed generation to create the name of the zip file containing all

the instance data required for a restart.

#Lightbeam Run Digest

<environment >-<traversal_type >-<instance >

Asteroids -v0-TEAM -1

<run_key >_<run_digest >

lightbeam_Asteroids -v0-TEAM -1

#Lightbeam Run Instance backup

<run_key >_<run_digest >_<generation >.zip

lightbeam_Asteroids -v0-TEAM -1_125.zip

These pieces are put together in the logic of our start script. First, the command

line parameters are read and used to determine the run_key and run_digest for

the instance. Then we check the local file system and Onedrive for a backup zip file

containing the run_key and run_digest in its name. If one is found on both the local

file system and Onedrive, we pick the one with with the highest generation value to

restart from. If this back up is being sourced from Onedrive, it is downloaded at this

stage. We unpack the backup files and load in the saved state generated by ’pickle’.

Finally we resume evolution from the last computed generation.

One of our command-line parameters --trainer-checkpoint is used to specify

at which interval of generations a backup is emitted to Onedrive. From the example

in listing 3.3 this interval is 25 generations.

Our instances now regularly emit backups, and are capable of restarting on any

internet connected machine by fetching the related backup from Onedrive. Best of

36

all, because the same command is used to start an instance and to restart it, none

of our terraform configurations or other launch scripts need to be adapted. We can

simply run the same ones again, and experiments that have already made progress

will resume from where they left off +/-25 generations.

3.2 Capturing Results

Once an experiment is launched it produces a steady stream of data. This data must

be captured, collected, stored and made available for analysis. With the infrastructure

described in the previous section one can easily launch tens or even hundreds of

experiments at once, but without an automated system to collect the data produced

by these experiments, it can become prohibitively time consuming to analyze results.

These analysis challenges were tackled using Looking Glass, a custom data analysis

platform.

The entire Looking Glass system is deployed through a terraform module onto

the NIMS cluster. In this section we will examine the kind of data that we gathered

during the training and testing phases of our experiments, and the configuration

of the systems in Looking Glass bring this data together for analysis. There are

three main aspects of the Looking Glass platform: Ingestion, Storage, and Query &

Visualization. Figure 3.2 provides a high-level schematic of Looking Glass.

Figure 3.2: Looking Glass Architecture

37

This breakdown of responsibilities within Looking Glass exists to create as flexible

a platform as possible. Ingestion is separated from storage so that once a TPG

implementation has the capability to emit metrics, it will not have to be adapted if

the storage solution is changed, or if there is some desire to send that same data to

other services downstream. Similarly, querying and visualization is encapsulated away

so that the raw data is accessible to any client that requires it. If one is not satisfied

with the querying and visualization capabilities that come with Looking Glass, one

can easily write their own solution and fetch the raw data via a web API.

The following popular open source software powers Looking Glass: Ingestion is

handled by Kafka and Avro, storage is provided by Elassandra (a packaged configura-

tion of Elasticsearch with Cassandra [14]), and Querying & Visualization is provided

by Kibana. Kafka is an open-source distributed event streaming platform[5], Avro

is a data serialization system[3], Elassandra is a distributed No-SQL database[14],

and Kibana is a web app that allows users to interact with Elassandra by creating

visualizations and running queries[25].

3.2.1 Metrics

Before one can analyze anything, one must decide what to analyze. In this work,

metrics refer to groups of properties whose values are of interest for analysis. We used

five key metrics to capture data from the training and test phases of our experiments.

Each metric is emitted at a particular point of execution and described in its entirety

by an Avro schema.

Avro is a data serialization system developed and maintained by the Apache

foundation. Using an avro schema we can encode our metrics in a compact and fast

binary format suiTable for transmission. Avro supports dynamic typing which allows

us to mark fields as optional, or with multiple types[3]. This allows the reuse of

schemas between implementations of TPG where appropriate.

Ultimately, these metrics will land in Cassandra, a wide-column store capable

of backing the dynamically typed values described in our schemas[38, 4]. The data

there will then be queried by Elasticsearch. We will go over this in more detail

later, but from a metrics design perspective it is important to note that performing

SQL style joins using Elasticsearch is expensive[23]. Instead the ’elastic’ way is to

38

denormalize the data ensuring all fields of interest for a query exist within a metric.

Here denormalizing means that the same fields will appear in multiple metrics, rather

than organizing commonly used fields into a record and using foreign keys to reference

them in other records. While this does incur a higher storage requirement, disk space

is often far more available than computing power[40]. Listing 3.7 shows a small

sample of the avro schema describig the generation metrics. Fields like run_id,

run_key, and run_digest will appear in all metrics as a result of the aforementioned

denormalization.

Listing 3.7: A small sample of the Generation Metric avro schema

{

"namespace ":" lookingglass.tpg",

"type ":" record",

"name ":" GenerationMetric",

"fields ":[

{"name ":" run_id","type ":" string"},

{"name ":" run_key", "type ":" string"},

{"name ":" run_digest", "type ":" string"},

{"name ":" date", "type": [" string","null"]},

{"name ":" generation", "type ":"int"}

]

}

Generation Metric

The generation metric is emitted once per generation of training, after all root teams

have had played the required number of games (episodes) in the environment. 157

fields appear within this metric; for brevity they will be discussed at a high level. The

purpose of this metric is primarily to feed our fitness curve visualizations, as such they

contain sufficient information to uniquely identify the experiment, the generation they

represent, and the fitness achieved across the root team population.

39

In addition we also collect information about the types of instructions the pro-

grams in the population have, and a broad range of information regarding the param-

eterization of TPG used to produce the metrics. This includes the actual algorithm

parameters but also things like the programming language and version of the imple-

mentation.

Graph Metric

The graph metric is emitted every 25 generations of training. In testing this metric

is emitted once per champion. While containing only 34 fields, it actually is our

largest metric in terms of individual record size, as it contains the full population

graph created by TPG in training, and full champion graph in testing. Our ’Inside

the box’ visualization tool notably uses these metrics to render the graphs for visual

inspection and analysis, see figure 3.3.

40

Figure 3.3: The champion for Centipede using team traversal after 500 generations
of training. The root team is in teal, while other teams appear in light blue. Arrows
represent learners. The teams are arranged radially where their size and distance
from the root team is determined by the number of incoming learners.

Path Metric

Closely related to the graph metric, the path metric is emitted both in training and

testing. In training, after a generation completes, the champion root team is pulled

out and set to play one additional round on the environment. During this special

round, we capture the path(s) the champion traverses through its graph to produce

every action it applies to the game environment. These can amount to thousands of

records per round as such, during training, this is only done every 25 generations.

41

However this ’path tracing’ is done for all 20 test episodes the final champions are

put through during the testing phase. Our ’Inside the box’ visualization tool allows

us to render what such a path looks like, see 3.4.

Team Metric

The team metric is emitted at the end of every generation of training. It contains the

fitness of every root team in the population. In addition, each team metric also reports

the number of teams and learners, in the root team it represents. This information

can be used to generate graphs like the one in 3.5.

Figure 3.5: The fitness of each root team in from a TPG population playing Venture
using learner traversal at generation 500.

Episode Metric

The episode metric contains 96 fields measuring the performance of champions during

the test phase. One episode metric is emitted for every game (episode) played. Here

42

Figure 3.4: A path the champion from figure 3.3 used in making the decision to
apply the ’FIRE’ action to the game environment.

43

we capture the id of the graph metric associated with the champion, as well as static

graph statistics like the number of teams, learners, and the diameter of the graph

relative to the root node. We also record dynamic statistics that vary depending on

the paths traversed while playing the game during the episode. These include things

like the mean number of executed instructions per team by type of instruction (add,

sub, mult, div, neg). These metrics also include the fitness statistics used to assess

the performance a champion during the evaluation phase.

3.2.2 Ingestion

Ingestion is handled by Apache Kafka, an open-source distributed event streaming

platform popular in the enterprise space [5]. We use Kafka to bring to life a publish-

subscribe messaging model, in which execuTables of interest like implementations of

TPG, are producers of the previously described metrics.

These metrics will be sent to a Kafka broker, who manages events by splitting

them into topics. Topics can be thought of as addresses, and in our case we create a

topic for each kind of metric we would like to emit[55].

On the other side of the equation we use Kafka Connect, a tool to reliably stream

data between Kafka and Elassandra . This tool runs as a web service and allows us to

dynamically create connectors which act as consumers for our topics [24]. Figure 3.6

shows the end to end ingestion flow in Looking Glass.

44

Figure 3.6: The publish-subscribe ingestion pipeline in Looking Glass. The dashed
arrows show the path a message containing Metric A takes through the pipeline. Note
the association with Topic A in the Kafka broker and Index A in Elassandra.

The Avro Registry, another component provided by Confluent, works together

with the Confluent Python Kafka client library [10] and the broker to resolve the

schemas of the messages to be sent between them. The registry is a powerful tool

which we under-utilize at this point in time. It allows for fine-grained control over

schema updates. One can introduce changes to a schema and the registry will start

building a history for it. This history can then be used by downstream consumers

to become aware of the changes and adapt accordingly. Through this mechanism,

consumers expecting the old schema may attempt to translate between versions min-

imizing the impact a change has on the overall pipeline[33]. This is a great place for

further development to improve the overall robustness of the Looking Glass system.

On a final note, Kafka is meant to handle large quantities of small messages [55].

Our graph metrics, after some evolution would pass the default 1MB message size

limit imposed by Kafka. This was reconfigured to allow messages up to 25MB in

order to accommodate our needs.

45

3.2.3 Storage

Our kafka connectors insert data into Elasticsearch, a distributed, RESTful search

and analytics engine that allows us to work with the mountains of data our experi-

ments produce[15]. In Looking Glass, Elasticsearch is provided by Elassandra, which

is an open-source packaging of Elasticsearch with Cassandra [14]. As briefly alluded

to earlier, Cassandra is a distributed wide-column store [4]. This makes it the ideal

candidate to persist the flexible metrics defined in our avro schemas, as wide column

stores allow you to store values of different types on different rows of the same names-

pace (Cassandra’s versions of Tables)[38]. In addition Cassandra is highly scalable

exhibiting linear increases in throughput when additional nodes work together in a

cluster [59].

During the development of this work, power failures and other various technical

problems would result in down time for some of the servers in the NIMS cluster. To

improve the reliability of the system, Looking Glass initializes three Elassandra nodes

in a cluster configuration for the storage solution. This cluster was then manually

configured to use a replication factor of at least two for all metric indices. In this way,

the failure of any single node would not affect the integrity our results. In addition,

queries made against the cluster would have their computational cost shared between

cluster nodes, allowing for near real-time analysis of vast amounts of data.

3.2.4 Querying & Visualization

Kibana was our primary analysis tool for the experiments described in this thesis.

