
SYMBIOTIC EVOLUTIONARY SUBSPACE CLUSTERING
(S-ESC)

by

Ali R. Vahdat

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

November 2013

c© Copyright by Ali R. Vahdat, 2013

To my mother who made all this possible.

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . xii

List of Abbreviations Used . xiii

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Clustering . 1

1.2 High-dimensional Clustering . 6
1.2.1 Curse of Dimensionality . 6
1.2.2 Defining Types of Subspaces 10

1.3 Subspace Clustering . 12

1.4 Evolutionary Computation . 13
1.4.1 Evolutionary Computation for Clustering 14
1.4.2 Multi-objective Evolutionary Algorithms 15
1.4.3 Symbiosis . 16

1.5 S-ESC in a Nutshell . 17

Chapter 2 Background and Related Work 21

2.1 Categorization of Clustering Methods for Axis-parallel Subspaces . . 22

2.2 Benchmarking Surveys . 27

2.3 Evolutionary Computation for Clustering 32
2.3.1 EC-based Full-space Clustering 32
2.3.2 EC-based Subspace Clustering 42

Chapter 3 Comparator Clustering Algorithms 50

3.1 MINECLUS . 50

3.2 PROCLUS . 52

3.3 STATPC . 54

iii

3.4 EM . 57

Chapter 4 Methodology . 60

4.1 Component 1: Grid Generation . 62

4.2 Component 2: Symbiotic Relationship and Representation 65

4.3 Component 3: Fitness Evaluation . 71
4.3.1 Group Selection . 72
4.3.2 Pareto-dominance and Evolutionary Multi-objective Optimiza-

tion . 72
4.3.3 Bi-objectives for the Clustering Task 77

4.4 Component 4: Variation Operators 80
4.4.1 Single-Level Mutation . 81
4.4.2 Multi-Level Mutation . 82

4.5 Pragmatics . 86
4.5.1 Sub-component A: Subsampling 86
4.5.2 Sub-component B: Knee Detection 87

Chapter 5 Evaluation Methodology 89

5.1 Benchmarking Data . 89
5.1.1 Incremental Benchmarking Data Sets 90
5.1.2 Large-scale Benchmarking Data Sets 93
5.1.3 Data Standardization . 94
5.1.4 Post-training Performance Measures 95

5.2 Comparator Methods . 101

5.3 Parameterization . 102
5.3.1 S-ESC . 102
5.3.2 Comparator Algorithm Parameterization 103

5.4 Flat Evolutionary Subspace Clustering (F-ESC) 105
5.4.1 Representation . 106
5.4.2 Crossover . 107
5.4.3 Similarities . 107

Chapter 6 Results . 108

6.1 Incremental Data Sets . 108

6.2 Large-scale Data Sets . 121

iv

6.3 Symbiotic vs. Flat ESC . 124

6.4 Outlier Effects . 127

6.5 Algorithm Runtime . 132

6.6 Discussion . 133

Chapter 7 Conclusion . 136

Appendices . 139

Appendix A RSS Parameterization . 140

Appendix B Hypothesis Tests . 144

Bibliography . 150

v

List of Tables

Table 5.1 A summary of the properties of the Incremental data sets. A
parenthesis after the experiment identifier denotes the number
of variants for the data set within each experiment. GE denotes
a Gaussian distribution with an Equal number of attributes per
cluster; GD denotes a Gaussian distribution with a Different
number of attributes per cluster; the same applies to UE and
UD but in terms of the Uniform distribution. ‘Irr.’ stands for
Irrelevant, ‘Dim.’ for dimensionality and ‘Inst.’ for Instance. . 92

Table 5.2 A summary of the properties of the large-scale data sets. 94

Table 5.3 Micro Confusion Matrix . 97

Table 5.4 Macro Confusion Matrix . 98

Table B.1 The t-test p values for F-measure significance of the incremental
benchmark data sets (Section 6.1, Table 5.1). The numbers in
parentheses define the specific data set to be tested. For the
case of the GE, GD, UE and UD experiments, it is the average
dimensionality of the data set. For the D, N and k experiments,
it is the dimensionality, cardinality and cluster count of the data
set, respectively. For the Extent experiment, it is the spread
of values for relevant attributes. For the Overlap experiment,
it is the overlap between the relevant attributes of the different
clusters, and for the ClusterSize experiment, it is the average
instance count of the clusters. 146

Table B.2 continued from Table B.1 . 147

Table B.3 The t-test p values for F-measure significance in the Large-scale
benchmark data sets (Section 6.2, Table 5.2). 148

Table B.4 The t-test p values for comparison between S-ESC vs. F-ESC
with different population sizes in the Large-scale data sets (Sec-
tion 6.3) . 148

Table B.5 The t-test p values for comparison between S-ESC vs. F-ESC in
the Moise GD and UD data sets (Section 6.3) 148

Table B.6 The Kruskal-Wallis non-parametric test for comparison between
S-ESC and the comparator methods on the data sets with out-
liers (Section 6.4) . 149

vi

List of Figures

Figure 1.1 Curse of dimensionality. Points projected on (a) 1, (b) 2 and
(c) 3 dimensions. Reproduced from Parsons et al. [87]. 8

Figure 1.2 Axis-parallel vs. arbitrarily-oriented subspaces. Cluster 3 ex-
ists in an axis-parallel subspace, whereas clusters 1 and 2 exist
in (different) arbitrarily-oriented subspaces. Reproduced from
Kriegel et al. [62]. 11

Figure 1.3 S-ESC components and sub-components and their interaction
in summary. 18

Figure 4.1 S-ESC components and sub-components and their interaction
in summary. 64

Figure 4.2 Component 1 – D-dimensional grid generation. 4.2(a) data
set with no grid; 4.2(b) identification of attribute-specific cen-
troids/dense regions; 4.2(c) the enumeration of all possible can-
didate cluster locations through the D-dimensional grid. . . . 66

Figure 4.3 Representation for symbiont or CC individuals relative to a 2-
d grid. Two symbionts CC1 and CC2 are (in this example)
expressed in terms of a common pair of attributes, Attr1 and
Attr2. CC1 consists of two integer pairs: 〈2, 1〉 denoting at-
tribute 2, 1-d density 1, and, 〈1, 2〉 denoting attribute 1, 1-d
density 2. The intersection of each attribute density denotes
the symbiont CC location. Thus CC1 identifies location ‘1’ in
the grid and CC2 identifies location ‘2’. 69

Figure 4.4 Representation of host or CS individuals. Host CS1 indexes
three symbionts, forming a clustering solution (CS) with three
clusters. It makes a reasonable partitioning of the given data
set. Host CS2 defines a CS from two symbionts. Clearly in
this case the partitioning is not optimal, because it misses two
clusters and assigns data points to the wrong clusters. (LHS
subfigure). 71

Figure 4.5 Sample data sets with arbitrary cluster shapes; (a) Smile and
(b) Spirals. 73

Figure 4.6 Dominance in a bi-objective space. Individual x dominates all
the individuals within the box delimited by extending its ob-
jective values. 74

vii

Figure 4.7 The Pareto front of a evolutionary bi-objective optimization
problem. The curve going through all non-dominated individu-
als is called a Pareto front and the individuals on this front are
called Pareto-optimal individuals. 75

Figure 4.8 The four phases of the Single-Level Mutation (SLM) operator. 82

Figure 4.9 The six phases of the Multiple-Level Mutation operator. . . . 84

Figure 4.10 Subsampling process used in S-ESC. 87

Figure 4.11 A sample Pareto front with champion identification through
knee detection. The Pareto set {p1, p2, px, p3, p4} denotes the
front of candidate solutions from which {p1, p4} are the tails.
The champion solution in this case is px. 88

Figure 5.1 Sample visualization of a data set with subspaces. The ‘Class
Labels’ indicates cluster membership and is used only for post-
training evaluation along with classification-style performance
metrics such as F-measure. 95

Figure 5.2 A sample visualization of an 8-cluster S-ESC solution to a 5-
class data set ‘before’ merging output clusters. 99

Figure 5.3 A visualization of the same S-ESC solution ‘after’ merging out-
put clusters. 100

Figure 5.4 Flat Chromosome: A flat chromosome is composed of k cluster
centroids (similar to a S-ESC symbiont representation), each
supporting a (potentially) unique attribute support. AS with
the S-ESC symbiont, an F-ESC individual is composed of two
integer strings, one for attributes, and the one for 1-d centroids. 106

Figure 6.1 Micro F-measure for the incremental GE experiment. Bar or-
der: S-ESC, MINECLUS, PROCLUS, STATPC, EM. 109

Figure 6.2 Micro F-measure for the incremental GD experiment. Bar or-
der: S-ESC, MINECLUS, PROCLUS, STATPC, EM. 109

Figure 6.3 Micro F-measure for the incremental UE experiment. Bar or-
der: S-ESC, MINECLUS, PROCLUS, STATPC, EM. 110

Figure 6.4 Micro F-measure for the incremental UD experiment. Bar or-
der: S-ESC, MINECLUS, PROCLUS, STATPC, EM. 110

viii

Figure 6.5 Micro F-measure for the incremental dimensionality (D) exper-
iment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 112

Figure 6.6 Micro F-measure for the incremental cardinality (N) experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 112

Figure 6.7 Micro F-measure for the incremental cluster count (k) experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 113

Figure 6.8 Micro F-measure for the incremental attribute spread (Extent)
experiment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 114

Figure 6.9 Micro F-measure for the incremental attribute overlap (Overlap)
experiment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 115

Figure 6.10 Micro F-measure for the incremental cluster size (ClusterSize)
experiment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 116

Figure 6.11 Attribute count per solution for the incremental GE experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 118

Figure 6.12 Attribute count per solution for the incremental GD experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 118

Figure 6.13 Attribute count per solution for the incremental UE experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 119

Figure 6.14 Attribute count per solution for the incremental UD experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC
and EM. 119

Figure 6.15 Attribute count per solution for the incremental dimensionality
(D) experiment. Bar order: S-ESC, MINECLUS, PROCLUS,
STATPC and EM. 120

Figure 6.16 Attribute count per solution for the incremental cardinality
(N) experiment. Bar order: S-ESC, MINECLUS, PROCLUS,
STATPC and EM. 120

ix

Figure 6.17 Attribute count per solution for the incremental cluster count
(k) experiment. Bar order: S-ESC, MINECLUS, PROCLUS,
STATPC and EM . 121

Figure 6.18 Micro F-measure for the large-scale data sets. Bar order: ESC,
MINECLUS, PROCLUS, STATPC and EM. 122

Figure 6.19 Attribute count per solution for the large-scale data sets. For vi-
sualization EM attribute count under 800 and 1000 dimensional
data sets is cropped at 550. Bar order: ESC, MINECLUS,
PROCLUS, STATPC and EM. 123

Figure 6.20 The S-ESC symbiont population size profile for the 200D and
800D data sets from Table 5.2 over 1000 generations. 125

Figure 6.21 Micro F-measure comparison between S-ESC and F-ESC with
different population sizes for the large-scale data sets. Bar or-
der: S-ESC, F-ESC (100), F-ESC (200) and F-ESC (500). . . 126

Figure 6.22 Micro F-measure comparison between S-ESC and F-ESC for
the incremental GD experiment. Bar order: S-ESC and F-ESC. 127

Figure 6.23 Micro F-measure comparison between S-ESC and F-ESC for
the incremental UD experiment. Bar order: S-ESC and F-ESC. 128

Figure 6.24 The effect of introducing outliers to data sets before and after
the grid generation process. GD–XX denote the experiments
on the Gaussian data set and UD–XX the Uniform data set;
XX–NN are the base case with no outliers; XX–NY imply no
outliers during the pre-processing step of grid generation, but
are included during the S-ESC evolutionary identification of
subspaces; XX–YN imply that outliers are present only dur-
ing grid generation; and XX–YY imply the outliers are present
throughout. 129

Figure 6.25 Micro F-measure comparison between S-ESC and comparator
methods for the incremental GD experiment including outliers.
Bar order: S-ESC, MINECLUS, PROCLUS, STATPC and EM. 130

Figure 6.26 Micro F-measure comparison between S-ESC and comparator
methods for the incremental UD experiment including outliers.
Bar order: S-ESC, MINECLUS, PROCLUS, STATPC and EM. 131

Figure 6.27 CPU runtime in seconds on Large-scale data sets. Lines be-
tween data points are for illustrative purposes alone. 132

x

Figure A.1 Micro F-measure of S-ESC with different RSS sample sizes for
the incremental GD experiment. Bar order: RSS = 50, RSS =
100 and No RSS. 141

Figure A.2 Micro F-measure of S-ESC with different RSS sample sizes for
the incremental UD experiment. Bar order: RSS = 50, RSS =
100 and No RSS. 142

Figure A.3 Micro F-measure of S-ESC with different RSS sample sizes for
the large-scale data sets. Bar order: RSS = 50, RSS = 100 and
RSS = 500. 143

xi

Abstract

Application domains with large attribute spaces, such as genomics and text analysis,

necessitate clustering algorithms with more sophistication than traditional clustering

algorithms. More sophisticated approaches are required to cope with the large di-

mensionality and cardinality of these data sets. Subspace clustering, a generalization

of traditional clustering, identifies the attribute support for each cluster as well as the

location and number of clusters. In the most general case, attributes associated with

each cluster could be unique. The proposed algorithm, Symbiotic Evolutionary Sub-

space Clustering (S-ESC) borrows from ‘symbiosis’ in the sense that each clustering

solution is defined in terms of a host (a single member of the host population) and a

number of coevolved cluster centroids (or symbionts in an independent symbiont pop-

ulation). Symbionts define clusters and therefore attribute subspaces, whereas hosts

define sets of clusters to constitute a non-degenerate solution. The symbiotic represen-

tation of S-ESC is the key to making it scalable to high-dimensional data sets, while

an integrated subsampling process makes it scalable to tasks with a large number of

data items. A bi-objective evolutionary method is proposed to identify the unique

attribute support of each cluster while detecting its data instances. Benchmarking

is performed against a well-known test suite of subspace clustering data sets with

four well-known comparator algorithms from both the full-dimensional and subspace

clustering literature: EM, MINECLUS, PROCLUS, STATPC and a generic genetic

algorithm-based subspace clustering. Performance of the S-ESC algorithm was found

to be robust across a wide cross-section of properties with a common parameterization

utilized throughout. This was not the case for the comparator algorithms. Specifi-

cally, performance could be sensitive to a particular data distribution or parameter

sweeps might be necessary to provide comparable performance. A comparison is

also made relative to a non-symbiotic genetic algorithm. In this case each individual

represents the set of clusters comprising a subspace cluster solution. Benchmarking

indicates that the proposed symbiotic framework can be demonstrated to be superior

once again. The S-ESC code and data sets are publicly available.

xii

List of Abbreviations Used

ACO Ant Colony Optimization

CC Cluster Centroid

CS Clustering Solution

EC Evolutionary Computation

EM Expectation Maximization

EMO Evolutionary Multi-objective Optimization

F-ESC Flat Evolutionary Subspace Clustering

GA Genetic Algorithm

ML Maximum Likelihood

MLM Multi-Level Mutation

NN Nearest Neighbourhood

NP Non-deterministically Polynomial

NSGA Non-dominating Sorting Genetic Algorithm

PCA Principal Component Analysis

PF Pareto Front

PSO Particle Swarm Optimization

RSS Random Subset Selection

S-ESC Symbiotic Evolutionary Subspace Clustering

SLM Single-Level Mutation

xiii

Acknowledgements

I would never have been able to finish my dissertation without the guidance of my

supervisor, help from friends, and support from my family.

I would like to express my deepest gratitude to my supervisor, Dr. Malcolm

Heywood, for his excellent guidance, caring and patience. He provided me with

an excellent atmosphere for doing research and patiently corrected my writing and

financially supported my research.

I would also like to thank my examining committee; Dr. Nur Zincir-Heywood,

Dr. Dirk Arnold and Dr. Nawwaf Kharma. Thanks for taking interest in my work. I

definitely value your insights. I would also like to recognize the contributions of my

fellow office mates, technical and otherwise.

Special thanks goes to my mother and my younger brother and sister. It was

definitely difficult going through these years without them next to me, but I was

always close to their hearts and minds. My mom has always supported, encouraged

and believed in me, in all my decisions and endeavours and I am very grateful for

this.

xiv

Chapter 1

Introduction

1.1 Clustering

The clustering task is used as a mechanism for summarizing properties of data in

general and appears frequently in (unsupervised) exploratory data mining tasks, i.e.

when there is no label information as is required for supervised learning tasks such

as classification. Clustering was characterized by Berkhin as “a division of data into

groups of similar objects” [12, 13]. The quality of the resulting clusters is impacted

by the assumptions used to answer a series of ‘design questions’ which guide the ap-

plication and/or specification of a clustering algorithm. Such a set of design questions

might be summarized in the following way:

1. Training context: data exists which is sufficient for building a data summary

which is representative of trends of wider interest to a user community. More-

over, there might well be a need to perform some data pre-processing, cleaning

and/or standardization, before presenting data to a clustering algorithm.

2. Representation: a priori decisions are made regarding how to describe candi-

date clusters. Sample representations might require coordinates to define the

location for each cluster centroid (in a centroid-based representation) or assume

a medoid-based representation, in which case cluster prototypes are defined in

terms of data instances. Moreover, a priori information may be available which

potentially simplifies the task, e.g. the solution should consist of a specific

number of clusters.

3. Cost function: the mechanism by which candidate solutions are ranked. This

function determines which candidate solution is ‘better’ or ‘worse.’ Sample

metrics might characterize inter- and/or intra-cluster distance and therefore

establish the overall cost of partitioning the data.

1

2

4. Credit assignment: the mechanism for modifying current candidate solution(s)

in proportion to the information provided by the cost function. Depending on

whether a greedy or stochastic credit assignment process is assumed, solutions

which are worse than those discovered previously may or may not be penalized.

5. Post-training assessment: the methods and metrics by which the generalization

properties of the candidate solution are summarized. In the case of clustering

this is often referred to as cluster validation.

Part of what makes the clustering task interesting is the unsupervised nature of

the task. The unsupervised nature of the clustering task implies that its structural

characteristics (number, distribution, shapes and orientations of clusters, if any) are

not known [39]. A clustering task can be made even more challenging if multiple data

types (binary, discrete, continuous and categorical) need to be dealt with. Outlier

data points1 and irrelevant or noisy attributes2 can worsen the situation further by

misguiding the clustering algorithms [49, 50].

Most clustering algorithms make some assumptions regarding the nature of the

data and hence make prior assumptions regarding cluster distribution (usually nor-

mal or uniform) and/or cluster shape (usually hyper-spheres or hyper-rectangles).

Therefore, an algorithm which performs well on one data set might perform poorly

on a different data set depending on the underlying data distribution/behaviour.

The anticipated outcome from a clustering algorithm would be for similar objects

to be grouped together and dissimilar objects to appear in different groups. Multiple

ambiguities are implicit in such a high-level definition. Central to this ambiguity is the

inability to identify a single unifying definition for objective similarity/dissimilarity.

In a real D-dimensional space the similarity of objects could be approximated in-

directly, e.g. by their distance. Similar objects have lower dissimilarity/distance

values [50]. Thus, as soon as a specific distance/similarity/dissimilarity measure is

adopted, potentially different cluster definitions will result [49, 118]. Each similar-

ity/dissimilarity measure has certain advantages/disadvantages and/or bias, hence

there is no single measure which is optimal for all clustering applications [47].

1Instance, object, exemplar and data item are all interchangeable terms used in the literature for
a data point in a data set.

2Attribute, dimension and feature are all used interchangeably in the literature.

3

In the case of cost function, most algorithms utilize some type of distance-related

criterion based on either the distance between the data items of a cluster (within-

cluster/intra-cluster distance) or the distance between data items from different clus-

ters (between-cluster/inter-cluster distance.) Assuming one over the other results in

a specific bias to the form of clusters constructed. For example, algorithms which

minimize the distance between the data items of a cluster, e.g. k-means, tend to find

spherical clusters. Conversely, algorithms which optimize a criterion which enforces

the grouping of proximate data items into the same cluster tend to find elongated

clusters.

Since a single criterion cannot detect different cluster shapes optimally, recent

works from evolutionary computation have employed multiple criteria to increase

the chance of detecting clusters of arbitrary shapes, with different objectives trying

to focus on different data distributions, and hence different cluster shapes. Hence,

multi-objective optimization methods have been applied to clustering such as [43, 24].

We will come back to the concept of multi-objective optimization later in Section 4.3.

The pre-processing steps (e.g. data standardization and feature selection) and

post-processing steps (e.g. cluster validation) can be potentially effective in the op-

eration of a clustering algorithm. Data standardization is required in most clustering

approaches because optimality criteria are usually based on some definition of dis-

tance, which can be biased toward attributes of larger or smaller range/extent de-

pending on the optimality criterion being minimized or maximized. Feature selection,

not necessarily a part of all clustering algorithms, tries to decrease the dimensionality

of data sets before or during the clustering process. A typical data set might contain

a number of redundant, irrelevant or even noise features. While redundant features

are undesirable because they add to the computational cost of the algorithm, irrel-

evant (or noise) features can potentially misguide the clustering algorithm. Feature

selection; therefore, potentially contributes to the identification of more informative

features for the clustering task. Solution simplicity is another benefit of feature se-

lection. Removing unnecessary attributes makes the final clustering solutions simpler

and therefore easier to analyze and interpret for the end user.

On the other hand, cluster validation, which is a post-processing step, evaluates

the final cluster structure and determines how trustworthy the end results of the

4

algorithm are. Naturally, a cluster validation metric shares many of the properties

assumed for a good distance metric, i.e. qualification of the intra-/inter-cluster prop-

erties. In this work extensive use will be made of label information; however, this

information is not available during cluster construction. Indeed, such information is

generally not available, but from the perspective of empirical benchmarking it does

provide a very robust metric for cluster validation. In summary, improper choice of

pre-processing methods might result in poor performance of the core clustering ap-

proach, whereas adopting a poor approach to post-processing can lead to accepting

mediocre to degenerate solutions or even rejecting effective solutions.

In addition to the above five basic design questions, increasingly, clustering al-

gorithms are expected to address a variety of additional challenges, as summarized

below:

1. Scale to data sets with high dimensionality and large cardinality: Most ap-

proaches to the clustering problem are dependent on either the number of data

items in a data set or the number of attributes in it, hence making them im-

practical for application to high-dimensional or large-scale data sets.

2. Simplify results: The ultimate goal of a clustering algorithm is to find the struc-

ture of data being analyzed to get a better understanding of the data structure.

The simpler the results, the easier it is for users to understand, interpret and

learn from the results. Moreover, it might even be possible to visualize the

results in order to get an intuitive understanding of the data structure.

3. Self determining cluster count without prior knowledge: One of the main differ-

ences between a classification/supervised and a clustering/unsupervised task is

the lack of knowledge regarding the true or optimal number of clusters, k. Not

knowing the true number of clusters in a data set, a näıve distance-based crite-

rion would assign each data point to a new cluster, making singleton clusters. A

good distance measure is, therefore, a function of the number of clusters, but the

meaningfulness of distance-based criterion functions potentially decreases with

increases in cluster count; therefore, determining the optimal number of clus-

ters is quite crucial. Recent works on data clustering attempt to estimate the

optimal number of clusters in a data set by using cross validation, for example.

5

4. Decrease data-specific parameter count and sensitivity: The fewer parameters

an algorithm needs to tune, the simpler it is for users with little or no domain

knowledge to use the algorithm. Some algorithms require a large number of

data-specific parameters which are not always easy to provide. Sensitivity to

parameter tuning is also an issue. In this work the view is taken that an

algorithm with a large number of parameters with low sensitivity is preferable

to an algorithm with fewer high sensitivity parameters.

5. Detect arbitrary cluster shapes: The ideal scenario is to design and use a cri-

terion function which is independent of the cluster shape. However, since most

optimality criteria are distance-based and hence relative to data distribution

and cluster shape, this is difficult to achieve in practice. One solution to this

issue is to utilize more than one objective in a multi-objective metaphor in an

attempt to detect different arbitrary cluster shapes.

6. Detect noise attributes and outlier instances: Noise attributes and outliers are

almost inevitable in real data sets. Irrelevant/noise attributes can misguide the

clustering algorithm whereas outlier instances, if frequent enough, might appear

as a new cluster if not detected and treated properly. Prior to the introduction

of subspace clustering algorithms, clustering algorithms would implicitly assume

that all attributes were equally informative. Naturally, a ‘filter’ could be applied

prior to clustering in order to perform dimension reduction (e.g. singular value

decomposition). All clusters would then share a common ‘reduced’ attribute

space.

7. Insensitivity to instance order: In an extreme case a clustering algorithm which

is sensitive to the order of data instances provides different solutions each time

instances are presented to it in a different order and therefore, it lacks robust-

ness. A robust clustering algorithm would be expected to identify the ‘same’

solution regardless of the order in which instances are presented to it.

8. Simplify clustering of new unseen instances: Once a suitable partitioning of the

initial set of data is reached, new data should preferably result in dynamic and

incremental modifications to the current solution. This capability is particularly

important under streaming data scenarios.

6

It is not the plan to tackle all the issues listed above directly. Indeed, Xu and

Wunsch [118, 119] claim that: “There is no clustering algorithm that universally solves

all problems.” Rather, the initial focus will be on tackling the first three points. In

other words, the plan is to design a clustering algorithm for high-dimensional large-

scale data sets, while trying to keep clusters as simple and interpretable as possible

while automating the determination of the optimum number of clusters embedded in

the data. Also, this requires the ability to address the problem of noise attributes and

assess the impact of outliers (point 6). The sensitivity to instance ordering (point

7) will be addressed by the approach assumed for scaling to data sets with larger

cardinality. As for detecting arbitrary cluster shapes (point 5), a previously-proposed

bi-objective scheme will be adopted and multiple cluster shapes are included in the

empirical benchmarking; hence it is not considered to be a unique contribution of

this work. Decreasing the data-specific parameter count and sensitivity (point 4)

and simplifying the clustering of new unseen instances (point 8) are considered to be

explicitly outside the remit of this work. Given these motivations, the goal will be to

design a subspace clustering algorithm. Section 1.2 will articulate more formally the

challenges of such a task.

1.2 High-dimensional Clustering

Although clustering in general is one of the more insightful data mining methods, it is

only since 1998 that methods have been designed to deal with the new challenges put

forward by modern automatic data generation and acquisition approaches. Usually

this new emerging data has a large amount of attributes, and hence is deservedly

called high-dimensional data [62]. Challenges posed by high-dimensional data are

different from those posed by low-dimensional data and therefore potentially require

different approaches to addressing them. Typical examples of high-dimensional data

in which task-specific methods have been proposed include: gene expression analysis,

text document analysis, video analysis and customer recommendation systems.

1.2.1 Curse of Dimensionality

Simply put, the ‘curse of dimensionality’ states that as the number of dimensions

increases, the concept of distance as measured between points become less and less

7

meaningful. That is to say, the points will appear increasingly to be equally distant

from each other as the number of dimensions increases. In other words as the di-

mensionality increases the slight distance differences between pairs of points becomes

more and more negligible.

This concept is illustrated in Figure 1.1, adopted from a review paper by Parsons

et al. [87]. 20 points are distributed randomly in one dimension over a distance of

two units. It can be observed in Figure 1.1(a) that there are approximately 10 points

in each 1-d bin. In Figure 1.1(b), a second dimension is added and therefore there

are approximately 5 points in each 2-d bin. Adding the third dimension as illustrated

in Figure 1.1(c) stretches the data points further and approximately 2.5 points reside

in each 3-d bin. Analogously, by adding more and more attributes, the points are

spread out along other axes, pulling them further apart until they are almost equally

far from each other making the utility of a distance metric less meaningful.

In their extensive review paper Kriegel et al. note that the frequently-used concept

of the curse of dimensionality goes beyond this intuitive view and actually pertains

to at least four different factors [63]:

• Optimization problem states that the difficulty of approaching any computa-

tional task through global optimization increases exponentially or at least poly-

nomially with the number of variables.

• Deterioration of expressiveness implies that frequently used similarity measures

– such as the Lp norms – suffer from a decrease in their capacity to resolve

differences between the farthest and nearest points as dimensionality increases

(see also [87, 88]).

• Irrelevant attributes are those that do not contribute to the identification of

a cluster ‘embedded’ within a larger dimensional space. As the number of in-

stances, distribution or the number of attributes supporting the identification

of such a cluster vary, some clusters become more difficult to locate than oth-

ers. For any given data object an irrelevant attribute not only does not help

the clustering algorithm, it might even interfere with the performance of the

similarity measure and disrupt the efforts to find a group to which the data

item could belong. Therefore, these irrelevant attributes for a given data object

8

0 1 2
0

1

2

Dimension 1

(a)

0 1 2
0

1

2

Dimension 1

D
im

e
n

s
io

n
 2

(b)

0

1

2 0

1

2
0

1

2

Dimension 2
Dimension 1

D
im

e
n
s
io

n
 3

(c)

Figure 1.1: Curse of dimensionality. Points projected on (a) 1, (b) 2 and (c) 3
dimensions. Reproduced from Parsons et al. [87].

are referred to as ‘noise’ attributes as well. Naturally, as the total number of

attributes increases, the cost of co-partitioning attributes and data instances

can increase as well.

• Correlated attributes implies that correlations exist among subsets of data in-

stances between two or more attributes. A feature reduction method might

keep one (or a linear combination of some of these attributes) and disregard

the rest. This, however, might lead to losing an important source of valuable

information which can be insightful for the expert domain user. Potentially,

a subspace cluster can now be defined orthogonally to the axis of any of the

set of correlated attributes. The number of possible correlations is naturally a

function of the total number of attributes.

9

In summary, Kriegel et al. prioritize identifying irrelevant attributes and/or correlated

attributes over the remaining two aspects of the curse of dimensionality. Moreover,

this has implications for the design of appropriate benchmarking suites for evaluating

subspace clustering algorithms [78, 80] (Section 5).

Dimensionality reduction. A traditional and common method to deal with

high dimensionality is dimensionality reduction in the form of feature selection or

feature transformation. A feature selection or feature transformation method reduces

the original feature space so that the data set is clustered more accurately under the

new reduced feature space [81]. Feature selection approaches find a single subset of

attributes to group all data points, which can be different than reality for a lot of

applications, as will be discussed shortly.

On the other hand, feature transformation finds linear combinations of attributes

from the original feature space and replaces a subset of features with a single attribute

representing the feature subset [69]. The resulting reduced feature space might im-

prove clustering performance (or any other data mining task), but the solution does

not convey any further useful information once the original feature space is lost. Also

similar to feature selection methods, feature transformation approaches find a single

subspace for all data set instances thus failing to identify subspace structure when it

exists.

Subspace definition. However, there are cases in which not all instances are

easily described by a single attribute subset (alternatively called a ‘subspace’). As

mentioned earlier, in high-dimensional data sets each instance is described using many

features. However, all attributes might not be relevant for identifying a particular

instance/data object, and the attribute subset (subspace) relevant to describing such

an instance might not be relevant to another data object. Therefore, different sub-

spaces can be relevant to different clusters. Since feature selection and dimensionality

reduction methods such as PCA are not useful in these cases alternative methods are

required to deal with this new challenge.

Problems associated with finding subspaces: Finding relevant subspaces in

the search space of possible subspaces is known to be a NP-complete3 task [104, 36].

Enumerating all possible subspaces in a D-dimensional space is in the order of O(2D).

3A decision problem L is NP-complete if it is in the set of NP problems and also in the set of
NP-hard problems.

10

Furthermore, this comprises only half of the final task of a clustering algorithm dealing

with high-dimensional data. The other half is detecting final clusters, i.e. grouping

together data points which use the same subspace. Note as well that these two tasks

need to be solved simultaneously, so heuristics are generally considered for both tasks.

