
Symbiotic Evolutionary Subspace Clustering

Ali Vahdat1, Malcolm Heywood1, and Nur Zincir-Heywood1

1Faculty of Computer Science, Dalhousie University, Halifax, NS. Canada

Article originally appears at CEC under IEEE copyright 2012

http://ieeexplore.ieee.org/document/6252895/

Abstract

New emerging high-dimensional data sets have made traditional clustering algorithms increasingly inefficient.
More sophisticated approaches are required to cope with the increasing dimensionality and cardinality of such
data sets. Feature selection methods are proposed as a solution to deal with this problem, however they fail
for data sets where the attribute support for different clusters is not the same. For this category of data sets
subspace clustering algorithms have been introduced over the past decade. We approach this problem from
the perspective of Genetic Algorithms by adopting a hierarchical data structure deployed in three stages. 1) a
traditional clustering algorithm is applied independently to each attribute of the data set, thus defining a grid of
potential 1-d cluster centroids. 2) describing multi-dimensional cluster centroids indexing 1-d cluster centroids. 3)
converting the problem of finding the best combination of cluster centroids into that of discrete optimization and
applying a multi-objective evolutionary algorithm, which uses group fitness evaluation to give a fitness to a group
of clusters, as defined by process 2. Synthetic data sets with different characteristics are generated as the ground
truth to evaluate the resulting algorithm for Evolutionary Subspace Clustering (ESC) as well as benchmark against
alternative subspace and full-space clustering algorithms. ESC returns competitive accuracy and while typically
utilizing less attributes and scaling as attribute count increases.

1 Introduction

Clustering algorithms are increasingly being applied to data sets from fields such as video and text analysis,
or bioinformatics. This represents a trend in which high dimensionality – that is minimum of 50 attributes
– represents the norm. As the dimensionality of the original data increases, it also becomes more likely that
attributes are not of equal utility across all clusters. Thus from the perspective of each cluster, different attributes
are either useful or a source of noise. An early approach for attempting to address this problem was to apply
an independent feature selection process or apply a transformation; the latter loosing the meaning of the original
attributes. Moreover, assuming a common subset of attributes for all clusters represents a bias that may or may
not be appropriate. With this in mind, subspace clustering algorithms attempt to provide the flexibility to identify
the (possibly unique) subset of attributes for each cluster [16, 17, 14, 15]. Naturally, such algorithms will include
the case of all clusters supported through a common subspace (of attributes) as a special case.

In this work we propose an evolutionary approach to subspace clustering – hereafter Evolutionary Subspace
Clustering or ESC – in which cluster-specific attributes of a subspace are identified along with its instances. To do
so, a two-population model is assumed (Figure 1) in which a clustering solution1 (CS) defines a candidate solution
in terms of some subset of subspace clusters defined by an independent population of subspace cluster centroids2

(SCC). The following 3 stage process summarizes the ESC approach:

• Process 1 – Grid construction: A (traditional) clustering algorithm is applied to the data set on an attribute-
by-attribute basis. The outcome will be a grid that establishes the potential location of cluster centroids in
terms of 1-d clusters defined on each attribute. Such a pre-processing activity is central to turning the process
of subspace identification into that of a combinatorial search.

• Process 2 – Subspace cluster centroids: Candidate SCC are declared by assuming a representation that
samples from the attributes and 1-d clusters defined by process 1. There is no concept of SCC fitness. Theses
SCCs are indexed and exploited by process 3 individuals to define candidate clustering solutions.

1Hereafter ‘Clustering Solution , ‘CS’, and ‘process 3 individual’ are used interchangeably.
2Hereafter ‘Subspace Cluster Centroid’ , ‘SCC’, and ‘process 2 individual’ are used interchangeably.

1

Appears in CEC’12 under IEEE copyright 2

Figure 1: Structure of ESC algorithm.

• Process 3 – Evaluating candidate clustering solutions: A multi-objective genetic algorithm directs the evolu-
tion of the best combinations of subspace cluster centroids which will form clustering solutions (CS) of the
ESC algorithm.