Kibana is a free open-source user interface that allows you to visualize data from

Elasticsearch [25]. The metrics described previously would all make their way into

a corresponding Elasticsearch index. For the ’lightbeam’ experiment, the following

were the primary indexes of interest:

• tpg.lightbeam.metrics.path

• tpg.lightbeam.metrics.generation

• tpg.lightbeam.metrics.graph

• tpg.lightbeam.metrics.test.episodes

46

• tpg.lightbeam.metrics.team

Kibana allows us to view these metrics as they come in through its ’Discover’

view, see Figure 3.7.

Figure 3.7: Viewing metrics in the tpg.lightbeam.metrics.generation index, au-
tomatically refreshed every five minutes by Kibana. The histograms along the top
show the volume of metrics coming for a given day; individual records appear under-
neath.

Amongst other things, Kibana also allows us to create live visualizations of the

data. These visualizations can then be grouped together to form dashboards that

provide us with a birds eye view of our experimental results, see Figure 3.8.

47

Figure 3.8: The ’Lightbeam’ experiment dashboard. The top row charts, from left
to right, are the RAINBOW Normalized Maximum Fitness, and the RAINBOW
Normalized Average Fitness achieved by TPG, plotted against time. The bottom
left graph, shows the average runtime (in hours) vs the # of generations computed
averaged across instances of a particular environment. The bottom right Table shows
various statistics about the paths traversed to produce actions by champion teams at
50 generation increments during training.

It is easy to filter or sort the data behind any visualization by any valid field de-

scribed in our metric’s schema (environment, traversal type, fitness score, generation,

etc.). Many of the figures found in the results section of this work were produced

using Kibana visualizations. Kibana also allows users to easily download the raw

data backing the visualization in .CSV format for further analysis in other tools, or

for insertion into papers[19].

Like many other aspects of the Looking Glass platform, Kibana is a powerful tool,

currently under-utilized. Kibana offers a rich set of features, backed by Elasticsearch

that are worth diving into through future work. For example, one can leverage a

machine learning pack to automatically analyze metrics as the come in and provide

anomaly detection that can help focus analysis work[27].

It is important to note however, that Kibana is not the only point of access for our

experimental results. Kibana works as a client for the Elasticsearch web API. Should

we want to use a different visualization tool, or perform analysis not possible through

Kibana directly, we can simply use Elasticsearch’s API directly. This API allows us

to query, filter, and sort our data programmatically so we may retrieve what we are

48

interested in and do with it whatever we please. Figures 3.3 and 3.4 are produced

using Three.js visualizations [11] in a Vue webapp[30], served by Node.js[1]. This app,

dubbed ’inside-the-box’, sends an Elasticsearch query via HTTP to retrieve the data

it needs to produce its visualizations.

Listing 3.8: The query used by ’inside-the-box’ to retrieve the data shown in List-

ing 3.9. The variable graph_id is populated through a user interface.

"query ":{

"match ":{

"graph_id.keyword ": graph_id

}

}

Listing 3.9: The response provided by Elasticsearch’s Search API for the query in

Listing 3.8. The graph_data and visualization_links.string fields have been

truncated for brevity. The shards section refers to the 3 Elassandra nodes deployed

to provide reliability and improve query throughput.

{

"took": 20,

"timed_out ": false ,

"_shards ": {

"total ": 3,

"successful ": 3,

"skipped ": 0,

"failed ": 0

},

"hits": {

"total ": 1,

"max_score ": 7.0387836 ,

"hits": [{

"_index ": "tpg.lightbeam.metrics.graph",

"_type ": "_doc",

49

"_id": "H0bd99b56 -c9c5 -40d7-b3fd -5 ca5584654df",

"_score ": 7.0387836 ,

"_source ": {

"generation ": 500,

"num_learners ": 1004,

"run_id ": "9c549e2e -6ac6 -459d-8b30 -d64c325ec096",

"run_key ": "lightbeam",

"edges ": 1218,

"graph_data ": "{\" nodes \": ,..."

"graph_id ": "8554d3da -8db3 -4d07 -a784 -ae008cc8e3a1",

"num_actions ": 18,

"run_digest ": "Centipede -v0-TEAM -2",

"environment ": "Centipede -v0",

"@timestamp ": "2021 -02 -01 T21 :15:06.676Z",

"num_teams ": 225,

"visualization_links ": {

"string ": ".../ nims/tpg3d /#/.../8554 d3da ..."

},

"traversal_type ": "TEAM"

}

}

]}}

3.3 Summary

Docker allows us to package our algorithm in a porTable, easy to execute way. Ku-

bernetes then allows us to orchestrate the execution of docker containers across our

available compute resources in an efficient, automated manner. Terraform removes

the opportunity for human error by computing the combinations of starting param-

eters needed to explore the the parameter space we are interested in, and seamlessly

passes the resulting jobs to Kubernetes. Finally, should an error, outage, or other dis-

ruption occur, our integration with Onedrive allows us to easily resume experiments

50

on any machine or compute node available to us. Together these solve the execution

challenges posed at the start of this chapter.

With Looking Glass deployed on the NIMS cluster, we more than address all of

the analysis challenges we set out to tackle at the beginning of this chapter. Through

the ingestion pipeline, TPG implementations emit their metrics over the internet to

Looking Glass and save us from the trouble of having to retrieve CSV files from remote

servers. Kibana provides powerful tools for visualizing and analyzing the metrics sent

to Looking Glass right out of the box. Should that not be enough, Elasticsearch

exposes all of our data through its powerful query APIs which can easily be used

by any external program to retrieve relevant portions of our data sets and perform

additional analysis.

Best of all, Looking Glass is easily deployable on any kubernetes cluster because

all the key configurations connecting these various tools are built into a terraform

module available on Github1. This allows other researchers to save themselves the

setup work we have already done, and bring a powerful research environment online

for their own needs as easily as terraform apply.

1https://github.com/aianta/Looking-Glass

Chapter 4

Results

From January to March 2021, 100,024 generations were computed, 3,214 champion

graphs were saved, 36 million root teams were captured during training, and 62 million

paths were traced during evaluation phases at various generations. During this time,

137 of the planned 200 experiment instances reached the 500 target generations of

training. These will be the primary focus of our investigation, though evaluation

data for generations 300 and 400 showing similar trends to those discussed here can

be found in Appendix A.

Throughout this section we will refer to specific experiment instances by their

run digests (introduced in section 3.1.4). The digest takes the form environment-

traversal-instance, so instance 3 of the krull environment using learner traversal would

be Krull-LEARNER-3.

4.1 Training

The training phase began on January 13th 2021 when the 200 experiments were

queued on ACENET. Over the next three months training would continue towards

producing the 500 generation champions for the evaluation phase. Figure 4.1 shows

the average fitness curves normalized to final RAINBOW score (Eqn. (2.1) as they

were monitored through Kibana. Note that these normalized charts were plotted

against time (not generations) and were primarily used to gauge the status of the

instances. Gaps in the curves of figure 4.1 happen due to a lack of instances reporting

generation results at those periods in time. These gaps occurred primarily due to

increases in the time required to compute a single generation, but less commonly also

due to errors arising from hardware constraints (lack of disk space or memory), or

computational time limits being reached (maximum of 28 days on ACENET).

Due to these ’outages’ subsets of the 200 experiments would be restarted leveraging

the mechanisms described in chapter 3. While these systems streamlined the restart

51

52

process, generations would be lost during a restart as backups could not be feasibly

taken for all instances at every generation. Since ACENET prioritizes users under-

utilizing resources, each restart would increase the time spent in queue by a job.

Figure 4.1: Average normalized fitness being monitored after runs begin on January
13th 2021.

Many environments across both traversal strategies experienced dramatic increases

in compute time per generation as shown in figure 4.2. Games like Krull and Tu-

tankham in particular topped 10,000 seconds or 2.7 hours of computation per genera-

tion. This discrepancy was likely driven by the fact that many other game’s episodes

did not play their full 10,000 frames where as they did.

53

Figure 4.2: The number of seconds a generation would take to compute for a given
environment averaged over all instances.

Interestingly, in other cases these compute time trends were not always shared

across all instances of a particular environment. Notably, Asteroids-TEAM-4 and

Bowling-TEAM-4 reached 10,311s/gen and 9,468s/gen respectively, while their peers

averaged 2,000s/gen and 5,000s/gen respectively. This divergence may be partially

explained by the explosive growth in the underlying graph for those instances, fig-

ures 4.3 and 4.4 show the number of teams and learners split on TEAM traversal

instances of Bowling and Asteroids respectively. Note that any apparent drop offs in

graph size shown in figures 4.3 and 4.4 like generations 300+ for Asteroids-TEAM-4,

350+ for Asteroids-TEAM-6, 400+ for Bowling-TEAM-4, etc. are due to the ex-

periment instances not reaching those generations and hence no data being available.

Particularly slow experiment instances like Asteroids-TEAM-4 and Bowling-TEAM-4

were ultimately cancelled to conserve computational resources and improve the queue

times for other instances including instances which were to replace them.

Nevertheless all instances were given hundreds of hours of compute time producing

ample data points for further analysis. Figure 4.5 shows the average cumulative

number of hours required by an environment to reach a given generation on the

54

Figure 4.3: The number of teams in purple and learners in blue across team traversal
instances for the Bowling environment plotted against the generation when the graphs
were sampled on the x-axis. Bowling-TEAM-4, the fourth entry, reaches a staggering
50,184 learners and 3,250 teams compared to the 25,000 learners and 2,500 teams of
its peers at the same generation. Note, the apparent drop off in size immediately af-
terwards for Bowling-TEAM-4 happens because the instance was stopped to conserve
computational resources.

55

Figure 4.4: The number of teams in purple and learners in blue across team traver-
sal instances for the Asteroids environment plotted against the generation when the
graphs were sampled on the x-axis. Asteroids-TEAM-4, the fourth entry, reaches
45,830 learners and 3,004 teams compared to the 20,000 learners and 2,000 teams
of its peers at the same generation. The ’extra’ 6th Asteroids-TEAM instance was
started in an attempt to have 5 instances at generation 500 for this environment and
traversal type after it became clear Asteroids-TEAM-4 was not going to finish in
time.

56

x-axis.

Figure 4.5: The cumulative number of compute hours averaged over all instances of
an environment plotted against generations.

Typical TPG fitness curves were observed for the majority of environments with

maximum fitness rising rapidly in the first 100-200 generations before succumbing

to a trend of periodic step-like increases into generation 500 (see figure 4.6). While

one traversal strategy appeared to achieve higher maximum fitness than the other

in some environments, no clear trend established itself as the reverse would occur in

other environments.

57

Figure 4.6: Fitness curves for the Asteroids environment during training, averaged
across all instances and split by traversal strategy.

Intriguing outliers did appear through the training phase. For example the MsPac-

man instances seemed to show markedly better performance under learner traversal

than team traversal as shown by the discrepancy in average fitness seen in figure 4.7.

Figure 4.7: Average fitness for the MsPacman environment averaged across all in-
stances and split by traversal strategy.