1.2.2 Defining Types of Subspaces

Following from the properties contributing to the curse of dimensionality – that is

the role of irrelevant and correlated attributes – Kriegel et al. observe that there are

two distinct types subspaces; axis-parallel and arbitrarily oriented subspaces [63].4

Axis-parallel subspaces. The first type of subspaces follow the intuition that

the data within irrelevant attributes are uniformly distributed, i.e. the variance of

data is high. Conversely, in the case of attributes relevant to a subspace, there are

at least some data instances described with a sufficiently small variance to enable

detection within a background of other data, i.e. those with distributions of a wider

variance. If data points are visualized in full-space (including all relevant and irrele-

vant attributes,) cluster points form a hyper-plane parallel to the irrelevant attributes.

Kriegel et al. call methods dealing with this category of subspaces as ‘subspace clus-

tering’ or ‘projected clustering.’ Cluster 3 in Figure 1.2 is an axis-parallel subspace.

Arbitrarily-oriented subspaces. Second type of subspaces represent the more

general case in which some subset of data points for two or more attributes define a

(typically linear) dependency between the subset of attributes. In this case a subspace

is defined orthogonally to the linear dependency and is more difficult to detect in terms

of the projection on individual attributes. If data points are visualized in full-space

(including all relevant and irrelevant attributes), cluster points form a hyper-plane

orthogonal to the hyper-plane made by the linear combination of correlated attributes

making the arbitrarily-oriented subspace. Kriegel et al. call methods dealing with

this category of subspaces as ‘correlation clustering.’ Clusters 1 and 2 in Figure 1.2

are in an arbitrarily-oriented subspace.

Special cases. In addition to the above two scenarios, Kriegel et al. recognize a

third category, that of ‘special cases.’ In this case, a wide range of application-specific

4Patrikainen and Meila also recognized the axis-aligned (parallel) and non-axis-aligned categories
[88], whereas Parsons et al. [87] investigate only different methods within the axis-parallel category.

12

1.3 Subspace Clustering

Apart from the accuracy of results, the main motivation behind any clustering method

dealing with high-dimensional data – as it is for feature selection and feature trans-

formation – is ‘parsimony.’ End users want both accurate and easy-to-interpret so-

lutions; thus, a highly accurate and complicated solution is not always preferred to

a less-accurate yet simple solution. Although simplicity is by no means an excuse to

sacrifice accuracy; however, a slight decrease in accuracy, in many situations, can be

disregarded to gain simplicity, interpretability and even less computational cost to

run the built model.

This is where subspace clustering methods step in to provide solutions where fea-

ture selection and feature transformation approaches address only the simpler case

of dimension reduction using a common subspace. In the situation mentioned earlier

methods which are able to detect the (potentially) unique subset of attributes which

form each cluster are needed. In other words there is a subset of attributes, also called

a subspace, under which instances from one particular cluster are easily distinguished

from other instances. This subspace can – but not necessarily will – be unique to that

cluster. Thus, when different clusters use a different (and potentially unique) reduced

set of attributes, they are called subspace clusters. Subspace clustering is a gener-

alization of traditional clustering which seeks to find clusters in different (attribute)

subspaces while simultaneously distinguishing the instances belonging to each cluster

[87, 88, 80, 83, 62, 63, 103]. Finally, in subspace clustering not only are the number of

clusters and distribution supporting clusters unknown, but also the attribute support

for clusters requires discovery.

The principal benefit of following such an approach is the insight which the result-

ing solution provides. For example, recently the data mining of the genes correlated

with breast cancer has gone from an attribute space of 700 to just 3 without compro-

mising the resulting model accuracy [67]. Naturally, such a result provides the insight

necessary to inform more successful clinical practice.

One way of designing subspace clustering algorithms in general is through the

concept of frequent itemset mining the general goal of which is to construct a parti-

tioning of each attribute [4]. This forms the basis for a lattice or grid. Then subspace

clusters are constructed ‘bottom-up’ through a combinatorial search conducted with

13

respect to the lattice. In short, decisions are made first with respect to the appro-

priate attributes and then clusters are formed from the resulting co-occurrences. As

reviewed in Section 2, such a framework is likely to be effective for axis-parallel clus-

ters (the focus of this research), but less effective under arbitrarily-oriented subspaces

or subspace clustering algorithms designed for specific applications, e.g. bi-clustering,

co-clustering, two-mode clustering or pattern-based clustering [62, 63, 103]. In partic-

ular, the focus here is in the case of dense as opposed to sparse data sets. One implica-

tion of this is that a subspace clustering algorithm must adopt a ‘hard’ as opposed to

‘soft’ approach to attribute removal; whereas under sparse high-dimensional data sets

adopting a ‘soft’ approach to attribute removal is sufficient. Different approaches to

the subspace clustering task and their respective implications are investigated further

in Section 2.

The approach proposed by this thesis will make the axis-parallel assumption and

assumes dense as opposed to sparse multi-dimensional spaces. Moreover, the ap-

proach adopted – Symbiotic Evolutionary Subspace Clustering (S-ESC) – is based

on genetic algorithms and a symbiotic approach to coevolution. In short, two pop-

ulations coevolve with one representing candidate cluster centroids and the second

attempting to group them into effective cluster partitions. Also, fitness evaluation is

based on a bi-objective cost function. What follows is a discussion of the motivation

and background for adopting such an approach.

1.4 Evolutionary Computation

Looking at clustering as a special case of an optimization problem (known to be a

particular kind of NP-hard grouping problem [36]) has motivated researchers to use

meta-heuristic methods. Evolutionary Computation (EC) has a good record for pro-

ducing feasible solutions to NP-hard problems with little or no prior information.

Over the past decade EC has been applied to various forms of the clustering problem

[47]. Evolutionary computation maintains multiple candidate solutions (or popula-

tion) and therefore addresses the central machine learning issue of credit assignment

through the concepts of: 1. (parental) selection and replacement; and 2. variation op-

erators, i.e., the mechanism by which new variants of parent individuals are obtained.

Such processes are often inspired by biological mechanisms of evolution. However, it

14

is the use of a population which results in a significant departure from mainstream

approaches to machine learning/optimization5 and therefore an opportunity for pur-

suing alternative problem solving capabilities. In addition, the frequently stochastic

nature of the credit assignment process provides more freedom in the representation

assumed. For these reasons the utilization of EC has been chosen for the development

of an algorithm for subspace clustering, with the objective of benchmarking against

currently available non-EC methods.

1.4.1 Evolutionary Computation for Clustering

Among the different approaches to evolutionary computation both Genetic Algo-

rithms (GA) and Particle Swarm Optimization (PSO) have been used widely as the

basis for clustering algorithms in general [47]. In the work described by this thesis a

GA basis is assumed, where this reflects an underlying assumption regarding the use

of a discrete representation. Most GA-based clustering algorithms tend to encode a

partitioning solution into each individual resulting in a chromosome corresponding to

the size or dimensionality of the data set at hand. These partitioning individuals are

then altered and evolved through selection, recombination and variation operators

until a goal condition or stop criterion is satisfied.

Early evolutionary works on full-space clustering tried simply to evolve the pa-

rameters of a traditional clustering algorithm (e.g. k-means) and used the clustering

algorithm inside the evolutionary loop as a fitness function [8, 64, 56, 110]. Hruschka

et al. [47] assembled a recent and comprehensive review of evolutionary algorithms

for clustering, but no subspace or projected clustering approaches were identified.

Full-space and subspace evolutionary clustering methods will be discussed in Section

2.3.

The following highlights two of the more recent developments from EC which form

key components of the proposed framework followed by a summary at a high level of

the proposed Symbiotic Evolutionary Subspace Clustering algorithm or S-ESC.

5The use of stochastic as opposed to gradient information during credit assignment might be con-
sidered a fundamental difference. However, gradient information can be employed as well in evolu-
tionary methods whereas stochastic credit assignment does not require the adoption of a population-
based framework.

15

1.4.2 Multi-objective Evolutionary Algorithms

Single-objective clustering. Traditional methods of data clustering using a single

objective can be categorized based on the criterion they optimize [43]. One group of

clustering algorithms tries to form compact spherical clusters by minimizing the intra-

cluster distance between data points and cluster prototypes, as in k-means [38, 74],

average link agglomerative clustering [114] and self-organizing maps [59]. Another

group of clustering algorithms tries to form clusters in which data items close to each

other fall into the same cluster, hence optimizing connectedness. This category of

clustering algorithms can find clusters of arbitrary shape, but they might fail when

clusters are close to each other. Two examples of this group of clustering algorithms

are the single link agglomerative clustering [114] and OPTICS [5].

Pathologies. In addition, there are problems associated with optimization func-

tions with respect to single objective clustering algorithms; or pathologies. One such

example can be given in the case where only within-cluster distance is used in a

clustering algorithm to evaluate different clusterings. In this case the best solution

(according to the performance function) is a solution with as many singleton clusters

as the number of instances, i.e. clusters with only one instance. This solution mini-

mizes the within-cluster criterion globally, but obviously fails to cluster the data set.

Clearly, this case penalizes solutions with a large number of clusters and which favours

clusterings with a small cluster count. On the other hand, adopting a between-cluster

criterion potentially results in another pathology, one with only one cluster contain-

ing all instances. What is needed in this case is a mechanism to penalize solutions

with a small number of clusters and favours clusterings with larger cluster support.

The likelihood of encountering such pathological cases can be reduced significantly by

introducing a second objective which contradicts the first objective; in the simplest

form an objective to minimize cluster count for the former example and an objective

to maximize cluster count for the latter example.

Multi-objective Evolutionary Optimization. Methods maintaining multiple

solutions, such as evolutionary computation, provide the opportunity for retaining

multiple equally ‘good’ candidate solutions simultaneously. Thus, under a multi-

objective setting the concept of Pareto dominance or Pareto front (PF) has been

employed frequently to identify and retain all the individuals which are equally good in

16

how they trade the multiple objectives off against each other. From the perspective of

the clustering task in general, this represents an effective framework for addressing the

possible conflicting aspects of distance metric selection. The seminal work of Handl

and Knowles [43] illustrated the effectiveness of such a scheme under full attribute

space clustering. This issue will be presented in more detail in Section 4.3.

1.4.3 Symbiosis

From an evolutionary perspective, ‘symbiosis’ is defined as the close and often long-

term interaction between different biological species in which both species benefit from

each other [75]. A popular example of symbiosis in nature is the interaction between

clownfish and sea anemones. On the one hand, the clownfish consumes invertebrates

which can potentially harm the sea anemone and the fecal matter from the clownfish

provides the main source of nutrients for the sea anemone. On the other hand, the

sea anemone protects the clownfish with its stinging cells to which the clownfish is

immune [26].

Unlike competitive or cooperative forms of coevolution – in which two populations

interact with one another – symbiosis has been associated specifically with the poten-

tial development of higher-level organisms from independent species (cf., the major

transitions of evolution) [18]. Thus, the capability to aggregate together lower-level

‘symbionts’ into higher-level ‘hosts’ represents an egalitarian transition capable of

describing, for example, the origin of mitochondria within eukaryotic cells [92].6 In

addition, such a process introduces the concept of ‘levels of selection’ [86] in which

fitness is either evaluated at the level of the symbiont or host.

The work developed by this thesis assumes a symbiotic evolutionary approach to-

ward subspace clustering. Two separate – yet interacting – populations are coevolved

simultaneously; the lower-level population of cluster centroids and the higher-level

population of clustering solutions respectively. The cluster centroid population de-

fines the location for a single (subspace) cluster. The clustering solution population

indexes some subset of individuals from the cluster centroid population. In the con-

text of symbiosis cluster centroids are the lower-level symbionts, whereas clustering

6Queller identifies reproductive fission as the second mechanism by which major transitions ap-
pear.

17

solutions are the higher-level hosts. Therefore from this point on in this text ‘cluster

centroid’ and ‘symbiont’ are used interchangeably for individuals of the lower-level

population whereas ‘clustering solution’ and ‘host’ are used interchangeably for indi-

viduals of the higher-level population. Occasionally ‘member’ and ‘team’ terms might

be used to refer to these two entities respectively.

Adopting such a symbiotic framework permits the use of different representations

for defining cluster centroids and clustering solutions. Moreover, this recognizes ex-

plicitly that there are two search processes under way; that for the cluster centroids

and that for clustering solutions. Various algorithmic rules of thumb are also appar-

ent. For example, the rate at which individuals turn over at the host level should be

greater than that at the symbiont level.

1.5 S-ESC in a Nutshell

The proposed approach, hereafter referred to as Symbiotic Evolutionary Subspace

Clustering (S-ESC)7, assumes a symbiotic evolutionary approach to the subspace

clustering problem. S-ESC is composed of three major components and two minor

sub-components which are summarized here, illustrated in Figure 1.3, and detailed

later in Section 4.

Starting from the upper right corner of Figure 1.3 the data set is first projected

onto each attribute one by one. A classical clustering algorithm such as X-means

or EM is then applied to each attribute independently. The clustering algorithm

summarizes each attribute by a set of 1-d cluster centroids (or 1-d centroids for short).

Super-imposition of these 1-d centroids forms the grid on the lower right corner of

Figure 1.3. This reduces the task of building subspace clusters to that of conducting a

discrete combinatorial search over the candidate 1-d centroids as defined by the grid;

albeit requiring the axis-parallel assumption – where it is a constraint associated with

the vast majority of current subspace clustering algorithms [88, 62, 63, 103].

A population of cluster centroids, as seen in the middle lower of Figure 1.3, is

created each supporting a (potentially unique) subset of attributes (a.k.a. subspace);

7The S in S-ESC is hyphenated because a flat (as opposed to hierarchical), non-symbiotic version
of the algorithm was introduced later on as a baseline method for the sake of comparison to get a
better understanding of the effect of symbiosis involved in the S-ESC on the performance results.
This non-symbiotic version is called Flat Evolutionary Subspace Clustering (F-ESC).

19

expressed in terms of a group of CCs.

At each generation µ CS parents produce λ = µ CS offspring. The µ+λ CS indi-

viduals are then re-ranked under a Pareto multi-objective coevolutionary algorithm

with only the best half retained as parents for the next generation. While the CS in-

dividuals evolve toward the optimal combination of CCs, cluster centroids themselves

go through a parallel diversifying process to fine-tune each CC within the CS it is a

part of, care of level-specific variation operators.

Within any generation, a subsampling process defines the subset of data points

against which fitness evaluation is performed. The motivation for the subsampling

process is the computational cost of evaluating the objective functions against all

data instances. Specifically, connectivity, one of two S-ESC distance-based objectives

(Section 4.3), has a time complexity of O(N2), where N determines data set cardinal-

ity. The subset of instances selected by the subsampling process is called an ‘active

subset’ and is shown in the upper left corner of Figure 1.3. The potential drawback

of such a scheme is that errors are introduced into the fitness ranking process.

Once the evolutionary loop is over, the bi-objective evolutionary algorithm pro-

vides a pool of clustering solutions (hosts) which are equally good from a Pareto

evolutionary point of view. However, in reality, some of these solutions try to min-

imize one of the objectives regardless of whether the other objective makes them

useless for partitioning the data. Some of these solutions are easy to find manually

but there are also solutions which are very similar and very difficult to decide whether

one is better than the other. The proposed approach uses an automated process to

find a single solution to represent the pool of solutions which is called the ‘champion’

or ‘winner’ solution.

Empirical evaluations will be performed relative to a common set of benchmarks

proposed by the study of Moise et al. [80]. This provides the basis for conducting

a comparison against state-of-the-art algorithms under common benchmarking con-

ditions. In part due to the comparatively low dimensionality of data sets in [80] 5

more data sets are generated ranging from 50 to 1000 dimensions. Comparator algo-

rithms are chosen from popular full-dimensional and subspace clustering algorithms.

EM represents the only full-dimensional clustering algorithm in these comparisons

[30, 77]. The studies by Moise et al. introduce STATPC [78, 80] as the preferred

20

subspace clustering method, whereas the benchmarking survey of Muller et al. rec-

ommends MINECLUS [122, 123] and PROCLUS [1] as the most consistent methods

among subspace clustering algorithms [83]. The empirical evaluation reported here

compares S-ESC against all 4 methods on 59 data sets (54 data sets from Moise et

al. survey and an additional 5 large-scale data sets generated to complement those

of Moise et al.) and evaluates them with respect to cluster accuracy and solution

simplicity. In addition assessments are made of the impact of including outliers in

the data and the proposed S-ESC is compared with a variant in which the symbiotic

relationship is removed and the two-level hierarchical representation is compressed

into a ‘flat’ chromosome (each individual has to express both CS and CC in a single

chromosome, hence only one population). The benchmarking studies are summarized

in broad terms below:

• the comparator algorithms required a lot of effort to tune the parameters to

each configuration of a task or required significantly more prior knowledge to

configure. By contrast, S-ESC assumed a common parameterization through-

out.

• two of the comparator algorithms failed to return results for the larger scale

tasks within a 24 to 96 hour computational period. Indeed, S-ESC was affected

the least by increases to data set cardinality or original task dimensionality.

• S-ESC and EM consistently returned the best results across all of the 59 data

sets.

• assuming a coevolutionary host–symbiont representation as opposed to a flat

representation (S-ESC versus F-ESC) provided the basis for a more capable al-

gorithm, particularly as the number of attributes supporting a subspace cluster

decreased.

This thesis proceeds in the following manner: Chapter 2 provides a survey of

the related literature on variants of subspace clustering and evolutionary clustering;

Chapter 3 explains the four comparator algorithms against which S-ESC is compared;

details of the S-ESC algorithm appear in Chapter 4; Chapter 5 explains the bench-

marking methodology with the results following in Chapter 6; Lastly conclusions and

potentially useful future work are summarized in Chapter 7.

Chapter 2

Background and Related Work

The fact that different points may cluster better using different subsets of dimensions

was observed for the first time by Agrawal et al. and published under the name

CLIQUE in 1998 [3]. Since the publication of CLIQUE works pertaining to the basic

objective of discovering attribute support as well as the location of different clusters

within the same data set has appeared under multiple terms: subspace clustering [3],

projected clustering [1], projective clustering [91], bi-clustering [58], co-clustering [23],

two-mode clustering, correlation clustering and pattern-based clustering, to name a

few. Developments in subspace clustering have been reviewed multiple times over the

last ten years [87, 88, 80, 83, 62, 63, 103].

In order to develop the topic here the framework established by Kriegel et al. [62,

63] will be used, while noting where this builds on previous surveys.1 As established

in Section 1.2.2, Kriegel et al. distinguish two basic types of subspace: axis-parallel

and arbitrarily-oriented. This work will concentrate on the axis-parallel case, as does

the majority of published research. Section 2.1 will comprise a review of subspace

clustering algorithms under the guide of the categorization established by Kriegel et

al.

Conversely, the surveys by Moise et al. and Muller et al. pursue a benchmarking

approach in their work [80, 83]. Recommendations from these surveys will be used

to inform the selection of comparator algorithms and data sets for benchmarking

purposes. Comparator methods will be discussed in more detail in Section 3. Evo-

lutionary methods used for clustering will be reviewed, specifically, a few full-space

clustering algorithms using evolutionary methods which are pertinent to the devel-

opment of the S-ESC algorithm and then the works using evolutionary methods for

subspace clustering.

1Patrikainen and Meila also divide subspace clustering algorithms into ‘axis-aligned’ and ‘non-
axis-aligned’ methods [88].

21

22

2.1 Categorization of Clustering Methods for Axis-parallel Subspaces

Parsons et al. published one of the first surveys on existing methods in 2004 and intro-

duced the simplest categorization of subspace clustering algorithms associated with

axis-parallel clusters [87]. They divided different methods into two groups relative to

the algorithmic properties: top-down and bottom-up.

Top-down. These methods start by assuming that all attributes contribute to

each cluster and propose metrics for identifying the more dense subspaces within

the original attribute space, attempting to reduce incrementally the dimension of

attributes per cluster. In order to minimize the impact of the factors associated with

the curse of dimensionality heuristics are employed (e.g. regarding the sampling of

data points). Other works determine a random set of attributes for a random set

of points so that the points meet the cluster criterion once projected to the given

attribute set. The attribute set and point set are iteratively refined until the final

subspaces and cluster points are found.

There are many variants of top-down subspace clustering algorithms in the litera-

ture, PROCLUS [1], ORCLUS [2], FINDIT [116], δ-clusters [120] and COSA [40], to

name a few. PROCLUS and COSA will be summarized, being representative of the

top-down category, in part because these algorithms have repeatedly performed well

in various benchmarking studies [83].

PROCLUS (PROjected CLUStering) [1] is a top-down partitional subspace clus-

tering algorithm. Partitional clustering algorithms tend to focus on the final clustering

results rather than on the individual clusters independently. PROCLUS finds the best

set of medoids using a hill climbing process similar to CLARANS [84], but adapted to

work on subspaces. PROCLUS works in three phases. In the first phase it randomly

samples A ∗ k instances of the data set. Then it greedily prunes this set until only

the B ∗ k more promising instances are left. The objective is to ensure that at least

one instance is selected from each true subspace cluster. Once an optimal subset of

medoids is found, an iterative phase then selects k instances as medoids, finds the in-

stances assigned to each medoid, determines the relevant attributes for each medoid,

and randomly replaces ‘bad’ medoids iteratively until there is no change in the clus-

tering for a number of iterations. Instances assigned to medoid mi are those which

fall within a hyper-sphere around mi with a radius equal to the distance between

23

mi and the closest medoid. Once instances assigned to each medoid are determined,

attributes related to each medoid are determined according to within-cluster disper-

sion. The average of the Manhattan segmental distance between the cluster medoid

and its assigned instances are used to identify attributes with the smallest average

distance while satisfying the constraint that at most k ∗ l attributes can be selected

where l is the input parameter specifying the average dimensionality of the subspace

clusters. A refinement phase at the end of the algorithm tries to tune the instances

and attributes assigned to each medoid.

The drawback of PROCLUS is that it needs a lot of prior knowledge about the

data set such as the true/desired number of subspace clusters as well as the average

dimensionality of subspace clusters. In addition PROCLUS tends to form hyper-

spherical subspace clusters which have approximately the same number of attributes

per cluster, which could potentially limit the generality of the algorithm.

COSA (Clustering On Subsets of Attributes) [40] is also a top-down subspace

clustering algorithm. It is unique in that it assigns a weight to each attribute for each

instance, not each cluster. Initially the k-nearest neighbours (kNN) of all instances are

determined with all attributes having same weight. These neighbourhoods are used to

calculate the weights of all attributes for each instance where these attribute weights

will in turn be used to re-calculate the pairwise distance of instances during the kNN

evaluation. The process repeats until all attribute weights are fixed. While attributes

relevant to a cluster gain larger weights, the neighbourhood for each instance accepts

more and more relevant instances. The output of the algorithm is a matrix of distances

based on the weighted inverse exponential distance. This matrix forms the basis for

the application of a distance-based clustering algorithm of the user’s choice. Once

the clustering is performed attribute weights for each cluster member are compared

and an importance measure for each attribute per cluster is determined.

COSA parameterization assumes that a scalar (λ) is defined a priori that defines

a relative weighting for large versus small attribute subspaces. As with PROCLUS,

COSA is more apt to find clusters with similar attribute count. In addition, COSA

calculates the attribute weights for single instances as well as for pairs of instances,

and not for each cluster. Therefore, once clustering is done, the relevant dimensions

must be calculated based on the attribute weights assigned to cluster members.

24

Bottom-up. These methods attempt to make use of attribute-specific informa-

tion such as frequent itemset mining as popularized by the APRIORI algorithm [4],

in order to recursively construct groups of attributes with common itemsets. They

start by constructing low-dimensional – usually 1-d – partitions of each attribute;

where the most recent methods do so using density information. This forms the basis

for a lattice or grid. Then subspace clusters are constructed bottom-up through a

combinatorial search conducted with respect to the lattice.

A property which bottom-up methods use is that a k-dimensional bin/cell/region

is dense if and only if there is a dense bin in all of its (k − 1)-dimensional pro-

jections. Therefore attributes with no dense bins can be omitted easily from the

process and dense higher-dimensional bins can be composed from multiple dense

lower-dimensional bins. Finding the dense bins in each attribute provides a grid over

which the dense higher-dimensional bins are easy to locate. The grid generation pro-

cess can be done statically (with fixed-sized bins) or dynamically (with variable-sized

bins). In the case of either grid generation method, it might be expected that the

quality of the initial grid will influence the resulting quality of the subspace clusters.

Other than grid size (in static grids), a density threshold may also be tuned for a

bottom-up approach. A small value for density threshold may result in a large number

of clusters, whereas a large value might result in labelling some instances belonging

to a cluster as outliers.

Methods like CLIQUE [3] and ENCLUS [21] use fixed pre-determined locations for

bins in each attribute, whereas other bottom-up methods like MAFIA [41], CBF [20],

CLTree [68], DOC [91], FASTDOC [91] and MINECLUS [122, 123] use data-driven

techniques to define the location of the bins. What follows is a summary of CLIQUE

and MINECLUS as representatives of the bottom-up category.

CLIQUE [3] the first widely known subspace clustering algorithm is a bottom-up

method which uses pre-defined static bins. The first step is to find dense subspaces

using an APRIORI-style technique. The subspaces then get pruned and the ones

with the highest coverage are kept. The next step finds the dense bins which are

close to each other and merges them to make subspace clusters using a greedy growth

technique. There is then a pruning step at the end which attempts to identify and

remove redundant regions. Using a static grid, CLIQUE is capable of identifying

25

hyper-rectangular clusters in disjoint or sometimes overlapping subspaces. CLIQUE

also allows data instances to belong to multiple clusters. Conversely the principal

disadvantages of CLIQUE are that parameter sweeps are necessary before application

and current implementations of the algorithm do not appear to scale well with high

dimensional clusters in data sets [83, 80].

MINECLUS [122], which is an improvement on the popular DOC [91] method, is a

bottom-up density-based subspace clustering algorithm which assumes a hyper-cubic

shape for subspace clusters. DOC computes subspace clusters one-by-one. Each time

a random instance – hereafter called pivot point or p – from a data set is selected.

Then a subset P of instances is selected randomly and considered to be in the same

subspace cluster as the pivot point. Relevant attributes are then determined based on

the distance between the projection of the pivot point and the projection of P points

on the attribute being evaluated. If all P projections are within the distance w of the

projection of the pivot point, then the attribute is considered relevant. This process

is repeated for 2/α pivot points (where α is a fraction of data set instances), and for

each pivot point m potential subspace clusters are tried. The best subspace cluster

(determined with a µ function which is a function of two user-input parameters, α

and β) is then added to the list of subspace clusters in the solution. MINECLUS

adds a method on top of DOC to find the subspace cluster once a pivot point is

selected randomly and introduces some refinement strategies to parameter settings.

Later, it will be noted that parameter sensitivity is still evident (Section 5.3.2) and

the assumption regarding the universal applicability of hyper-cube cluster ‘shapes’

may or may not be appropriate.

Since the original use of this categorization by [87], greater algorithmic diversity

has prompted a more refined categorization [62, 63, 103]:

1. Projected (or hard k-medoid) clustering – a form of top down clustering – at-

tempts to identify tuples (Oi, Di) where Oi are data instances belonging to clus-

ter i and Di is the corresponding subset of attributes.2 Given that the method

attempts to construct clusters using such a direct approach, it is necessary to

provide sufficient prior information or assumptions to reduce the impact of the

2k-medoid and k-means algorithms have several similarities. The principal difference is that the
k-medoid algorithm defines centroids in terms of data instances. Conversely, the k-means algorithm
attempts to define clusters in terms of coordinates representing the centroids directly.

26

curse of dimensionality. Thus, in the case of PROCLUS [1], one of the more

successful and widely utilized cases of projected clustering, it is assumed that

the number of clusters and average cluster dimensionally are known a priori.

2. Soft projected clustering are optimization algorithms which employ some form

of k-means clustering. As such they incorporate a weight into the distance

measure. This implies that no attribute is explicitly excluded, i.e. clusters

are always full-space clusters; albeit with some attributes with a potentially

very low weighting. Kriegel et al. note that such methods are variants of EM

clustering [62, 63].

3. Subspace clustering explicitly pursues the goal of finding clusters in all subspaces

of the original attribute space. This category of methods generally needs to

pursue some form of a bottom-up approach in order to address the various

aspects of the curse of dimensionality. For example, CLIQUE employs a grid-

based scheme in which axis-parallel grids are constructed from equal-sized bins

[3]. Bins with a sufficient number of data instances are considered to be dense.

A cluster is then identified as a set of dense adjacent bins. Difficulties appear in

practice when the distributions representing subspaces are not aligned with an

attribute axis or as a consequence of trade-offs between bin size and search space.

Moreover, the anti-monotonic property employed for cluster identification in the

APRIORI-like search heuristic central to many grid- or density-based subspace

algorithms does not guarantee that only meaningful clusters are identified [78].

4. Hybrid approaches attempt to in blend the two previously identified approaches

of ‘subspace’ and ‘projection’ clustering, which represent two algorithmic ex-

tremes. Kriegel et al., note that “the result is neither a clear partitioning (as

in projection clustering) nor an enumeration of all clusters in all subspaces (as

in subspace clustering)” [63].

The original binary and later more refined algorithmic categorizations are generally

used together, so projected clustering can have instances which are top-down and

others which are bottom-up.

27

2.2 Benchmarking Surveys

In addition to the survey papers of Parsons et al. [87] and Kriegel et al. [62, 63] – in

which the emphasis was on establishing a framework for categorizing different algo-

rithmic approaches to the subspace clustering task – there are other works in which

benchmarking experiments are carried out on synthetic data sets and recommenda-

tions made regarding the observed empirical properties. These review papers make

an effort to apply different subspace clustering algorithms to data sets with different

properties to evaluate and compare the performance of different methods and identify

their qualities and caveats.

Similar to Kriegel et al., Patrikainen and Meila [88] divide subspace clustering

algorithms into axis-aligned and non-axis-aligned methods. They categorize FAST-

DOC [91], PROCLUS [1] and HARP [121] as examples of axis-aligned and ORCLUS

[2] as an example of a non-axis-aligned method. They define new measures as well

– Relative Non-Intersecting Area (RNIA) and Clustering Error (CE) – based on rel-

evant instances as well as attributes assigned to each subspace cluster to evaluate a

subspace clustering algorithms.

Patrikainen and Meila do not run any experiments on synthetic data, rather they

use the results of [121] and only calculate their proposed measures based on the

results of that work. They conclude that of the four methods HARP produces the

best qualitative results, whereas FASTDOC and PROCLUS have a strong parameter

dependency.

Relative to the approach taken by the survey paper of Muller et al., three catego-

rizations were assumed: cell-based, density-based or clustering-soriented approaches

[83]. These three categories appear to be synonymous with (APRIORI-like) sub-

space clustering, projected clustering and soft projected clustering categories respec-

tively. Muller et al. also integrated the implementation for various subspace clus-

tering algorithms into the well-known WEKA machine learning software, or Open-

Subspace3. Properties such as accuracy, cluster distribution, coverage, entropy, F-

measure and runtime are used to compare 10 different algorithms on 23 data sets.

In the benchmarking study reported in this thesis, extensive use will be made of the

Open-Subspace repository.

3http://dme.rwth-aachen.de/OpenSubspace/

28

Cell-based approaches such as CLIQUE [3], DOC [91], MINECLUS [122, 123] and

SCHISM [100] find static- or dynamic-sized grids in each dimension, and merge them

to make subspace clusters. This category is very similar to the bottom-up category of

Parsons et al. [87]. CLIQUE and MINECLUS methods have already been described

as bottom-up subspace clustering algorithms. DOC can be considered as an earlier

version of MINECLUS. The FP-tree (Frequent Patterns)4 structures help MINECLUS

achieve better runtimes compared with DOC. SCHISM on the other hand tries to

enhance CLIQUE by adapting the density threshold to the subspace dimensionality.