Processes 2 and 3 form the core of the algorithm and are in constant interaction with each other to evolve SCC
individuals concurrently with CS individuals. In fact process 2 prepares the low-level genetic material for process
3, while information from process 3 directs the search for new subspace clustering solutions. Process 1 supports
the representation of clusters in terms of a discrete grid, thus permitting application of a combinatorial search
process. As such process 1 is only applied once per dataset as a preprocessing step.

The rest of the paper is organized as follows. Section 2 reviews the related literature and in so doing makes a
case for utilizing two non-evolutionary subspace clustering algorithms for comparison in the later benchmarking
study. Section 3 presents the proposed ESC algorithm. Section 4 details the experimental study, and Section 5

concludes the paper and gives possible future improvements to ESC.

2 Related Works

Subspace clustering has been investigated under different names over the last 10 years including, but not limited to:
projected clustering, projective clustering, bi-clustering, and co-clustering. Recent survey papers have established
the current capability of subspace clustering algorithms under various frameworks [16, 17, 14, 15]. In particular
[14] and [15] conduct empirical evaluations, thus compare different subspace clustering algorithms with respect
to various performance measures. In the following we emphasize the works with most relevance to the approach
adopted here.

Parsons et al. divide subspace clustering algorithms into two categories: bottom-up and top-down [16]. Bottom-
up search methods find the dense regions / bins in lower dimensions – starting from 1-d bins – and incrementally
identify attributes that contain dense bins to make higher dimensional subspace clusters. Top-down approaches
on the other hand try to prune irrelevant / noise attributes from an initial full dimensional approximation of the
clusters. Using this definition implies that the proposed ESC algorithm falls in the bottom-up category since we
generate a grid from which subspace cluster centroids are extracted.

Muller et al. assume a different categorization based on three paradigms: cell-based, density-based, or
clustering-oriented approaches [15]. They also integrated the implementation for various subspace clustering
algorithms into the well-known WEKA machine learning software, and call it OpenSubspace3. Properties such
as accuracy, cluster distribution, coverage, entropy, F1 measure, and runtime as well as the RNIA and CE metrics
defined by [17] are used to compare 10 different algorithms on 23 data sets.

In summary Muller et al. conclude that the basic methods from cell-based and density-based categories –
CLIQUE and SUBCLU – tend to produce clustering solutions with too many clusters, potentially even more than
the number of instances in data set. They also have low clustering quality w.r.t. RNIA and CE metrics – which
take relevant attributes as well as instances into consideration – and their runtime overhead makes them infeasible.
Conversely, MINECLUS (cell-based category), INSCY (density-based), and PROCLUS (clustering-based) produce
the best clustering quality w.r.t. RNIA and CE. However, INSCY fails to scale to data sets with more than 25

attributes, and for most of the data sets, it returns results no faster than twice the time of MINECLUS and PRO-
CLUS. Indeed, MINECLUS and PROCLUS happen to be the fastest algorithms in their respective categories. In
general recent cell-based approaches outperform other methods on data sets with low dimensionality; whereas the
density-based paradigm tends to suffer from long runtimes, and is not scalable to medium- or high-dimensional
problems. Clustering-based methods have the fastest runtime, but this is due to the provision of much a priori

3http://dme.rwth-aachen.de/OpenSubspace/.

Appears in CEC’12 under IEEE copyright 3

information than any other approach e.g., correct subspace dimensionality. However, they have inferior accuracy
performance than cell-based methods. In short, we assume MINECLUS and PROCLUS as representative baselines
for the proposed ESC algorithm in Section 4.2, since they were the algorithms that provided the best balance
between cluster quality and runtime efficiency [15].

Most proposals for utilizing Evolutionary Computation in clustering assume full-dimensionality, thus do not
address the requirements of subspace clustering. With this caveat in mind, a recent survey summarized contri-
butions to evolutionary clustering with respect to developments in: representation, fitness function, or variation
operators [9]. However, as will be come apparent later, multi-objective methods for clustering (e.g., [7]) do repre-
sent a generic tool capable of addressing some aspects of the subspace problem. Of the evolutionary methods that
are explicitly designed to address all aspects of the subspace clustering task, various limitations appear, either in
the form of the provision of suitable prior information or in terms of a limited evaluation. Specifically, recently
proposed approaches based on particle swarm [12] and ant optimization [19] required knowledge of the true num-
ber of clusters k. The GA based framework of Sarafis et al. emphasized the utility of a rule based representation
and corresponding variation operators [20]. Evaluation was limited to artificial data sets with no more than 50