Further investigation by splitting average fitness on run digests instead of traver-

sals in Kibana (see figure 4.8) found this phenomenon to be driven by one learner

instance (MsPacman-LEARNER-4) in particular who seemed to have ’seen some-

thing’ other instances failed to discover about the game. One would expect this

performance not to be reproducible. Nevertheless, one cannot help but wonder if

58

Figure 4.8: Average fitness for the MsPacman environment for each experiment in-
stance. The diverging purple curve is that of MsPacman-LEARNER-4.

a deeper dive into the tangled program graphs of outliers such as these could yield

interesting insights about the particular strategies that set these champions apart.

4.2 Evaluation

The 130 balanced sample of champions that completed 500 generations of training

were each put through 20 episodes to evaluate their performance, static and dynamic

properties. Tables 4.2 and 4.3 are derived from the resulting 2,600 episode records.

Balanced samples here mean that an equal number of champions were tested for team

and learner traversals. So if 3 team traversal and 5 learner traversal champions were

available for an environment at 500 generations, only 6 of the 8 champions would be

tested (3 team and 3 learner), so that the action distribution metrics would not be

skewed.

Generation Champions Available Balanced Champion Samples
300 178 172
400 154 148
500 137 130

Table 4.1: Champions Available refers to the number of champions that achieved
the respective generations of training. Balanced Champion Samples refer to the the
portion of the available champions which were used to produce the results. This
filtering is done because some metrics of interest are sensitive to the balance of team
and learner traversal samples. For example, when considering the frequency of some
action for a given game, if we compare 3 instances of team traversal with 1 instance
of learner traversal (as that is what we have available) we will skew the data. So
instead, in that situation, we would compare only a single instance of team traversal
to the learner traversal.

59

4.2.1 Performance

A two tailed, pairwise, t-test on the 2,600 episode fitness values gave 0.352717521,

failing to establish significant difference between the two traversals. For Table 4.2

the Max value refers to the highest achieved fitness across the 20 episodes, the Avg.

refers to the mean fitness across the 20 episodes, and similarily the Min refers to the

minimum across the 20 episodes. The number of instances refers to the number of

champions tested for each traversal type, so for the Asteroids-v0 environment these

results came from testing 4 champions trained using learner traversal and 4 champions

trained using team traversal.

The normalized values are in comparison to RAINBOW, as given by equation

2.1 where 100% refers to matching the score achieved by RAINBOW and anything

less (more) than 100 implies that the score from Rainbow is proportionally better

(worse) than TPG. One thing to keep in mind when considering the comparison

to RAINBOW is that TPG lacks certain advantages that RAINBOW has in this

particular set of tasks. One such advantage in RAINBOW’s favor is the practice of

’frame-stacking’ where multiple frames from the game are superimposed onto a single

input vector for RAINBOW to process. This results in ’smears’ on objects in the

game that are in motion, giving RAINBOW additional information about movement

that TPG lacks[41]. Thus TPG’s comparable and in some cases better performance

on certain titles like Bowling or Venture are particularly remarkable.

60

Fitness
Env. Trav. Max N. Max Mean N. Mean Min Inst.

Asteroids
L 8010 365.7% 3345.63 ±1361.5 131.7% 1180

4
T 8610 395.8% 3258.9 ±1492.1 127.4% 1030

BattleZone
T 67000 108.4% 18325 ±10068.24 26.8% 2000

4
L 43000 68.1% 17400 ±8678.42 25.2% 1000

Bowling
T 119 1389.9% 86.925 ±12.44 925.0% 68

2
L 109 1244.9% 82.6 ±12.40 862.3% 63

Centipede
T 29127 444.9% 6234.4 ±4231.87 68.2% 1870

5
L 19280 282.9% 5573.59 ±3206.53 57.3% 1461

DoubleD.
T 2 112.6% -1.54 ±1.01 93.2% -2

5
L 2 112.6% -4.22 ±6.78 78.6% -24

FishingD.
L -31 49.3% -72.44 ±18.44 15.7% -99

5
T -41 41.2% -81.75 ±14.38 8.1% -99

Freeway
L 28 82.4% 22.9 ±1.80 67.4% 18

5
T 28 82.4% 22.51 ±1.79 66.2% 19

Frostbite
T 2580 26.4% 710.625 ±647.49 6.8% 90

4
L 260 2.0% 174.75 ±33.35 1.2% 80

Gravitar
T 2300 170.7% 485 ±334.33 25.0% 0

5
L 2000 146.6% 412.5 ±337.96 19.2% 0

IceHockey
L 5 131.7% -0.36 ±2.70 88.1% -9

5
T 8 156.1% -1.32 ±4.51 80.3% -13

Kangaroo
L 1200 7.9% 685 ±260.34 4.3% 0

4
T 1200 7.9% 680 ±237.91 4.3% 200

MsPacman
L 3250 58.0% 848.8 ±562.58 10.7% 80

5
T 1770 28.8% 522.5 ±327.55 4.2% 130

Pitfall
L 0 99.9% 0 ±0 99.9% 0

5
T 0 99.9% 0 ±0 99.9% 0

PrivateEye
L 15000 355.8% 5159.6 ±5332.69 122.0% -1000

2
T 4100 96.8% 2919.6 ±2083.64 68.8% -1000

Venture
L 800 14545.5% 89 ±164.86 1618.2% 0

5
T 600 10909.1% 45 ±112.58 818.2% 0

Table 4.2: Minimum, mean, standard deviation, normalized mean, maximum and
normalized maximum fitness by environment and traversal for champions after 500
generations of training. The instance column refers to the number of champions
tested for each traversal type.

4.2.2 Static Properties

In Table 4.3 columns: # Learners, # Teams, # Learners/Team, # Inst./Team, and

Diameter w.r.t. Root are all means computed over the champions for that given

environment and traversal type. Diameter with respect to root refers to the ’longest

shortest path’ to any vertex from the vertex representing the root team [17]. No

61

significant difference between traversals is given by a two-tailed, pairwise t-test for

any column.

The graph diameter values shown correlate with the size of the respective graph.

Large diameters like those reported on BattleZone (up to 20) occur in graphs with

5000 learners and 775 teams, whereas on the other extreme we have environments

like Pitfall with only a single team and a diameter of 1. This makes intuitive sense

as one can expect longer shortest-paths in larger complex graphs.

62
E

n
v
.

T
ra

v
.

#
L

ea
rn

er
s

#
T

ea
m

s
#

L
ea

rn
er

s/
T

ea
m

#
In

st
./

T
ea

m
#

of
In

st
.

D
ia

m
et

er
w

.r
.t

R
o
o
t

A
st

er
oi

d
s

L
36

67
.5

54
2.

25
6.

66
65

.8
3

24
29

87
.7

5
1
3
.5

T
20

04
.2

5
36

4.
5

6.
25

2
65

.9
74

13
27

73
1
3
.5

B
at

tl
eZ

on
e

T
52

11
.5

81
7.

5
7.

86
6

63
.0

45
32

86
90

.5
2
0

L
46

79
.5

74
9.

75
7.

63
2

61
.5

25
28

53
45

1
8
.2

5

B
ow

li
n

g
T

53
91

84
0.

5
8.

06
9

64
.2

87
34

57
43

1
8
.5

L
64

20
.5

86
1.

5
8.

23
3

66
.1

24
42

29
60

.5
1
9
.5

C
en

ti
p

ed
e

T
27

41
.4

46
3.

6
6.

38
8

65
.7

61
17

59
36

.2
1
3
.6

L
33

96
.2

55
7.

4
6.

88
8

63
.3

65
21

35
28

.6
1
5
.8

D
ou

b
le

D
u

n
k

T
40

4
82

.6
5.

33
7

64
.0

36
26

44
8.

4
8

L
88

6.
8

17
3.

2
5.

46
3

62
.9

77
56

37
4.

8
9
.8

F
is

h
in

gD
er

b
y

L
65

25
.4

91
9.

4
8.

49
67

.5
34

43
39

39
.6

2
0
.8

T
61

88
87

9
8.

32
1

67
.1

3
40

77
25

.6
2
0
.2

F
re

ew
ay

L
33

43
.2

53
5.

6
6.

75
65

.2
99

21
81

28
.8

1
4
.8

T
37

27
.4

64
4.

6
7.

21
2

65
.5

25
24

36
60

.8
1
7
.4

F
ro

st
b

it
e

T
49

09
72

6
7.

42
1

63
.5

7
30

72
31

1
9
.7

5
L

44
77

71
8

7.
32

6
65

.1
99

29
18

20
.7

5
1
7

G
ra

v
it

ar
T

71
39

.4
95

8
8.

89
2

68
.4

5
49

87
40

.6
1
9
.2

L
54

03
.6

73
9.

2
8.

08
8

68
.3

17
37

12
76

.4
1
6
.2

Ic
eH

o
ck

ey
L

41
28

68
1.

6
7.

31
5

64
.9

16
26

84
27

.2
1
6
.8

T
27

57
.2

50
3

6.
48

63
.5

86
17

26
27

.6
1
3
.4

K
an

ga
ro

o
L

48
97

.2
5

75
4.

75
7.

86
9

66
.7

19
32

61
81

.5
1
7
.2

5
T

17
08

.7
5

32
8.

75
6.

15
6

65
.9

59
11

10
44

.7
5

1
1
.5

M
sP

ac
m

an
L

40
77

58
9.

6
7.

27
4

65
.7

6
27

56
43

.2
1
3
.4

T
50

04
.8

75
0.

2
8.

00
3

69
.0

22
34

24
44

.2
1
8
.2

P
it

fa
ll

L
4

1
4

59
.4

24
5.

4
1

T
3.

6
1

3.
6

71
.1

73
25

3.
2

1

P
ri

v a
te

E
ye

L
66

97
96

7
8.

76
9

67
.8

77
45

33
42

2
1

T
40

50
.5

70
5

7.
25

3
65

.0
18

25
96

86
.5

1
7
.5

V
en

tu
re

L
26

72
.2

41
6.

2
6.

68
4

63
.5

28
16

87
56

1
5

T
88

4.
8

17
8.

2
5.

42
7

64
.4

18
57

55
5.

8
1
1
.4

T
ab

le
4.

3:
S
ta

ti
c

p
ro

p
er

ti
es

of
ch

am
p
io

n
s

af
te

r
50

0
ge

n
er

at
io

n
s

of
tr

ai
n
in

g.

63

4.2.3 Dynamic Properties

Table 4.4 shows the maximum, mean, and minimum depth or path length recorded,

the number of program instructions executed, and the time taken, in milliseconds,

to resolve an action for the input vector for champions of an environment averaged

over the 20 evaluation episodes. A pairwise two-tailed t-test gives values greater than

0.4 for all these properties, failing to establish a significant difference between the

traversal strategies.