Cell-based methods only adjust the properties of single subspace clusters, which

have little effect on the overall clustering solution. The first two cell-based approaches,

CLIQUE and DOC, also tend to produce solutions which over-estimate the number

of clusters and in some extreme cases provide solutions with more clusters than data

instances.

Density-based methods such as SUBCLU [55], FIRES [61] and INSCY [6] start by

finding dense instances instead of dense bins in each attribute. In other words they

count the instances in the neighbourhood of a specific instance instead of counting

the instances in a unit bin in each attribute. A cluster in a density-based approach

is defined as a chain of dense instances and because of this structure these methods

are capable of finding arbitrarily-shaped clusters. SUBCLU [55] is the first density-

based approach and is an extension to the DBSCAN [33] clustering algorithm for

subspaces. Density-based approaches require expensive computation to find dense

instances; therefore they are usually computationally infeasible. FIRES uses 1-d

histograms to jump directly to interesting subspaces instead of going bottom-up.

INSCY is an extension to SUBCLU which processes subspaces and eliminates non-

promising low-dimensional subspace clusters, achieving better runtimes.

Similar to cell-based approaches, density-based methods only have control over

individual clusters and not the overall clustering solution. Parameter optimization is

also a challenging task for density-based methods. Also, the cluster count of SUBCLU

solutions sometimes exceeds the data set cardinality.

4The FPtree is a compact data structure which stores all patterns which appear in the database.
For each transaction, the frequent items (in descending frequency order) are inserted as a path in
this tree, where each node corresponds to an item and paths with common prefixes are compressed
[123].

29

Clustering-based approaches focus on optimizing the overall clustering results

rather than finding separate subspace clusters. These methods define the proper-

ties of the overall clustering approach rather than defining a single subspace cluster.

Therefore, they have much more control over the final clustering result than any

method in any other category. For example, they can define the total number of clus-

ters in a data set as well as the average dimensionality of clusters (as in PROCLUS

[1]). Other examples are P3C [79] and STATPC [78]. PROCLUS has already been

discussed as a top-down subspace clustering method. P3C uses the χ2 statistical test

and expectation-maximization to find the optimal final clustering solution. STATPC

defines the statistically significant density of a cluster to eliminate redundant clusters.

Below is a summary of the empirical conclusions from Muller et al.:

1. Quality: Basic methods from cell-based and density-based categories (CLIQUE

and SUBCLU) have a low clustering quality with respect to clustering error

[88]. They also tend to produce clustering solutions with too many clusters.

MINECLUS, from the cell-based category, INSCY, from the density-based al-

gorithms and PROCLUS, from the clustering-based category produce the best

clustering quality with respect to clustering error, however INSCY fails to scale

to data sets with more than 25 attributes.

2. Speed: The runtime of the basic methods (CLIQUE and SUBCLU) make them

infeasible. CLIQUE, for example, returns runtimes of up to 114 hours on the

glass data set, which is a 9-dimensional data set with 214 instances on a com-

puter cluster with 4 quad-core Opteron 2.3 GHz CPUs. SUBCLU runtimes can

get as long as 4 hours which is much better than CLIQUE, but still far behind

more practical methods. MINECLUS and PROCLUS happen to be the fastest

algorithms in their respective categories. INSCY, however, returns results no

faster than twice the time of MINECLUS and PROCLUS for most of the data

sets.

In general, Muller et al. concluded that recent cell-based approaches outperform

other methods on data sets with low dimensionality. Density-based paradigms may

suffer from long runtimes, and therefore might not scale as dimensionality increases.

Clustering-based methods have the fastest runtime, but this is due to the fact that

30

they are provided with much more a priori information than any other approach

regarding the data set they are trying to cluster. They are easier to parameterize

because the parameters are straightforward, however they have lower performance

measures than cell-based methods.

Given the algorithm ranking from the Muller et al. survey, MINECLUS [122, 123]

and PROCLUS [1] be adopted for the baseline evaluation of the S-ESC algorithm in

Section 6. Kriegel et al. consider MINECLUS and PROCLUS top-down algorithms

from their hybrid and projected clustering categories [62].

Moise et al. [80] made another extensive survey on subspace and projected clus-

tering. They divide methods into two groups of projected clustering and subspace

clustering algorithms. A projected cluster is defined as a pair (I, A) where I is the

subset of instances and A is the subset of attributes so that the instances in I are

close when projected onto the attributes in A, but are not close when projected onto

the remaining attributes. Subspace cluster approaches, on the other hand, search

for all clusters of points in all subspaces of a data set according to their respective

cluster definitions. They reviewed 19 methods and compared 10 of them against 6

full-dimensional clustering algorithms [80]. They systematically generated 54 data

sets in order to consider the effects of almost 10 different parameters in a data set,

e.g. the impact of the distribution that cluster points are drawn from, to the extent of

clusters in their relevant attributes. From a benchmarking perspective this resulted

in the most systematic of studies conducted to date. These plus some additional data

sets will be adopted to address further issues of relevance to the subspace clustering

task (Section 5).

Projected clustering approaches are divided further into partitional, hierarchical

and density-based subcategories. PROCLUS and SSPC fall into the partitional group,

HARP is a hierarchical method; and PreDeCon, DOC, FASTDOC, MINECLUS,

EPCH, FIRES and P3C are density-based approaches. A total of nine Subspace

Clustering methods were reviewed in the survey by Moise et al.: CLIQUE, nCluster,

ENCLUS, MAFIA, COSA, SUBCLU, SCHISM, DUSC and DiSH.

Moise et al. choose 10 (from the 19 methods reviewed) and compared them on

real and synthetic data focusing on different characteristics of the data sets, such as

data distribution (uniform vs. Gaussian distributions), data set dimensionality, data

31

set cardinality, cluster count, clusters with equal vs. different numbers of attributes,

average cluster dimensionality, average cluster size, the spread of distribution from

which instances are drawn and the overlap between relevant attributes of clusters.

They also add 6 full-dimensional clustering algorithms to compare the performance

of subspace clustering methods with that of full-dimensional algorithms.

While evaluating the effects of average cluster dimensionality, Moise et al. noted

that STATPC, SSPC and HARP produce the best results in detecting both instances

and attributes relevant to each cluster. Almost all methods performed slightly better

on data sets with cluster instances sampled from a uniform distribution rather than a

Gaussian distribution. Also all methods performed better on data sets with an equal

number of attributes per cluster, compared with data sets with a different number of

attributes per cluster. In evaluating the effects of data set dimensionality, cardinality

and cluster count, STATPC consistently returns the best results. The accuracy of

PROCLUS and MINECLUS drops with increasing dimensionality and cluster count

and rises with increasing size. Once clusters have overlapping relevant attributes, the

accuracy decreases because the clusters tend to become more identical.

Moise et al. applied their methods to some real data sets and notice that differ-

ences between quality measures are less noticeable on real data sets. They attribute

this to the fact that class labels are used instead of cluster labels, since there might

not be a strong mapping and correspondence between classes and hidden clusters.

Moreover, by the very nature of assuming a “real” data set, it becomes impossible to

establish a ground truth in the way that this is possible to achieve in the case of an

artificial data set. While evaluating different methods, they make some conclusions

about the scalability of approaches to different aspects of data sets, as follows:

1. MINECLUS fails on data sets with higher than 200 dimensions; therefore it is

not scalable to data set dimensionality.

2. HARP, DiSH and FIRES are not scalable to data set cardinality, and fail to

return results for data sets with more than 1,000 instances. Also PreDeCon

cannot produce results for data sets with more than 10,000 instances.

3. However, almost all approaches are scalable to the number of clusters embedded

in a data set.

32

STATPC [78] was shown to dominate all other methods with respect to F-measure

on all experiments, while SSPC and P3C were identified as the runner-up algorithms.

Kriegel et al. consider P3P and SSPC instances of bottom-up and top-down projected

clustering algorithms respectively; whereas STATPC is a top-down hybrid clustering

algorithm. STATPC and the Moise et al. data sets will be used for the benchmarking

evaluation performed in this work.

Moise et al. conclude their work by making three recommendations for future

work. They suggest that future works on subspace clustering should be focused on:

1. Finding low-dimensional clusters, instead of finding clusters with a large number

of supporting attributes;

2. Limiting parameters and avoiding parameters which require a knowledge of the

data structure in the data set to be evaluated; and

3. Taking into account the statistical significance of clusters.

The approach of this thesis addresses the first two recommendations directly and

will assume a post-training assessment based on the micro F-measure. Doing so will

result in a more informative evaluation than reported in the past when the ground

truth of the data set is known a priori, i.e. as in a data set created through artificial

means.

2.3 Evolutionary Computation for Clustering

Most works to-date have assumed deterministic solutions to the subspace clustering

task and little, if any, mention of evolutionary computation (EC) methods is found

in any of the review papers dealing with subspace clustering [87, 88, 80, 83]. A be-

ginning will be made by discussing some full-space evolutionary clustering algorithms

pertinent to the development of the proposed S-ESC approach and then reviewing

briefly some of the recent works on subspace clustering with evolutionary methods.

2.3.1 EC-based Full-space Clustering

Hruschka et al. published an extensive survey paper on evolutionary algorithms

for clustering [47]. They provide a recent overview of clustering methods based on

33

different families of evolutionary computation such as genetic algorithms and particle

swarm optimization. In addition, they cover recent developments such as multi-

objective and ensemble-based evolutionary data clustering.

They divide EC-based data clustering methods into three separate groups: hard

partitional clustering, soft-partitional (overlapping) clustering and methods using en-

semble and multi-objective approaches. Under hard partitional clustering they further

divide approaches into methods with a fixed cluster count (k) a-priori and those with

a variable cluster count. Also under soft partitional clustering they mention fuzzy

clustering approaches.

Different EC-based clustering methods using centroid-based, medoid-based, label-

based, tree-based and graph-based representations as well as binary vs. integer vs.

real encodings are exemplified in this survey. Three different types of variation op-

erators are identified and different methods utilizing each type of operator are intro-

duced. Some forms of fitness function as well as small sections on multi-objective

and ensemble-based evolutionary data clustering are included in this review. What

follows is a brief summary of each important component of an EC-based algorithm

in a data clustering context.

Representation/Encoding

Most evolutionary algorithms encode the final clustering/partitioning solution in a

single individual5. This representation can be encoded using binary, integer and real

data types. The choice of representation and encoding in most evolutionary clustering

algorithms is coupled either with data set dimensionality or cardinality. This means

that each chromosome is a binary/integer/real string in which the encoding is directly

proportional to the total number of attributes or (even worse) defines how each data

instance is assigned to a cluster [15, 43, 66].

In a binary representation a binary string of size equal to the data set size encodes

the clustering, where each binary position corresponds to a data set instance. If the

value of a gene is 1, then the corresponding instance is marked as a prototype for a

cluster within the overall clustering. Methods in which instances from the data set

5‘Individual’ and ‘Chromosome’ are interchangeable terms in an evolutionary computation con-
text.

34

appear as cluster prototypes are also called medoid-based representations as in [66].

However, this representation, assumes a common ordering of the instances.

Integer encoding is typically implemented in two ways. In the first case a chromo-

some has as many genes as instances in the data set, and each gene stores the cluster

label of the corresponding instance. However, this encoding is redundant since, for

example, the two clusterings represented by [1 1 2 2 2] and [2 2 1 1 1] for a data

set with 5 instances are the same. The second case assumes a medoid-based rep-

resentation in which each chromosome has only k elements. In this representation

each element stores the index of an instance which is the prototype of a cluster. For

example, the chromosome [4 7 17] decodes into a clustering in which the 4th, 7th and

17th instances are each a prototypes/medoids for a cluster. This representation also

assumes the instances in the data set are ordered as in [101].

Real valued encoding methods represent each clustering by the coordinates of

all cluster prototypes (usually centroids instead of medoids) and are referred to as

centroids-based representations. For example, for a 3D data set with k = 2, the chro-

mosome [2.5, 1.6, 6.3, 7.1, 5.4, 3.9] decodes into two 3-d cluster centroids of location

[2.5, 1.6, 6.3] and [7.1, 5.4, 3.9]. This representation is independent of data set car-

dinality and instances need not be ordered; however, it is dimensionality dependent.

Also note that the real valued encoding is not limited to encoding cluster centroids.

They can encode cluster medoids as well by encoding the medoid’s coordinate values

[76].

The grid-based or rule-based representation uses grids/rules to encode a hyper-

rectangular cluster. Each gene (rule) decodes into the lower and upper bounds to

define the boundaries of a cluster in one dimension [97]. There are several benefits

associated with this method: 1. ability to discover homogeneous clusters of arbitrary

density, geometry and data coverage; 2. the ability to discover clusters embedded

in arbitrary subspaces of high dimensional data; 3. the potential support for outlier

detection, since outliers tend to be located in low-density regions away from the

dense regions which are part of the clusters; and 4. it is straightforward to apply it

to categorical data.

Distribution-based representation is another method of encoding a clustering task.

In this method each gene of a chromosome represents a pre-determined distribution

35

– e.g. a normal distribution – by its parameters, mean and variance. This represen-

tation assumes clusters in a hyper-elliptical shape [27].

Graph-based encoding is used in Handl and Knowles [43]. In this encoding each

individual is represented by an integer string of data set size, with each gene corre-

sponding to an instance. A value j in position i shows a connection or link between

instances i and j. The caveat of this method is that instances are assumed in order,

and this order should be maintained throughout the application of the algorithm.

Most representations for clustering algorithms with a known k are applicable to

clustering algorithms without a given k with no or slight changes. For example, a

binary representation can be used to encode a partitioning with or without an optimal

k value. The first type of integer string can be used to represent a partitioning

with unknown k with no change as in [48]. However, in the case of a medoid-based

integer representation, the string length should be made dynamic to make room

for the different number of clusters in a partitioning. Variable length chromosomes

are also necessary under real-valued partitioning [76] or grid- or distribution-based

representations to accommodate clustering algorithms with unknown k.

Fitness Function

There is a variety of clustering validity criteria used for evaluating partitions, some

of which can be used as a fitness function in an evolutionary algorithm. Since credit

assignment is not generally based on gradient information, a lot of flexibility exists

for adopting metrics which could be of an application-specific nature. Conversely,

most evolutionary clustering algorithms utilize some form of distance as their fitness

function which has the caveat of imposing a specific structure on the data set, such

as a bias towards spherical clusters when using a Euclidean distance.

Obvious distance-based choices as fitness functions for an EC-based clustering al-

gorithm are those metrics based on intra- versus inter-cluster variation. Intra-cluster

(a.k.a. within-cluster) distance sums the distances between each data set instance

and the closest cluster prototype (i.e. cluster centroid or medoid). Inter-cluster (a.k.a

between-cluster) distance measures the distance between different clusters. This could

be in the form of measuring the distance between two cluster prototypes or the dis-

tance between a cluster prototype and the closest instance from other clusters. While

36

minimizing intra-cluster variance yields dense spherical clusters, maximizing inter-

cluster variance produces clusters which are well separated.

Within-cluster distance applied to a medoid-based encoding is used in [73], i.e.

distances between a cluster medoid and instances of the corresponding cluster are

summed over k clusters. Other works use the same functions to evolve clusters [34],

[101]. The authors of [70] re-formulate the hierarchical clustering as an optimization

problem which tries to find the closest ultrametric distance [44] for a given dissimilar-

ity with Euclidean norm. This work proposed an order-based GA to solve the prob-

lem. The work in [76] suggests minimizing the sum of the squared Euclidean distances

of the instances from their respective cluster means, and [64] minimizes a modified

version of the within-cluster distance using cluster centroids. This is basically the

centroid-based version of the medoid-based method mentioned earlier. Other works

use the same distance-based fitness function – sometimes called distortion function –

to evolve clusters [64], [72].

A popular fitness function used in different evolutionary-based clustering algo-

rithms [66], [15] is:

Jm =
k∑
i=1

N∑
j=1

µmij ||xj − vi||2 (2.1)

where xj is the jth instance of the data set, vi is the prototype for ith cluster Ci, µij

denotes the membership of object xj to cluster Ci and m is a user-defined parameter

(m < 1). Jm is an extension to the within-cluster distance which can be used for both

hard clustering (µij ∈ {0, 1}) and soft clustering (µij ∈ [0, 1]).

Two obvious drawbacks to within-cluster distances are: 1. bias toward finding

spherical-shaped clusters; and 2. a bias toward higher number of clusters, since in an

extreme case of k = N the within-cluster distance will be optimally minimized (i.e.

zero).

The clustering algorithm introduced in [110] takes advantage of a single-linkage

algorithm in order to divide data into small subsets, prior to GA-based clustering.

This is done in an effort to reduce the computational complexity. The fitness function

was designed to adjust the different effects of the within-class and between-class

distances. The criterion function in [102] was constructed as a weighted sum of six

cluster validity functions which is optimized further by the hybrid niching genetic

37

algorithm (HNGA). The niching method is developed in order to avoid premature

convergence. In another work the Variance Ratio Criterion (VRC) employs both

intra- and inter- cluster distances [19]:

V RC =
trace B/(k − 1)

trace W/(N − k)
(2.2)

whereB andW are the between-cluster and within-cluster sums of square (covariance)

matrices, N is the data set cardinality and k is the number of clusters in an individual.

Recent fitness functions focus on finding clusters in high-density regions of data

space which are separated by low-density regions. Methods using this group of fitness

functions fall under the category of density-based clustering algorithms and can be

more flexible in finding clusters with arbitrary shapes. The method proposed in

[27] – technically an Estimation of Distribution Algorithm (EDA) – uses a density-

based fitness function. The density is defined as the number of instances in a cluster

normalized by the volume of the cluster and the fitness function is the total sum of

cluster density values normalized by the number of clusters within an individual.

Variation Operators

Variation operators act on individuals to introduce diversity through reproducing

offspring. They make guided or stochastic changes to individuals in order to exploit

and explore the search space for better solutions. Variation operators usually fall into

the two categories of crossover and mutation. A crossover operator takes advantage

of the embedded genetic information inherited from two parents and therefore might

be considered to be more exploitive in the credit assignment mechanism. Mutation,

on the other hand, introduces stochastic changes relative to a child;6 potentially

exploring an area of the search space not previously present in the population (i.e.

explorative).

Hruschka et al. categorize variation operators under cluster-oriented vs. non-

oriented, guided vs. unguided and context-sensitive vs. context-insensitive operators

[47]. A cluster-oriented operator deals with a cluster in a chromosome by copying,

merging or splitting clusters, whereas a non-oriented operator is a conventional evolu-

tionary operator which makes changes in chromosomes regardless of their phenotypic

6Resulting from sexual recombination (crossover) or the asexual cloning of a parent.

38

decoding. Guided operators, as opposed to unguided operators, utilize some form of

information about the performance of a cluster or the quality of a clustering solu-

tion. Context-sensitivity is only defined for crossover operators. A context-sensitive

crossover operator is a cluster-oriented operator which does not create a new cluster-

ing once it is given two (possibly different) chromosomes encoding the same clustering

solution.

In methods where k is fixed a priori, all variation operators should be context-

sensitive. However, most traditional variation operators manipulate gene values with-

out considering their connection with other genes. As a consequence, a repair mecha-

nism is necessary to correct (if possible) or remove the offspring with a cluster count

different from k. Such repair mechanisms are expensive, e.g. requiring further fit-

ness evaluation; thus, it is more efficient to design cluster-oriented diversity operators

specifically for clustering from the outset. Various context-sensitive diversity oper-

ators for clustering algorithms have been suggested in the literature. For example,

[101] and [64] introduce cluster-oriented crossover and mutation operators for integer

representation and [76] introduces similar operators for real encoding.

Naturally, variation operators need to reflect the constraints of a fixed versus

variable length representation. Fixed length individuals require the provision of the

necessary routines to make sure that the offspring bred as a result of a variation

operator has the same number of clusters as its parents, whereas these constraints

are relaxed in variable length individuals. In other words, two individuals with the

same number of clusters need not necessarily breed an offspring with same number of

clusters and mutation operators can be designed to add clusters to or remove them

from an individual.

Selection and Initialization

Selection: Different selection methods have been utilized for evolutionary methods

applied to the clustering task. However elitist variants of selection [57, 19] appear to

be more popular than proportional variants [76, 110].

Initialization: The random assignments of instances to clusters [64], and the ran-

dom selection of a subset of instances as k medoids [76] are among the more popular

methods for initializing the population for an evolutionary clustering algorithm.

39

Multi-Objective Approaches

Since there is no standard definition for clustering and there is no ground truth (i.e.

cluster labels)7 to indicate how well a clustering algorithm is performing, researchers

have started using multiple criteria to evaluate a clustering. This helps to remove the

biases imposed by any single criterion while evaluating a clustering.

As opposed to a single-objective method which returns one best solution, using a

Pareto-based multi-objective evolutionary algorithm usually provides a set of optimal

solutions [106, 46, 28, 25]. Each solution on the Pareto front can be considered the

best solution to a single objective formed by a scalar weighting of multiple objectives.

This includes solutions on the tails of a Pareto front which tend to optimize only a

single objective among multiple objectives. There are also solutions on the center

of Pareto front which try to optimize multiple objectives simultaneously. These are

the solutions which are of current interest. Therefore, a mechanism is required for

selecting the best solutions among a Pareto set once the training process is finished.

Multi-objective evolutionary clustering algorithms also tend to assume distance

metrics; albeit metrics which are in some way measuring different properties. Thus,

improving one (metric) does not necessarily lead to the improvement of the other.

In one of the more highly cited multi-objective evolutionary clustering works, Handl

and Knowles [43] use compactness (distortion) and connectedness (connectivity) as

the objectives of their multi-objective evolutionary clustering algorithm. Compact-

ness measures the intra-cluster variation over all clusters, i.e. the summation of the

distance between each cluster centroid and other instances within that cluster. Con-

nectivity, on the other hand, is punished if two adjacent instances are grouped in

different clusters, i.e. connectivity measures how connected the clusters are. At one

extreme compactness tries to create as many singleton clusters as there are instances

in the data set, while on the other hand, connectivity tries to group all data set

instances in one connected super-cluster. The interaction of the two objectives not

only balances the cluster count, but also avoids the trivial solutions and searches for

7Most clustering algorithms get evaluated on data sets with class labels which are in the most
part designed for evaluating classification methods. However, this has the disadvantage of preferring
those algorithms which find clusters matching data set classes, potentially leading to misleading
conclusions. This is also one of the reasons researchers design their own synthetic data sets with
known clusters in them.

40

interesting regions in the search space.

The multi-objective evolutionary clustering algorithm described in [60] uses the

intra-cluster variation and cluster count as its objectives. This results in a pool of

solutions with the smallest intra-cluster variation given different cluster counts. In

the multi-objective evolutionary fuzzy clustering algorithm presented in [10] both

objectives are in some form or another distance-related. One objective takes the form

of the Xie-Beni (XB) index (the intra-cluster variation with different membership

values for each pair of objects and clusters) [117] and the second objective is the

JFCM measure (the ratio between intra-cluster variation and the distance between

the closest clusters) explained by [14].

A similar work [82] uses intra-cluster variation and the total summation of dis-

tances between all pairs of clusters. In [94], as in other multi-objective clustering

methods, the primary objective is intra-cluster variation. However, here the intra-

cluster variation is normalized by the number of clusters in a solution. The second

objective here is the average separation between any pair of clusters.

The authors of [56] are among the first researchers utilizing multi-objective evolu-

tionary approaches with data clustering and attribute reduction in mind. In this work

a set of attributes is selected for a k-means clustering algorithm, rather than directly

clustering the objects. They use four objectives for their multi-objective algorithm.

While cluster cohesiveness (i.e. some form of intra-cluster distance) and separation

between clusters (i.e. some form of inter-cluster distance) appear, cluster count and

attribute support count are used as the remaining objectives.

Once a Pareto set of solutions has been evolved, post-training selection of a sin-

gle ‘champion’ solution is necessary. Thus, either domain knowledge (some form of

visualization) or some form of automatic selection mechanism is necessary. There

is a whole category of multi-objective evolutionary literature dedicated to this area.

One of the more prominent and widely used techniques is to detect those individuals

for which a small change in one objective causes (comparatively) larger changes in

other objectives. These individuals are called ‘knees’ with methods designed for either

post-training identification of the knee [17, 99] or schemes for focusing the algorithm

during evolution for producing more individuals on knee regions [93, 11].

41

Ensemble Methods

Instead of simultaneously optimizing multiple objectives, ensemble methods apply

some form of diversity maintenance in combination with a consensus objective (cf., a

clustering validity criterion). Diversity mechanisms might take the form of employing

different clustering algorithms [109], performing multiple runs with the same cluster-

ing algorithm or using the same algorithm with different partitions of the training

data [43].

The consensus function is usually based one of the following four options [125],

[124], [35]: co-association, graph, mutual information and voting. Methods based

on co-association focus on keeping together instances which are grouped together in

different clusterings. Techniques based on mutual information try to maximize the

mutual information between the labels of the initial clusterings and the labels of the

final consensus clustering. Graph-based approaches use well-known graph partitioning

methods to find the optimal consensus clustering. Voting methods, being the simplest

of all, assign each instance to a cluster based on the number of times the instance

was assigned to different clusters among the initial clusterings.

Yoon et al. start off by evolving a population of partitions. They select pairs of

partitions which share a large overlap among cluster objects and apply a crossover

operator on them, reproducing new partitioning solutions [124]. The authors claim

that their ensemble method takes characteristics from the individual algorithms and

the data set into account during the ensemble procedure. Faceli et al. perform

the same task with minor changes [35]. The initial partitions come from different

qualities and the clustering method behind each of them is also different. The initial

partitioning population also has a large diversity with respect to cluster types. Their

goal is to evolve a set of partitions which represent different views of the data set.

Handl and Knowles [43] argue that although ensemble methods can provide more

robust methods compared to results produced by non-ensemble methods; however,

they will be outperformed by multi-objective methods. The reason, they believe, is

the fact that the data partitions are found by single-objective methods and therefore

the final consensus of the ensemble method will be outperformed by the results of

multi-objective methods, which are more capable of directing the search process.

42

2.3.2 EC-based Subspace Clustering

A few algorithms have been identified with regard to methods assuming a framework

from evolutionary computation.

Sarafis et al. use a non-binary, rule-based representation. Their representation

contains a variable number of non-overlapping rules, in which each rule consists of a

fixed number of d intervals, one for each attribute [96]. This results in a gene length

proportional to the overall data dimensionality. The left boundary (lb) and right

boundary (rb) of the intervals are drawn from discrete domains. They automatically

quantize the attribute space into a multidimensional grid. In order to deal effectively

with subspace clustering the aforementioned encoding scheme is further enhanced by

introducing an additional field for each feature in each rule called status (st) where

stij is a flag indicating whether the ith feature of the jth rule is relevant (active or

‘1’) or irrelevant (inactive or ‘0’) to the clustering of patterns which are covered by

the jth rule. The fitness function in this work rewards maximizing the data covered

by the rules of an individual or in other words, maximizing the coverage. From the

perspective of the categorization of Kriegel et al. this would make the approach an

example of top-down projection clustering (i.e. gene length is proportional to data

dimensionality).

Sarafis et al. also employ different operators such as seed discovery, generalization,

mutation, recombination and repair operators. Seed discovery finds clusters existing

in 2-d projections of the original attribute space to initialize the population instead of

using random initialization. The generalization operator replaces two adjacent rules

with a single and more generic rule, and helps in detecting inactive attributes. There

are two mutation operators; growing-mutation for increasing the size of existing rules

in an attempt to cover as many instances as possible, but with a minimum number of

rules, and seed-mutation which is complementary to the previous mutation operator in

cases where the latter fails to fine-tune due to strict requirements. The recombination

operator in this work, called imported rule crossover (IRC), works by importing rules

into offspring rather than exchanging rules between the parents. Therefore, mutation

operators act at the attribute level, whereas a recombination operator is applied at

the rule level. The design of a repair operator is motivated by the observation that

clusters become separated because of the different extent of condensation of instances

43

between them. In other words, a repair operator finds the borders between clusters

to achieve precision in capturing their shapes.

Synthetic data sets are used in the evaluation of this work. Data sets are produced

using a modified version of the generator described in the CLIQUE paper [1]. The

domain of each dimension is set to [0, 100]. Each data set consists of 10 clusters

and the non-outlier points were distributed among them as follows: 20%, 15%, 15%,

10%, 10%, 10%, 8%, 6%, 4% and 2%. Outliers were scattered uniformly throughout

the entire feature space while the level of noise was set to 10% of the total number

of points. For all the non-bounded dimensions of a cluster the points are uniformly

distributed over the entire domain. On the other hand, in the bounded dimensions

the values of the points are drawn either from a normal or from a uniform distribution

at random. In both cases the points are spread in the bounded dimensions within a

small range (i.e 10) in a way that no overlapping between clusters occurs. Note that

all clusters are embedded in the same number of dimensions. Therefore, the hyper-

volume of clusters is roughly the same and because the points are not equi-distributed

among clusters, the density between them varies considerably.

The authors apply their algorithm on 4 synthetically-generated data sets for each

experiment and use the results to show that their algorithm runtime grows linearly

with data set dimensionality, cardinality and cluster attribute support. With respect

to accuracy they report that except for a few experiments where cluster attribute

support is high, their algorithm is able to detect all clusters; however, they only

report the fitness of individuals (coverage) as a measure of performance for their

algorithm and claim a 60 to 90% coverage for 50-dimensional data sets with 100,000

instances, 10 clusters and 5 to 20 dimensional clusters. One of the drawbacks of the

work by Sarafis et al. is that apart from ordinary evolutionary parameters,8 there

are five other parameters involved in this work which need to be fine-tuned prior to

experiments – which is not a trivial task.

In a work by Assent et al. an evolutionary subspace search approach is used

to detect locally relevant attributes for clustering [7]. In this work individuals are

described by their genes. A gene models a specific attribute. Thus a set of genes

encodes whether subspaces are contained. The population contains all subspaces of

8Population size, max number of generations, probability of crossover and mutation operators.

44

the current generation. The fitness function uses normalized entropy of subspaces to

measure the clustering tendency. To ensure that algorithm escapes local optima, a

multi-objective approach is used based on biologically inspired evolutionary niches.

These niches allow for evolutionary generation of different local subspace optima in

one population. Although the method sounds appealing the algorithm is only tested

on very few number of data sets of up to 55 dimensions and therefore the consistency

and scalability of the work is in doubt.

Piatrik et al. propose a novel approach for the subspace clustering of images based

on the learning process of ant colony optimization [90]. The optimization function in

this work (SC-ACO) is the summation of the weighted (similarity) distance between

image feature values and cluster centroids. In other words, the problem of finding the

best clustering is converted into the problem of finding the best attribute-weighting

vector. As such, the algorithm does not remove attributes explicitly. With respect to

the categorization of Kriegel et al. this makes the algorithm a soft projected clustering

method.

It is assumed that the required number of clusters is known to the SC-ACO

algorithm. Each ant represents a cluster centroid and the ants are initialized far

from one another at the beginning of the process. Each ant assigns each image to its

corresponding cluster with a probability based on a pheromone level, which carries

criterion information between ants. Attribute weights are updated based on the

average distance from the centroids and images are assigned to each centroid. Then

new centroids are computed according to the clustering of images, and the pheromone

levels are updated after all ants have done their clustering.