dimensions, and no attempt was made to quantify how well full space clustering performed under the same task.
Finally, an earlier instance of the authors work employed a two stage Evolutionary Multi-criteria Optimization
(EMO) for the identification of independent clusters and then combinations of clusters [21]. Unfortunately, the
independent cluster identification step required the utility of ‘surrogate’ measures of fitness that attempted to
enforce diversity of candidate clusters. This represents a bias on the resulting solution quality. This research
will still assume a dual population model representing independent clusters and groups of clusters respectively.
However, a serial (endosymbiotic [8, 4]) interaction is assumed with fitness only evaluated at the (cluster) group
level (Section 3), thus avoiding any use of surrogate objectives.

3 ESC Algorithm

As remarked in the introduction, ESC assumes a three stage process for building subspace clusters:

1. Defining a grid over which subspace cluster centroids are specified;

2. Indexing elements from the grid to define candidate subspace cluster centroids, and;

3. Specifying groups of candidate cluster centroids as solutions to the overall clustering task.

Naturally, data standardization is assumed to have already been performed. Clustering algorithms generally
assume this in order to avoid introducing biases into the distance-metric, however, some applications are also
sensitive to the nature of the standardization process [3]. Here assume a linear standardization of attributes to the
unit interval [0, 1], where this is common to all algorithms benchmarked in Section 4.2.

3.1 Process 1: 1-d attribute-wise clustering

In order to construct a grid from which candidate clusters can be defined (process 2), a standard clustering
algorithm is applied to each attribute alone. Thus, for an N dimensional data set, the standard clustering algorithm
is called N times, once per attribute. A grid is then defined as the composition of all 1-d centroids. Any standard
clustering algorithm is appropriate for this task so long as it does not require a priori definition for the number
of centroids sort e.g., X-means clustering [18] or the EM algorithm [13]. Thus, the number of 1-d centroids per
attribute is free to vary as a function of the data distribution. It should also be noted that this process is conducted
once per data set. In the benchmarking study of Section 4.2 the EM algorithm algorithm is assumed. Multiple runs
of the proposed ESC algorithm are performed relative to the same common grid.

3.2 Process 2: Composition of candidate Subspace Cluster Centroids (SCC)

The goal of this process is to provide a diverse population of SCCs for process 3 to combine into groups of Cluster
Solutions (CS). The most important contribution of this process is to select the best representation for SCCs;
whereas variation will be defined as a hierarchical operator from CS to SCC.

Appears in CEC’12 under IEEE copyright 4

Figure 2: Encoding and decoding of SCC / process 2 individual.

3.2.1 Dual population model

Although most evolutionary clustering algorithms encode the final partitioning in a chromosome, here we adopt
a hierarchical approach in which two independent populations are employed (Figure 1). The process 2 population
represent candidate Subspace Cluster Centroids (SCC); whereas the process 3 population represent groups of
SCC, hence each individual at the process 3 population is a candidate Cluster Solution (CS). Given a suitable
representation for a SCC, individuals from CS just take the form of a set of indexes to members of the SCC
population. Letting CS individuals assume a variable length representation implies that the number of SCC per
CS is free to adapt. Moreover, each CS need only be a different combination, thus the same SCC may appear in
multiple CS individuals as directed by natural selection. Fitness is only known explicitly at the CS population
as SCC fitness is relative to the other SCC individuals comprising a CS, hence the endosymbiotic nature of the
interaction between the two populations [8, 4].

3.2.2 Representation

The encoding of most evolutionary clustering algorithms is coupled with either data set dimensionality or car-
dinality [9], i.e. a chromosome is a binary / integer / real string that encodes all dimensions of the data set.
Here a combination of centroid-based and grid-based encoding is assumed to represent a cluster. Each SCC is
represented by a number of integer pairs, or genes, in the form of 〈a, c〉 where the first integer, a, determines the
attribute index, and the second integer, c, determines the 1-d centroid within the attribute.