4.2.4 Action Distributions

Differences in action distributions were observed between learner and team traver-

sals. Figure 4.9 shows the frequency of actions across all environments for champions

after 500 generations of training. Learner traversal champions made more use of the

’FIRE’,’UP’,’NOOP’,’UPLEFTFIRE’,’LEFTFIRE’, ’RIGHTFIRE’, and ’UPLEFT’

actions and less use of the ’UPFIRE’, ’DOWNRIGHT’, ’DOWN’, ’DOWNLEFT-

FIRE’, ’DOWNFIRE’, ’UPRIGHTFIRE’, ’LEFT’, ’DOWNRIGHTFIRE’,’UPRIGHT’,

’DOWNLEFT’, and ’RIGHT’ actions compared to their team traversal counterparts

overall.

64

Depth
Environment Traversal Max Mean Min Inst. / Action Ex. Time (ms)

Asteroids
LEARNER 3 2.515 2 1888.302 0.286
TEAM 2 2 2 1699.149 0.249

BattleZone
LEARNER 8 4.05 2 4142.286 0.974
TEAM 6 4.022 3 3767.347 0.872

Bowling
TEAM 6 4.011 3 3360.65 0.865
LEARNER 4 2.991 2 2549.583 0.587

Centipede
TEAM 5 2.789 2 2119.811 0.488
LEARNER 4 2.697 2 2034.961 0.512

DoubleDunk
LEARNER 5 4.115 2 2569.771 0.595
TEAM 5 3.451 2 1778.154 0.412

FishingDerby
LEARNER 8 4.389 2 3597.166 0.875
TEAM 7 4.222 2 3796.17 0.928

Freeway
TEAM 7 3.572 2 3108.098 0.815
LEARNER 5 3.281 2 1823.94 0.486

Frostbite
LEARNER 7 4.889 2 4392.095 1.081
TEAM 7 4.517 1 2291.34 0.685

Gravitar
LEARNER 5 2.874 2 2948.947 0.662
TEAM 5 2.703 2 2733.82 0.688

IceHockey
TEAM 7 4.589 2 3102.739 0.832
LEARNER 6 4.266 3 3425.736 0.839

Kangaroo
TEAM 7 3.389 1 2525.632 0.647
LEARNER 5 3.274 2 3000.996 0.705

MsPacman
TEAM 7 3.369 2 2772.332 0.686
LEARNER 6 4.014 1 3220.894 0.819

Pitfall
LEARNER 1 1 1 250.324 0.093
TEAM 1 1 1 256.323 0.077

PrivateEye
TEAM 9 5.033 3 2663.387 0.713
LEARNER 8 6.042 2 6675.161 1.648

Venture
TEAM 8 4.579 3 2738.373 0.589
LEARNER 7 3.82 1 2843.982 0.665

Table 4.4: Dynamic complexity measures averaged over all champions each playing
20 evaluation episodes. Depth refers to the length of the path from the root team to
the returned action.

65

Figure 4.9: Action frequencies across all environments for champions after 500 gen-
erations of training.

Figure 4.10: Action frequencies for champions trained on the BattleZone Atari game
after 500 generations of training. Split by traversal type.

66

Two-tailed, pairwise t-tests performed on the action distribution Tables for indi-

vidual environments failed to established statistical significance between the traversal

strategies for any game.

Chapter 5

Analysis

Before diving into traversal comparisons, it can be constructive to view some of

the most interesting solutions that champions found in action. For the Asteroids

environment the winning strategy amongst the champions was to sit in place in the

middle of the screen while rotating and firing as fast as possible. Figure 5.3 shows a

champion after 500 generations of training in the middle of doing just that.

Figure 5.1: Hold ’LEFT’ and smash ’LEFTFIRE’ as much as possible. A TPG
champion solution for the Asteroids Atari game.

Venture, a game where TPG appears to sometimes perform 100 times better than

RAINBOW, has a less elegant solution. Venture-LEARNER-8 is the grand champion

after 500 generations, and it happens to have discovered that if one goes up and to

the left when the game starts one can stumble into one of the first ’rooms’ in Venture.

In this first room, if one is lucky, based on enemy movement an continuing with the

up and left strategy from before it is possible to collect some treasure. Many times

though Venture-LEARNER-8 misses the first room entirely. Conversely, continuing

to hug the left wall may also lead it to a second room with a diamond in the middle

surrounded by some traps. It does not appear to make anywhere near as much

progress in this room than in the first with it’s up left strategy, but nevertheless, in

comparison to its peers who merely dodge enemies guarding the rooms by moving all

67

68

the way to the right of the screen, Venture-LEARNER-8 earns its champion belt.

Figure 5.2: First ’LEFT’, the ’UP’, then possibly, success! Venture-LEARNER-8
moments before its demise at the hands of the green enemy after stumbling into the
first room and happening upon some treasure.

A strategy more in line with one a human player may employ appears in the

Bowling environment, where champions have figured out the correct button presses

to align the ball to just slightly above the middle pin. This often results in a cascade

of pins toppling, and in some cases even a strike!

Figure 5.3: Line them up, then strike them down. Champions perfect the optimal
shot in the Atari Bowling game after 400 generations of training.

5.1 Traversal Analysis

The most promising looking metrics to support a difference between team and learner

traversal strategies came from the results gathered on action distributions. Because

different games have different game ending conditions, there is significant variability

69

in the number of frames played for a given game. For example, a champion playing

MsPacman may get caught by a ghost and only play a few thousand frames while in

Bowling, a no-op agent could just idle around before the 10,000 frame limit ends the

game. Therefore the sample sizes for action frequencies vary between games and the

action distribution differences observed in figure 4.9 are not necessarily conclusive of

a difference between the traversals.

Because the environment specific t-tests showed no significant differences between

the traversals it is possible that the observed differences come from the discovery

of slightly different strategies to maximize fitness in the environment, rather than

particular preferences corresponding to traversal strategy.

Figure 5.4: Action frequency distribution across all environments for champions with
team traversal after 500 generations of training plotted as a percent of the whole
against the frame #. Note that many actions occurred infrequently enough to be
omitted.

70

Figure 5.5: Action frequency distribution across all environments for champions with
learner traversal after 500 generations of training plotted as a percent of the whole
against the frame #. Note that many actions occurred infrequently enough to be
omitted.

71

Figure 5.6: Action frequency distribution for champions trained on the BattleZone
Atari game with team traversal after 500 generations of training plotted as a percent
of the whole against the frame #.

Figure 5.7: Action frequency distribution for champions trained on the BattleZone
Atari game with learner traversal after 500 generations of training plotted as a percent
of the whole against the frame #.

This conclusion is further supported by figures 5.4 and 5.5 which show the action

72

distributions as percentages of a whole plotted against the frames in which they

appear. While there are differences between the traversals, they share major trends:

• 20% ’UPLEFTFIRE’ ’mountain’ starting from frames 0 and descending into

frame 3,000.

• Heavy usage of ’UPFIRE’ throughout, reaching peak usage around frame 3,500.

• A dramatic increase in ’UP’ usage around frames 6,500-7,000.

• Diminishing usage of ’UPLEFT’ and ’UPRIGHT’ largely giving way to the

primary usage of ’UPLEFTFIRE’.

When comparing performance, static and dynamic properties between the two

traversals (using t-tests) no statistically significant differences were found. This

prompted a more in-depth look at the path trace data we collected during the evalu-

ation phases. Were learner traversal champions revisiting teams in their graphs with

seemingly no distinguishable effect?

We sought to answer this question by specifically searching for the team revisits we

hypothesized learner traversals would allow. To do this a java program was written

to comb through the path traces gathered during the evaluation phases and look for

paths where a team was revisited. In addition, because our path trace data also

contained information on which learners bid at each stage in the path, the program

would also look for ’revisit sites’, that is, points in the path where, had a different

learner won the bid, a team revisit would have occurred. Finally, the program would

take note of which teams, actions and learners were visited across all episodes for

a given champion. This data would be combined with the data collected about the

respective champion’s graph and used to determine how much of the champion’s

graph was actually utilized during the evaluation phase.

The analysis described was performed on both team and learner traversal champi-

ons. While one naturally would not expect to find team revisits in the team traversal

paths, we did want to determine if the difference in traversal strategy amounted to a

difference in graph utilization (path coverage of the graph) during evaluation. Thus,

with this in mind, 2,214,761 learner traversal paths and 2,510,913 team traversal

paths for a total of 4,725,674 paths were analyzed for the 500 generation champions.

73

No team revisits, nor team revisit sites were found, a result that potentially implies

that new variation operators should be introduced that explicitly attempt to intro-

duce looping structures (as opposed to the current case in which looping structures

are ‘assumed to appear’.

5.2 Team & Action Utilization

74

F
ig

u
re

5.
8:

L
e
a
rn

e
r
tr
a
v
e
rs
a
l

ve
rt

ex
co

ve
r

an
al

y
si

s
fo

r
ge

n
er

at
io

n
50

0
ch

am
p
io

n
s.

In
gr

ee
n

,
th

e
p

er
ce

n
ta

ge
of

ve
rt

ic
es

(t
ea

m
s

an
d

ac
ti

on
s)

co
ve

re
d

b
y

al
l

p
at

h
s

tr
ac

ed
ov

er
20

ev
al

u
at

io
n

ep
is

o
d
es

fo
r

a
gi

ve
n

ch
am

p
io

n
(l

is
te

d
on

th
e

x
-a

x
is

).
In

bl
u

e,
th

e
p

er
ce

n
ta

ge
of

ve
rt

ic
es

w
it

h
in

b
id

ra
n
ge

of
al

l
p
at

h
s

tr
ac

ed
ov

er
20

ev
al

u
at

io
n

ep
is

o
d
es

fo
r

a
gi

ve
n

ch
am

p
io

n
.

C
h
am

p
io

n
gr

ap
h
s

w
it

h
fe

w
er

th
an

50
te

am
s

w
er

e
ex

cl
u
d
ed

as
th

ei
r

50
%

-
10

0%
co

ve
ra

ge
is

a
re

fl
ec

ti
on

of
th

ei
r

u
n
iq

u
el

y
sm

al
l

gr
ap

h
si

ze
.

S
q
u
ar

e-
ro

ot
y
-a

x
is

sc
al

e
u
se

d
to

h
ig

h
li
gh

t
sm

al
le

r
d
iff

er
en

ce
s

in
lo

w
er

co
ve

ra
ge

s.

75

F
ig

u
re

5.
9:

T
e
a
m

tr
a
v
e
rs
a
l

ve
rt

ex
co

ve
r

an
al

y
si

s
fo

r
ge

n
er

at
io

n
50

0
ch

am
p
io

n
s.

In
gr

ee
n

,
th

e
p

er
ce

n
ta

ge
of

ve
rt

ic
es

(t
ea

m
s

an
d

ac
ti

on
s)

co
ve

re
d

b
y

al
l

p
at

h
s

tr
ac

ed
ov

er
20

ev
al

u
at

io
n

ep
is

o
d
es

fo
r

a
gi

ve
n

ch
am

p
io

n
(l

is
te

d
on

th
e

x
-a

x
is

).
In

bl
u

e
th

e
p

er
ce

n
ta

ge
of

ve
rt

ic
es

w
it

h
in

b
id

ra
n
ge

of
al

l
p
at

h
s

tr
ac

ed
ov

er
20

ev
al

u
at

io
n

ep
is

o
d
es

fo
r

a
gi

ve
n

ch
am

p
io

n
.