It is important to note that this method does not cluster images based solely on

the similarity distance between centroids and images. The pheromone level carries

the criterion information from each ant to the others and also plays an important role

in the partitioning of images. The authors test their method and compare it against

other methods on 3 image data sets with 600, 6000 and 500 images respectively. The

dimensionality of these data sets is not mentioned, and SC-ACO is given the number

of clusters in each data set. The average error rate is the only reported performance

measure, which is between 0.30, 0.38 and 0.40 for the three data sets respectively. No

computational complexity or runtime information is available.

45

Sangeetha et al. [95] assume a grid-based approach to discover subspace clusters

where the data set is partitioned into a number of non-overlapping units by dividing

each attribute into d equal-length intervals. A k-dimensional unit is defined as the

intersection of one interval from each of the k attributes, and is considered dense if

it contains more than a certain number of points. If two dense units have a common

face or if there is a third dense region which is connected to them, they are considered

connected as well.

Lu et al. propose a particle swarm approach to solve the variable weighting prob-

lem in subspace clustering of high-dimensional data [71]. In their algorithm, PSOVW,

the authors are interested in soft subspace clustering which finds an attribute weight

vector for each cluster, as opposed to hard subspace clustering which aims at find-

ing the exact attribute subspace for each cluster. They employ a special weighting

k-means function – with k known a priori – which calculates the sum of the within

cluster distances for each cluster along its own subspace, i.e. the similarity between

each pair of objects is based on weighted attributes. They also utilize a simple non-

normalized weight representation method and transform the constrained search space

into a redundant closed space, which largely facilitates the search process. The at-

tribute weights transform distance so that the associated cluster is reshaped into a

dense hyper-sphere and can be separated from other clusters.

Finally, instead of employing local search strategies, they make full use of the

particle swarm optimizer to minimize the given objective function which is a k-means

weighting function and calculates the sum of the within-cluster distance for each

cluster, preferably along relevant dimensions to irrelevant dimensions. The method

therefore corresponds to the (top-down) soft projected clustering categorization of

Kriegel et al. and does not explicitly result in cluster definitions with dimensions

below that of the original task domain.

PSOVW utilizes three swarms: 1. the position swarm of attribute weights which

are set to random numbers distributed uniformly within a certain range; 2. the

velocity swarm of attribute weights, which are set to random numbers uniformly

distributed in the range [−maxv,maxv]; and 3. the swarm of cluster centroids which

are k different data objects chosen randomly from all the data objects. In all three

swarms, an individual is a k×D matrix where k is the number of clusters and D is data

46

set dimensionality; therefore, representation is subject to data set dimensionality.

The synthetic data used by Lu et al. adopts normally distributed values with

mean values in the range of [0, 100] for relevant attributes and uniformly distributed

values in the range of [0, 10] for the irrelevant attributes. PSOVW recovers clusters

correctly over the data sets with 4 well-separated clusters on each trial; however, it

occasionally missed one entire cluster on data sets with more complicated 10 clusters.

It sometimes fails to differentiate two very close groups, whose relevant dimensions

overlap, and merges them into one cluster. One reason for the high accuracy of

these results is that the synthetic data sets are not noisy, and noise-free data sets are

appropriate for the purpose of this experiment. Moreover, PSOVW is explicitly given

the number of clusters in all experiments, which reduces the search space.

Zhu et al. proposed a multi-objective evolutionary algorithm based on soft sub-

space clustering (MOSSC) to optimize simultaneously the weighting of within-cluster

compactness versus the weighting of between-cluster separation [127]. NSGA-II [29]

is used to evolve a set of near-Pareto-optimal solutions. As with PSOVW, a chromo-

some is represented by a k × D weighting matrix giving the weight wij to attribute

j for cluster i. As per PSOVM, the number of clusters should be known a priori

and provided to the algorithm. The soft subspace clustering version of Xie-Beni [117]

and a subspace-modified version of JFCM [14] are utilized as objectives in this work.

Under the Kriegel et al. categorization this would also be a (top-down) soft projected

clustering algorithm.

Once the non-dominated cluster weighting values and corresponding cluster mem-

bership values are retuned by NSGA-II, MOSSC uses cluster ensembles to find the

super-solution. They adopt the Hybrid Bipartite Graph Formulation (HBGF) algo-

rithm [37] to produce the super-solution from the near-Pareto-optimal non-dominated

set of solutions. HBGF treats both instances and clusters as vertices of a bipartite

graph. The cluster ensemble problem is then reduced to a graph partitioning tech-

nique. The final cluster labels of MOSSC are determined by integrating all non-

dominated solutions. Benchmarking utilized the synthetic data sets from Lu et al.,

with modification to enable the consideration of up to 50 dimensions and 850 data

instances.

In a method developed by Boudjeloud et al. individual clusters are iteratively

47

found one by one in form of a subset of instances of the data set and a subset of

its relevant dimensions [16]. At each iteration once a cluster is found the set of

relevant attributes are removed and the algorithm is re-run in search for a new cluster.

The search continues as long as there are attributes left, which appears to do extra

iterations once the hidden clusters are found and only irrelevant attributes remain

and it might find degenerate clusters. The number of relevant attributes in each

cluster is fixed and multiple clusters cannot share the same attribute. The method

utilizes a steady state evolutionary algorithm.

An individual is composed of two parts; attribute support of a cluster and a

cluster medoid in form of a simple index to the specified instance. Once a cluster is

formed (using a subset of attributes and a cluster medoid) all data set instances are

sorted based on their distance from the cluster medoid with the first instance being

the closest distance. Closest instances are incrementally added to the cluster until an

abrupt increase in the distance is observed. Authors propose two methods to evaluate

clusters individually rather than the final partitioning.

The method is only evaluated against two real data set; ionosphere with 34 di-

mensions and 351 instances, and iris with 4 attributes and 150 instances. It is also

evaluated against synthetically generated data set with 9 attributes and 400 instances,

although no performance measure is given in this case. Therefore the consistency and

scalability of the work is in doubt.

Nourashrafeddin et al. develop an evolutionary method called ‘Esubclus’ mainly

for the purpose of finding subspace clusters in text document clustering (i.e. find-

ing relevant keywords to each document category) [85]. Esubclus proceeds in two

phases. Given the number of clusters, k, authors use fuzzy C-means clustering along

a multi-objective genetic algorithm (NSGA-II) to provide (low-dimensional) groups

of representative / relevant attributes for each cluster. Once relevant attributes are

determined the objects are clustered in the space spanned by the centroids of those

groups.

Each individual in the evolutionary algorithm encodes a limited, small number of

attributes. Corresponding groups are formed by averaging the attributes encoded in

the individuals with their nearest neighbours, where similarity of attributes is defined

in terms of cosine similarity of their corresponding columns in the data matrix. To

48

determine the fitness of an individual, the entries of the column vectors of the data

matrix within the attribute groups are averaged, resulting in an m-dimensional vector

for each group of attributes. X-means with the maximum number of clusters set

to two is applied to each one of those vectors individually, potentially identifying

two one-dimensional clusters one of which consists of indices corresponding to data

objects partially identified by the attribute group. The fitness function favours tightly

clustered groups of attributes and objects with large degrees of separation from other

groups. The evolutionary algorithm is terminated if no improvement has been made

in a number of generations.

Objects, which are characterized by combinations of relevant attribute groups,

are assigned to different clusters in the second phase. Due to the small number of

attribute groups, this goal can be simply accomplished by interactive thresholding in

one pass.

Esubclus does not require extensive parameter tuning. Being an evolutionary

method it requires standard evolutionary parameters such as population size, gener-

ation count, mutation and crossover probabilities. Given the number of clusters, k,

the primary NSGA-II is run sequentially k times, each time providing a Pareto front

with each individual on the pareto front being a candidate for the current cluster.

A second single-objective GA then searches the space of different combinations of

clusters from k Pareto fronts for the best k-cluster solution with one cluster from

each Pareto front.

Other methods such as [107, 108] are also examples of EC-based methods which

are related to subspace clustering but with minor contributions.

An earlier version of this proposed evolutionary subspace clustering (Bottom-up

Evolutionary Subspace Clustering) attempted first to build cluster centroids and then

describe clustering solutions through two independent cycles of evolution [111]. This is

difficult to do because the ‘performance’ of cluster centroids is dependent on the clus-

tering solutions (a group of cluster centroids) where such groups are undefined at the

point of cluster centroid evolution. It was also apparent that using a multi-objective

evolutionary method with the MOCK [43] objectives of compactness (to detect spher-

ical clusters) and connectivity (promising for arbitrary cluster shape detection) aided

49

in the identification of the true cluster count [111]. However, the connectivity ob-

jective is much more expensive to evaluate than compactness. The proposed S-ESC

algorithm (S-ESC was initially suggested in [112]) is needed to address both of these

limitations.

Chapter 3

Comparator Clustering Algorithms

To compare S-ESC against state-of-the-art algorithms under common benchmarking

conditions comparator algorithms are chosen from popular full-dimensional and sub-

space clustering algorithms. This Section describes the methods with which S-ESC

is being compared, while the benchmarking data (data generation and their charac-

teristics) as well as the evaluation methodology will be discussed later in Chapter

4.

Moise et al. introduce STATPC [78] as the dominant subspace clustering method

following comparison with a large number of other subspace clustering algorithms

[80], whereas Muller et al. recommend MINECLUS [122, 123] and PROCLUS [1] as

the most consistent methods among other subspace clustering algorithms [83]. These

three methods, then, are the best choices for comparison with this work’s S-ESC

approach. Although all three methods have been mentioned previously in Chapter 2,

here an in-depth look into each one will be undertaken.

The EM algorithm is assumed to be representative of full-dimensional clustering

algorithms [30, 77]. The properties which make it particularly appealing include

the wide utility of the algorithm, its robustness and the relatively low number of

parameters, e.g. a user need not provide a priori definitions for the number of clusters

required.

3.1 MINECLUS

MINECLUS proposed by Yiu et al. [122, 123] – which is an improvement to the

popular DOC [91] method – is a bottom-up density-based subspace clustering al-

gorithm which assumes a hyper-cubic shape for subspace clusters. DOC defines a

projected cluster as a set of points C and a set of dimensions relevant to those points

D. Three parameters are also essential to the definition of clusters in DOC; w, α

and β. The first parameter, w, controls the range or spread of clusters in the sense

50

51

that the distance between instances of a cluster in each relevant attribute is w. The

second parameter, α ∈ (0, 1], controls the density of clusters, i.e. each cluster should

have at least α×N points, where N is the total number of instances in the data set.

The last parameter, β ∈ (0, 1], reflects the importance of the size of the subspace over

the size of the cluster.

DOC computes subspace clusters one by one. At each step it selects a random

instance – hereafter called pivot point p – from the data set and tries to find the cluster

for which p is the medoid. To this end a subset X of points are selected. Relevant

attributes are then determined based on the distance between the projection of the

pivot point and the projection of X points on the attribute being evaluated. If all X

projections are within the distance w of the projection of the pivot point, the attribute

is relevant. The relevant attributes set is called D. Once relevant dimensions to p

are determined, a bounding box of width 2w around p and in the relevant dimensions

form cluster C and all points within this box belong to cluster C. This process is

repeated for 2
α

pivot points, and for each pivot point m potential subspace clusters are

tried. In DOC the cluster quality measure is defined as µ(a, b) = a · (1/β)b, where a

and b are the number of points and the dimensionality of C respectively. The cluster

with the highest quality is selected, the points in it are removed from the sample and

the process is applied iteratively to the rest of the points. DOC has the advantage

of automatically finding k; however, it produces approximate results and it is very

computationally expensive.

MINECLUS has four phases. In the first phase, the iterative phase, the frequent

itemset mining process is applied to generate clusters one by one iteratively. The

second phase is the pruning phase which removes clusters with a quality measure (µ

value) smaller than the others. A sorting process divides clusters into two categories

of strong and weak clusters based on their µ values and the weak clusters are removed.

The merging phase, the third phase, is applied only when the user prefers at most k

clusters. If this is the case and if there are more strong clusters than k, the strong

clusters are merged to create only k clusters. A cluster formed by merging two

clusters contains all the points from both clusters but only utilizes those dimensions

which are present in both clusters, i.e. the intersection of their attribute sets. The

refinement phase, the last phase, takes advantage of the same refinement process used

52

in PROCLUS to go over all the unassigned instances of the data set and assign them

to those clusters already established.

Although MINECLUS is built on DOC to improve its sensitivity to higher dimen-

sions; however, it is not tested on data sets with a dimensionality higher than 80.

MINECLUS also suffers from parameter sensitivity in that parameter optimization

needs to be performed on each data set. In addition, the assumption that a projected

cluster is a hyper-cube may not be appropriate in real applications.

3.2 PROCLUS

PROCLUS (PROjected CLUStering), proposed by Aggrawal et al. [1], is a top-down

partitional subspace clustering algorithm. Partitional clustering algorithms tend to

focus on the final clustering results rather than on a single cluster independently.

PROCLUS defines a ‘projected cluster’ as a subset C of data points together with a

subset D of dimensions such that the points in C are closely clustered in the subspace

of dimensions D. Aggarwal et al. define the projected clustering to be a two-fold task:

locating the cluster centroid and identifying the dimension subset which supports each

cluster. Rather than using cluster centroids, they take advantage of medoids1. They

use the local search approach of the CLARANS algorithm [84] to generate a set of

medoids. The cluster count, k, and the average dimensionality of the clusters, l, are

provided to PROCLUS a priori.

The algorithm has three major phases; an initialization phase, an iterative phase

and a cluster refinement phase. At a higher level the general idea of PROCLUS

is to improve a set of medoids iteratively in a manner similar to CLARANS with

modifications for dealing with subspaces. The initialization phase reduces the set of

points going through the iterative phase while trying to maintain at least one point

from each cluster. The iterative phase is a hill climbing process which tries to find

a good set of medoids while identifying the subset of dimensions under which the

cluster points are more easily separated from those of other clusters. Finally, the

third phase improves the quality of clustering by refining clusters and their points

with one pass over the data set.

The initialization phase of PROCLUS looks for a set of k points – each point from

1For a description about cluster centroids and medoids refer to Section2.1.

53

a different cluster. This set is called a ‘piercing’ set and although it is very unlikely to

find this set in the first try, the initialization phase tries to find the smallest superset

of the piercing set to feed into the next iterative phase. PROCLUS starts by randomly

selecting A∗k well separated points. This guaranties that at least one point is drawn

from each cluster. Then a greedy approach is applied to prune the size of this set

further to include only the more promising B ∗ k points, where B is a small constant.

This final set is called M = {m1,m2, ...,mk} where mi is the medoid for cluster i.

Finding medoids. The iterative phase starts by selecting k medoids randomly

from M . It finds the bad medoids iteratively and replaces them with new medoids

from M . If the quality of clusters improves by introducing the new medoids, the

newly tested medoids are kept, otherwise they will be discarded and new medoids

will be tested again. This process repeats until there is no change in the clustering

for a number of iterations. The current set at this stage will be returned as the final

cluster medoids.

Finding dimensions. To find the most relevant dimensions for cluster i, all

points in the vicinity of medoid mi with a distance smaller than the distance between

mi and its closest medoid are considered and called Li. Then the average distance

between mi and those points with a distance smaller than Li along each dimension

j is computed, Xi,j. The dimensions along which the average distance Xi,j is the

smallest are selected as relevant dimensions for cluster i given that the total number

of relevant attributes for all clusters is constrained to k∗ l, where l is the input param-

eter specifying the average dimensionality of the subspace clusters. This produces a

dimension set Di for cluster i.

Forming clusters. Once the medoids and relevant dimensions are found, the

points are assigned to medoids in one pass over the data set. Points are simply

assigned to their nearest medoid; however, the distance is calculated only over the

dimensions relevant to cluster i. In other words, points assigned to medoid mi are

those which fall within a hyper-sphere around mi with a radius equal to the distance

between mi and the closest medoid.

A refinement phase at the end of the algorithm tries to tune the instances and

attributes assigned to each medoid. The refinement is started by re-discovering the

relevant dimensions of each medoid mi. However, this time, instead of using the

54

locality points for each medoid, points assigned to the cluster are considered. Once

the new dimensions are discovered, points get re-assigned to clusters based on the

new set of dimensions.

PROCLUS suffers from the fact that it needs a lot of prior knowledge about

the data set such as the true/desired number of the subspace clusters as well as the

average dimensionality of subspace clusters. Also, the A and B choices could affect the

robustness of the algorithm. To ensure robustness the algorithm requires a sufficient

number of points in the locality of each medoid in order to determine the relevant

dimensions for each cluster. In addition, PROCLUS tends to form hyper-spherical

subspace cluster which have approximately the same number of attributes per cluster,

which could potentially limit the generality of the algorithm.

3.3 STATPC

STATPC proposed by Moise et al. [78] in 2008 is motivated by two facts: firstly that

the objectives utilized in any specific subspace clustering method are not independent

of the method itself and secondly, that there is always some form of user input about

the point density threshold. STATPC tries to detect axis-aligned subspace clusters

which are statistically significant, i.e. which contains significantly more points than

expected. The task of finding a statistically significant region is transformed into that

of an optimization problem. Considering R to be the set of all statistically significant

regions, STATPC tries to find a set Rreduced ⊂ R which is small enough to search

efficiently and then determine a smallest set P ∗ which explains all the elements in

Rreduced.

Statistical significance. Assume that H is a hyper-rectangle in a subspace S.

Also assume that α0 is the significance level and θα0 is the critical value computed

with the significance level α0. H is a statistically significant rectangle if AS(H) >

θα0 where the probability is computed using AS(H) ∼ Binomial(N, vol(H)), where

AS(H) is the total number of points in hyper-rectangle H, N is the total number of

instances in the data set and vol(H) is the volume of hyper-rectangle H. In simple

words, a statistically significant hyper-rectangle H has significantly more points than

expected if the distribution of the points is assumed to be uniform or the probability

of observing AS(H) points in H, when the N data points distributed uniformly in

55

subspace S are fewer than α0.

Note as well that as the dimensionality ofH increases the volume, vol(H) decreases

toward 0 which moves the critical value θ0 toward 1. In other words by increasing

the dimensionality, even a hyper-rectangle with a very small number of points might

be statistically significant.

Relevant vs. irrelevant attributes. Assuming that H is a hyper-rectangle

in subspace S, an attribute a is called relevant for H if all points within the hyper-

rectangle H are not distributed uniformly over the active range of a, i.e. between

the lower and upper bounds of the hyper-rectangle on attribute a. The Kolmogorov-

Smirnov goodness of fit test is used to determine whether or not all the points of H

are distributed uniformly over each attribute. Obviously, attributes which are not

relevant to H are called irrelevant attributes.

Although the number of hyper-rectangles in a certain subspace might be infinite;

however, Moise et al. are interested only in all unique Minimum Bounding Rectan-

gles (MBRs) formed with the data points. A subspace cluster is defined as an MBR

which is statistically significant and has relevant attributes. However, the number

of unique MBRs with at least 2 points can be somewhere between choose(N, 2) and

choose(N, 2) + choose(N, 3) + · · · + choose(N, 2× dim(S)). Even after pruning, the

entire set of statistically significant subspace clusters is too large and too computa-

tionally expensive to detect.

Moise et al. try to find a reduced set P opt ⊂ R, where R is the set of all subspace

clusters in a given data set, so that every subspace cluster in R can be ‘explained’

by a subspace cluster in P opt. Also, this reduced set should be the smallest set with

such a property. The ‘explain’ relationship tries to say that a set of subspace clusters

P , plus background noise explains a subspace cluster H if the observed number of

points in H is consistent with this assumption and not significantly larger or smaller

which expected.

Moise et al. claim that given a data set of N D-dimensional points, a non-empty

set P opt ⊂ R can be found which has the smallest number of a subspace clusters

possible so that P opt explains all subspace clusters H ∈ R. They claim that the

reason their method provides a solution to this problem is based on two facts: that

their objective is formulated as an optimization problem, which is independent of

56

any particular algorithm, as well as the fact that their definition of subspace cluster

is based on statistically significance principles and thus it can be trusted that the

resulting solution stands out in the data in a statistical way, and is not an artifact of

the method.

In short the final objective is to find a reduced set Rreduced which is small enough

to search in it for the optimal set P opt. To achieve the former, STATPC constructs

subspace clusters by analyzing the subspaces and local neighbourhoods around the

individual data points Q.

To detect relevant attributes around data point Q, STATPC considers all 2-d

rectangles around the given data point with Q in the center and side length 2 × δ

where δ ∈ [0, 0.5]. These 2-d rectangles are ranked based on the number of instances

in them. Then a set of attributes, called ‘signaled’ attributes, which are – with high

probability – relevant to one of the true subspace clusters around Q are selected.

Assuming that S0 is a set of ‘signaled’ attributes, an iterative refinement of S0 will

give a candidate subspace around Q, called S. To determine whether a subspace

cluster around Q exists in S, STATPC builds a series of MBRs, called Rlocal, in S,

starting from Q, and adding in each step to the current MBR the point where is

closest to the current MBR in subspace S. Since a cluster contains typically only a

fraction of the total number of points, STATPC builds only 0.3 ∗ N MBRs around

Q in subspace S. The question now is to select one of these MBRs which is locally

optimal in the sense that it explains all subspace clusters in Rlocal better than any

other subspace cluster in Rlocal.

The process explained above will give a set Rreduced around the data points. While

the first point is selected randomly, subsequent points are selected randomly from the

points which do not belong to the detected subspace clusters in the previous steps.

Building Rreduced terminates when no data point can be selected for further subspace

cluster search. Although the cardinality of Rreduced is smaller than R, searching the

Rreduced space with an optimization problem is still too computationally expensive.

Therefore a greedy process prunesRreduced to include only a subset of subspace clusters

from Rreduced which can explain all the clusters within Rreduced. This process copies

subspace clusters from Rreduced into a temporary set P sol one by one until the subspace

clusters in P sol can explain all the subspace clusters in Rreduced.

57

Moise et al. evaluate their subspace clustering approach on both synthetic and

real data sets. The synthetic data sets designed by Moise et al. will be described in

Section 5 since these data sets will be used to evaluate S-ESC and its comparators.

These data sets generally have approximately 50 dimensions, 300 instances and 5

clusters. The real data sets in this work range between 6 to 34 attributes, 200 to 800

instances and they all are two-class data sets.

3.4 EM

Expectation-Maximization (EM) is based on the idea that there exists an analytic

model for the data, and that the functional form of the model is known. However, the

values for the parameters which characterize this functional form are unknown. EM

is well-known for its ability to optimize a large number of variables, and the ability

to predict good estimates for missing information. It can be tailored to provide hard

clusters as well as soft clusters whenever needed. Observed data does not need to be

complete – i.e. missing values are accepted and in some cases EM can determine an

estimate for the missing value. An example of missing information includes but is

not limited to cases where a sensor fails to return a value at a desired time.

EM is an example of mixture density-based clusterings. In such a view, each

instance is assumed to be generated from one of K underlying probability distribu-

tions, i.e. each probability distribution generates instances of a cluster. Probability

distributions can take any form such as multivariate Gaussian or t-distributions. It

is also possible to have the same probability distribution with different parameters.

Since the forms of mixture densities are known, the problem is reduced to estimating

the parameters of the distributions.

Assuming that the N instances of a given data set are generated by K mixture

densities (clusters), then the mixture probability density for the entire data set can

be given as:

p(x|θ) =
K∑
i=1

p(x|Ci, θi)P (Ci) (3.1)

where p(x|Ci, θi) is a class-conditional probability density for cluster Ci with unknown

parameter vector θi, P (Ci) is the prior probability of instance x coming from cluster

58

Ci, θ = (θi, · · · , θK) and
∑K

i=1 P (Ci) = 1. Both the class-conditional probability

density and the prior probability are known. Also although mixture densities can take

any form in theory, they are usually assumed to be multivariate Gaussian densities.

Using the Bayes formula the posterior probability for assigning an instance to a

cluster is:

P (Ci|x, θ̂) =
P (Ci)p(x|Ci, θ̂i)

p(x|θ̂)
(3.2)

where θ̂ is the vector of estimated parameters.

Once the component densities p(x|θi) take the form of multivariate Gaussian dis-

tributions, mean vectors (µ) and covariance matrices (Σ) replace θ in parameter

estimation likelihood equations:

p(x|θi) =
1

(2π)D/2|Σi|1/2
exp{−1

2
(x− µi)TΣ−1i (x− µi)} (3.3)

To estimate the parameters further, EM uses maximum likelihood (ML) which is

a statistical approach which finds the best estimate θ̂ to be the one which maximizes

the probability of producing all instances of X = {x1, · · · ,xN}. ML returns the best

estimate by solving the log-likelihood equations using the prior known probabilities.

Readers are referred to [30, 32, 119] for more details on the mathematical proofs.

The solution to likelihood equations are not available analytically in most cases. In

these cases iteratively suboptimal approaches are the popular method to approximate

ML estimates [119]. Among these methods, the Expectation-Maximization (EM)

algorithm is the one of the more popular approaches [30, 77].

EM does not require complete data. In fact EM regards the data set as incomplete

and divides each instance xj into two parts (xj = {xgj ,xmj }) – observable features xgj

and missing data xmj = (xmj1, · · · ,xmjK). The missing data for each instance is a binary

vector of size K with its values being 1 or 0. A 1 in the ith position determines that

xj belongs to component i. Therefore, the complete data log-likelihood can take the

form:

l(θ) =
N∑
j=1

K∑
i=1

xmji log[P (Ci)p(x
g
j |θi)] (3.4)

59

The EM algorithm generates a series of parameter estimates {θ̂0, θ̂1, · · · , θ̂T} iter-

atively until the termination criterion is met. The termination criterion is usually a

number of iterations (T). After initializing θ̂0 at t = 0 the two main steps of EM keep

alternating until the termination condition is reached. The two steps are described

below:

1. The E-step. Compute Q , which is the conditional expectation of the complete

data log-likelihood, given the current estimate,

Q(θ, θ̂t) = E[logp(xg,xm|θ)|xg, θ̂t], (3.5)

and

E[xmji |xg, θ̂t] =
P̂ (Ci)p(x

g
j |θ̂ti)∑K

l=1 P (Ci)p(x
g
j |θ̂tl)

(3.6)

2. The M-step. Select a new parameter estimate that maximizes the Q-function,

θ̂t+1 = arg maxθQ(θ, θ̂t) (3.7)

It should be noted that as with other iterative optimization methods, the EM

algorithm suffers from sensitivity to parameter initialization, convergence to the local

optima, the effect of a singular covariance matrix, and a slow convergence rate [77].

Chapter 4

Methodology

The various components comprising the proposed framework for Symbiotic Evolu-

tionary Subspace Clustering (S-ESC) were summarized in Chapter 1. This chapter

begins by re-introducing the S-ESC components. Algorithm 1 presents the chronolog-

ical order of the components and Figure 4.1 illustrates the relationship and interaction

between them.

Component 1 generates a D-dimensional grid by applying a regular clustering

algorithm to each data set dimension ‘independently.’ The resulting discrete grid will

serve as the starting point for the evolutionary process of subspace cluster identifica-

tion under the assumption of axis-parallel clusters as established in Chapter 2. The

purpose of this step is to convert the task into one which can be addressed through

a combinatorial search of a discrete – rather than continuous – search space. The

process is performed only once relative to the entire training repository. However, if

the data set is inhibiting, sampling can be considered. In this work the 1-d attribute-

based clustering is performed through the application of the EM algorithm [77] as

implemented in the WEKA machine learning package [42]. Naturally, any regular

clustering algorithm which does not require a-priori knowledge of k could be used for

this purpose, i.e. the clustering activity does not require dimension reduction, but

should minimize the need for additional arbitrary assumptions.1

Component 2 of the S-ESC framework denotes the symbiotic process for coevolv-

ing cluster centroids (CC) as well as clustering solutions (CS) alongside one another

through a bi-objective framework. Specifically, a subspace coordinate is defined by

sampling from the available attributes and corresponding 1-d dense regions as defined

by the grid from component 1. The resulting subspace coordinate denotes the cluster

1Other candidate algorithms that potentially satisfy this goal include X -means [89] and the po-
tential function method [22]. The EM algorithm was used here because the WEKA implementation
makes use of cross-validation to aid in the optimization of parameters such as k.

60

61

centroid. Conversely, a clustering solution is composed of indices (links) to some sub-

set of the available cluster centroids. Cluster centroids associated with a clustering

solution establish a partitioning of all the data instances through a nearest neighbour

allocation. In the context of symbiosis a cluster centroid is the lower-level symbiont

and a clustering solution is the higher-level host which is formed by grouping an ar-

bitrary number of symbionts. In a coevolutionary context a host is a team whereas a

symbiont is a member.

Component 3 denotes the fitness evaluation. Fitness is only performed relative

to clustering solution individuals (i.e. the higher-level individuals). Each clustering

solution represents a candidate group of clusters – denoted by their centroids – hence

a form of group selection is in effect. Fitness of a group can be evaluated either by

summing/averaging the fitness of its members or it could be the outcome of interaction

between members. In the case of S-ESC, the fitness of a clustering solution is the result

of a group interaction between cluster centroids forming the clustering solution. Thus,

the quality of a partitioning is a function of the nearest neighbour allocation of data

instances to cluster centroids defined by each clustering solution. It is not possible

to estimate the quality of cluster centroids independently. Fitness evaluation takes

the form of a bi-objective Pareto methodology [43] using compactness (distortion)

and connectivity (connectedness) objectives. Without loss of generality the NSGA-II

algorithm is assumed [29], although any Pareto framework for evolutionary multi-

objective optimization could be utilized.2

Component 4 is responsible for diversity maintenance through the asexual re-

production of clustering solutions based on a set of mutation operators. Diversity is

encouraged in both lower-level and higher-level populations, hence two separate mu-

tation operators are assumed. A single-level mutation (SLM) operator is dedicated to

modifying the higher-level clustering solution individuals, thus conducting a search

through different cluster combinations. The second mutation operator, multi-level

mutation (MLM), introduces variation within lower-level cluster centroids as well as

higher-level clustering solutions. In both cases the clustering solution/cluster centroid

variation is proceeded by the cloning of the corresponding individual. Moreover, as

both operators potentially modify the content of the clustering solution population,

2A decision made in part by the availability of a particularly efficient implementation of the
NSGA-II algorithm [51].

62

the rate of change of the clustering solutions is greater than that of the (lower-level)

cluster centroid population. The key to this is that clustering solutions are defined

in terms of the cluster centroid population. Hence, it is necessary for the clustering

solution content to turn over faster than that of the cluster centroid content.

Sub-component A introduces subsampling in the form of random subset se-

lection (RSS) at the beginning of each generation so that clustering solutions are

evaluated only against a subset of data instances (called the active set), rather than

the whole data set. This is in response to the computational cost associated with eval-

uating the connectivity objective under subspace clustering scenarios. Thus, sample-

based evaluation is being employed increasingly in evolutionary computation in re-

sponse to the cost of fitness evaluation in general, e.g. with regards to policy search

[31] or genetic programming [105].

Sub-component B addresses the post-training selection of the most promising

solution out of a pool of solutions. That is to say, assuming a Pareto evolutionary

multi-objective process such as NSGA-II results in a set of non-dominated solutions

(i.e. they are all equally good in the Pareto sense), whereas a single ‘champion’ solu-

tion is required per run. One approach to champion selection might be to visualize

the Pareto front. However, for benchmarking purposes this is not practical and some-

what arbitrary. From a bi-objective perspective, better solutions on a Pareto front

tend to lie where a small change in one objective results in a much larger change in

the other objective. This is referred to intuitively as a knee on the Pareto front; the

solution is referred to as a knee solution and the method is hereafter referred to as

knee detection [99].

The rest of this chapter expands on each of the S-ESC components with more

details.