The encoding and decoding of a SCC is illustrated in Figure 2. The first individual, SCC 1, is composed of two
genes (pairs of integers). The first pair 〈2, 1〉 indicates that the encoded SCC uses the 1st

1-d centroid of attribute
2, and the second pair 〈1, 2〉 indicates that it also uses the 2nd

1-d centroid of attribute 1. This individual therefore
identifies the subspace cluster centroid in the centre of the triangle-shaped data points on the lower right corner
of the grid. Similarly, SCC 2 encodes the candidate subspace cluster centroid on upper right corner of the grid i.e.,
no data points around it.

3.3 Process 3: Multi-Objective composition of Clustering Solutions (CS)

Process 3 of ESC performs two tasks simultaneously: a) search for the best combination of SCCs to put together to
make CS individuals, and b) evolve and adjust the SCCs in relation to the CS they are part of to fine-tune each CS.
Fitness is therefore evaluated at the CS level alone. In effect a form of group fitness is applied as it is only within
the context of a CS (group) that a SCC (member) is evaluated. SCC individuals ‘die’ when they do not receive any
CS indexes and new SCC individuals appear as a function of the hierarchical variation operators. The size of the
SCC population therefore ‘floats’ whereas the CS population is of a fixed size.

Appears in CEC’12 under IEEE copyright 5

Figure 3: Encoding and decoding of CS / process 3 individual.

3.3.1 Representation

Figure 3 illustrates the encoding of a CS individual. The first individual, CS 1, indexes SCCs 3, 1 and 4 from the
SCC population to make a partitioning. This means that CS 1 is a 3-cluster solution for the given data set, with
SCCs 3, 1 and 4 specifying the three subspace cluster centroids. Instances belonging to each subspace cluster are
determined following a simple nearest neighbourhood (NN) assignment considering only the attributes indexed
by each SCC. In other words we calculate the normalized distance of each data point to all SCCs within a CS and
assign each data point to its nearest SCC. To reduce the bias from SCCs with less attributes we normalize this
distance by the number of attributes indexed by an SCC. Once the nearest neighbourhood assignment is complete,
the fitness of a CS can be defined.

3.3.2 Objective Functions

Single objective methods of data clustering can be categorized based on the criterion they optimize. One group
of clustering algorithms try to form compact spherical clusters by minimizing the intra-cluster distance between
data points and cluster representatives, as in k-means [6], average link agglomerative clustering [22], and self-
organizing maps [11]. Another group of clustering algorithms try to form clusters in which data items close to
each other fall into the same cluster, hence optimizing connectedness. This category of clustering algorithms can
find clusters of arbitrary shape, however they might fail when clusters are close to each other such as single link
agglomerative clustering [22], and OPTICS [2].

Since clustering algorithms with a single criterion tend to find only one category of cluster shapes and fail on
the other, an EMO might be deployed to increase the chances of finding subspace clusters from both scenarios
simultaneously. An earlier version of ESC demonstrated that using an EMO with objectives of compactness/distortion
(good for recognizing spherical clusters) and connectivity (good for arbitrary cluster shape detection) aided in the
identification of true cluster count [21].

As indicated above, prior to calculating the compactness of a CS, a nearest neighbour (NN) assignment of
data points is performed against the set of SCCs indexed by the CS. This nearest neighbour allocation determines
which of the SCCs (within a CS) each instance is assigned to. The distance between an instance and nearest SCC
is defined and normalized over the number of attributes supporting the SCC. The sum of all distances between
each instance and corresponding SCC is the overall compactness value of a CS:

Com(CS) =
q

∑
i=1

|SCCi |

∑
j=1

dis(xj, SCCi) (1)

where SCCi is the nearest SCC to instance xj, q is the number of SCCs within CS, and |SCCi| is the number of
instances assigned to SCCi.

In the case of a connectivity objective, however, the earlier ESC study identified that it also comes at a significant
computational overhead when deployed in a subspace clustering context [21]. Specifically, when first proposed by
Handl and Knowles, pre-computation was possible relative to the common set of (all) attributes [7]. This is not
feasible under subspace clustering, a point we return to with regards to future work.