C
h
am

p
io

n
gr

ap
h
s

w
it

h
fe

w
er

th
an

50
te

am
s

w
er

e
ex

cl
u
d
ed

as
th

ei
r

50
%

-
10

0%
co

ve
ra

ge
is

a
re

fl
ec

ti
on

of
th

ei
r

u
n
iq

u
el

y
sm

al
l

gr
ap

h
si

ze
.

S
q
u
ar

e-
ro

ot
y
-a

x
is

sc
al

e
u
se

d
to

h
ig

h
li
gh

t
sm

al
le

r
d
iff

er
en

ce
s

in
lo

w
er

co
ve

ra
ge

s.

76

Figures 5.8 and 5.9 show the percentage of vertices covered by all paths during

the 20 episode evaluation runs for individual champions with learner traversal and

team traversal respectively. Champion graphs with fewer than 50 teams are excluded

because their high vertex covers are more so a reflection of their graph size than

the algorithm’s utilization. The maximum graph utilization in vertx terms is 13.33%

and 12.5% achieved by Kangaroo-TEAM-4 and Venture-LEARNER-9 respectively.

Relaxing our utilization definition to include teams and actions which were contenders

at the bidding stage of graph traversal (bid-range) we have maximum utilization of

44% and 52.237% for team and learner traversals respectively achieved by the same

champions. Comparing vertex covers between traversals with two-tailed pairwise t-

tests gives 0.449 for our strict definition, and 0.624 for our relaxed definition, showing

no significant difference between the traversal strategies.

5.3 Learner Utilization

Figures 5.10 and 5.11 show the percentage of edges covered by all paths during the

20 episode evaluation runs for individual champions with learner traversal and team

traversal respectively. Champion graphs with fewer than 50 learners are excluded

because their high edge covers are more so a reflection of their graph size than the

algorithm’s utilization. The maximum graph utilization in edge terms is 5.556%

and 3.15% achieved by DoubleDunk-TEAM-2 and Venture-LEARNER-10 respec-

tively. Relaxing our utilization definition to include learners which were contenders

at the bidding stage of graph traversal (bid-range) we have a maximum utilization of

23.333% and 19.048% achieved by DoubleDunk-TEAM-2 and Venture-LEARNER-9

respectively. Comparing edge covers between traversals with two-tailed pairwise t-

tests gives 0.672 for our strict definition, and 0.437 for our relaxed definition, showing

no significant difference between the traversal strategies.

77

F
ig

u
re

5.
10

:
L
e
a
rn

e
r
T
ra
v
e
rs
a
l

ed
ge

co
ve

r
an

al
y
si

s
fo

r
ge

n
er

at
io

n
50

0
ch

am
p
io

n
s.

In
gr

ee
n

,
th

e
p

er
ce

n
ta

ge
of

ed
ge

s
(l

ea
rn

er
s)

co
ve

re
d

b
y

al
l

p
at

h
s

tr
ac

ed
ov

er
20

ev
al

u
at

io
n

ep
is

o
d
es

fo
r

a
gi

ve
n

ch
am

p
io

n
(l

is
te

d
on

th
e

x
-a

x
is

).
In

bl
u

e,
th

e
p

er
ce

n
ta

ge
of

ed
ge

s
w

it
h
in

b
id

ra
n
ge

of
al

l
p
at

h
s

tr
ac

ed
ov

er
20

ev
al

u
at

io
n

ep
is

o
d
es

fo
r

a
gi

ve
n

ch
am

p
io

n
.

C
h
am

p
io

n
gr

ap
h
s

w
it

h
fe

w
er

th
an

50
le

ar
n
er

s
w

er
e

ex
cl

u
d
ed

as
th

ei
r

50
%

-1
00

%
co

ve
ra

ge
is

a
re

fl
ec

ti
on

of
th

ei
r

u
n
iq

u
el

y
sm

al
l

gr
ap

h
si

ze
.

S
q
u
ar

e-
ro

ot
y
-a

x
is

sc
al

e
u
se

d
to

h
ig

h
li
gh

t
sm

al
le

r
d
iff

er
en

ce
s

in
lo

w
er

co
ve

ra
ge

s.

78

F
ig

u
re

5.
11

:
T
e
a
m

T
ra
v
e
rs
a
l

ed
ge

co
ve

r
an

al
y
si

s
fo

r
ge

n
er

at
io

n
50

0
ch

am
p
io

n
s.

In
gr

ee
n

,
th

e
p

er
ce

n
ta

ge
of

ed
ge

s
(l

ea
rn

er
s)

co
ve

re
d

b
y

al
l

p
at

h
s

tr
ac

ed
ov

er
20

ev
al

u
at

io
n

ep
is

o
d
es

fo
r

a
gi

ve
n

ch
am

p
io

n
(l

is
te

d
on

th
e

x
-a

x
is

).
In

bl
u

e,
th

e
p

er
ce

n
ta

ge
of

ed
ge

s
w

it
h
in

b
id

ra
n
ge

of
al

l
p
at

h
s

tr
ac

ed
ov

er
20

ev
al

u
at

io
n

ep
is

o
d
es

fo
r

a
gi

ve
n

ch
am

p
io

n
.

C
h
am

p
io

n
gr

ap
h
s

w
it

h
fe

w
er

th
an

50
le

ar
n
er

s
w

er
e

ex
cl

u
d
ed

(e
x
:

P
it

fa
ll
,

D
ou

b
le

D
u
n
k
,

et
c.

)
as

th
ei

r
50

%
-1

00
%

co
ve

ra
ge

is
a

re
fl
ec

ti
on

of
th

ei
r

u
n
iq

u
el

y
sm

al
l

gr
ap

h
si

ze
.

S
q
u
ar

e-
ro

ot
y
-a

x
is

sc
al

e
u
se

d
to

h
ig

h
li
gh

t
sm

al
le

r
d
iff

er
en

ce
s

in
lo

w
er

co
ve

ra
ge

s.

Chapter 6

Conclusion

6.1 Traversal Strategies

No significant difference could be asserted between team and learner traversal strate-

gies in terms of performance, static graph properties, dynamic graph properties, ac-

tion distributions, or graph coverage either in terms of vertices or edges. Furthermore,

the hypothesized revisiting of teams theoretically possible under the learner traver-

sal strategy was not observed. One possible explanation for this result is that no

structural cycles exist in the underlying graphs. Their existence was assumed from

previous work done on TPG as well as the nature of learner mutation in pyTPG,

which allows learners to mutate into pointing to any other team aside from its parent

team and any team it was already pointing to. Further investigation could first at-

tempt to confirm the existence of structural cycles from the saved champion graphs.

Failure to find these structural cycles could indicate that the evolutionary process

implemented in pyTPG indirectly prevents cycles from occurring. Another factor

might be due to the relatively high number of root teams replaced per generation

(50%) while the number of generations is relatively low (500). Which is to say, there

might be a need for a relatively low turn-over in TPG agents for individuals to be

around long enough to generate cyclic structures.

Our own analysis revealed that across all traversal strategies and environments

less than 15% of vertices and 25% of edges appear in the paths used by the champions

to produce actions during play. Even then, most champions utilized under 5% of both

vertices and edges. This might suggest that a subset of programs quickly dominate

bidding in their teams. If this is the case it merits further investigation into whether

this happens because the suggested actions are indeed that proficient at returning

fitness maximizing actions (in which case one may look to prune unused learners that

survive simply by association) or if the behavior is an unwanted side-effect of TPG’s

design. In the latter case perhaps the selection mechanism is insufficient to remove

79

80

programs with high bids that produce sub-optimal results.

Nevertheless, it would be interesting to prune all unused learners, teams and

actions from champions then re-evaluate them to assert that performance remains

the same. If so, this technique could be used to ’compress’ champions for practical

application. Additionally, such low graph utilization could justify the development of

more complex mutation and evolution mechanisms that can attempt to make better

use of the evolved graph structures. For example, drawing additional inspiration from

the hierarchical evolutionary process of Symbiotic Bid-Based GP previously studied

by Robert Smith [57, 58], a two-phase evolutionary process where graph structure

mutations are performed after the traditional TPG mutations.

Other findings originating from our observations during training indicate that

there may be some cases in which the pyTPG implementation’s builds significantly

larger graphs than usual as was the case with Asteroids-TEAM-4 and Bowling-

TEAM-4. This peculiar behavior may be worth further investigation to determine if

it is rooted in a bug or in the algorithm’s design.

Additionally, we made an attempt to explore how action frequencies vary over

time by plotting them against the frame index. It is possible there may yet be some

difference between traversals if one considered the unique action sequences throughout

an episode of play. For example, one could compare metrics like the longest common

action sequences between champions.

Finally, this work serves as a template for the kinds of metrics that would be of

interest in future traversal strategy development. Graph utilization can be included

from the start in future experiments, and with the quantity of data we were able to

capture using Looking Glass one can start thinking about metrics like the percentage

of teams or learners shared between root teams in a given population.

6.2 Summary

The contribution of this work is twofold, from a technical perspective it describes the

operation of a set of mature industry leading technologies that can be used to facilitate

reinforcement learning research at scale. This work can be reused and expanded upon

by other researchers. From a scientific perspective this work contributes the first fine

grained glance into the inner workings of TPG backed by millions of data points. It

81

produced evidence of scarce graph usage during execution in TPG trained champions,

and a surprising lack of cycles observed during the learner traversal strategy. The

contents of TPG’s ’black box’ has never been more accessible.

In conclusion, it was found that pyTPG builds sparse, possibly tree-like, champion

graphs under both team and learner traversal strategies, resulting in no significant

difference between the traversals. In particular no instance of the hypothesized team

revisit under learner traversal was identified. This result motivates further inves-

tigation of the evolutionary process in pyTPG enabled by the tools developed for

this work. In particular with respect to implementing variation operators designed

to augment graph utilization and investigating the prevalence of hitchhikers (graph

structures that do not contribute to performance but persist by their proximity to

high-performing structures).

Bibliography

[1] About node.js, March 2021. https://nodejs.org/en/about/.

[2] Accelerate discovery, March 2021. https://www.ace-net.ca/.

[3] Apache avro™ 1.10.1 documentation, March 2021. https://avro.apache.org/
docs/current/.

[4] Apache cassandra, March 2021. https://cassandra.apache.org/.

[5] Apache kafka, March 2021. https://kafka.apache.org/.

[6] Asteroids-v0, March 2021. https://gym.openai.com/envs/Asteroids-v0/.

[7] Aws cloudformation, March 2021. https://aws.amazon.com/

cloudformation/.

[8] Cedar, March 2021. https://docs.computecanada.ca/wiki/Cedar.

[9] Compare onedrive cloud storage pricing and plans, March 2021. https://www.

microsoft.com/en-ca/microsoft-365/onedrive/compare-onedrive-plans.

[10] The confluent kafka api, March 2021. https://docs.confluent.io/platform/
current/clients/confluent-kafka-python/html/index.html.