4.1 Component 1: Grid Generation

In order to construct a grid from which candidate cluster centroids can be defined, a

regular ‘full-space’ clustering algorithm is applied to each attribute alone. Thus, for

a D-dimensional data set, the standard clustering algorithm is called D times, once

per attribute (Step 1, Algorithm 1). The values of a data set for each attribute can

also be considered as the values of the data set as projected on the attribute – albeit

63

Algorithm 1 The S-ESC algorithm. CC and CS denote the cluster centroid (host)

and clustering solution (symbiont) populations respectively. Hsize and Psize refer to

the host population size and the number of points subsampled by RSS respectively.

gen is the current generation and Gmax is the maximum number of generations.

1. Generate the grid using 1-d clustering

2. Initialize symbiont (CC) population

3. Initialize host (CS) population, linking hosts to symbionts

4. RSS: Select Psize data points as active set points

5. While gen < Gmax

(a) For i = 1 to Hsize

i. Find a parent host using a tournament selection of size 4

ii. Clone the parent host

iii. Apply the SLM operator on the cloned host

iv. Randomly select a parent symbiont, within current host

v. Clone the parent symbiont

vi. Apply the MLM operator on the cloned symbiont

(b) Evaluate the host population

(c) Sort 2×Hsize hosts on fronts

(d) Delete the worst Hsize hosts

(e) Delete any symbionts without host membership

(f) Refresh Psize active set points with RSS

(g) gen = gen+ 1

6. Apply knee detection to return the champion host from among Pareto hosts

65

clustering assumes the process of cross-validation. Hereafter, EM clustering with

cross-validation will be assumed for the identification of 1-d centroids with respect to

each attribute.3

Figure 4.2 illustrates the process for a 2D data set.4 Figure 4.2(a) represents

the data set in its original format. In Figure 4.2(b) dense regions of each attribute

are identified by the clustering algorithm of choice as illustrated by attribute-specific

Gaussians. The centroids of each cluster (i.e. dense region) as projected on each

axis are marked by a ‘×’ symbol. Figure 4.2(c) illustrates the superimposition of all

axis-specific centroids forming the final 2D grid. The corresponding set of ‘candidate’

cluster centroid locations is identified by + signs and numbered 1 to 4. Naturally, the

resulting cluster centroids (+) are free to index a variable number of attribute-specific

clusters (×) – albeit under the constraint that only one attribute-specific cluster be

sampled per attribute.

It should also be noted that this process is conducted once per data set. In the

benchmarking study in Section 6 the EM algorithm [77] is assumed. Multiple runs

of the proposed S-ESC algorithm are performed relative to the same common grid.

Moreover, since grid generation is performed only once per data set regardless of the

number of times S-ESC is run, the grid generation component is considered a pre-

processing step. On completion of component 1 a D-dimensional grid is formed by

the superimposition of all attribute-specific (1-d) centroids. Note that not all grid

locations correspond necessarily to valid cluster locations, thus adding additional

ambiguity to the task.

4.2 Component 2: Symbiotic Relationship and Representation

S-ESC decomposes the overall task of subspace clustering into two search processes:

finding candidate cluster centroids (using different attribute subsets); and finding the

best combination of candidate cluster centroids to define an overall solution to the

subspace clustering task.

A cluster centroid is basically an S-dimensional coordinate where S is the number

3Some comparative benchmarking was performed to reach this conclusion. X-means returned
solutions faster, but was still much more sensitive to factors such as the order of data presentation
during the clustering process.

4A 2D representation is selected here merely for the sake of visualization simplicity.

67

made regarding the number of cluster centroids necessary to build a cluster solution.

A nearest neighbour assignment procedure assigns each data point to the closest clus-

ter centroid while considering only the attribute support of each cluster centroid when

calculating the distance between a data point and a cluster centroid.

Symbiosis is the close and often long-term mutual interaction between different

species living together and benefiting from each other [75]. Symbiosis implies that

a number of lower-level symbionts from one species undergoes an aggregation. The

resulting (higher-level) host organism represents a new species. Such a process also

introduces the concept of ‘levels of selection’ [86] in which fitness is evaluated either

at the level of the symbiont or the host. The utility of symbiosis is assumed explicitly

for this work, as opposed to attempting to model the transition between symbiont

and host; hence fitness will be evaluated only at the ‘level’ of the host.

The above interaction between cluster solutions and cluster centroids is interpreted

as forming a symbiotic relationship. Using the symbiotic vocabulary, the lower-level

cluster centroids in S-ESC correspond to symbionts, and higher-level clustering solu-

tions correspond to hosts. Hereafter, the terms symbiont, cluster centroid (CC) and

lower-level individual are used interchangeably, as are host, clustering solution (CS)

and higher-level individual.

S-ESC takes advantage of two separate populations, Figure 4.1: the host (or

CS) population is of a fixed size whereas the symbiont (or CC) population size is

variable. Although the symbiont population has a dynamic size, there are minimum

and maximum bounds. The minimum size of this population is equal to the size of

the host population whereas the maximum bound for it is equivalent to 5 times the

size of the host population. These limits are arbitrary, with the minimum limit set

to establish a starting point for population initialization and the upper which defines

a (weak) computational limit.5

The first step in S-ESC after making the grid is to initialize both populations

(Steps 2 and 3, Algorithm 1). Initialization begins by generating a population of

symbionts (CS) randomly as the initial genetic material to be indexed by the host

(CC) individuals.

5The worst case computational scenario would be for each host to be of some ‘maximum’ genome
length. This does not necessarily imply a particularly large symbiont population, but in practice
there is a correlation.

68

Symbionts index at most one (attribute-specific) 1-d cluster centroid from a subset

of attributes. The corresponding representation assumes a series of integer pairs,

〈a, c〉, where a determines the attribute index, and c identifies the (attribute-specific)

1-d centroid, or:

Symbionti ≡ CCi ≡ {〈a1, c1〉, 〈a2, c2〉, · · · , 〈ap, cp〉} (4.1)

where ai 6= aj is required for i 6= j. The number of 1-d centroids, p, comprising a

symbiont (CS) is potentially unique, and assumes a value between 2 and the data set

dimensionality D (2 ≤ p < D), i.e. for subspace identification to take place p < D

whereas p > 2 avoids the trivial case of a one dimensional cluster.

To initialize a symbiont the length (dimensionally) of the symbiont is initially

selected randomly. Call this length L for a sample symbiont. Then for each pair

of integers a random attribute index is selected – a in the 〈a, c〉 pair – followed by

a random number between 1 and the number of 1-d centroids within the selected

attribute – c in the 〈a, c〉 pair. This process is repeated L times until the symbiont

is initialized fully. Such a representation enables a cluster centroid (symbiont) to be

expressed independently of data set dimensionality or cardinality. As noted above –

Step 5a, Algorithm 1 – S-ESC populates the symbiont population with H symbionts

initially with H being the host population size and a pre-defined parameter.

The encoding/decoding of a symbiont is summarized in Figure 4.3 using two sym-

bionts each defined in terms of two attributes for the sake of brevity. The two integer

pairs used in cluster centroid 1 (CC1) are 〈2, 1〉 and 〈1, 2〉. The first pair encodes the

1st 1-d centroid from attribute 2, and the latter pair encodes the 2nd 1-d centroid from

attribute 1. Extending these two 1-d centroids along the axes returns the point in 2D

space marked by a plus sign in the center of blue triangles and numbered ‘1’. This

potential cluster centroid is clearly a ‘good’ cluster centroid since it is the center of a

dense region. Once this potential cluster centroid is indexed in a clustering solution it

attracts all the points around it and makes a cluster which is distinctly separate from

other clusters. Similarly, the other cluster centroid, CC2, encodes the point marked

by a plus sign and numbered ‘2’ with no instances close to it. It would be expected

that the utility of this potential cluster centroid is ‘null.’

Naturally, in higher dimensions the number of integer pairs per symbiont is free to

70

where CCi 6= CCj is required for i 6= j. The number of cluster centroids in a clustering

solution, q, is potentially unique to a host and can vary between 2 and the symbiont

population size (2 ≤ q ≤ |Symb Pop|).

Hosts conduct a search for ‘good’ symbiont combinations and it is possible for

the same symbiont to appear in multiple hosts. Two sample hosts, along with a

population of four symbionts, are illustrated in Figure 4.4. Each host defines a parti-

tioning of the data relative to its combination of candidate cluster centroids, care of

the nearest neighbour allocation of exemplars to the host membership.

The first clustering solution (CS1) is linked to three symbionts: CC3, CC1 and

CC4. The order of the symbionts is not important. This clustering solution partitions

the given data set into three clusters with cluster centroids encoded by the three

indexed CCs. Assigning data points to their nearest cluster centroids gives the three

clusters shown in the top-left corner of the figure, illustrated with different colours

for each cluster. The three cluster centroids used here are the three promising cluster

centroids which were the centres of the dense regions of the data set.

The other clustering solution (CS2) uses CC2 and CC4 to partition the given

data set into two clusters. CC4 is a potential cluster centroid being in the center

of a cluster of data items. CC2, on the other hand, is not a good candidate cluster

centroid. Partitioning the given data set using the two mentioned cluster centroids

gives the partitioning shown in the left-bottom corner of the figure. It is a linear

partitioning, care of the two cluster centroids, assigning almost half of the data items

from the two undetected clusters to CC4 and the rest to CC2.

Similar to the representation of symbionts, a minimum and maximum bound is

also placed on the number of symbionts to which a host can link, i.e. the minimum

and maximum clusters expected in a data set. These parameters are also adjustable

based on any prior domain knowledge a user might have.

To initialize a clustering solution, the number of cluster centroids within the clus-

tering solution is defined first with uniform probability: call this k. A vector of size k

is allocated to this clustering solution and random links between the clustering solu-

tion and the k cluster centroids are established. The initialization process makes sure

that there are no duplicate links within a clustering solution. This process repeats H

times to populate the host population with H clustering solutions.

72

design decisions are highlighted. Section 4.3.3 summarizes the two objectives for

clustering as popularized by Handl and Knowles and describes the generic properties

of the Pareto dominance approach. Also noted are the requirements for champion

solution identification (Pareto methods typically return more than one equally good

solutions) and fitness evaluation using a subset of the available data. These issues

will later be addressed through Sub-components A and B of the S-ESC framework.

4.3.1 Group Selection

An important property of S-ESC which is worth noting again is the concept of ‘group

selection’ (Section 4.2). That is to say, each host identifies a unique subset of sym-

bionts, hence group selection is involved. The fitness of a group can be evaluated

in one of the two ways: MLS1 and MLS2 [86]. In MLS1 the fitness of a host is

proportional to the sum of symbionts fitnesses, e.g. the sum or the average of the

corresponding symbionts fitnesses. On the other hand, in MLS2 the fitness of a host

is the result of the interaction between the symbionts to which it is linked, regardless

of how each symbiont performs individually. In other words, here the group/team

performance is measured rather than the individual/member performance. MLS2 is

assumed with the potential of benefitting from the group fitness exceeding the mere

sum of its members. Hence, symbiont ‘fitness’ is implicit. Should a symbiont not

receive any host indices then it is considered useless and deleted. The point at which

such checks are made is linked to the breeder style of evolution (Steps 5d and 5e,

Algorithm 1).

4.3.2 Pareto-dominance and Evolutionary Multi-objective Optimization

Handl and Knowles used the smile and spiral data sets (Figures 4.5(a) and 4.5(b))

to motivate the adoption of a (Pareto) bi-objective approach to clustering in general

[43]. There are two dense regions showing the eyes of the face and a rather curved

elongated less dense region forming the mouth of the smiley face. These three dense

regions are more likely to be detected by algorithms relying on single density-based

optimization functions. However the (relatively) sparse outline of the face in the same

data set or any of the two spirals in Figure 4.5(b) is less likely to be found by such

algorithms. These clusters need a different optimization function that is less sensitive

73

(a) Smile (b) Spirals

Figure 4.5: Sample data sets with arbitrary cluster shapes; (a) Smile and (b) Spirals.

to data distribution and cluster shape. For these clusters the label of each exemplar

can be determined by observing the cluster label of its neighbouring points. The

optimization function is penalized if the cluster label of a data point is different from

those of its neighbours.

Adopting more than one objective presents the problem of how to rank individuals

for reproduction and/or survival (Steps 5(a)i and 5d, Algorithm 1). As of this writing,

the most widely employed framework for ‘mapping’ multiple objectives into a scalar

ranking employs the concept of Pareto dominance. Assume F is an n-dimensional

vector of objective functions, i.e. F (x) = (f1(x), · · · , fn(x)). Individual x dominates

individual y if and only if x is better or at least matches y in all but one objective

and is strictly better than y in at least one objective:

x ≺o y ⇔ ∀i ∈ {1, · · · , n} : fi(x) ≤o fi(y) ∧ ∃k : fk(x) <o fk(y) (4.3)

where, assuming fi comprises all functions for minimization, then fi(x) ≤o fi(y)

indicates that x is either better than or equivalent to y in objective i, and fk(x) <o

fk(y) indicates that x is strictly better than y for some objective k. In other words,

x needs to be strictly better than y in at least one objective function and at least as

good as y in the remaining objective functions. In this case x is said to dominate y.

76

Adopting a dominance count-based scheme is known to reward most exploration

in the midpoint of the Pareto front.

Without loss of generality this work assumes the approach adopted by NSGA-II

[29], where this makes use of dominance ranking. This type of decision is made in

part due to the availability of optimized code to reduce the run-time complexity of

Pareto dominance-based evaluations [51]. By contrast, other EMO algorithms exist

which make use of both dominance ranking and dominance counts, e.g. SPEA2 [128].

Although potentially more accurate, there is also an additional computational over-

head in adopting multiple mechanisms for measuring dominance. Once a good pool of

Pareto-optimal solutions is found the solutions are monitored manually or automati-

cally and the best solution (sometimes called winner or champion solution) is selected.

Section 4.5.2 will summarize the process adopted for this (cf., knee detection).

In addition to dominance ranking, NSGA-II also utilizes ‘crowding distance’ as an

additional bias for maintaining diversity. Specifically, diversity maintenance (explo-

ration) versus fitness-based selection (exploitation) needs to be addressed in order to

represent an effective search strategy. Crowding as used in NSGA-II is a function of

the distance (in the objective space rather than the attribute space) between each in-

dividual and its neighbouring individuals on the same front. The larger the crowding

distance of an individual, the more distinct from other individuals it is. On a given

front NSGA-II prefers individuals with a larger crowding distance over the ones with

smaller crowding distances.

NSGA-II sorts all parent and offspring individuals on different fronts in the ob-

jective space. Individuals on the Pareto front (front 1) are kept to evolve further in

subsequent generations (i.e. elitist archiving). If there is room for more individuals

in the population, individuals from fronts 2, 3, ... are also included in the population

for the next generation. If there is not enough room to include all the individuals of a

given front, the crowding distance heuristic is invoked, i.e. individuals with a higher

crowding distance are kept for further evolution. Such a heuristic helps NSGA-II

select the most diverse set of individuals by picking individuals which have the least

number of neighbours on the same front.

At the end of each generation all (parent and offspring) host individuals make a

pool of 2 × H hosts, where H is the host population size. Being an elitist method,

77

NSGA-II keeps only H more fit hosts and reserves the rest only to be replaced with

H new offspring in the next generation. Thus, with respect to Algorithm 1, Step 5a

adds H hosts and Step 5d removes H hosts.

4.3.3 Bi-objectives for the Clustering Task

For S-ESC a multi-objective formulation will be assumed based on two potentially

conflicting objectives; compactness (or distortion) and connectivity (or connected-

ness). This was proposed first by Handl and Knowles in a full dimensional clustering

context [43]. Compactness tries to find dense clusters by minimizing the distance

between data points and their nearest cluster centroids. This objective function cre-

ates clusters by putting data points into those clusters whose centroid is closest to

them. Ultimately, this objective function creates spherical clusters such as the eyes

and mouth of the smile data set in Figure 4.5(a). Minimizing the compactness of a

host, in the degenerate case, results in as many ‘singleton’ clusters as data instances.

The compactness value of such a solution would be zero.

Connectivity, on the other hand, tries to put a data item into the cluster which

‘owns’ most of data items in the neighbourhood of the current data point. Therefore,

it can potentially find non-Gaussian elongated clusters as well as Gaussian spherical

clusters. This objective function can potentially discover the larger circle of the face in

Figure 4.5(a) and the two spirals in Figure 4.5(b). In the degenerate case connectivity

tries to put all data instances into one cluster making one ‘super’ cluster. Similar to

the compactness case the connectivity value of such an extreme solution is zero.

Obviously there is a tension between the two objectives. Compactness tries to

find a large number of smaller clusters by minimizing an objective function which is

based on the distance between data points and cluster centroids, while connectivity

penalizes the objective function for putting neighbouring data points into different

clusters promoting fewer larger clusters. This tension is a key factor for estimating

the optimal number of clusters in a data set [43].

The most significant drawback of utilizing the connectivity objective, however, is

that under a subspace setting it is necessary to re-evaluate the metric continuously

for each subspace [112], whereas under full-space clustering such a metric can be pre-

computed [43]. Unless this is addressed, it becomes a constraint on scaling to data

78

sets with larger cardinality. With this in mind, a process for data subsampling will

be introduced later in Section 4.5.1.

Section 4.2 established that, prior to calculating the compactness of a host (CS),

a nearest neighbour (NN) assignment of data instances is performed against the set

of symbionts (CC) linked to the host (Figure 4.4). This nearest neighbour allocation

determines the symbiont (within the host) for each data instance. The distance

between an instance and the nearest symbiont is defined and normalized over the

number of attributes supporting the symbiont. The overall compactness of a host

is the sum of all distances between each instance and their nearest cluster centroid

(symbiont) calculated over the attributes supported by the symbiont:

Com(CS) =
k∑
i=1

|CCi|∑
j=1

dis(xj, CCi) (4.4)

where CCi is the nearest CC to instance xj, k is the number of CCs (symbionts)

within the CS (host) under evaluation, |CCi| is the number of instances assigned to

CCi, and dis(.) calculates the distance between instance xj and the closest cluster

centroid CCi over the attributes supported by CCi. CC and CS can be referred to

as Symb(iont) and Host for more readability:

Com(Host) =
k∑
i=1

|Symbi|∑
j=1

dis(xj, Symbi) (4.5)

Connectivity tries to give more weight to subspace clusters which assign neigh-

bouring data instances to the same subspace cluster by penalizing adjacent data

points in different subspace clusters [43]:

Con(CS) =
N∑
i=1

M∑
j=1

{
1
j
; if @CCs : xi ∈ CCs ∧ xi,NNj

∈ CCs
0; otherwise

(4.6)

where N is the exemplar count of the data set; M is the number of nearest neighbour

exemplars to xi S-ESC considers for calculating connectivity which is defined as M =

max(10, 0.01 × N) and xi,NNj
is the jth nearest neighbour exemplar to xi. The

analogous expression substituting Symb(iont) and Host for CC and CS has the form:

79

Con(Host) =
N∑
i=1

M∑
j=1

{
1
j
; if @Symbs : xi ∈ Symbs ∧ xi,NNj

∈ Symbs
0; otherwise

(4.7)

Penalizing connectivity by 1/j for the jth nearest instance to xi – which has

a different cluster membership than xi – captures this concept, whereas penalizing

connectivity by a fixed value of 1 implies that all neighbouring instances contribute

equally to the connectivity of an instance, regardless of their distance to xi. A large

value for connectivity indicates that a large number of neighbouring points are allo-

cated to different clusters, whereas a small value of connectivity indicates that only a

small number of adjacent instances are assigned to different subspace clusters; thus,

connectivity is to be minimized.

Naturally, the nearest neighbours of each data point need to be determined over

the attributes specific to the subspace cluster centroid. However, the attribute sup-

port for each cluster centroid is potentially different in each generation and therefore

the nearest neighbours require rediscovery at each generation. Based on the definition

of connectivity, M nearest data instances to each data instance need to be identified

which requires N comparisons for each data point, hence a complexity of O(N2).

Later in Section 4.5.1 it will be explained how this will be reduced to O(P × N) by

subsampling P � N instances in the beginning of each generation.

It is also worth noting that although the nearest neighbour assignment tries to

create spherical clusters; however, it is not the only factor in deciding cluster shapes.

Three factors can be involved in deciding a cluster shape; the grid, nearest neighbour

distance function and the objective functions. The grid is formed by superimposing

different attributes’ 1-d centroids, which in turn are controlled by data distribution

and dense regions in each attribute. This converts the continuous attribute space

into a discrete search space and defines the possible points that can be considered as

subspace cluster centroids.

Nearest neighbour can take advantage of different distance functions, Euclidean

distance (L2 norm) being the most popular metric. Other metrics such as Minkowski

metric (Lk norm), Manhattan distance (L1 norm), Tanimoto metric (mostly used

in taxonomy) and tangent distance are also less frequently used [32]. In general

terms Euclidean distance tries to form dense hyper-spherical clusters; however, in

80

the case of S-ESC this is only one of the three deciding factors to form clusters, and

therefore clusters are not hyper-spherical merely because there is a nearest neighbour

assignment involved.

The third deciding factor on cluster shapes as mentioned in this chapter is the ten-

sion between the primary and secondary objective functions. While the compactness

function focuses to detect small and dense hyper-spherical clusters, connectivity tries

to punish formation of clusters in which adjacent instances are grouped in different

clusters and therefore is does not make any assumption on the shape of clusters.

4.4 Component 4: Variation Operators

Variation operators represent the mechanism for introducing new genetic material

to both host and symbiont populations. As such they also have a role to play in

the exploration–exploitation trade off. However, given that the same symbiont (CC)

might well appear in multiple hosts (CS), care is necessary in order to ensure that

(genotypic) modifications are limited to the offspring. To this end, an asexual model

is assumed in which a parent is first cloned and variation is introduced only relative to

the cloned child. Parent host individuals are selected by a tournament against three

other hosts. Such a process is explicitly elitist. Two mutation operators are utilized

in the inner loop of S-ESC: Single-Level Mutation (SLM) and Multi-Level Mutation

(MLM) or Steps 5(a)iii and 5(a)vi, Algorithm 1.

SLM modifies individuals only at the host level; thus, it is only the links to

symbionts within the cloned host that undergo variation. On the other hand, MLM

modifies the symbiont links within a host as well as one of the symbionts linked to the

host under modification. In other words MLM fine-tunes a single symbiont within a

host to achieve a better overall clustering solution. The motivation for adopting such

a scheme is to have the combinatorial search for good symbiont combinations have

a higher turn-over rate (as conducted at the host level) than the rate of introducing

new symbiont content. That is to say, for a given set of symbionts it is necessary

to look at more combinations at the host level in order to have a better chance of

discovering the relevant symbiont specialization.

81

4.4.1 Single-Level Mutation

As shown in Figure 4.8 the single-level mutation (SLM) operator consists of 4 phases

once a host individual is selected after a tournament selection against three other

hosts. First, the selected host is cloned in Phase 1. To clone a host, a vector of the

size of the parent’s gene count is created and the links to symbionts within the parent

host are duplicated in the cloned host. Further modification will be applied on the

cloned host. In Phase 1 of Figure 4.8 the top-left green arrow shows how the new

host is cloned from the parent host by duplicating all symbionts links within the new

host.

The recently-cloned host potentially goes through three forms of mutation or

atomic SLM operators:

1. Remove one (or more) random link(s) to the currently linked symbionts – rela-

tive to Figure 4.8; the last symbiont link is removed (marked by a cross sign);

2. Add one (or more) random new symbiont links – relative to Figure 4.8; a new

symbiont link is inserted after the second symbiont link (marked by a plus sign)

and;

3. Replace one (or more) current symbiont link(s) with the same number of random

links to symbionts from the symbiont population – relative to Figure 4.8; the

first symbiont link is replaced by a new symbiont link (marked by a star).

Naturally, the third form of mutation performs in one step what the first two forms

might achieve together. Replacing a symbiont within a host as shown in Phase 4 of

Figure 4.8 replaces the link to the current symbiont (marked by a cross) with a link

to a different symbiont in the symbiont population (marked by a plus sign).

Once a host is selected by the tournament selection, each atomic variant of the

SLM operator is applied iteratively with an annealed probability of application. Thus

for each atomic variant, they are applied first with a probability of 1.0. Thereafter

the probability of application decreases by an order of magnitude, i.e. 0.12, 0.13, ...,

until the test for applying the operator returns false. Thus, each child is always the

result of calling each of the three atomic SLM variants at least once, and a variable

83

population (Phase 1). Unlike SLM, MLM acts on individuals from both host and

symbiont populations, as described below:

1. With uniform probability a symbiont within the cloned host is selected – relative

to Figure 4.9 (Phase 2); the second linked symbiont is selected (marked by a

star);

2. The selected symbiont is cloned with both parent and cloned child retained

in the symbiont population – relative to Figure 4.9 (Phase 3); the green arrow

shows how a symbiont is cloned and kept within the symbiont population. While

this cloning occurs the original link within the host which points to the parent

symbiont also gets replaced by a link to the cloned symbiont. This is shown by

removing the original link (marked by a cross) and creating a new link (marked

by a plus);

3. The newly cloned symbiont goes through three mutation steps or atomic oper-

ators as listed below:

(a) Remove one (or more) random attribute(s) and 1-d centroid pairs from the

symbiont – relative to Figure 4.9 (Phase 4); the second attribute and the

1-d centroid pair is removed (marked by a cross);

(b) Add one (or more) random attribute(s) and 1-d centroids to the symbiont –

relative to Figure 4.9 (Phase 5); a new pair of attribute and a 1-d centroid

is inserted before the first attribute and the 1-d centroid pair (marked by

a plus); and

(c) Replace one (or more) random attribute’s 1-d centroid – relative to Figure

4.9 (Phase 6); the third 1-d centroid is modified (marked by a star). Care

should be given since the number of 1-d centroids for different attributes

are different, hence the random value here should be checked against the

number of possible 1-d centroids for the attribute in question.

As per SLM, the selected parent host is guaranteed initially to see one application

of each phase of variation and thereafter is subject to an order of magnitude decrease

in the probability of application. Again, as with the case for SLM, there are checks

85

in MLM to make sure that the new cloned and mutated symbionts satisfy any size

constraints set by the user.

Note that the decreasing probability of atomic mutation operators enables SLM

and MLM to occasionally make big modifications to the cloned host or symbiont,

respectively, reproducing more diverse offspring and adding to the diversity of host

and symbiont populations. It will also be shown in Section 6 that S-ESC performs at

its best when population diversity is maximized. However it should also be mentioned

that the proposed mutation operators are not the only possible operators compatible

with S-ESC and other forms of variation can be considered given that the same level

of diversity is maintained.

One important property of S-ESC which needs to be restated is that S-ESC sup-

ports two different populations: a fixed size host population and a variable-sized

symbiont population. As explained in this section each selected parent host goes

through SLM and MLM after the tournament selection, care of the 100% probability

for both operators. This process repeats H times with H being the host population

size. Therefore, at the end of the breeding process at each generation, H new hosts

are bred which, combined with the already existing H hosts in the population, make

a pool of 2×H hosts. As mentioned earlier, the chosen evolutionary multi-objective

optimization algorithm of our choice, NSGA-II, is an elitist algorithm. NSGA-II sorts

the pool of all hosts based on their front number and crowding distance and picks the

best H hosts to go through the next generation (Step 5d, Algorithm 1).

On the other hand, there is a population of symbionts with a dynamic size and

an upper limit of 5 ×H symbionts. As with the hosts, H new symbiont are bred in

each generation, although there is no elitist process to remove some of the symbionts.

There is, however, a counter implemented in each symbiont which determines how

many hosts are linking to it. Once a new host links to the symbiont this counter is

increased by one and any time a link is removed from the symbiont this counter is

decreased by one. Naturally, there is a check at the end of each generation to remove

symbionts with zero links to make room for more symbionts in the next generation

(Step 5e, Algorithm 1).

86

4.5 Pragmatics

The four components discussed above are the main building blocks of S-ESC [112].

However, two additional components are necessary for scaling S-ESC with respect to

data set cardinality (subsampling) and facilitating the post-training identification of

a single ‘champion’ solution from a pool of equally-fit Pareto non-dominated solutions

(knee detection).

4.5.1 Sub-component A: Subsampling

Handl and Knowles [43] use connectivity as the second objective of their bi-objective

approach. Being a full-space approach it can find the M nearest neighbours of each

data point as a pre-processing step, reusing this information throughout the evolu-

tionary process.

However, this is not an option in a subspace scenario simply because the nearest

neighbours to each point might be different in different subspaces. For example, call

the point for which neighbours are being sought xi. First, the attribute support of

the cluster to which xi belongs is called subspace Si. Then the distances between all

the data set points and xi are calculated over the attributes of Si, and normalized

by the number of attributes in Si. These distances are sorted and the M nearest

instances to xi are selected. M is defined as max(0.01 × N, 10). Also note that

same process should be repeated anew for each point in each generation because the

attribute support of the cluster to which they belong has possibly changed following

the SLM and MLM operators.

Based on the definition of connectivity, M neighbours of each data instance should

be identified, which requires N comparisons for each data point. The time complexity

of this process is O(N2) which makes it infeasible for large-scale data sets. To address

this issue subsampling (or simply sampling) is introduced. The idea is to calculate

the objective values using a subset of data set points rather than the whole data set.

By reducing the number of active points per objective calculation from N to P the

time complexity drops to O(P ×N) where P � N . These P points are selected with

uniform probability, through Random Subset Selection (RSS) and the selected subset

is hereafter called the active set or point population, as shown in Figure 4.10. The

Chapter 5

Evaluation Methodology

The S-ESC code along with the benchmarking data sets utilized in this work are

publicly available at http://web.cs.dal.ca/˜mheywood/Code/S-ESC/.

5.1 Benchmarking Data

In order to evaluate the effectiveness of subspace clustering algorithms, data sets

with a specific structure are required. Generally, this is a problem in the case of

‘real-world’ data sets. Specifically, it is not possible to define with any certainty how

many clusters exist or quantify the nature of the clusters involved in the data set

unless the process of creating the data itself is known. As a consequence, researchers

frequently design and generate artificial data sets of their own to show the various

properties of subspace algorithms [87, 88, 80, 83].

Two different sets of synthetic data sets will be utilized in this thesis. The first to

be employed are the data sets provided by Moise et al. in their benchmarking survey

of more than 10 different (axis-parallel) subspace clustering algorithms on more than

50 data sets [80], hereafter referred to as the incremental benchmark or Moise data

sets. The underlying theme of the benchmarking approach adopted by Moise et al.

is to test the sensitivity of subspace clustering algorithms to one property at a time.

The goal is to identify which factors different subspace clustering algorithms are most

sensitive to. Section 5.1.1 summarizes the properties of the incremental benchmark.

Although very thorough, the incremental benchmark does have two limitations.

Firstly, the data dimensionality and cardinality is relatively low in most cases, e.g.

dimensionality ≤ 50 and cardinality ≤ 300. Secondly, all the clusters within a data

set use the same data distribution for all clusters, and no data set has clusters with

different data distributions. With this in mind a second large-scale benchmarking

data set1 will be introduced consisting of 5 data sets with larger overall dimensionality,

1That is to say, ‘large-scale’ relative to the tasks defined by the incremental benchmarks of Moise.

89

90

cardinality and multiple cluster distribution types within a single data set. As a

consequence, the large-scale data sets will be able to investigate the appearance of

multiple cluster properties simultaneously. Section 5.1.2 summarizes the properties

of the large-scale benchmark.