[11] Creating a scene, March 2021. https://threejs.org/docs/index.html#

manual/en/introduction/Creating-a-scene.

[12] Deployments, March 2021. https://kubernetes.io/docs/concepts/

workloads/controllers/deployment/.

[13] Dockerhub explore, March 2021. https://hub.docker.com/search?q=&type=

image.

[14] Elassandra, March 2021. https://www.elassandra.io/.

[15] Elasticsearch features, March 2021. https://www.elastic.co/elasticsearch/
features.

[16] Getting started with gym, March 2021. https://gym.openai.com/docs/.

[17] Graph diameter, March 2021. https://mathworld.wolfram.com/

GraphDiameter.html.

[18] Infrastructure as code, March 2021. https://cloud.google.com/solutions/

infrastructure-as-code.

82

83

[19] Inspecting the data, March 2021. https://www.elastic.co/guide/en/kibana/
6.8/tutorial-inspect.html.

[20] Introduction to tensorflow, February 2021. https://www.tensorflow.org/

learn.

[21] Job scheduling policies, March 2021. https://docs.computecanada.ca/wiki/

Job_scheduling_policies.

[22] Jobs, March 2021. https://kubernetes.io/docs/concepts/workloads/

controllers/job/.

[23] Joining queries, March 2021. https://www.elastic.co/guide/en/

elasticsearch/reference/current/joining-queries.html.

[24] Kafka connect, March 2021. https://docs.confluent.io/platform/current/
connect/index.html.

[25] Kibana, March 2021. https://www.elastic.co/kibana.

[26] Kubernetes components, February 2021. https://kubernetes.io/docs/

concepts/overview/components/.

[27] Machine learning, March 2021. https://www.elastic.co/guide/en/kibana/

current/xpack-ml.html.

[28] pickle — python object serialization, March 2021. https://docs.python.org/

3/library/pickle.html.

[29] Pods, March 2021. https://kubernetes.io/docs/concepts/workloads/

pods/.

[30] The progressive javascript framework, March 2021. https://vuejs.org/.

[31] python - docker official images, February 2021. https://hub.docker.com/_/

python.

[32] Pytorch, February 2021. https://pytorch.org/.

[33] Schema registry overview, March 2021. https://docs.confluent.io/

platform/current/schema-registry/index.html.

[34] Terraform language documentation, March 2021. https://www.terraform.io/
docs/language/index.html.

[35] What is a container?, February 2021. https://www.docker.com/resources/

what-container.

[36] What is container orchestration?, February 2021. https://www.redhat.com/

en/topics/containers/what-is-container-orchestration.

84

[37] What is infrastructure as code?, February 2021. https://docs.microsoft.com/
en-us/azure/devops/learn/what-is-infrastructure-as-code.

[38] Wide column stores, March 2021. https://db-engines.com/en/article/

Wide+Column+Stores.

[39] Working with files in microsoft graph, March 2021. https://docs.microsoft.

com/en-us/graph/api/resources/onedrive?view=graph-rest-1.0.

[40] Shawn Adams. Can i do sql-style joins in elasticsearch?, April 2020. https:

//rockset.com/blog/can-i-do-sql-style-joins-in-elasticsearch/.

[41] Caleidgh Bayer Robert Smith Malcolm Heywood Alexandru Ianta, Ryan Ama-
ral. On the impact of tangled program graph marking schemes under the atari
reinforcement learning benchmark. In GECCO ’21, July 2021.

[42] Ryan Amaral. tpg-python, March 2021. https://github.com/Ryan-Amaral/

PyTPG.

[43] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[44] Markus Brameier and Wolfgang Banzhaf. Linear Genetic Programming.
Springer, 2007.

[45] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540,
2016.

[46] Matthew J. Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. A
neuroevolution approach to general atari game playing. IEEE Transactions on
Computational Intelligence and AI in Games, 6(4):355–366, 2014.

[47] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David
Silver. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 3215–3222,
2018.

[48] Lorenz Huelsbergen. Toward simulated evolution of machine-language iteration.
In Proceedings of the First Annual Conference on Genetic Programming, pages
315–320. MIT Press, 1996.

[49] S. Kelly and M. I. Heywood. Emergent tangled graph representations for Atari
game playing agents. In European Conference on Genetic Programming, volume
10196 of LNCS, pages 64–79, 2017.

85

[50] Stephen Kelly and Malcolm I. Heywood. Emergent solutions to high-dimensional
multitask reinforcement learning. Evolutionary Computation, 26(3):347–380,
2018.

[51] Stephen Kelly, Robert J. Smith, and Malcolm I. Heywood. Emergent policy dis-
covery for visual reinforcement learning through tangled program graphs: A tu-
torial. In Wolfgang Banzhaf, Lee Spector, and Leigh Sheneman, editors, Genetic
Programming Theory and Practice XVI, Genetic and Evolutionary Computation,
pages 37–57, 2018.

[52] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[53] Alexander Loginov and Malcolm I. Heywood. On evolving multi-agent FX
traders. In Anna Isabel Esparcia-Alcázar and Antonio Miguel Mora, editors,
Applications of Evolutionary Computation - 17th European Conference, EvoAp-
plications 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers,
volume 8602 of Lecture Notes in Computer Science, pages 203–214. Springer,
2014.

[54] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, 2015.

[55] Gwen Shapira Neha Narkhede and Todd Palino. Kafka: The Definitive Guide:
Real-Time Data and Stream Processing at Scale. O’Reilly, 2017.

[56] Miguel Nicolau and James McDermott. Genetic programming symbolic regres-
sion: What is the prior on the prediction? In Wolfgang Banzhaf, Erik D.
Goodman, Leigh Sheneman, Leonardo Trujillo, and Bill Worzel, editors, Genetic
Programming Theory and Practice XVII [GPTP 2019, Michigan State Univer-
sity, East Lansing, Michigan, USA, May 16-19, 2019], pages 201–225. Springer,
2019.

[57] Robert J. Smith and Malcolm I. Heywood. Coevolving deep hierarchies of pro-
grams to solve complex tasks. In Peter A. N. Bosman, editor, Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin,
Germany, July 15-19, 2017, pages 1009–1016. ACM, 2017.

[58] Robert J. Smith, Stephen Kelly, and Malcolm I. Heywood. Discovering rubik’s
cube subgroups using coevolutionary GP: A five twist experiment. In Tobias
Friedrich, Frank Neumann, and Andrew M. Sutton, editors, Proceedings of the
2016 on Genetic and Evolutionary Computation Conference, Denver, CO, USA,
July 20 - 24, 2016, pages 789–796. ACM, 2016.

86

[59] Hans-Arno Jacobsen SSergio Gomez-Villamor Victor Muntes-Mulero and
Serge Mankovskii Tilmann Rabl, Mohammad Sadoghi. Solving big data chal-
lenges for enterprise application performance management. In Proceedings of the
VLDB Endowment, volume 5, pages 1724–1735, August 2012.

[60] Garnett Carl Wilson and Malcolm I. Heywood. Introducing probabilistic adap-
tive mapping developmental genetic programming with redundant mappings.
Genet. Program. Evolvable Mach., 8(2):187–220, 2007.

Appendix A

Supplementary Data from other Generations

For reference, the figures and Tables for performance, static, dynamic, and action

distributions are provided for champions after 300 and 400 generations of training

respectively.

87

88

Fitness
Env. Trav. Max N. Max Avg. N. Avg. Min Inst.

Asteroids
L 8090 369.7% 3396.2 ±1408.93 134.3% 730

5
T 8060 368.2% 3276.6 ±1485.71 128.3% 980

BattleZone
L 45000 71.5% 17180 ±8295.03 24.8% 1000

5
T 45000 71.5% 15640 ±8999.46 22.3% 1000

Bowling
T 153 1882.6% 89.62 ±19.86 964.1% 60

5
L 126 1491.3% 86.11 ±15.06 913.2% 49

Centipede
L 26251 397.6% 7040.18 ±4818.58 81.5% 2216

5
T 29127 444.9% 6375.23 ±3994.05 70.5% 1584

DoubleD.
T 2 112.6% -1.26 ±1.15 94.8% -2

5
L 2 112.6% -2.02 ±2.82 90.6% -16

FishingD.
L -37 44.5% -76.72 ±18.43 12.2% -99

5
T -25 54.2% -81.97 ±14.92 7.9% -99

Freeway
L 28 82.4% 22.9 ±1.78 67.4% 19

5
T 25 73.5% 22.33 ±1.38 65.7% 19

Frostbite
T 2890 29.7% 553.6 ±574.53 5.1% 70

5
L 710 6.8% 216.3 ±140.16 1.6% 50

Gravitar
L 2200 162.6% 456 ±328.65 22.7% 0

5
T 2100 154.6% 306 ±324.67 10.7% 0

IceHockey
L 5 131.7% -0.54 ±3.13 86.7% -9

5
T 7 148.0% -1.41 ±4.35 79.6% -14

Kangaroo
L 1400 9.2% 752 ±246.77 4.8% 200

5
T 1200 7.9% 696 ±230.61 4.4% 200

Krull
L 11001 131.6% 6975.967 ±2784.86 75.3% 1262

3
T 11954 145.0% 6526.933 ±2955.78 69.0% 90

MsPacman
L 3380 60.6% 784.375 ±566.46 9.4% 210

4
T 1860 30.6% 498.4 ±326.30 3.8% 50

Pitfall
L 0 99.9% 0 ±0 99.9% 0

5
T 0 99.9% 0 ±0 99.9% 0

PrivateEye
L 15100 358.2% 4034.425 ±5440.88 95.3% -1000

4
T 14666 347.8% 3109.188 ±3975.51 73.3% -1000

Robotank
T 20 30.8% 12.633 ±3.52 18.4% 6

3
L 20 30.8% 12.083 ±2.97 17.5% 4

Skiing
T -6872 216.2% -8312.317 ±923.31 188.7% -9010

3
L -7372 206.6% -8815.8 ±420.17 179.1% -9008

TimePilot
T 12200 92.2% 4091.25 ±1878.44 5.6% 400

4
L 8600 53.8% 3966.25 ±2129.25 4.3% 500

Venture
L 500 9090.9% 53 ±126.85 963.6% 0

5
T 400 7272.7% 27 ±81.06 490.9% 0

Table A.1: Minimum, mean, standard deviation, normalized mean, maximum and
normalized maximum fitness by environment and traversal for champions after 300
generations of training. The instance column refers to the number of champions
tested for each traversal type.

89

D
ia

m
et

er
E

n
v
.

T
ra

v
.

#
L

ea
rn

er
s

#
T

ea
m

s
#

L
ea

rn
er

s/
T

ea
m

#
In

st
./

T
ea

m
#

of
In

st
.

w
.r

.t
R

o
ot

A
st

er
oi

d
s

L
20

16
.2

35
9.

4
6.

22
6

67
.4

12
13

63
63

.8
12

.2
T

25
60

.8
45

5.
6

6.
73

2
66

.6
71

17
00

09
.6

15
.8

B
at

tl
eZ

on
e

L
34

11
.8

56
4.

8
6.

88
5

63
.6

23
21

52
78

.2
16

.2
T

20
27

39
6.

8
6.

04
5

63
.9

34
12

46
53

.8
13

.4

B
ow

li
n
g

T
65

55
.4

87
1.

4
8.

33
7

63
.6

48
41

89
82

.4
18

.4
L

79
93

.8
10

31
.2

9.
11

9
66

.9
85

53
67

03
.4

20
.8

C
en

ti
p

ed
e

L
22

27
.6

37
9.

2
5.

90
2

65
.7

72
14

27
52

.8
12

.2
T

16
13

.4
32

9.
4

5.
83

8
65

.5
96

10
55

14
.4

12
.2

D
ou

b
le

D
u
n
k

T
40

4
82

.6
5.

33
7

64
.0

36
26

44
8.

4
8

L
90

2.
6

17
6

5.
46

4
62

.8
81

57
23

8.
8

10

F
is

h
in

gD
er

b
y

L
45

00
.2

64
5.

8
7.

37
3

66
.9

25
29

86
91

.8
16

.8
T

26
97

46
7.

4
6.

19
6

73
.4

13
18

01
80

.6
13

.6

F
re

ew
ay

L
18

59
.8

33
2.

4
5.

44
3

64
.7

18
12

20
36

.2
11

.4
T

32
17

.8
56

4.
8

6.
86

65
.0

5
20

91
51

.4
15

.6

F
ro

st
b
it

e
T

56
10

.8
82

1.
8

7.
80

5
64

.0
44

35
89

94
.4

19
.8

L
19

42
.8

37
3

5.
61

60
.5

77
12

83
35

.4
12

G
ra

v
it

ar
L

56
03

.4
79

5.
4

8.
30

3
68

.7
93

38
74

84
.4

18
.4

T
40

35
.8

64
7

7.
55

7
67

.9
56

27
78

03
.4

15
.8

Ic
eH

o
ck

ey
L

15
70

.2
28

5.
8

5.
71

4
65

.9
55

99
12

2.
2

11
T

15
38

27
9.

2
5.

65
8

64
.3

54
93

66
9.

2
10

K
an

ga
ro

o
L

28
69

.6
49

9.
4

6.
67

1
67

.4
22

19
30

92
.4

13
.6

T
17

26
.4

33
5

6.
10

9
66

.0
67

11
28

18
.6

12
.8

K
ru

ll
L

94
81

12
00

.6
67

9.
52

1
67

.4
67

63
13

77
.3

33
26

T
78

55
91

9.
33

3
8.

53
67

.4
25

49
12

49
.3

33
19

.3
33

M
sP

ac
m

an
L

27
02

.7
5

39
1.

25
6.

40
8

64
.8

59
17

88
19

.5
10

.2
5

T
57

67
.8

84
6.

6
8.

43
9

69
.0

32
39

55
00

.4
19

T
ab

le
A

.2
:

S
ta

ti
c

p
ro

p
er

ti
es

of
ch

am
p
io

n
s

af
te

r
30

0
ge

n
er

at
io

n
s

of
tr

ai
n
in

g.

90

D
ia

m
et

er
E

n
v
.

T
ra

v
.

#
L

ea
rn

er
s

#
T

ea
m

s
#

L
ea

rn
er

s/
T

ea
m

#
In

st
./

T
ea

m
#

of
In

st
.

w
.r

.t
R

o
ot

P
it

fa
ll

L
4

1
4

59
.4

24
5.

4
1

T
3.

6
1

3.
6

71
.1

73
25

3.
2

1

P
ri

va
te

E
ye

L
55

99
84

0.
5

8.
23

2
67

.5
56

37
53

07
.7

5
19

T
56

71
.5

84
3.

5
8.

01
8

65
.1

55
36

22
73

.5
19

.2
5

R
ob

ot
an

k
T

29
1

61
5.

14
4

64
.6

45
19

15
8.

33
3

7
L

18
4.

66
7

40
4.

67
65

.5
3

11
75

2
4

S
k
ii
n
g

T
24

30
47

4.
33

3
6.

26
60

.0
49

14
48

64
.3

33
14

L
35

16
.3

33
62

9.
33

3
6.

84
5

62
.0

43
21

87
26

.3
33

17

T
im

eP
il
ot

T
16

48
.7

5
32

7.
75

6.
02

5
67

.4
21

11
20

43
.2

5
11

.7
5

L
25

11
.2

5
41

9.
25

6.
45

7
66

.4
2

16
57

22
.7

5
12

.2
5

V
en

tu
re

L
90

0.
4

16
7

5.
47

5
63

.3
52

59
39

8.
6

11
.2

T
64

9.
8

13
1.

8
5.

19
5

63
.8

46
42

09
5.

6
10

.2

T
ab

le
A

.3
:

S
ta

ti
c

p
ro

p
er

ti
es

of
ch

am
p
io

n
s

af
te

r
30

0
ge

n
er

at
io

n
s

of
tr

ai
n
in

g
co

n
ti

n
u
ed

.

91

Depth
Env. Trav. Max Mean Min Inst. / Action Ex. Time (ms)

Asteroids
T 7 2.766 2 2051.242 0.524
L 4 2.998 2 2012.029 0.461

BattleZone
L 8 4.067 2 3695.388 0.926
T 7 4.041 2 2922.362 0.794

Bowling
L 6 3.451 2 2751.092 0.656
T 6 3.529 1 3359.787 0.801

Centipede
T 5 2.901 2 2390.726 0.574
L 4 2.841 1 1635.122 0.454

DoubleDunk
L 5 4.296 3 2761.579 0.668
T 5 3.334 2 1732.589 0.446

FishingDerby
L 9 4.309 3 3002.384 0.75
T 7 4.299 1 3162.088 0.846

Freeway
T 5 3.789 2 2978.142 0.835
L 4 2.681 1 1256.678 0.356

Frostbite
T 9 4.897 3 3041.437 0.921
L 6 2.811 1 1898.099 0.509

Gravitar
L 4 3.258 2 2745.167 0.769
T 4 2.772 1 2727.392 0.812

IceHockey
T 7 3.942 2 2112.466 0.648
L 6 3.771 2 2840.19 0.759

Kangaroo
T 7 3.283 1 2776.562 0.803
L 5 3.308 2 2787.663 0.796

Krull
T 7 3.839 1 3437.794 0.794
L 5 3.515 2 3435.996 0.928

MsPacman
T 7 3.174 1 3349.425 0.581
L 4 2.807 1 2158.585 0.622

Pitfall
L 1 1 1 245.403 0.106
T 1 1 1 253.201 0.081

PrivateEye
L 8 4.624 3 4487.406 1.13
T 7 4.937 3 3753.153 0.992

Robotank
L 3 2.33 2 1242.289 0.324
T 3 2.329 2 1296.341 0.318

Skiing
L 7 3.854 2 2082.44 0.491
T 6 3.935 2 2316.676 0.558

TimePilot
T 7 2.268 1 2480.945 0.562
L 5 3.696 2 2711.833 0.706

Venture
T 8 4.697 2 2170.429 0.469
L 7 3.552 2 1732.077 0.459

Table A.4: Dynamic properties of champions after 300 generations of training.

92

Figure A.1: Action frequencies across all environments for champions after 300 gen-
erations of training.

93

Figure A.2: Action frequencies for champions trained on the BattleZone Atari game
after 300 generations of training. Split by traversal type.

94

Figure A.3: Action frequency distribution across all environments for champions with
team traversal after 300 generations of training plotted as a percent of the whole
against the frame #. Note that many actions occurred infrequently enough to be
omitted.

95

Figure A.4: Action frequency distribution across all environments for champions with
learner traversal after 300 generations of training plotted as a percent of the whole
against the frame #. Note that many actions occurred infrequently enough to be
omitted.

96

Figure A.5: Action frequency distribution for champions trained on the BattleZone
Atari game with team traversal after 300 generations of training plotted as a percent
of the whole against the frame #.

Figure A.6: Action frequency distribution for champions trained on the BattleZone
Atari game with learner traversal after 300 generations of training plotted as a percent
of the whole against the frame #.

97

Fitness
Env. Trav. Max N. Max Mean N. Mean Min Inst.

Asteroids
T 12100 570.8% 3221.875 ±1788.61 125.5% 930

4
L 7910 360.7% 3077.875 ±1365.70 118.3% 580

BattleZone
T 35000 54.7% 18150 ±8121.11 26.5% 2000

4
L 49000 78.2% 16637.5 ±8756.77 23.9% 2000

Bowling
L 125 1476.8% 86.213 ±16.43 914.7% 56

4
T 139 1679.7% 75.025 ±38.60 752.5% 0

Centipede
T 18630 272.2% 6332.84 ±3595.63 69.8% 1746

5
L 24677 371.7% 5729.24 ±3601.30 59.9% 2216

DoubleD.
T 2 112.6% -1.5 ±1.03 93.4% -2

5
L 2 112.6% -2.46 ±2.86 88.2% -12

FishingD.
L -27 52.6% -75.41 ±18.80 13.2% -99

5
T -35 46.1% -81.07 ±13.62 8.6% -99

Freeway
L 27 79.4% 22.65 ±1.73 66.6% 18

5
T 27 79.4% 22.33 ±1.51 65.7% 19

Frostbite
T 2660 27.2% 528.9 ±530.13 4.9% 60

5
L 720 6.9% 223.7 ±165.00 1.7% 90

Gravitar
T 1150 78.4% 422 ±266.58 20.0% 0

5
L 2000 146.6% 404.5 ±301.33 18.6% 0

IceHockey
L 5 131.7% -0.69 ±3.17 85.4% -12

5
T 7 148.0% -1.32 ±4.75 80.3% -14

Kangaroo
L 1400 9.2% 780 ±234.09 5.0% 200

5
T 1400 9.2% 700 ±204.93 4.4% 200

Krull
T 11379 136.9% 6443.725 ±3076.98 67.8% 930

2
L 9351 108.5% 5140.075 ±2374.14 49.6% 1602

MsPacman
L 2240 38.1% 802.9 ±492.89 9.8% 210

5
T 2050 34.4% 589.2 ±430.54 5.6% 80

Pitfall
L 0 99.9% 0 ±0 99.9% 0

5
T 0 99.9% 0 ±0 99.9% 0

PrivateEye
L 14556 345.2% 3863.5 ±4469.67 91.2% -1000

2
T 4478 105.8% 1866.2 ±2455.56 43.7% -1000

Skiing
T -8882 177.8% -8938.4 ±38.79 176.7% -9010

1
L -7390 206.3% -9081.15 ±1578.17 174.0% -13537

TimePilot
T 8300 50.6% 4195 ±2067.96 6.7% 400

2
L 11800 88.0% 4020 ±2324.77 4.8% 700

Venture
L 700 12727.3% 47 ±126.85 854.5% 0

5
T 300 5454.5% 19 ±61.14 345.5% 0

Table A.5: Minimum, mean, standard deviation, normalized mean, maximum and
normalized maximum fitness by environment and traversal for champions after 400
generations of training. The instance column refers to the number of champions
tested for each traversal type.