5.1.1 Incremental Benchmarking Data Sets

A total of 9 properties are varied independently in order to construct the incremental

benchmark developed by Moise et al.:

1. Type of distribution defining a cluster, using either Gaussian or Uniform distri-

butions;

2. Cluster support, or defining clusters with an equal number versus varying num-

bers of relevant attributes;

3. Relevant attributes per cluster, or varying the average number of attributes

representing a subspace cluster;

4. Data set dimensionality, or varying the overall number of attributes (D). This

experiment defines data sets with increasing overall attribute count from 20 to

100 in 5 steps;

5. Data set cardinality or the overall number of instances (N). Under this exper-

iment the overall number of data instances per data set increases from 80 to

1650 in 5 steps.;

6. Cluster count, or varying the overall number of subspace clusters (k). Specifi-

cally, the number of embedded clusters in a data set is increased from 2 to 5 in

4 steps;

7. Cluster extent, or varying the range over which subspace cluster attributes vary

(Extent). This defines data sets in which the range/extent of the uniform

distribution from which instances are drawn is increased from 0.1 to 0.4 in 4

steps. Given that attributes not associated with a subspace cluster (for any data

set) are defined by a uniform distribution sampled from the interval [0, 1], then

91

increasing the range for attributes associated with subspace attributes makes

them more difficult to identify;

8. Cluster overlap, or varying the number of shared attributes between different

subspace clusters (Overlap). In this experiment, the overlapping range of rele-

vant attributes from different clusters increases from 0 to 0.3 in 4 steps;

9. Instances per cluster, or varying the average number of data instances used to

define each cluster (ClusterSize). This experiment results in a total of 4 data

sets.

Table 5.1 summarizes how the different data sets were designed to assess the above

9 subspace clustering properties, resulting in 10 ‘experiments’ and a total of 54 data

sets. Labels are also declared for identifying each set used in the 10 experiments. The

first 3 properties are merged into 4 data sets: GE, GD, UE and UD in Table 5.1:

• The GE experiment represents data sets with a ‘Gaussian’ data distribution

and an ‘Equal’ number of relevant attributes per cluster. There are 7 data sets

in this experiment with an average (relevant) cluster dimensionality ranging

from 2 to 20;

• The GD experiment represents data sets with a ‘Gaussian’ distribution in which

the number of relevant attributes for each cluster is ‘Different.’ As with GE

there are 7 data sets in this experiment with an average (relevant) cluster di-

mensionality ranging from 2 to 20;

• The UE and UD represent the corresponding data sets with ‘Uniform’ distri-

bution with either equal or different attribute counts per cluster.

Experiments GE and UE consist of 7 data sets in which the attribute support of

each cluster increases from 2 relevant attributes per cluster (data set 1) to 20 relevant

attributes per cluster (data set 7). However, the number of relevant attributes is equal

within each subspace cluster from the same data set. By contrast, in the GD and

UD experiments, the average attribute support per cluster increases from 2 relevant

attributes per cluster (data set 1) to 20 relevant attributes per cluster (data set 7),

with different subspace clusters in the same data set retaining different attribute

92

Table 5.1: A summary of the properties of the Incremental data sets. A parenthesis
after the experiment identifier denotes the number of variants for the data set within
each experiment. GE denotes a Gaussian distribution with an Equal number of
attributes per cluster; GD denotes a Gaussian distribution with a Different number
of attributes per cluster; the same applies to UE and UD but in terms of the Uniform
distribution. ‘Irr.’ stands for Irrelevant, ‘Dim.’ for dimensionality and ‘Inst.’ for
Instance.

Data Data Cluster D N k Irr. Irr. Min Max Min Max
Set Distr. Shape # # # Attr Attr Dim Dim Inst Inst

% # # % %

40,30 80,60 2,4,6 2,4,6
GE (7) Gaussian Spherical 50 240 5 20,10 40,20 8,10 8,10 17 25

0,0,0 0,0,0 15,20 15,20

40,30 80,60 2,2,3 2,6,11
GD (7) Gaussian Spherical 50 240 5 20,10 40,20 5,6 12,14 17 25

0,0,0 0,0,0 10,10 20,24

40,30 80,60 2,4,6 2,4,6
UE (7) Uniform Square 50 240 5 20,10 40,20 8,10 8,10 17 25

0,0,0 0,0,0 15,20 15,20

40,30 80,60 2,2,3 2,6,11
UD (7) Uniform Square 50 240 5 20,10 40,20 5,6 12,14 17 25

0,0,0 0,0,0 10,10 20,24

20,35 0,15 0,33
D (5) Uniform Square 50,75 240 5 30,55 60,73 4 4 17 25

100 80 80

80,240
N (5) Uniform Square 50 400,820 5 30 60 4 4 17 25

1650

K (4) Uniform Square 50 250 2,3 42,38 84,76 4 4 20 50
4,5 34,30 68,60

Extent Uniform Rectangular 50 240 5 30 60 4 4 17 25
(4)

Overlap Uniform Square 50 250 2 46 92 4 4 17 50
(4)

Cluster Uniform Square 50 145,200 5 30 60 4 4 14 25
Size (4) 240,265

counts. Note that the overall dimensionality of all data sets in these 4 experiments

is always 50 and the subspace cluster count is always 5. Thus, where the attribute

support of each cluster is 20, each attribute is relevant in 2 clusters.

Note that the incremental benchmark is used both with and without the inclusion

of ‘outliers.’ Outliers are data instances for which data values represent noise for

all attributes. Since S-ESC and all but one of the comparator methods do not filter

explicitly for outliers, the outliers in all data sets are removed before commencing

the evaluation.2 Naturally, the resulting outlier-free data sets still retain the noise

terms associated with attributes not associated with defining a subspace cluster. A

2Outliers are labelled explicitly as an extra cluster in the incremental data sets and are straight-
forward to remove.

93

separate set of experiments will be conducted to assess the impact of including the

pure outlier data.

5.1.2 Large-scale Benchmarking Data Sets

The Incremental benchmarking data sets popularized by Moise et al. used above

cover a wide range of properties. However, as noted earlier in this chapter, there are

some basic shortcomings, as noted below:

1. The dimensionality and cardinality remains low;

2. The cluster embedding assumes only one data distribution per data set with as-

pect ratios which are not particularly diverse. In other words, the clusters built

into each data set use either a Gaussian distribution or a uniform distribution,

but never both;

3. Cluster properties are only introduced independently, but multiple factors might

be expected to appear simultaneously in the data. Thus, the large-scale data

sets clusters might possess overlapping attributes, a variable attribute support

per cluster and a high percentage of noisy attributes simultaneously.

A further 5 data sets are designed here to cover the shortcomings of incremental

data sets. These data sets (called Large-Scale data sets) range between 50 to 1000

dimensions, 1000 to 4000 data instances and with up to 10 clusters per data set (Table

5.2). Two data sets from the large-scale set (200D and 800D) have both low- (10D)

and high-dimensional (50D in the case of the former and 100D in the case of the latter

data set) clusters within the same data set. There is also one data set (800D) in which

clusters with a Gaussian data distribution and clusters with a uniform distribution

are included. It is also worth noting that different data distributions with different

parameterizations are used to generate the different clusters of a data set (in the case

of the 800D data set).

Attribute support for different clusters within a data set ranges between 10 and

100. In the case of the ‘1000D’ data set 90% of the attributes are irrelevant, leaving

only 10% of attributes actually relevant to the clustering task. Data sets are highly

unbalanced, meaning that data instances are not split equally between clusters. The

94

Table 5.2: A summary of the properties of the large-scale data sets.
Data Data Clus. D N k Irr. Irr. Min Max Min Max
Set Distr. Shape # # # Attr Attr Dim Dim Inst Inst

% # # % %

50D4C Gaus. Sph. 50 1289 4 10 20% 10 10 8% 43%

200D5C Uni. Rect. 200 2000 5 50 25% 10 50 10% 25%

500D4C Gaus. Ellip. 500 1286 4 100 20% 100 100 13% 32%

800D10C Mixed Mixed 800 3814 10 240 30% 10 100 4% 16%

100D10C Gaus. Sph. 1000 2729 10 900 90% 10 10 3% 20%

largest cluster of the ‘50D’ data set covers 43% of the data set while the smallest

cluster covers only 8% of the instances. Cluster attribute support is not balanced

either, meaning that different clusters in a data set have different attribute support

counts. Under the ‘800D’ data set the largest cluster support is 100 attributes while

the smallest cluster support is only 10 attributes. These data sets are available for

research purposes.3

The process used to create the large-scale data set with subspace clusters with an

axis-parallel structure assumes the following form. Figure 5.1 shows a sample data

set with 3 subspace clusters embedded in it. The cluster points in relevant subspaces

(or the values inside the coloured boxes) are sampled from different distributions with

generated randomly parameters. These distributions can be Gaussian (which forms

hyper-spherical subspace clusters), elongated Gaussian (producing hyper-ellipsoidal

subspace clusters) or uniform distribution within a specified range (making hyper-

rectangular subspace clusters). The values unrelated to subspace clusters – cluster

points in irrelevant attributes or white boxes labelled as Uniform Values – are sampled

from a uniform distribution within the minimum and maximum range of the data

set: [0,1] in this case. Data points with relevant attributes and those with irrelevant

attributes are within the same range [0,1] and therefore overlap non-trivially.

5.1.3 Data Standardization

Clustering algorithms generally assume some form of attribute standardization in

order to avoid introducing biases into the distance-based objectives. However, some

applications are also sensitive to the nature of the standardization process [9]. Here a

3http://web.cs.dal.ca/˜mheywood/Code/S-ESC/LargeDataSets.zip

96

each data instance has a ‘label,’ albeit one is not used for training. Following the

practice of Moise et al., let the labels partition the data into the input clusters or

ground truth (a.k.a. classes in a classification task). The clusters identified by the

algorithm denote the output clusters. For each output cluster i, the input cluster

ji with which it shares the largest number of data instances is identified. This will

enable the construction of a confusion matrix characterizing exactly how many of the

‘input’ clusters have been identified. Given that multiple runs will be necessary, a

way is needed for summarizing the content of the confusion matrix, preferably leading

to a simple visual interpretation of the results against which suitable statistical tests

can be applied. In this respect, an approach similar to Moise et al. will be used once

again. Specifically, the balanced F-measure metric will be assumed. The F-measure

combines precision and recall under a weighted harmonic mean; in this case an equal

weighting between precision and recall. Precision and recall measure the count of

correctly labelled data instances from the confusion matrix rows and columns. In the

case of a binary task:

Prec(i) =
TP

TP + FP
(5.1)

Rec(i) =
TP

TP + FN
(5.2)

where TP, FP and FN are respectively the true positives, false positives and false

negatives respectively.

Under a multi-class setting precision and recall are estimated for each column and

row and averaged, as, for example, in the case of precision: Prec = 1
C

∑
Prec(i).

The resulting definition for the balanced F-measure is:

F-measure =
2× Prec×Rec
Prec+Rec

(5.3)

The above formulation for balanced F-measure has one underlying assumption,

sometimes distinguished among the concept of micro and macro (balanced) F-measures.

A ‘macro’ F-measure rewards cluster purity alone. Thus, as long as an output cluster

is associated with data instances from the same input cluster, it will return a perfect

score. This does not preclude the ‘splitting’ of an input cluster between multiple out-

put clusters, as long as the output clusters do not mix data instances from multiple

97

input clusters. In effect one can have more output clusters than input clusters as long

as they are pure. Conversely, a ‘micro’ F-measure also requires the number of output

clusters to match the number of input clusters. The essential difference lies in how

the original confusion matrix is constructed.

Tables 5.3 and 5.4 illustrate the difference between micro versus macro F-measures

for a sample clustering solution. Table 5.3 shows the Micro Confusion Matrix of an

8-cluster solution (i.e. 8 output clusters) for a 5-class data (i.e. 5 input clusters).

Cluster A through Cluster H identify the 8 clusters found in the solution. The ‘C2C

Map’ column determines the class label in the majority of instances in each cluster and

maps each output cluster to an input cluster. For example, Cluster A has 1 instance

from Class 2, 400 instances from Class 4 and 1 instance from Class 5 ; therefore, it

is assigned the class label for the majority of its instances, i.e. Class 4.

Table 5.3: Micro Confusion Matrix

Confusion Class 1 Class 2 Class 3 Class 4 Class 5 C2C F
Matrix Map

Cluster A 0 1 0 400 1 4 0.9975

Cluster B 0 172 0 0 0 2 0.9247

Cluster C 0 0 273 0 0 3 0.9529

Cluster D 0 0 0 0 381 5 0.8649

Cluster E 600 0 1 0 0 1 0.9992

Cluster F 0 27 0 0 0 2 0.2379

Cluster G 0 0 26 0 0 3 0.1595

Cluster H 0 0 0 0 118 5 0.3819

F-measure 0.6898

Figure 5.2 is a circos plot4 [65] visualizing the mapping between output clusters

and input clusters. Starting from 12 o’clock and counter-clockwise to 6 o’clock all

5 classes (input clusters) are shown as 5 segments and labelled Class1 to Class5.

Similarly from 6 o’clock to 12 o’clock counter-clockwise all 8 output clusters are

shown as 8 segments and labelled ClusterA to ClusterH. Ribbons connecting each

pair of output clusters and input clusters define what percentage (inner ring values)

and what number (outer ring values) of instances from each input cluster is mapped

to an output cluster and vice versa. For example all 600 instances of Class1 are

4Circos is publicly available at: http://circos.ca/

98

mapped to ClusterE whereas Class2 is split mainly between ClusterB (172 out of

200, i.e. 86%) and ClusterF (27 out of 200, i.e. 13.5%). Also, there is one instance

from Class2 mapped to ClusterA which is shown as a very narrow ribbon between

Class2 and ClusterA.

Once all output clusters are mapped into their corresponding input cluster (class),

clusters with similar class labels (C2C Map) are merged and form ‘Macro Confusion

Matrix’ (shown in Table 5.4). The C2C Map column of Table 5.3 shows that there are

3 pairs of output clusters which share the same class label. ClusterB and ClusterF

share class label Class2, ClusterC and ClusterG share Class3 and ClusterD and

ClusterH share Class5. Note the changes of cluster names.

Table 5.4: Macro Confusion Matrix

Confusion Class 1 Class 2 Class 3 Class 4 Class 5 C2C F
Matrix Map

Cluster 1(A) 0 1 0 400 1 4 0.9975

Cluster 2(B,F) 0 199 0 0 0 2 0.9975

Cluster 3(C,G) 0 0 299 0 0 3 09983

Cluster 4(D,H) 0 0 0 0 499 5 0.9990

Cluster 5(E) 600 0 1 0 0 1 0.9992

F-measure 0.9983

Figure 5.3 shows the circos plot of the same sample clustering solution once the

output clusters sharing the same class instances are merged. The number of output

clusters has been reduced from 8 to 5 (and renamed from ClusterA−H to Cluster1−
5). Three smaller output clusters are now merged with larger output clusters and an

obvious mapping between input and output clusters is formed now. This is also

reflected in Table 5.4.

F-measures for all 8 micro clusters as well as all 5 macro cluster are shown in

Tables 5.3 and 5.4 respectively. The average micro F-measure – before merging – is

only 0.6898, whereas the average macro F-measure – after merging – is 0.9983, a much

higher value compared with the micro F-measure. This example shows that regardless

of the optimal number of clusters in a data set, as long as the output clusters are pure

the macro F-measure has a high (even close to unity) value. Conversely, the micro

F-measure is penalized by under- or over-estimating the number of optimal clusters.

99

Figure 5.2: A sample visualization of an 8-cluster S-ESC solution to a 5-class data
set ‘before’ merging output clusters.

100

Figure 5.3: A visualization of the same S-ESC solution ‘after’ merging output clusters.

101

The micro F-measures for S-ESC and its comparators across all experiments are

documented in this work.

Rather than misclassification (accuracy), which requires some form of ground

truth (e.g. in form of class labels), a clustering method can be evaluated through

visualization. This is particularly applicable to S-ESC because of the parsimonious

property of S-ESC. However since different clusters in S-ESC support different at-

tribute subsets, they need to be visualized in different subspaces and therefore clus-

ters are observed individually (unless two or more clusters share the same subspace).

Another method of evaluating a subspace clustering algorithm is to investigate the

attribute support of each cluster. Similar to visualization, this method is also a

subjective method and relies on domain expertise.

Simplicity. The second performance metric – we evaluate our solutions and

compare them against comparator methods – is simplicity. Simplicity of a solution is

determined by the total number of attributes indexed by it, counting attributes with

multiple occurrences only once. Obviously the fewer attributes utilized, the simpler

the solution is, where this is assumed to facilitate greater user understandability.

CPU time. CPU time reflects the computational cost in identifying solutions.

Such a metric is likely to be a function of the quality of an implementation. Bench-

marking will assume comparator algorithms taken from the WEKA open source li-

brary. As such the computational assessment reflects the quality of a widely available

‘toolbox’ of subspace clustering algorithms which are likely to be used in practice.

Basing computational overhead on the wall-clock time on a common computing plat-

form implies that both time and memory efficiency are being measured implicitly. In

each case, care is taken to ensure that only single runs are performed, thus there is

no inter process competition for cache resources.

5.2 Comparator Methods

To compare S-ESC against state-of-the-art algorithms using common benchmarking

conditions comparator algorithms are chosen from popular full-dimensional and sub-

space clustering algorithms. The EM algorithm is assumed as the representative of

the full-dimensional clustering algorithms [30, 77]. The properties which make it par-

ticularly appealing include the wide utility of the algorithm, its robustness and the

102

relatively low number of parameters – (e.g. a user need not define the number of

clusters required a priori. Moreover, as noted by the survey of Kriegel et al. [63], soft

projected clustering algorithms do not identify subspace clusters, thus any ‘subspace’

clustering algorithm taking the soft projected clustering approach is not returning

‘true’ subspace clusters. The EM algorithm is taken to represent the principle in-

stance of such soft projected clustering algorithms.

Moise et al. introduce STATPC [78] as the preferred subspace clustering method

following a comparison with a large number of other subspace clustering algorithms

[80]; whereas Muller et al. recommend MINECLUS [122, 123] and PROCLUS [1] as

the most consistent methods among subspace clustering algorithms [83]. Therefore,

the benchmarking study reported here compares S-ESC against all 4 methods on 59

data sets (54 data sets from the ‘incremental’ data set (Section 5.1.1) and the ad-

ditional 5 ‘large-scale’ data sets of Section 5.2) and evaluates them with respect to

cluster accuracy, solution simplicity and CPU time. Refer to Section 3 for a sum-

mary of the algorithmic properties of the three comparator algorithms – PROCLUS,

MINECLUS and STATPC.

5.3 Parameterization

5.3.1 S-ESC

The parameterization of S-ESC remains fixed and intact for all experiments on all

data sets. The host population size (Hsize) is set to 100. The symbiont population

is populated initially with the same number of symbionts as hosts; however, this

population is allowed to expand up to 5 times its initial size. RSS picks Psize points

randomly from data set at each generation. This is set to 100 for all data sets unless

the data set size is smaller than 100, in which case RSS is deactivated and all points

are considered for evaluating host individuals. Some experiments were conducted

using different values for the RSS point population size to understand the effect of

this parameter on S-ESC performance. The results are presented in Appendix A.

The minimum and maximum number of allowed attributes in a symbiont is set

to 2 and 20 respectively (minAttributes and maxAttributes) with the same values

defined for the minimum and maximum number of clusters in a host (minSymbionts

103

and maxSymbionts). Probabilities of atomic actions within single-level and multi-

level mutation operators start with 1.0, and decrease to 0.1, 0.01, ... for the second,

third, and further rounds of application (psd, psa and pss). The evolutionary loop is

repeated for 1000 generations (Gmax) at each run.

The same parameter setting is used to run S-ESC 50 times on each data set, using

different seed values for the stochastic initialization of host/symbiont populations and

RSS content. The knee individual on Pareto front represents the champion from each

run. The results are reported from 50 knee solutions, each chosen from a run. S-ESC

takes advantage of EM [30, 77] for 1-d density estimations (grid construction) where

this takes the form of the implementation from WEKA [115].

5.3.2 Comparator Algorithm Parameterization

In all cases, the WEKA-compatible OpenSubspace5 implementations for MINECLUS,

PROCLUS and STATPC as developed by Muller et al. will be assumed [83]. Develop-

ers of OpenSubspace claim that they used the original implementation of MINECLUS

provided by its authors and re-implemented PROCLUS and STATPC according to

the original papers.

The parameter settings established by the studies of Moise et al. [80, 78] will

be assumed throughout for the incremental data sets (Table 5.1). In the case of

MINECLUS and PROCLUS these settings appeared to be relatively robust, whereas

for STATPC parameter sweeps were necessary. The specific parameterization proce-

dure adopted is summarized below:

• MINECLUS. α = 0.1, β = 0.25 and ω = 0.3, whereas k was enumerated over

the range [2, 20] – the same range as specified for S-ESC. MINECLUS has

the property that although k clusters might be a priori specified, a clustering

solution need not use all k clusters. Hence, presenting results as quartiles will

give some insight as to how effective this property is in practice.

• PROCLUS. The true number of clusters and the average dimensionality of clus-

ters requires a priori specification, implying that PROCLUS is only capable of

answering a simpler question in comparison to the other algorithms included in

5http://dme.rwth-aachen.de/OpenSubspace/

104

the study. The algorithm is run 10 times with different seed numbers. Variance

in result distribution should be significantly lower than the other algorithms

since much more information is given a priori.

• STATPC. As recommended by the authors, the following parameterization was

used first: α0 = 10−10, αK = αH = 10−3 [78]. However, considerable sensitivity

was observed. Hence it was necessary to perform a sweep over all three parame-

ters and use the post-training performance metric (F-measure) to select the top

20 results out of the 216 parameter combinations tested.6 All STATPC distri-

butions make use of such a process, thus biasing results in favour of STATPC.

• EM. As implemented in WEKA, EM conducts cross validation thus resolving

the cluster count k automatically. Per data set tuning is still necessary for

target standard deviation and the iteration limit. Having established specific

values for these two parameters the EM algorithm is run with 10 different seed

numbers and the distribution of 10 results is presented.

In the case of the large-scale data sets (Table 5.2), parameter sweeps were uti-

lized for MINECLUS. Specifically, the α, β and ω parameters of MINECLUS were

determined first and then 19 runs were performed with k ∈ [2, 20] using the pre-

determined parameter setting. Therefore, results with unknown k is reported for the

case of MINECLUS. PROCLUS requires the correct number of clusters as well as their

average dimensionality to be declared a priori. In the case of STATPC the parameter

values producing the best solutions with respect to F-measure on the incremental

data sets were assumed. This was necessary as the larger data sets precluded the use

of parameter sweeps for computational reasons. Similarly, for EM the best parameter

setting from the incremental data sets was selected and EM is run 10 times with

different seed numbers.

6Six parameter values {10−15, 10−12, 10−9, 10−6, 10−3, 10−1} were considered for each of the three
STATPC parameters, or a total of 6× 6× 6 = 216 parameter settings. Only the top 20 results are
reported (according to F-measure).

105

5.4 Flat Evolutionary Subspace Clustering (F-ESC)

For the sake of completeness it is necessary to compare S-ESC against other evo-

lutionary computation-based subspace clustering algorithms, however none of the

comparator approaches utilized in this work uses evolutionary computation. More-

over, the code for the few evolutionary subspace clustering algorithms described in

Section 2 is not available publicly. Taking the basic ideas from the S-ESC algorithm,

a genetic algorithm was implemented to perform the subspace clustering task. The

proposed method is a simplified version of the S-ESC algorithm where the symbiotic

(dual-population) representation is replaced by a single ‘flat’ (single population) rep-

resentation of subspace clusters. In other words, each individual is responsible for

encoding all aspects of a clustering solution (including all cluster centroids within

the clustering solution) while assuming the same 1-d attribute-specific pre-processing

activity (Component 1 of the S-ESC framework, Section 4) and the evolutionary bi-

objective formulation of fitness (cf. MOCK [43]). Hereafter the resulting algorithm

will be referred to as ‘flat’ Evolutionary Subspace Clustering (F-ESC.)

The main difference between F-ESC and S-ESC is that F-ESC replaces the two-

level hierarchical representation with a single-level flat representation, thereby elimi-

nating the symbiotic relationship. Also, since the two-level representation is removed

the single-level mutation operator is no longer practical and is replaced by a crossover

operator performing essentially the same task. Apart from the symbiotic process be-

ing removed and the single level mutation operator being replaced with a crossover

operator, everything else is shared between the two variants of the ESC algorithm.

The other components of the algorithm (grid generation, multi-objective evolution-

ary optimization using compactness and connectivity objectives, atomic mutation

operators to remove and add attributes and modify the 1-d centroid of an attribute,

subsampling and knee detection) are all used in F-ESC as per S-ESC.

This section characterizes the main differences between the two variants of the

ESC: representation and the crossover operator. The results of applying F-ESC to

both of the synthetic data sets of Tables 5.1 and 5.2 are compared with those of

S-ESC in Section 6.

107

5.4.2 Crossover

The second main difference between S-ESC and F-ESC – due to the ‘flat’ representa-

tion – is the use of a crossover operator replacing the single-level mutation operator

utilized in S-ESC. The single-level mutation operator in S-ESC is responsible for re-

moving/adding/swapping symbionts from/to/between hosts. The crossover operator

in F-ESC performs the same modification between two flat individuals. The variation

operator is a 2-point crossover operator which swaps one or more cluster centroids

from parent a with one or more cluster centroids from parent b. This performs multiple

SLM atomic operations (removing a symbiont from a host and/or adding a symbiont

to a host) in one step. There is a repair mechanism to make sure the offspring meets

the cluster limit constraints. The parent selection process in F-ESC is a tournament

selection of size 4 with the dominant individual returned as a parent. The tiebreaker

in cases in which none of the individuals dominate the other one is simplicity, the

preference being given to the shorter individual. The tournament selection is applied

twice to select two parents for each crossover operator.

5.4.3 Similarities

The remaining components and sub-components of S-ESC are copied intact into F-

ESC. Grid generation is the pre-processing component with its output being the

genetic material used by the evolutionary process. F-ESC employs the same EMO

algorithm – NSGA-II – utilizing both compactness and connectivity objectives. The

selection operator is a tournament process among four individuals, hence, elitist.

The same atomic mutation operators are implemented to remove and add attributes

to a randomly-selected cluster centroid within an individual with a third mutation

operator modifying the 1-d centroid of a randomly-selected attribute.

To account for robustness against data set cardinality, the RSS subsampling pro-

cess is used in F-ESC. M points are selected randomly anew at each generation and

the individuals’ objectives are evaluated against this set instead of the whole data

set. This set (called the active set) is refreshed at the end of each generation. Once

the evolutionary process provided a pool of solutions the knee detection procedure

as suggested by [99] identifies the knee solution as the champion solution. All the

components and sub-components mentioned are detailed in Section 4.

Chapter 6

Results

The results are presented in separate subsections for the incremental and large-scale

data sets (as defined in Section 5). All results are in terms of the quartile statistic and

are significantly more robust to outliers than mean–variance based metrics. When

plots are employed the coloured bar represents the median and the error bars show

the first and third quartiles, or the 25 and 75 percentiles respectively. A missing

bar for any 〈algorithm, dataset〉 pair represents the inability of the algorithm to

produce results for the specified data set within a 24 hour time period, although some

algorithms are allowed 96 hours on large-scale data sets. S-ESC and the comparator

algorithms are compared against incremental and large-scale data sets in Sections 6.1

and 6.2 respectively. A comparison between the Symbiotic and Flat versions of ESC

is given in Section 6.3. The effects of introducing outliers to the modified incremental

benchmarks are investigated in Section 6.4, and the algorithm runtimes are reported

in Section 6.5.

6.1 Incremental Data Sets

Table 5.1 defines a total of 10 different categories of incremental benchmarks. The

y-axis in Figures 6.1 to 6.10 is the micro F-measure which ranges between 0 and

1 where larger values are preferred. The x-axis reflects the design variable (Table

5.1). For example, in the GE, GD, UE and UD data sets, the x-axis represents the

average dimensionality of clusters embedded within an experiment which is 2, 4, 6, 8,

10, 15 and 20 (7 data sets in each case). Statistical significance tests are performed

to support or reject the hypothesis that the S-ESC distribution is the same as each

of the candidate clustering algorithms. These tests and their results will be discussed

in Appendix B.

Cluster embedding/data distribution/average cluster dimensionality ex-

periments. The GE versus GD task pertains to a Gaussian process with an equal

108

109

Figure 6.1: Micro F-measure for the incremental GE experiment. Bar order: S-ESC,
MINECLUS, PROCLUS, STATPC, EM.

Figure 6.2: Micro F-measure for the incremental GD experiment. Bar order: S-ESC,
MINECLUS, PROCLUS, STATPC, EM.

110

Figure 6.3: Micro F-measure for the incremental UE experiment. Bar order: S-ESC,
MINECLUS, PROCLUS, STATPC, EM.

Figure 6.4: Micro F-measure for the incremental UD experiment. Bar order: S-ESC,
MINECLUS, PROCLUS, STATPC, EM.

111

versus differing attribute support per cluster. It is the same for the UE/UD pair, but

for clusters defined by a uniform probability distribution function. S-ESC and EM

tend to dominate other methods with respect to the F-measure for most data sets

(Figures 6.1 to 6.4). However, EM fails to return results when the average dimen-

sionality of the clusters is 2 in all experiments. MINECLUS had a distinct preference

for data with a uniform distribution (Figure 6.3 and 6.4). PROCLUS is the least

effective method throughout all data sets, although it is given more a-priori informa-

tion compared with other methods. As with MINECLUS, STATPC prefers clusters

described by a uniform distribution, particularly as the cluster dimensionality of the

embedded clusters increases.

Data set dimensionality (D) experiment. This experiment consists of 5 data

sets with 20, 35, 50, 75 and 100 attributes, respectively. They all embed 5 clusters

with 4 relevant attributes per cluster. Both S-ESC and STATPC provide the most

consistent results as seen in Figure 6.5. In contrast, EM starts as one of the top three

methods on the 20D data set, but the accuracy of EM drops as the dimensionality

increases, and it fails even to return results when the data set dimensionality reaches

100. This is to be expected given that EM is the only full-space clustering algorithm.

MINECLUS maintains a constant level of mediocre accuracy and does not improve

or diminish with increasing dimensionality. PROCLUS appears to perform best on

data set with fewest dimensionally, but even its best performance is not comparable

with the other methods.

Data set cardinality (N) experiment. This experiment evaluates the effect

of data set cardinality or instance count. There are 5 data sets with 80, 240, 400, 820

and 1650 instances, respectively. They all embed 5 clusters with 4 relevant attributes

per cluster and 50 attributes in total. Here EM provides the stronger performance

after failing initially on the smallest data set as seen in Figure 6.6 (note the missing

bar for the EM for data set with 80 instances). S-ESC and STATPC represent the

most consistent subspace clustering algorithms. However note the bias in favour of

STATPC as a result of the parameter sweep and keeping the top 10% results. As with

the previous experiments, MINECLUS and PROCLUS fail to produce quality results

compared with the other methods, although they both perform slightly better than

they did in the cluster embedding (GE, ..., UD) and dimensionality (D) experiments.

112

Figure 6.5: Micro F-measure for the incremental dimensionality (D) experiment. Bar
order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

Figure 6.6: Micro F-measure for the incremental cardinality (N) experiment. Bar
order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

113

Cluster count (k) experiment. In this experiments, the cluster count increases

from 2 in data set 1 to 5 in data set 4. There are 50 attributes in each data set but

only 4 of them are relevant attributes in each cluster. Therefore, as with the N

experiment, the majority of attributes are not relevant for the clustering task. S-

ESC, STATPC and EM perform equally well and there is no obvious winner among

these three (Figure 6.7). The S-ESC and STATPC results are dominated by EM

on the 2-cluster data set, whereas EM is dominated by the other two on the 4- and

5-cluster data sets. PROCLUS provides comparable results for the first two data

sets for the first time, but deteriorates as the number of clusters increases beyond 3,

an interesting result given that PROCLUS is given the correct cluster count a priori.