98

D
ia

m
et

er
E

n
v
.

T
ra

v
.

#
L

ea
rn

er
s

#
T

ea
m

s
#

L
ea

rn
er

s/
T

ea
m

#
In

st
./

T
ea

m
#

of
In

st
.

w
.r

.t
R

o
ot

A
st

er
oi

d
s

T
27

12
.2

5
47

1.
5

6.
72

7
66

.0
61

18
05

48
15

.2
5

L
25

12
44

5
6.

56
4

66
.4

08
16

73
44

.2
5

13
.5

B
at

tl
eZ

on
e

T
35

03
59

9.
75

6.
90

7
62

.7
71

21
34

30
.5

16
.7

5
L

39
89

.2
5

66
1.

5
7.

24
61

.5
15

24
28

58
.7

5
16

.5

B
ow

li
n
g

L
75

43
98

2.
75

8.
88

4
66

.8
77

50
66

18
.2

5
20

.2
5

T
87

91
11

30
.5

9.
38

8
63

.1
6

55
02

12
22

.5

C
en

ti
p

ed
e

T
27

41
.4

46
3.

6
6.

38
8

65
.7

61
17

59
36

.2
13

.6
L

32
10

.4
51

7
6.

41
1

65
.0

79
20

15
48

.2
14

.6

D
ou

b
le

D
u
n
k

T
40

4
82

.6
5.

33
7

64
.0

36
26

44
8.

4
8

L
90

2.
6

17
6

5.
46

4
62

.8
81

57
23

8.
8

10

F
is

h
in

gD
er

b
y

L
51

54
72

9.
2

7.
72

3
67

.2
26

34
26

82
17

.6
T

25
78

.6
46

3
6.

14
3

73
.1

94
17

23
39

.4
13

F
re

ew
ay

L
33

43
.2

53
5.

6
6.

75
65

.2
99

21
81

28
.8

14
.8

T
37

43
.8

64
9.

4
7.

23
1

65
.4

2
24

41
08

.4
16

.6

F
ro

st
b
it

e
T

63
55

.2
89

6
8.

12
7

63
.9

49
40

40
28

20
.8

L
38

21
.8

63
1.

6
7.

00
4

65
.1

45
24

83
01

15
.8

G
ra

v
it

ar
T

41
70

.6
66

5.
2

7.
69

1
67

.7
96

28
47

65
.4

16
.4

L
51

48
76

5.
6

8.
13

6
68

.6
23

35
56

91
18

Ic
eH

o
ck

ey
L

22
22

.2
38

4
6.

03
9

65
.4

23
14

06
63

.8
11

.6
T

24
84

.8
45

7.
4

6.
30

5
63

.3
88

15
54

88
13

.4

K
an

ga
ro

o
L

53
43

.6
80

7.
2

8.
06

6
67

.6
74

36
35

94
.2

18
T

46
99

.6
59

4.
2

7.
43

1
66

.2
91

31
57

91
15

.8

K
ru

ll
T

55
77

.5
80

4
8.

11
9

65
.3

95
34

89
49

.5
18

L
47

62
75

6.
5

7.
87

5
68

.8
73

33
15

92
.5

17

T
ab

le
A

.6
:

S
ta

ti
c

p
ro

p
er

ti
es

of
ch

am
p
io

n
s

af
te

r
40

0
ge

n
er

at
io

n
s

of
tr

ai
n
in

g.

99

D
ia

m
et

er
E

n
v
.

T
ra

v
.

#
L

ea
rn

er
s

#
T

ea
m

s
#

L
ea

rn
er

s/
T

ea
m

#
In

st
./

T
ea

m
#

of
In

st
.

w
.r

.t
R

o
ot

M
sP

ac
m

an
L

39
82

.8
57

4.
2

7.
16

65
.6

84
26

91
77

.2
13

.2
T

57
67

.8
84

6.
6

8.
43

9
69

.0
32

39
55

00
.4

19

P
it

fa
ll

L
4

1
4

59
.4

24
5.

4
1

T
3.

6
1

3.
6

71
.1

73
25

3.
2

1

P
ri

va
te

E
ye

L
69

08
96

3
8.

67
1

68
.0

03
46

88
52

20
.5

T
78

05
.5

10
48

8.
96

9
64

.1
61

48
92

04
.5

20
.5

S
k
ii
n
g

T
22

81
45

5
6.

18
7

58
.2

96
13

12
94

13
L

31
56

63
2

6.
44

61
.4

74
19

60
13

17

T
im

eP
il
ot

T
16

11
.5

33
0

5.
95

1
67

.3
86

10
97

99
12

L
12

57
26

1
5.

82
1

66
.0

55
82

22
7

9.
5

V
en

tu
re

L
14

00
.4

25
5.

6
5.

87
6

63
.4

09
91

56
3

12
.2

T
70

5
14

2.
8

5.
25

8
64

.1
66

45
53

0.
6

10
.6

T
ab

le
A

.7
:

S
ta

ti
c

p
ro

p
er

ti
es

of
ch

am
p
io

n
s

af
te

r
40

0
ge

n
er

at
io

n
s

of
tr

ai
n
in

g
co

n
ti

n
u
ed

.

100

Depth
Env. Trav. Max Mean Min. Inst. / Action Ex. Time (ms)

Asteroids
T 7 2.742 2 2304.732 0.605
L 4 3.14 2 2235.894 0.537

BattleZone
L 8 4.179 2 4060.726 1.042
T 7 5.216 4 4411.206 1.184

Bowling
L 6 3.38 2 2463.069 0.642
T 6 3.721 2 3258.217 0.929

Centipede
T 5 2.733 2 2052.346 0.518
L 4 2.657 2 1963.538 0.502

DoubleDunk
L 5 4.298 3 2722.207 0.695
T 5 3.533 2 1796.941 0.439

FishingDerby
L 9 4.126 2 3001.052 0.739
T 7 4.271 1 3509.018 0.985

Freeway
L 5 3.279 2 1822.857 0.568
T 5 3.493 2 3211.293 0.953

Frostbite
T 9 5.598 3 3526.873 1.223
L 6 3.641 2 2304.993 0.781

Gravitar
L 4 3.025 1 2607.088 0.681
T 4 2.69 2 2375.059 0.633

IceHockey
T 7 4.333 2 2725.122 0.738
L 6 3.734 1 3227.704 0.752

Kangaroo
T 7 3.647 1 2792.086 0.76
L 5 3.134 2 2752.819 0.662

Krull
L 7 3.602 2 2525.618 0.576
T 5 2.93 2 2503.396 0.511

MsPacman
T 7 3.148 1 3349.882 0.783
L 6 4.162 1 2996.454 0.814

Pitfall
L 1 1 1 245.394 0.092
T 1 1 1 253.182 0.071

PrivateEye
L 7 5.5 3 5217.377 1.209
T 5 3.217 2 2003.513 0.515

Skiing
L 4 4 4 2252.333 0.674
T 3 3 3 2422 0.647

TimePilot
T 7 3.029 2 3084.492 0.699
L 5 4.189 2 2477.993 0.584

Venture
L 9 3.165 2 1950.828 0.431
T 8 5.189 3 2558.535 0.552

Table A.8: Dynamic properties of champions after 400 generations of training.

101

Figure A.7: Action frequencies across all environments for champions after 400 gen-
erations of training.

102

Figure A.8: Action frequencies for champions trained on the BattleZone Atari game
after 400 generations of training. Split by traversal type.

103

Figure A.9: Action frequency distribution across all environments for champions with
team traversal after 400 generations of training plotted as a percent of the whole
against the frame #. Note that many actions occurred infrequently enough to be
omitted.

104

Figure A.10: Action frequency distribution across all environments for champions
with learner traversal after 400 generations of training plotted as a percent of the
whole against the frame #. Note that many actions occurred infrequently enough to
be omitted.

105

Figure A.11: Action frequency distribution for champions trained on the BattleZone
Atari game with learner traversal after 400 generations of training plotted as a percent
of the whole against the frame #.

Figure A.12: Action frequency distribution for champions trained on the BattleZone
Atari game with learner traversal after 400 generations of training plotted as a percent
of the whole against the frame #.

Appendix B

The Performance and Future of Looking Glass

The Looking Glass platform performed remarkably in allowing us to perform ex-

periments on this scale. Because of the the platform we were able to take a near

’capture everything’ approach in terms of data collection, which gave us flexibility

during analysis to pivot and take a different perspective on our results (in terms of

graph coverage) without having to develop a new set of experiments to capture the

required data saving months of computational time.

The ability to monitor experiments in near real-time allowed us to restart failed

runs faster. The redundancy provided by the underlying Elassandra cluster, gave

peace of mind against the possibility of hardware failure. During analysis, Kibana

became a sort of creative workbench for exploring the data collected all in one spot.

Where in the past the time between coming up with an interesting relationship to

search for and seeing the relevant data visualized could have been hours or even days,

with Kibana it was often minutes.

There is ample room for improvement however, it is clear that Looking Glass and

the research pipeline as a whole lack polish and of course documentation. When other

colleagues started making use of the platform, bugs in the code creating automatic

cloud backups sent saves every generation for their experiments resulting in tens of

thousands of zip files sitting in a single OneDrive folder. This resulted in Automatic

Cloud Backups ultimately failing, thankfully, when the bulk of the experiments were

already complete.

A non-exhaustive list of future work might include:

• Terraform configuration files used to deploy Looking Glass have our lab specific

values hard-coded into them and must be refactored for general usage.

• Parts of Kibana and many other services are exposed through plaintext HTTP,

where they should be using HTTPS or not be exposed at all for security reasons.

106

107

• Standard libraries should be developed for interacting with the platform from

various programming languages, and documentation provided for their use.

• Kafka should be deployed as a cluster, similar to Elassandra to allow scaling

based on metric throughput needs.

• The one elastic search index per metric schema approach to storage does not

seem scaleable.

• Long term storage and archival of data needs to be implemented for the platform

to be come a one-stop shop for all experiments.

• An independent metrics, monitoring and reporting system should be imple-

mented for the Looking Glass components themselves to facilitate troubleshoot-

ing and resource management.

• Documentation and a set of test Kafka topics, connectors, elastic search indexes

and Kibana dashboards/visualizations should be developed to give researchers

a way to familiarize themselves with the platform and test the integration with

their experiments.

In any case, Looking Glass has clearly demonstrated its ability to ingest, store,

and allow the querying of millions of data points. Using this platform future work

could attempt to trace the evolutionary process at a higher resolution. For example,

population graphs can be stored before and after a round of mutation and used to

compute the graph differences between them. The evolution of a single team and

its learners mapped out across several generations and contrasted between different

mutation strategies. In essence, with the tools developed in this work one will be able

to guide further development of TPG and other custom RL algorithms.