Contrary to PROCLUS, MINECLUS returns the poorest results for the first two data

sets, but improves as the cluster count increases.

Figure 6.7: Micro F-measure for the incremental cluster count (k) experiment. Bar
order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

114

Attribute spread (Extent) experiment. The next Moise experiment varies the

attribute spread of the relevant attributes. The spread of the uniform distribution

from which the relevant instances are drawn increases from 0.1 to 0.4 in 4 steps.

In other words as the distribution gets wider in each relevant attribute, the cluster

densities decrease, which makes identifying the clusters more difficult. All 4 data sets

in this experiment have 5 clusters with 4 relevant attributes each, and 30 irrelevant

attributes. As can be seen in Figure 6.8, all the methods deteriorate rapidly as

distributions on the relevant attributes get wider and more diverse, becoming more

difficult to distinguish from the noise associated with the non-relevant attributes.

However, STATPC degrades more gracefully, albeit the with F-measure used to select

the appropriate STATPC parameterizations. EM fails to return results for the last

data set where the relevant attributes spread upto 0.4 out of the possible [0,1] range.

Figure 6.8: Micro F-measure for the incremental attribute spread (Extent) experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

115

Attribute overlap (Overlap) experiment. Varying the overlap between the

relevant attributes of the different clusters has a strong effect on all of the methods.

Each data set in this experiment has 2 clusters with the first 4 attributes being relevant

to both clusters, leaving a total of 46 attributes irrelevant. The overlap between the

attributes from the different clusters increases from 0 to 0.3 in 4 steps. As shown in

Figure 6.9, EM performs more consistently in all but the last data set in which it

returns no results, indicating a possible need for re-parameterization. However, EM

algorithm will naturally not be able to select the correct attribute space. PROCLUS

appears to be the strongest of the subspace methods in this experiment, but it drops

drastically to the poorest method on the last experiment. S-ESC appears to be

the most consistent subspace method and also provides the best results for the last

experiment where the relevant attributes of different clusters overlap by 30%.

Figure 6.9: Micro F-measure for the incremental attribute overlap (Overlap) experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

116

Instances per cluster (ClusterSize) experiment. The final experiment eval-

uates the effect of varying the number of data instances per cluster within a data

set. The 4 data sets in this experiment all have 5 clusters using 4 (different) relevant

attributes each, and 30 irrelevant attributes. The average instance per cluster (cluster

size) is 30, 40, 50 and 55 respectively. EM fails to provide results for the smallest

data set, while S-ESC and STATPC dominate all other methods in all but the largest

data set. The variance is very minimal between the last two data sets: S-ESC and

STATPC produce almost identical results for the two data sets, but surprisingly, EM,

which is dominated by S-ESC and STATPC on third data set, dominates the other

two methods on the last data set (Figure 6.10). PROCLUS returns the poorest re-

sults, as expected, with MINECLUS improving accuracy with increasing cluster size,

but not able to reach the S-ESC and STATPC level.

Figure 6.10: Micro F-measure for the incremental cluster size (ClusterSize) experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

117

The above summary evaluates the outcome of the Moise experiments in terms of

accuracy alone, the motivation being that the purity of the clusters (as determined by

the F-measure) represents the primary objective. However, as a secondary objective it

is assumed that the resulting clusters should be simple as well. That is to say, solutions

should employ the fewest attributes possible to perform the clustering task without

compromising cluster purity. Therefore, the second performance measure is the total

number of (unique) attributes indexed by a solution and should be minimized. In

other words, each attribute is counted only once for a clustering solution regardless

of how many cluster centroids in which it appears. Figures 6.11 to 6.17 show the

average attribute count per solution for S-ESC and its comparators on 7 experiment

data sets of Table 5.1. For sake of brevity, we report only results under incremental

benchmark with significant trends.

Starting with the specific case of the cluster embedding experiment (Figures

6.11 to 6.14) S-ESC falls behind all subspace methods on the smallest number of at-

tributes per cluster. However, once the average cluster dimensionality grows beyond

2, S-ESC appears to be among the two most simple solutions. MINECLUS seems

to compete with S-ESC on Gaussian-distributed data sets (GE and GD), however,

it starts to index a larger percentage of attributes once the average cluster dimen-

sionality grows beyond 10. In the uniformly-distributed data sets (UE and UD) the

situation is even more critical for MINECLUS since it indexes almost all the attributes

for the data sets with an average cluster dimensionality greater than 10. PROCLUS

shows the poorest performance with respect to solution simplicity compared with all

the other methods on almost all the data sets in this experiment. STATPC does not

have a consistent trend, but it always ends up among the top two methods (along

with S-ESC) on the data sets with the highest average cluster dimensionality. EM

is only plotted as the baseline here to show the maximum number of attributes per

data set since it will always include all attributes.

In the data set dimensionality (D) experiments all subspace clustering methods

perform equally well and index between 13 and 20 (unique) attributes per data set

(Figure 6.15). Almost the same trend holds true for the data set cardinality (N)

and cluster count variation (k) experiments, Figures 6.16 and 6.17 respectively.

MINECLUS and S-ESC utilize the least number of attributes consistently.

118

Figure 6.11: Attribute count per solution for the incremental GE experiment. Bar
order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

Figure 6.12: Attribute count per solution for the incremental GD experiment. Bar
order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

119

Figure 6.13: Attribute count per solution for the incremental UE experiment. Bar
order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

Figure 6.14: Attribute count per solution for the incremental UD experiment. Bar
order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

120

Figure 6.15: Attribute count per solution for the incremental dimensionality (D)
experiment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

Figure 6.16: Attribute count per solution for the incremental cardinality (N) experi-
ment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC and EM.

121

Figure 6.17: Attribute count per solution for the incremental cluster count (k) exper-
iment. Bar order: S-ESC, MINECLUS, PROCLUS, STATPC and EM

6.2 Large-scale Data Sets

The Moise et al. benchmarking data sets of Table 5.1 explained in the previous section

cover a wide range of properties (the distribution relevant instances are drawn from,

the average cluster dimensionality, the overlap between relevant attributes of different

clusters within a data set, etc). However, as noted in Section 5, there are three basic

shortcomings: 1. the dimensionality and cardinality remains low; 2. all clusters

within a single data set use the same distribution; and 3. the cluster embedding

assumes aspect ratios which are not particularly diverse.

The last point emphasizes ‘compactness’ style objectives. In particular, the 800D

data set (Table 5.2) has both low-dimensional (10D) and high-dimensional (100D)

clusters within the same data set. Moreover, the implanted clusters use different

distributions (both Gaussian and uniform) at different aspect ratios. This makes the

800D data set very challenging. The 1000D data set also embeds ten 10D clusters,

thus only 10% of the attributes are relevant and the rest are irrelevant. Benchmark

results are presented for the 5 additional ‘large-scale’ data sets of Table 5.2. Given

the larger size of these data sets it was necessary to enforce a computational limit

122

of 24 or 96 hours per run for MINECLUS and STATPC respectively. If results

were not returned within this time then the implementation/algorithm was deemed

inappropriate for the task dimension/cardinality.

Figure 6.18 summarizes how the F-measure varies as a function of each data set

(identified in terms of data dimensionality). S-ESC betters all other methods on the

first three data sets, and is the runner up method for the 800D and 1000D data sets

(with regards to full-space EM clustering), thus bettering all other subspace methods

consistently.

MINECLUS fails for data sets with 500 dimensions or more after 24 hours. It is the

second best subspace method (after S-ESC) with respect to the accuracy of solutions

for the 200D data set. PROCLUS matches S-ESC in the specific case of the 500D data

Figure 6.18: Micro F-measure for the large-scale data sets. Bar order: ESC,
MINECLUS, PROCLUS, STATPC and EM.

123

set. It is also the only implementation of a subspace clustering algorithm, besides

S-ESC, which returns solutions for the 800D and 1000D data sets. The STATPC

implementation produces the least accurate results for the first three data sets, and

fails altogether for data sets beyond 500 dimensions, i.e. results are not produced

within 96 hours. Part of this might be due to the sensitivity of parameterization.

However, as the scale of a task increases, the cost of the parameter sweeps increases

significantly.

Bar plots for the number of unique attributes included (solution complexity mea-

sure) illustrates clearly the efficiency of S-ESC with respect to parsimony (Figure

6.19). S-ESC uses fewer than 50 attributes for all data sets. Medians are 12, 16, 13,

37 and 28 for the five data sets respectively, using the most attributes for the 800D

Figure 6.19: Attribute count per solution for the large-scale data sets. For visualiza-
tion EM attribute count under 800 and 1000 dimensional data sets is cropped at 550.
Bar order: ESC, MINECLUS, PROCLUS, STATPC and EM.

124

and 1000D data sets. MINECLUS indexes all 50 attributes for the 50D data set and

158 for the 200D data set and fails on the larger data sets. PROCLUS indexes 36

and 112 for the first two data sets, and then jumps to use almost 400 attributes for

the 500D and 800D data sets, but manages to index only over 60 attributes for the

1000D data set. STATPC employs 24, 19 and 300 attributes for the first three data

sets and stops for the data sets with higher dimensionality.

6.3 Symbiotic vs. Flat ESC

What follows is a comparison of the results of performing the search for subspace

clusters using a ‘flat’ version of ESC (a.k.a. F-ESC). F-ESC is compared with S-

ESC with respect to the large-scale data sets from Table 5.2 as well as selected

incremental data sets of Table 5.1. Rather than just assuming S-ESC parameter

values, preliminary experiments are performed to optimize the evolutionary parameter

setting for F-ESC. These parameters include crossover and mutation probabilities and

the population size. S-ESC does not use the crossover operator and relies only on

mutation operators. The probability of mutation is 100% in S-ESC meaning that all

individuals go through the mutation process with an annealing schedule decreasing

the rate of mutation (Section 4.4). For F-ESC, on the other hand, four experiments

are run to identify the best probabilities for crossover and mutation rates. The best

results are achieved when both crossover and mutation probabilities are set to 100%,

but note that this is discounted by the annealing schedule of Section 4.4. For the

sake of brevity no plots for this experiment will be presented.

The situation is somewhat different with regards to population size. S-ESC uses

two distinct populations in which the host population is of a fixed size (100), and the

symbiont population size varies as a natural effect of group selection (Section 1.4.3)

and the variation operators (Section 4.4). However, F-ESC assumes a single fixed

size population.

In order to characterize an appropriate F-ESC population size, S-ESC is applied

to a sample of the benchmarking tasks and the variation in symbiont population size

is recorded. Figure 6.20 shows the population profile for two data sets from the large-

scale data sets of Table 5.2. Symbiont population size in the case of the 200D data

set (top profile) fluctuates between 284 and 392 individuals, while the more complex

125

Figure 6.20: The S-ESC symbiont population size profile for the 200D and 800D data
sets from Table 5.2 over 1000 generations.

800D data set (bottom profile) utilized between 297 and 436. Further experiments

show that there is some variation between the profiles of the different data sets of

Table 5.2; however, the minimum and maximum bounds are very close. Similar trends

with minor changes can be observed for the other three data sets (50D, 500D and

1000D). In general the dynamic symbiont population size never exceeded 4.5 times

the host population size (100).

With this in mind, F-ESC benchmarking will assume three different values for

population size: 100, 200 and 500. Figure 6.21 illustrates the F-measures of F-ESC

with different population sizes with regards to the large-scale data sets (Table 5.2).

For comparison purposes the earlier S-ESC results are included as well. In all cases

50 runs are performed on each data set and one knee solution is selected as the

champion solution for each run. As with results from previous sections, the top of

each bar defines the median of a distribution with first and third quartiles shown in

126

Figure 6.21: Micro F-measure comparison between S-ESC and F-ESC with different
population sizes for the large-scale data sets. Bar order: S-ESC, F-ESC (100), F-ESC
(200) and F-ESC (500).

the form of error bars.

It appears that the overall performance of F-ESC improves as the population

size increases, but this comes with the price of an increased computational overhead.

Moreover, there does not appear to be any statistical significance to the variation

in population size for F-ESC. Therefore, for the incremental data sets of Table 5.1,

F-ESC will assume a fixed population size of 100. Figures 6.22 and 6.23 compare

S-ESC and F-ESC in terms of F-measures for the GD and UD experiments with 7

data sets each.

It is apparent that there is only one data set on which F-ESC outperforms S-ESC:

a 5-class, 50-dimensional data set with Uniform distribution in which the average

127

Figure 6.22: Micro F-measure comparison between S-ESC and F-ESC for the incre-
mental GD experiment. Bar order: S-ESC and F-ESC.

dimensionality of clusters is 20 (last column of Figure 6.23). In all other cases S-ESC

outperforms F-ESC. In most cases S-ESC dominates F-ESC by a significant margin;

moreover, these correspond to the more difficult scenarios in which the number of

supporting attributes per cluster subspace is very low. Results produced by the other

38 cases of the incremental data sets (not shown for the sake of brevity) support this

general trend as well.

6.4 Outlier Effects

S-ESC has no integrated outlier detection process, where outliers represent data in-

stances for which all attributes represent noise. As noted in Section 3.3, only STATPC

explicitly includes an outlier detection capability. In the following the incremental

128

Figure 6.23: Micro F-measure comparison between S-ESC and F-ESC for the incre-
mental UD experiment. Bar order: S-ESC and F-ESC.

data sets of Table 5.1 are used in their original form with the outliers included. From

the S-ESC perspective this can be used as an opportunity to assess the impact of out-

liers on different components of the S-ESC framework. This prompts the following

questions: 1. What impact do outliers have on the initial grid construction alone?

2. What impact do outliers have on the identification of the S-ESC subspace clusters

alone? and 3. What is the combined impact of the outliers on the entire S-ESC?

Two data sets with different data distributions [Gaussian (GD) vs. Uniform (UD)]

with 5 embedded clusters and 8 attributes per cluster will be utilized for the outlier

experiments. Figure 6.24 summarizes the performance using a combined violin–box

plot quantifying the distribution of the F-measure across 50 runs per experiment.

A violin plot establishes the nature of the distribution – to what extent a bimodal

129

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GD−NN

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GD−NY

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GD−YN

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GD−YY

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UD−NN

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UD−NY

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UD−YN

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

UD−YY
GDP & UDP Set4 − Outlier effect

Figure 6.24: The effect of introducing outliers to data sets before and after the grid
generation process. GD–XX denote the experiments on the Gaussian data set and
UD–XX the Uniform data set; XX–NN are the base case with no outliers; XX–NY
imply no outliers during the pre-processing step of grid generation, but are included
during the S-ESC evolutionary identification of subspaces; XX–YN imply that outliers
are present only during grid generation; and XX–YY imply the outliers are present
throughout.

distribution is present – while the box plot defines the quartile statistics (1st, 3rd

quartile and median). For reference purposes results with no outliers are included

(labelled GD–NN and UD–NN).

It is apparent that the pre-processing step of grid generation affected the least by

the introduction of outliers (compare GD–NN with GD–YN and UD–NN with UD–

YN), whereas a 20% reduction in the F-measure appears under the Gaussian distri-

bution once outliers appear in the process of subspace cluster identification (compare

GD–NN with GD–NY and GD–YY). However, under a uniform distribution a bi-

modal distribution results in half of the solutions returned with an F-measure of

80% or higher when noise is introduced to the S-ESC cluster identification process

130

Figure 6.25: Micro F-measure comparison between S-ESC and comparator meth-
ods for the incremental GD experiment including outliers. Bar order: S-ESC,
MINECLUS, PROCLUS, STATPC and EM.

(UD–NY and UD–YY).

Figures 6.25 and 6.26 show the effect of introducing outliers into the S-ESC and

comparator methods on 14 data sets from the GD and UD experiments of the incre-

mental data sets (first two rows of Table 5.1). As these figures illustrate (compared

with the results from the same methods on the data sets without outliers, Figures 6.2

and 6.4) the accuracy of all methods drops. Results from the EM algorithm remain

strong as long as there is a sufficient number of attributes per cluster. However,

once cluster attribute support drops below eight then the performance of one or more

subspace algorithms is significantly better. Under the Gaussian distribution (Figure

6.25), S-ESC remains the stronger algorithm for data sets with 6 or more attributes

per cluster. At lower dimensions STATPC is preferred, but must undergo extensive

131

Figure 6.26: Micro F-measure comparison between S-ESC and comparator meth-
ods for the incremental UD experiment including outliers. Bar order: S-ESC,
MINECLUS, PROCLUS, STATPC and EM.

parameter sweeps to do so. In the case of experiments with regards to the Uniform

distribution (Figure 6.26) MINECLUS was the most consistent subspace algorithm,

bettering S-ESC in 4 out of 7 data sets. Despite having an integrated outlier detector,

STATPC appeared to be still sensitive to parameterization, with the lowest ranked

performance in 4 of the 7 experiments. The fact that all clustering methods found

the outlier task more difficult under the Uniform distribution is understandable given

that both the subspace clusters and the outliers are from a Uniform distribution.

132

50D 200D 500D 800D 1000D
100

101

102

103

104

105

Runtime of S ESC and its competitors on Large data sets in seconds

S ESC
MINECLUS
PROCLUS
STATPC
EM

Figure 6.27: CPU runtime in seconds on Large-scale data sets. Lines between data
points are for illustrative purposes alone.

6.5 Algorithm Runtime

Runtime is assessed by running each algorithm on a common computing platform.1

Given that we are interested only in the execution time to complete tasks of increasing

size, a single run is performed on each algorithm using each of the large-scale data

sets (Table 5.2). Naturally, some variation can occur between different runs, but

even in the case of S-ESC the principal algorithmic factors are constant across all

runs, i.e. host population size (100), RSS sample size (100) and generation count

(1,000). The major sources of variation come from the cardinality and dimensionality

of the benchmarks. Figure 6.27 summarizes the respective runtimes for each of the

clustering algorithms.

The profiles for MINECLUS and STATPC are not complete in the sense that

neither algorithm returns results after 24 and 96 hours of CPU time, respectively, for

116 core Intel Xeon 2.67Ghz server, 48GB RAM, Linux CentOS 5.5.

133

the larger data sets. Taken at face value PROCLUS is always the fastest algorithm by

one or two orders of magnitude. However, PROCLUS does require that the correct

number of clusters and the average attribute support be given by the user a priori.

Hence, the other algorithms are answering a more difficult question from the outset,

i.e. the prior information provided to PROCLUS reduces the impact of the curse of

dimensionality. Both of the explicitly stochastic algorithms – EM and S-ESC – scale to

all the tasks and follow a similar profile, albeit with EM beginning at approximately

an order of magnitude shorter runtime. As the data sets increase, however, this

advantage is lost, with EM taking longer on the larger data sets. This is an artifact

of the RSS component of S-ESC effectively decoupling the effect of cardinality, i.e.

fitness is only evaluated with respect to the content of the RSS sample rather than

the whole data set. Thus, between the smallest and largest tasks, S-ESC undergoes

the least increase in runtime by less than an order of magnitude, whereas all the other

algorithms experience more than an order of magnitude increase.

S-ESC computational cost can also be expressed algorithmically. In this case we

note that there are two factors that contribute to the cost of subspace clustering un-

der S-ESC: NSGA-II and distance estimation. As noted earlier, we assume the code

distribution of Jensen for NSGA-II [51], thus for the case of a bi-objective EMO the

cost is O(GH logH); where G is the number of generations and H is the host popula-

tion size. In the case of the distance estimation, the cost of compactness objective is

linear, whereas the cost of the connectivity objective is O(N2) without subsampling

and O(P ×N) with subsampling, where N is the total number of exemplars and P is

the size of the RSS point population [43]. Further simplifications have been proposed,

but these are again implementation specific2.

6.6 Discussion

Each clustering method requires some form of prior information: MINECLUS requires

knowledge of the relevant number of clusters; PROCLUS requires both the relevant

cluster count and the (average) cluster dimensionality; EM and STATPC benefit

from parameter tuning, STATPC in particular. By contrast, S-ESC was used with

2For example time complexity of connectivity (without subsampling) can be alleviated to
O(MN logN) based on [113], where M is the number nearest neighbours needed for each instance.

134

a common parameterization throughout all of the experiments, and prior knowledge

was limited to assuming that the cluster count and attribute support per cluster lay

somewhere between 2 and 20. Various previous benchmarking studies have introduced

specific data sets for evaluating subspace clustering algorithms, e.g. [88, 80, 83]. A

start was made here by taking the data sets from one of the more extensive previous

studies and concentrated on comparing performance relative to cluster purity (as

measured through micro F-measure) and a secondary cluster metric of simplicity.

As per any empirical evaluation, several pragmatic benchmarking decisions need

to be taken, specifically with respect to parameterization. This was particularly

problematic in the case of STATPC since, although parameter sweeps could be made,

it was then necessary to choose some representative subset of solutions. To this end

the purity metric was used to identify the top 10% solutions, thus creating a bias

in favour of STATPC. PROCLUS has a stochastic component and hence could be

reinitialized, given the correct prior information. MINECLUS was used with multiple

values for k (cluster count), mimicking the range of values over which S-ESC evolves.

Overall, both S-ESC and EM performed the most consistently, albeit with EM

unable to provide any information regarding cluster attribute support. Moreover, it

was necessary to sweep EM parameters to achieve this. STATPC, when provided with

the necessary information regarding cluster purity, was effective on the incremental

benchmarks, but was not effective with the ‘large-scale’ data sets. Indeed, neither

STATPC nor MINECLUS scaled to all of the larger data sets. Part of this might be

attributed to the specifics of an implementation. However, the second factor present

in the large-scale experiment was the use of more variation in the cluster properties,

particularly with respect to the use of non-spherical distributions. MINECLUS was

very consistent in the results, there being no variation in the median, 25th or 75th

percentile throughout the experiments. Thus, for MINECLUS, the results are either

weak and sit below the 1st quartile due to improper choices for k or are all equally

good and sit between the 1st and 3rd quartiles3 . PROCLUS benefitted from the most

prior information, but the only real benefit this appears to have had was in terms

of not failing to return results in the large-scale experiments. What was certainly

surprising was how well the EM algorithm performed. Part of this was made possible

3Recall that when k exceeds the actual number of clusters, MINECLUS need not use all the k
clusters specified a priori.

135

by conducting parameter sweeps to optimize the algorithm on the incremental data

sets. However, the size of the large-scale data sets precluded a similar treatment.

Thus, the EM algorithm failed to return results most frequently in the cases of clusters

(data sets) with small support (dimension), e.g. Figures 6.1 to 6.4, 6.6 and 6.10.

Chapter 7

Conclusion

A bi-objective evolutionary subspace clustering algorithm has been introduced in

which symbiosis provides the metaphor for the coevolution of both cluster centroids

and clustering solutions. In a symbiotic relationship these entities are called sym-

bionts and hosts respectively. Assuming such a symbiotic relationship appears to

provide a more effective model for the sharing of promising centroids among multiple

clustering solutions while promoting specialization. Moreover, variation operators can

be designed such that they focus on distinct aspects of the combinatorial search in

each population. Adopting a bi-objective approach enables the S-ESC algorithm to

model clusters with a wide range of distributions – a property which the comparator

algorithms were not able to achieve. Moreover, the attribute support for the resulting

solutions was generally very low. Subsampling was employed to decouple the cost of

fitness evaluation.

An extensive benchmarking study built on the approach established in previous

research – in particular the study of Moise et al. was pursued (54 data sets in 10 dif-

ferent experiments evaluating the effect of 9 different parameters in designing a data

set). Additional experiments were designed to assess the impact of higher dimen-

sions/cardinality and clusters introduced to include multiple factors simultaneously

into the subspace clustering task. Relative to the set of comparator algorithms (EM,

MINECLUS, PROCLUS, STATPC) and the goals established in the Introduction

for a subspace clustering algorithm (Section 1.1) the following general trends were

demonstrated:

1. Scalability. Individual representation and subsampling were effective at in-

creasing the scalability to higher dimensionality and larger cardinality data sets

respectively. This is increasingly important when the dimensionality of the data

set or the vector length of training instances increases;

2. Simplify results. It is clear that S-ESC retains the ability to locate accurate

136

137

clusters of low dimensionality under multiple variations of the subspace cluster-

ing task;

3. Self determination of cluster counts: This is a key property of the S-ESC algo-

rithm and was explicitly quantified by the use of the micro F-measure as the

post training performance objective. Conversely, MINECLUS and PROCLUS

require appropriate prior information and EM uses k-fold cross validation to

answer this question;

4. Minimal prior knowledge. S-ESC can be deployed without a lot of prior trials

to optimize parameters. In this respect S-ESC was unique;

5. Detect arbitrary cluster shapes. This is facilitated through the use of a bi-

objective Pareto formulation for fitness. Conversely, other subspace clustering

algorithms tended to have a preference towards the detection of Gaussian style

clusters;

6. Detection of noise attributes and outliers. In this respect STATPC performed

better, albeit but only through reference to label information to select the rel-

evant parameterization;

7. Insensitivity to instance order. This was satisfied through adopting the stochas-

tic sampling procedure. However, no specific tests were performed to determine

the sensitivity of the other algorithms;

Aside from applying the algorithm to other sources of data, future work might

consider the following:

1. Streaming capabilities are becoming increasingly important. Although stochas-

tic subsampling was effective at decoupling the cost of fitness evaluation from

the ultimate cardinality of the data, issues regarding cluster drift/tracking are

not currently addressed by S-ESC.

2. The initial grid is based on the ‘axis-parallel’ constraint whereas other projec-

tions might be investigated for the purpose of relaxing this constraint.

138

3. Tools for visualizing the resulting subspace clusters would aid in the inter-

pretation of the resulting clusters. However, this is not as straightforward as

full-space clustering as clusters do not share a common plane of reference cf.,

attribute space.

Appendices

139

Appendix A

RSS Parameterization

To understand the effect of RSS point population size (a.k.a. active set size) an

experiment was conducted using two of the Moise sets as well as the large-scale data

sets. Figures A.1 and A.2 show the micro F-measure for 7 data sets from GD and

UD experiments respectively (Table 5.1). Each data set is evaluated by the S-ESC

algorithm using 3 different settings, hence there are three bar for each data set. The

left-most bar gives the performance distribution for knee solutions when 50 data

points are used as the active set for evaluating each solution. These data points are

refreshed anew at the beginning of each generation. The middle bar in each batch of

bars gives the performance distribution when the RSS point population size is set to

100 points and the right-most bar is the results when RSS is deactivated and therefore

all the data set points (less than 300 instances) are used to evaluate each solution’s

fitness values.

As can be seen in Figure A.1 the micro F-measure in the three experiments (using

50, 100 and all instances) is not always consistent. For the first data set with 2

relevant attributes per cluster (the first batch of bars) the best results are obtained

when the RSS size is the smallest (50) whereas the second data set with 4 relevant

attributes per cluster gives the best results when RSS is deactivated (i.e. when the

RSS size is equal to the data set size). Also, there is a case in which 100 is the

preferred size of the RSS point population size (i.e. the fifth data set with 10 relevant

attributes per cluster).

Figure A.2 is similar to the previous figure in that there does not seem to be a

consistent increasing or decreasing trend and one cannot make a clear and obvious

decision about the RSS population size. However there does not seem to be a big

difference between the different choices of RSS population size and the performance

is affected minimally by the RSS sample size.

One reason why increasing the RSS sample size does not result in an expected

140

141

Figure A.1: Micro F-measure of S-ESC with different RSS sample sizes for the incre-
mental GD experiment. Bar order: RSS = 50, RSS = 100 and No RSS.

increase of performance might be the fact that Moise the data sets are very small in

size (up to 300 instances per data set). Consequently, the experiment is continued

with the large-scale data sets. However, for the third part of the experiment, instead

of running the algorithm with RSS deactivated, the S-ESC algorithm is run with a

RSS sample size of 500. The size of the large-scale data sets makes S-ESC prohibitive

to be run with RSS deactivated.

Figure A.3 is more consistent with the anticipated increase in performance mea-

sures as an effect of increasing the RSS sample size due to a better representation

of the data sets for each individual evaluation. Although the F-measure distribution

for the first three data sets (50D, 200D and 500D) does not change by much (very

close to unity for all three different sample sizes) the performance improvement is

more prominent for the last two data sets (800D and 1000D). Note that the 800D

142

Figure A.2: Micro F-measure of S-ESC with different RSS sample sizes for the incre-
mental UD experiment. Bar order: RSS = 50, RSS = 100 and No RSS.

and 1000D data sets are the most difficult data sets to cluster with respect to mul-

tiple features including: the largest data set size (800D), different attribute support

counts for different clusters (800D), multiple data distributions within the same data

set (800D), low attribute support relative to data set dimensionality (1000D) and a

high noise to relevant attribute ratio (1000D).

143

Figure A.3: Micro F-measure of S-ESC with different RSS sample sizes for the large-
scale data sets. Bar order: RSS = 50, RSS = 100 and RSS = 500.

Appendix B

Hypothesis Tests

Tests were performed to support or reject the hypothesis that the performance of

the S-ESC solutions are drawn from the same distribution as that of the comparator

methods. The following tables return the p value with a confidence level of 99%.

Hence values smaller than 0.01 imply that the distributions are independent with a

confidence of 99%. It does not say wether S-ESC is outperforming the comparator

method or vice versa, only the fact whether they are statistically different or not, with

a confidence level of 99%. Results in bold indicate that it is not possible to reject the

hypothesis (i.e. neither S-ESC nor the comparator in the test is being outperformed

by the other method), whereas in most cases the hypothesis is rejected (i.e. one of

the methods in the test is being outperformed by the other method).

Some care is necessary in the case of distributions about the extreme values. Thus,

the * symbol is used to denote the use of a single tailed test rather than a double-

tailed test. Similarly in the case of the outlier data sets a Normal distribution could

not be assumed, thus the Krushal-Wallis non-parametric hypothesis test was used in

place of the student t-test. The ‘NaN’ values imply that the comparator algorithm

failed to provide any results for the task within the given time.

Out of 54 × 4 = 216 tests between S-ESC and comparator methods on the in-

cremental methods of Moise et al., there were 9 cases (approximately 4%) in which

the comparator algorithms (MINECLUS, STATPC and EM) do not return results

(NaN’s in Tables B.1 to B.2) and 32 cases (approximately 15%) in which there is

no statistically significant difference between S-ESC and the comparator results (the

bold cases in Tables B.1 to B.2). There are 134 cases (approximately 62%) in which

S-ESC outperforms the comparator method in a statistically significant way, and

only 41 cases (approximately 19%) in which S-ESC is outperformed by a comparator

algorithm.

Out of the 5 × 4 = 20 tests on the large-scale data sets of Table 5.2 there are

144

145

5 cases in which comparator methods (MINECLUS and STATPC) fail to produce

a result (NaN’s in Table B.3) and 5 cases in which the results are not significantly

different (the bold cases in Table B.3). In 8 cases S-ESC outperforms the comparator

methods and only in 2 cases is S-ESC outperformed by comparators methods. The

* symbol is used to denote the use of a single tailed test rather than a double-tailed

test.

Hypothesis tests for comparing F-ESC (with a different population sizes) and S-

ESC (with population size equal to 100) are presented in Table B.4. Only in 3 cases

(shown in bold) are the results not significantly different. S-ESC outperforms F-ESC

in the other 12 cases.

Table B.5 shows the t-test p values for comparison between S-ESC and F-ESC on

the GD and UD experiments by Moise et al. The distribution of the results in all 14

cases is significantly different between S-ESC and F-ESC and in only 1 case is S-ESC

outperformed by F-ESC.

The last table (Table B.6) shows the hypothesis test p values for comparing S-

ESC against competitors in the GD and UD incremental experiments with outliers

included. This hypothesis test is however a Kruskal-Wallis non-parametric test in-

stead of a student t-test because the distributions are not necessarily Normal. In 16

out of 56 (14× 4) cases the results are not significantly different and in 1 case EM is

not able to return results.

146

Table B.1: The t-test p values for F-measure significance of the incremental bench-
mark data sets (Section 6.1, Table 5.1). The numbers in parentheses define the specific
data set to be tested. For the case of the GE, GD, UE and UD experiments, it is
the average dimensionality of the data set. For the D, N and k experiments, it is
the dimensionality, cardinality and cluster count of the data set, respectively. For the
Extent experiment, it is the spread of values for relevant attributes. For the Overlap
experiment, it is the overlap between the relevant attributes of the different clusters,
and for the ClusterSize experiment, it is the average instance count of the clusters.

Data set MINECLUS PROCLUS STATPC EM
vs. S-ESC vs. S-ESC vs. S-ESC vs. S-ESC

GE (2) 2.42E-27 0.009 6.00E-27 NaN
GE (4) 2.02E-24 4.70E-06 6.45E-42 7.66E-34
GE (6) 1.74E-83 0 9.48E-20 0.06
GE (8) 2.03E-09 0 4.39E-19 0.64
GE (10) 2.68E-22 2.95E-05 2.89E-26 0.56
GE (15) 1.83E-23 0.02 1.05E-23 2.48E-30
GE (20) 1.65E-12 7.71E-05 7.18E-58 8.68E-66

GD (2) 3.75E-16 0.006 8.53E-36 NaN
GD (4) 2.04E-15 0 1.17E-35 2.98E-23
GD (6) 0 3.57E-06 3.59E-29 3.31E-16
GD (8) 1.99E-24 0 7.37E-14 5.70E-13
GD (10) 1.06E-15 0 1.31E-16 0.37
GD (15) 1.02E-32 1.31E-06 6.18E-33 1.90E-69
GD (20) 1.27E-09 7.59E-05 1.09E-19 5.04E-49

UE (2) 5.08E-15 0.86 1.41E-44 NaN
UE (4) 5.60E-07 0 9.80E-25 3.14E-10
UE (6) 1.91E-06 0 4.60E-05 1.51E-20
UE (8) 1.95E-06 0 1.32E-23 3.57E-10
UE (10) 0 0.12 1.10E-10 1.07E-22
UE (15) 0.35 0 1.11E-08 0
UE (20) 0.01 0.01 0.008 6.57E-56

UD (2) 8.37E-39 0.59 5.15E-29 NaN
UD (4) 0.009 0 1.76E-30 1.19E-06
UD (6) 6.92E-53 5.40E-05 4.91E-07 8.89E-12
UD (8) 0 3.99E-05 3.05E-12 3.23E-23
UD (10) 0.03 0 3.16E-12 1.46E-09
UD (15) 0.16 0 0.57 2.27E-25
UD (20) 0.02 0 0.22 1.04E-89

147

Table B.2: continued from Table B.1

Data set MINECLUS PROCLUS STATPC EM
vs. S-ESC vs. S-ESC vs. S-ESC vs. S-ESC

D (20) 4.55E-08 0.06 2.49E-14 0.01
D (35) 1.93E-145 3.06E-05 1.30E-22 1.67E-07
D (50) 2.11E-298 5.85E-06 1.31E-12 4.42E-24
D (75) 5.91E-84 1.65E-07 1.53E-09 2.43E-12
D (100) 0 5.41E-06 3.01E-08 NaN

N (80) 0.78 6.02E-06 0.03 NaN
N (240) 1.04E-08 0 8.77E-14 0.59
N (400) 5.59E-20 0 1.48E-60 0.007
N (820) 0.02 0 7.94E-211 0
N (1650) 4.67E-06 0 8.90E-182 2.29E-13

K (2) 1.10E-26 5.07E-110 0 4.06E-109
K (3) 1.05E-22 0.36 0.01 0.3
K (4) 6.88E-11 0 1.12E-16 3.67E-16
K (5) 1.33E-07 9.91E-05 3.29E-36 0.27

Extent (0.1) 6.55E-02 5.07E-03 2.45E-19 1.23E-12
Extent (0.2) 6.00E-09 7.70E-06 9.64E-53 1.18E-07
Extent (0.3) 3.22E-52 0.15 9.25E-28 2.61E-19
Extent (0.4) 7.24E-30 0.13 2.05E-16 NaN

Overlap (0.0) 1.04E-16 0.49 1.27E-32 5.43E-53
Overlap (0.1) 2.57E-09 3.93E-06 0 3.08E-56
Overlap (0.2) 0 0.35 0 1.11E-70
Overlap (0.3) 1.67E-05 0.05 9.47E-07 NaN

ClustSz (30) 0.86 8.45E-05 1.69E-11 NaN
ClustSz (40) 1.26E-13 3.54E-05 1.83E-13 9.85E-25
ClustSz (50) 7.92E-10 0 1.29E-05 4.40E-40
ClustSz (55) 1.96E-07 1.13E-06 0 0.02

148

Table B.3: The t-test p values for F-measure significance in the Large-scale benchmark
data sets (Section 6.2, Table 5.2).

Data set MINECLUS PROCLUS STATPC EM
vs. S-ESC vs. S-ESC vs. S-ESC vs. S-ESC

50D 1.05E-08 1.14E-07 1.59E-70 9.41E-11
200D 0.98 0.009 1.01E-24 1*
500D NaN 1* 2.36E-28 8.62E-09
800D NaN 0.77 NaN 9.48E-14
1000D NaN 0.04 NaN 2.30E-15

Table B.4: The t-test p values for comparison between S-ESC vs. F-ESC with different
population sizes in the Large-scale data sets (Section 6.3)

Data set F-ESC (100) F-ESC (200) F-ESC (500)
vs. S-ESC vs. S-ESC vs. S-ESC

50D 3.27E-25 0.09 0.01
200D 2.78E-14 3.84E-08 1.17E-05
500D 4.87E-27 1.46E-06 0.42
800D 1.80E-31 1.12E-13 1.10E-19
1000D 2.66E-20 2.36E-23 1.95E-09

Table B.5: The t-test p values for comparison between S-ESC vs. F-ESC in the Moise
GD and UD data sets (Section 6.3)

Data set F-ESC Data set F-ESC
vs. S-ESC vs. S-ESC

GD (2) 0 UD (1) 2.50E-10
GD (4) 4.92E-19 UD (2) 6.53E-64
GD (6) 3.42E-30 UD (3) 6.04E-10
GD (8) 1.39E-59 UD (4) 5.44E-08
GD (10) 1.04E-08 UD (5) 0
GD (15) 3.10E-14 UD (6) 1.18E-13
GD (20) 7.49E-25 UD (7) 1.38E-75

149

Table B.6: The Kruskal-Wallis non-parametric test for comparison between S-ESC
and the comparator methods on the data sets with outliers (Section 6.4)

Data set MINECLUS PROCLUS STATPC EM
vs. S-ESC vs. S-ESC vs. S-ESC vs. S-ESC

GD (2) 6.63E-11 0 6.52E-12 0
GD (4) 1.04E-09 9.43E-07 2.85E-12 5.90E-14
GD (6) 0.26 1.12E-05 9.71E-09 1.34E-13
GD (8) 0.19 0 0.05 2.19E-20
GD (10) 7.41E-08 5.12E-06 0.28 2.10E-21
GD (15) 1.21E-12 0.03 7.32E-12 1.66E-22
GD (20) 1.57E-12 1.39E-05 4.48E-11 6.33E-23

UD (2) 1.72E-11 0.47 5.70E-12 NaN
UD (4) 0 0.02 7.29E-12 0
UD (6) 0.02 1.25E-06 9.19E-12 1.89E-06
UD (8) 0.22 0.07 0.18 0.009
UD (10) 0.11 0.25 0.74 0
UD (15) 0.007 0 0.09 7.13E-22
UD (20) 0 0.55 5.73E-08 1.54E-24

Bibliography

[1] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, and Jong Soo
Park. Fast algorithms for projected clustering. In ACM SIGMOD International
Conference on Management of Data, pages 61–72. ACM, 1999.

[2] Charu C. Aggarwal and Philip S. Yu. Finding generalized projected clusters
in high dimensional spaces. In ACM SIGMOD International Conference on
Management of Data, SIGMOD, pages 70–81, New York, NY, USA, 2000. ACM.

[3] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic subspace clustering of high dimensional data for data
mining applications. ACM SIGMOD International Conference on Management
of Data, 27:94–105, Jun. 1998.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associ-
ation rules. In ACM International Conference on Very Large Data Bases, pages
487–499, 1994.

[5] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.
OPTICS: ordering points to identify the clustering structure. In ACM SIGMOD
International Conference on Management of Data, pages 49–60, New York, NY,
USA, 1999. ACM.

[6] Ira Assent, Ralph Krieger, Emmanuel Muller, and Thomas Seidl. INSCY: In-
dexing subspace clusters with in-process-removal of redundancy. IEEE Inter-
national Conference on Data Mining, 0:719–724, 2008.

[7] Ira Assent, Ralph Krieger, Andreas Steffens, and Thomas Seidl. A novel bi-
ology inspired model for evolutionary subspace clustering. In Proc. Annual
Symposium on Nature inspired Smart Information Systems (NiSIS), 2006.

[8] Phanendra G. Babu and Narasimha M. Murty. A near-optimal initial seed
value selection in k-means means algorithm using a genetic algorithm. Pattern
Recognition Letters, 14(10):763–769, 1993.

[9] Carlos Bacquet, A. Nur Zincir-Heywood, and Malcolm I. Heywood. Genetic
optimization and hierarchical clustering applied to encrypted traffic identifica-
tion. In IEEE Symposium on Computational Intelligence in Cyber Security,
pages 194–201, 2011.

[10] Sanghamitra Bandyopadhyay, Ujjwal Maulik, and Anirban Mukhopadhyay.
Multiobjective genetic clustering for pixel classification in remote sensing im-
agery. IEEE Transactions on Geoscience and Remote Sensing, 45(5):1506–1511,
2007.

150

151

[11] Slim Bechikh, Lamjed Ben Said, and Khaled Ghédira. Searching for knee re-
gions in multi-objective optimization using mobile reference points. In ACM
Symposium on Applied Computing, pages 1118–1125. ACM, 2010.

[12] Pavel Berkhin. Survey of clustering data mining techniques. Technical report,
Accrue Software, Inc., San Jose, CA, USA, 2002.

[13] Pavel Berkhin. A survey of clustering data mining techniques. In Grouping
Multidimensional Data, pages 25–71. Springer, 2006.

[14] James C. Bezdek. Pattern recognition with fuzzy objective function algorithms.
Kluwer Academic Publishers, 1981.

[15] James C. Bezdek, Srinivas Boggavarapu, Lawrence O. Hall, and Amine Ben-
said. Genetic algorithm guided clustering. In IEEE World Congress on Com-
putational Intelligence, volume 1, pages 34–39, Jun. 1994.

[16] Lydia Boudjeloud-Assala and Alexandre Blansché. Iterative evolutionary sub-
space clustering. In International Conference on Neural Information Processing
(ICONIP), pages 424–431. Springer, 2012.

[17] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Osswald. Find-
ing knees in multi-objective optimization. In Parallel Problem Solving from
Nature (PPSN VIII), pages 722–731. Springer, 2004.

[18] Brett Calcott, Kim Sterelny, and Eörs Szathmáry. The Major Transitions in
Evolution revisited. The Vienna Series in Theoretical Biology. MIT Press, 2011.

[19] Arantza Casillas, MT González De Lena, and R. Mart́ınez. Document clustering
into an unknown number of clusters using a genetic algorithm. In Text, Speech
and Dialogue, pages 43–49. Springer, 2003.

[20] Jae-Woo Chang and Du-Seok Jin. A new cell-based clustering method for
large, high-dimensional data in data mining applications. In ACM Symposium
on Applied computing, SAC, pages 503–507, New York, NY, USA, 2002. ACM.

[21] Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. Entropy-based subspace
clustering for mining numerical data. In ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD, pages 84–93, New York,
NY, USA, 1999. ACM.

[22] Stephen L. Chiu. Fuzzy model identification based on cluster estimation. Jour-
nal of Intelligent and Fuzzy Systems, 2(3):267–278, 1994.

[23] Hyuk Cho, Inderjit S Dhillon, Yuqiang Guan, and Suvrit Sra. Minimum sum-
squared residue co-clustering of gene expression data. In SIAM International
Conference on Data Mining, pages 114–125, 2004.

152

[24] André L.V. Coelho, Everlândio Fernandes, and Katti Faceli. Inducing multi-
objective clustering ensembles with genetic programming. Neurocomputing,
74(1):494–498, 2010.

[25] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evo-
lutionary algorithms for solving multi-objective problems. Springer, 2007.

[26] Jason M. Daida, Catherine S. Grasso, Stephen A. Stanhope, and Steven J.
Ross. Symbionticism and complex adaptive systems I: Implications of having
symbiosis occur in nature. In Evolutionary Programming, pages 177–186, 1996.

[27] César S. De Oliveira, Aruanda S.G. Meiguins, Bianchi S. Meiguins, P.I. God-
inho, and Alex A. Freitas. An evolutionary density and grid-based clustering
algorithm. In XXIII Brazilian Symposium on Databases (SBBD), pages 175–
189, 2007.

[28] Kalyanmoy Deb. Multi-objective optimization. Multi-Objective Optimization
Using Evolutionary Algorithms, pages 13–46, 2001.

[29] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T.A.M.T. Meyarivan. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation, 6(2):182–197, Apr. 2002.

[30] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39:1–38, 1977.

[31] John Doucette and Malcolm I. Heywood. Revisiting the acrobot heighttask: An
example of efficient evolutionary policy search under an episodic goal seeking
task. In IEEE Congress on Evolutionary Computation (CEC), pages 468–475.
IEEE, 2011.

[32] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
John Wiley & Sons, 2001.

[33] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In ACM SIGKDD International Conference on Knowledge and Data Discovery,
pages 226–231. KDD, 1996.

[34] Vladimir Estivill-Castro and Alan T. Murray. Spatial clustering for data mining
with genetic algorithms. Queensland University of Technology Australia, 1997.

[35] Katti Faceli, André C.P.L.F. de Carvalho, and Marćılio C.P. de Souto. Multi-
objective clustering ensemble. International Journal of Hybrid Intelligent Sys-
tems, 4(3):145–156, 2007.

[36] Emanuel Falkenauer. Genetic algorithms and grouping problems. John Wiley
& Sons, Inc., 1998.

153

[37] Xiaoli Zhang Fern and Carla E. Brodley. Solving cluster ensemble problems
by bipartite graph partitioning. In 21st International Conference on Machine
Learning, pages 36–43. ACM, 2004.

[38] Edward W. Forgy. Cluster analysis of multivariate data : efficiency versus
interpretability of classifications. Biometrics, 21:768–769, 1965.

[39] Chris Fraley and Adrian E. Raftery. How many clusters? which clustering
method? answers via model-based cluster analysis. The Computer Journal,
41(8):578–588, 1998.

[40] Jerome H. Friedman and Jacqueline J. Meulman. Clustering objects on subsets
of attributes (with discussion). Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 66(4):815–849, 2004.

[41] Sanjay Goil, Harsha Nagesh, and Alok Choudhary. MAFIA: Efficient and scal-
able subspace clustering for very large data sets. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 443–452,
1999.

[42] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The WEKA data mining software: an update. ACM
SIGKDD Explorations, 11(1):10–18, Nov. 2009.

[43] Julia Handl and Joshua Knowles. An evolutionary approach to multiobjective
clustering. IEEE Transactions on Evolutionary Computation, 11(1):56–76, Feb.
2007.

[44] John A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., 1975.

[45] John A. Hartigan and Manchek A. Wong. Algorithm AS 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979.

[46] Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg. A niched pareto
genetic algorithm for multiobjective optimization. In IEEE World Congress on
Computational Intelligence, pages 82–87. IEEE, 1994.

[47] E. Hruschka, R. Campello, A. Freitas, and A. de Carvalho. A survey of evo-
lutionary algorithms for clustering. IEEE Transactions on Systems, Man, and
Cybernetics: Part C, 39(2):133–155, 2009.

[48] Eduardo R. Hruschka and Nelson F.F. Ebecken. A genetic algorithm for cluster
analysis. Intelligent Data Analysis, 7(1):15–25, 2003.

[49] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-
Hall, Inc., 1988.

154

[50] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering: A
review. ACM Computing Surveys (CSUR), 31(3):264–323, 1999.

[51] Mikkel T. Jensen. Reducing the run-time complexity of multiobjective EAs:
The NSGA-II and other algorithms. IEEE Transactions on Evolutionary Com-
putation, 7(5):503–515, Oct. 2003.

[52] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expres-
sion data: A survey. IEEE Transactions on Knowledge and Data Engineering,
16(11):1370–1386, 2004.

[53] Yaochu Jin, editor. Multi-objective Machine Learning, volume 16 of Studies in
Computational Intelligence. Springer, 2006.

[54] Liping Jing, Michael K. Ng, Jun Xu, and Joshua Zhexue Huang. Subspace
clustering of text documents with feature weighting k-means algorithm. In
Advances in Knowledge Discovery and Data Mining, pages 802–812. Springer,
2005.

[55] Karin Kailing, Hans-Peter Kriegel, and Peer Kröger. Density-connected sub-
space clustering for high-dimensional data. In SIAM Conference on Discrete
Mathematics, pages 246–257, 2004.

[56] Yeong Seog Kim, W. Nick Street, and Filippo Menczer. Feature selection for
unsupervised learning via evolutionary search. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 365–369, 2000.

[57] Juha Kivijärvi, Pasi Fränti, and Olli Nevalainen. Self-adaptive genetic algorithm
for clustering. Journal of Heuristics, 9(2):113–129, 2003.

[58] Yuval Kluger, Ronen Basri, Joseph T. Chang, and Mark Gerstein. Spectral
bi-clustering of microarray data: co-clustering genes and conditions. Genome
Research, 13:703–716, 2003.

[59] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Infor-
mation Sciences. Springer-Verlag, 2001.

[60] Emin Erkan Korkmaz, Jun Du, Reda Alhajj, and Ken Barker. Combining ad-
vantages of new chromosome representation scheme and multi-objective genetic
algorithms for better clustering. Intelligent Data Analysis, 10(2):163–182, 2006.

[61] Hans-Peter Kriegel, Peer Kröger, Matthias Renz, and Sebastian Wurst. A
generic framework for efficient subspace clustering of high-dimensional data. In
IEEE International Conference on Data Mining, pages 250–257, Nov. 2005.

[62] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-
dimensional data: A survey on subspace clustering, pattern-based clustering
and correlation clustering. ACM Transactions on Knowledge Discovery from
Data, 3(1):1–58, 2009.

155

[63] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Subspace clustering.
WIREs Data Mining and Knowledge Discovery, 2:351–364, 2012.

[64] K. Krishna and M. Narasimha Murty. Genetic k-means algorithm. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(3):433–439,
1999.

[65] Martin Krzywinski, Jacqueline Schein, İnanç Birol, Joseph Connors, Randy
Gascoyne, Doug Horsman, Steven J. Jones, and Marco A. Marra. Circos: an
information aesthetic for comparative genomics. Genome Research, 19(9):1639–
1645, 2009.

[66] Ludmila I. Kuncheva and James C. Bezdek. Selection of cluster prototypes from
data by a genetic algorithm. In European Congress on Intelligent Techniques
and Soft Computing, pages 1683–1688, 1997.

[67] William B. Langdon. Large scale bioinformatics data mining with parallel ge-
netic programming on graphics processing units. In Parallel and Distributed
Computational Intelligence, pages 113–141. Springer, 2010.

[68] Bing Liu, Yiyuan Xia, and Philip S. Yu. Clustering through decision tree con-
struction. In International Conference on Information and Knowledge Manage-
ment (CIKM), pages 20–29, New York, NY, USA, 2000. ACM.

[69] Huan Liu and Hiroshi Motoda. Feature transformation and subset selection.
IEEE Intelligent Systems and Their Applications, 13(2):26–28, 1998.

[70] José Antonio Lozano and Pedro Larrañaga. Applying genetic algorithms to
search for the best hierarchical clustering of a dataset. Pattern Recognition
Letters, 20(9):911–918, 1999.

[71] Yanping Lu, Shengrui Wang, Shaozi Li, and Changle Zhou. Particle swarm
optimizer for variable weighting inclustering high-dimensional data. Machine
Learning, 82:43–70, 2011.

[72] Yi Lu, Shiyong Lu, Farshad Fotouhi, Youping Deng, and Susan J. Brown.
FGKA: A fast genetic k-means clustering algorithm. In ACM Symposium on
Applied Computing, pages 622–623. ACM, 2004.

[73] Carlos B. Lucasius, Adrie D. Dane, and Gerrit Kateman. On k-medoid cluster-
ing of large data sets with the aid of a genetic algorithm: background, feasiblity
and comparison. Analytica Chimica Acta, 282(3):647–669, 1993.

[74] James MacQueen et al. Some methods for classification and analysis of mul-
tivariate observations. In 5th Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. California, USA, 1967.

[75] Lynn Margulis and René Fester. Symbiosis as a Source of Evolutionary Inno-
vation. MIT Press, 1991.

156

[76] Ujjwal Maulik and Sanghamitra Bandyopadhyay. Genetic algorithm-based clus-
tering technique. Pattern recognition, 33(9):1455–1465, 2000.

[77] Geoffrey McLachlan and Thriyambakam Krishnan. The EM Algorithm and
Extensions. Wiley-Interscience Publication, 1997.

[78] Gabriela Moise and Jörg Sander. Finding non-redundant, statistically signif-
icant regions in high dimensional data: a novel approach to projected and
subspace clustering. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 533–541. ACM, 2008.

[79] Gabriela Moise, Jörg Sander, and Martin Ester. P3C: A robust projected clus-
tering algorithm. IEEE International Conference on Data Mining, 0:414–425,
2006.

[80] Gabriela Moise, Arthur Zimek, Peer Kröger, Hans-Peter Kriegel, and Jörg
Sander. Subspace and projected clustering: experimental evaluation and anal-
ysis. Knowledge and Information Systems, 21:299–326, 2009.

[81] Luis Carlos Molina, Llúıs Belanche, and Àngela Nebot. Feature selection algo-
rithms: A survey and experimental evaluation. In IEEE International Confer-
ence on Data Mining (ICDM), pages 306–313. IEEE, 2002.

[82] Anirban Mukhopadhyay, Ujjwal Maulik, and Sanghamitra Bandyopadhyay.
Multiobjective genetic fuzzy clustering of categorical attributes. In Interna-
tional Conference on Information Technology (ICIT), pages 74–79. IEEE, 2007.

[83] Emmanuel Müller, Stephan Günnemann, Ira Assent, and Thomas Seidl. Evalu-
ating clustering in subspace projections of high dimensional data. International
Conference on Very Large Data Bases, 2:1270–1281, Aug. 2009.

[84] Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods for
spatial data mining. In International Conference on Very Large Data Bases,
pages 487–499, 1994.

[85] Seyednaser Nourashrafeddin, Dirk Arnold, and Evangelos Milios. An evolution-
ary subspace clustering algorithm for high-dimensional data. In Proceedings of
the Fourteenth International Conference on Genetic and Evolutionary Compu-
tation Conference Companion, pages 1497–1498. ACM, 2012.

[86] Samir Okasha. Multilevel selection and the major transitions in evolution.
Philosophy of Science, 72:1013–1025, 2005.

[87] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high
dimensional data: a review. ACM SIGKDD Explorations Newsletter, 6:90–105,
Jun. 2004.

[88] Anne Patrikainen and Marina Meila. Comparing subspace clusterings. IEEE
Transactions on Knowledge and Data Engineering, 18:902–916, 2006.

157

[89] Dan Pelleg, Andrew W. Moore, et al. X-means: Extending k-means with ef-
ficient estimation of the number of clusters. In International Conference on
Machine Learning, pages 727–734, 2000.

[90] Tomas Piatrik and Ebroul Izquierdo. Subspace clustering of images using ant
colony optimization. In IEEE International Conference on Image Processing,
pages 229–232, 2009.

[91] Cecilia M. Procopiuc, Michael Jones, Pankaj K. Agarwal, and T.M. Murali.
A monte carlo algorithm for fast projective clustering. In ACM International
Conference on Management of Data, SIGMOD ’02, pages 418–427, New York,
NY, USA, 2002. ACM.

[92] David C. Queller. Relatedness and the fracternal major transitions. Philosoph-
ical Transactions of the Royal Society of London B, 355:1647–1655, 2000.

[93] Lily Rachmawati and Dipti Srinivasan. Multiobjective evolutionary algorithm
with controllable focus on the knees of the pareto front. IEEE Transactions on
Evolutionary Computation, 13(4):810–824, 2009.

[94] Kazi Shah Nawaz Ripon, Chi-Ho Tsang, Sam Kwong, and Man-Ki Ip. Multi-
objective evolutionary clustering using variable-length real jumping genes ge-
netic algorithm. In International Conference on Pattern Recognition (ICPR),
volume 1, pages 1200–1203. IEEE, 2006.

[95] G. Sangeetha and Sornamaheswari. Density conscious subspace clustering for
high dimensional data using genetic algorithms. International Journal of Com-
puter Applications, 10(4), 2010.

[96] Ioannis A. Sarafis, Phil W. Trinder, and Ali Zalzala. Towards effective subspace
clustering with an evolutionary algorithm. In IEEE Congress on Evolutionary
Computation, pages 797–806, 2003.

[97] Ioannis A. Sarafis, Phil W. Trinder, and Ali Zalzala. NOCEA: a rule-based
evolutionary algorithm for efficient and effective clustering of massive high-
dimensional databases. Applied Soft Computing, 7(3):668–710, 2007.

[98] James David Schaffer. Some experiments in machine learning using vector eval-
uated genetic algorithms. Technical report, Vanderbilt University, Nashville,
TN (USA), 1985.

[99] Oliver Schütze, Marco Laumanns, and Carlos A. Coello Coello. Approximating
the knee of an MOP with stochastic search algorithms. In Parallel Problem
Solving from Nature, volume 5199 of LNCS, pages 795–804, 2008.

[100] Karlton Sequeira and Mohammed Zaki. SCHISM: A new approach for in-
teresting subspace mining. IEEE International Conference on Data Mining,
0:186–193, 2004.

158

[101] Weiguo Sheng and Xiaohui Liu. A hybrid algorithm for k-medoid clustering
of large data sets. In IEEE Congress on Evolutionary Computation, volume 1,
pages 77–82. IEEE, 2004.

[102] Weiguo Sheng, Stephen Swift, Leishi Zhang, and Xiaohui Liu. A weighted
sum validity function for clustering with a hybrid niching genetic algorithm.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
35(6):1156–1167, 2005.

[103] Kelvin Sim, Vivekanand Gopalkrishnan, Arthur Zimek, and Gao Cong. A sur-
vey on enhanced subspace clustering. Data Mining and Knowledge Discovery,
26:332–397, 2012.

[104] J. R. Slagle, C. L. Chang, and S. R. Heller. A clustering and data-reorganizing
algorithm. IEEE Transactions on Systems, Man and Cybernetics, SMC-
5(1):125–128, 1975.

[105] Dong Song, Malcolm I. Heywood, and A. Nur Zincir-Heywood. Training genetic
programming on half a million patterns: an example from anomaly detection.
IEEE Transactions on Evolutionary Computation, 9(3):225–239, Jun. 2005.

[106] E. Stanley Lee and Rong Jun Li. Fuzzy multiple objective programming and
compromise programming with pareto optimum. Fuzzy Sets and Systems,
53(3):275–288, 1993.

[107] Hao-jun Sun and Lang-huan Xiong. Genetic algorithm-based high-dimensional
data clustering technique. In International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), volume 1, pages 485–489. IEEE, 2009.

[108] Anil Kumar Tiwari, Lokesh Kumar Sharma, and G. Rama Krishna. Entropy
weighting genetic k-means algorithm for subspace clustering. International
Journal of Computer Applications, 7(7):90–105, 2010.

[109] Alexander Topchy, Anil K. Jain, and William Punch. A mixture model of
clustering ensembles. In SIAM International Conference on Data Mining, 2004.

[110] Lin Yu Tseng and Shiueng Bien Yang. A genetic approach to the automatic
clustering problem. Pattern Recognition, 34(2):415–424, 2001.

[111] Ali Vahdat, Malcolm I. Heywood, and A. Nur Zincir-Heywood. Bottom-up evo-
lutionary subspace clustering. In IEEE Congress on Evolutionary Computation,
pages 1–8, Jul. 2010.

[112] Ali Vahdat, Malcolm I. Heywood, and A. Nur Zincir-Heywood. Symbiotic evo-
lutionary subspace clustering. In IEEE Congress on Evolutionary Computation,
pages 1–8, Jun. 2012.

[113] Pravin M. Vaidya. Ano (n logn) algorithm for the all-nearest-neighbors problem.
Discrete & Computational Geometry, 4(1):101–115, 1989.

159

[114] Ellen M. Vorhees. The effectiveness and efficiency of agglomerative hierarchical
clustering in document retrieval. Phd thesis, Cornell University, Department of
Computer Science, Ithaca, NY, USA, 1985.

[115] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, 2 edition, 2005.

[116] Kyoung-Gu Woo, Jeong-Hoon Lee, Myoung-Ho Kim, and Yoon-Joon Lee.
FINDIT: a fast and intelligent subspace clustering algorithm using dimension
voting. Information and Software Technology, 46(4):255–271, 2004.

[117] Xuanli Lisa Xie and Gerardo Beni. A validity measure for fuzzy clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8):841–
847, 1991.

[118] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transac-
tions on Neural Networks, 16(3):645–678, 2005.

[119] Rui Xu and Donald Wunsch. Clustering. IEEE Press Series on Computational
Intelligence. Wiley, 2009.

[120] Jiong Yang, Wei Wang, Haixun Wang, and Philip Yu. δ-clusters: capturing
subspace correlation in a large data set. In International Conference on Data
Engineering, pages 517–528, 2002.

[121] Kevin Y. Yip, David W. Cheung, and Michael K. Ng. Harp: A practical
projected clustering algorithm. IEEE Transactions on Knowledge and Data
Engineering, 16(11):1387–1397, 2004.

[122] Man Lung Yiu and Nikos Mamoulis. Frequent-pattern based iterative projected
clustering. IEEE International Conference on Data Mining, page 689, 2003.

[123] Man Lung Yiu and Nikos Mamoulis. Iterative projected clustering by subspace
mining. IEEE Transactions on Knowledge and Data Engineering, 17(2):176–
189, 2005.

[124] Hye-Sung Yoon, Sun-Young Ahn, Sang-Ho Lee, Sung-Bum Cho, and Ju Han
Kim. Heterogeneous clustering ensemble method for combining different cluster
results. In Data Mining for Biomedical Applications, pages 82–92. Springer,
2006.

[125] Bo Yuan, George J. Klir, and John F. Swan-Stone. Evolutionary fuzzy c-means
clustering algorithm. In IEEE International Conference on Fuzzy Systems, vol-
ume 4, pages 2221–2226. IEEE, 1995.

[126] A Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan, and Q. Zhang. Multiob-
jective evolutionary algorithms: A survey of the state of the art. Swarm and
Evolutionary Computation, 1:32–49, 2011.

160

[127] Lin Zhu, Longbing Cao, and Jie Yang. Multiobjective evolutionary algorithm-
based soft subspace clustering. In IEEE Congress on Evolutionary Computation,
pages 1–8, Jun. 2012.

[128] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization. In Evo-
lutionary Methods for Design, Optimisation, and Control, pages 95–100.