Since minimizing compactness was previously shown to be correlated with increasing cluster counts [21], we
introduce a second objective to reward minimizing the number of clusters. Thus ‘tension’ between objectives is
achieved where this is often required for good performance with EMO frameworks [5]. Naturally, the cluster
count objective is efficient to estimate while maintaing post-training performance measures at a satisfactory level.

Appears in CEC’12 under IEEE copyright 6

3.3.3 Variation Operators

The dual population model enables us to conduct a combinatorial search for good candidate clusters while simul-
taneously maintaining a diverse set of subspace candidate cluster centroids (CS and SCC populations respectively).
However, modifying a current SCC is not desirable as it is likely to be shared by several individuals from the CS
population. Thus, variation operators are limited to mutation alone and begin by cloning the parent with variation
only introduced relative to the (single) child. Parent CS individuals are selected through a tournament against
three other CSs. Such a process is explicitly elitist.

Single-Level Mutation The recently-cloned CS goes through three forms of mutation: 1) remove a link to a
currently included SCC; 2) add a new SCC link; or 3) replace a current SCC link with that of another. Naturally,
the third form of mutation performs in one step what forms 1 and 2 might achieve together. If testing true, the
operator is applied again with the threshold of application decreased by an order of magnitude. The process
repeating until the test no longer returns true.

Multi-Level Mutation As per single-level mutation a CS parent is selected, cloned, and both parent and clone are
retained in the CS population. With uniform probability a SCC within the cloned CS – or parent SCC – is cloned
with both parent and clone retained in the SCC population. The newly cloned SCC goes through three mutation
steps: 1) remove an attribute, 2) add an attribute, or 3) replace an attribute’s 1-d centroid. As per single-level
mutation, the case of a mutation operator testing true results in reapplication with the threshold of application
decreased by an order of magnitude on each application w.r.t. the same individual.

Finally, as remarked earlier the SCC population size floats. However, a maximum population size is enforced,
typically 4 times the initial population size. If the maximum SCC population is reached, the SCCs with smallest SC
link count are deleted. To sure that a cloned CS goes through both single- and multi-level mutation, the probability
of each operator is set to 1.0.

4 Results

4.1 Evaluation Methodology

In order to evaluate the advantages and disadvantages of subspace clustering algorithms data sets demonstrat-
ing specific properties are required. With this in mind the following approach is adopted to building data sets
with explicit subspace properties. Subspaces can be characterized as a matrix relating data points to subsets of
attributes. Figure 4 illustrates such a process in terms of the embedding of 3 subspace clusters in a larger attribute
space. The within-cluster values (values inside coloured boxes) are sampled from distributions specific to each
subspace cluster. These distributions can be Gaussian (hyper-spherical subspace clusters), elongated Gaussian
(hyper-ellipsoidal subspace clusters), or uniform distribution within a specified range (hyper-rectangular sub-
space clusters). The values unrelated to subspace clusters (boxes labelled as Uniform Values) are sampled from
a uniform distribution within the minimum and maximum range of the data set. Since the within-cluster values
and irrelevant values are within the same range in our data sets (between 0 and 1), they therefore overlap, and
make the task of distinguishing relevant attributes more difficult. Such a framework follows from that adopted in
earlier benchmarking studies [14, 15].

To evaluate the performance of ESC artificial data sets are generated utilizing 50 to 1000 attributes, and 1000 to
4000 data points, Table 1. These data sets contain 20% to 90% irrelevant attributes. ESC is compared against two of
the most popular subspace clustering algorithms: MINECLUS [23] and PROCLUS [1], and a full-space clustering
algorithm, EM [13], one of the most cited clustering algorithms in the literature. All three baseline clustering
algorithms assume their respective WEKA implementations.4

We evaluate ESC and its competitors with respect to four categories of performance measure: accuracy, simplic-
ity, relevancy, and efficiency. Each performance category has one or more performance measure(s). The accuracy
category includes detection rate, accuracy, and purity. Class-wise detection rate (DR) is simply an improvement
upon accuracy measure to give degenerate solutions, which assign all instances to the majority class, lower detec-
tion rate. DR is defined as:

DR(CSi) =
∑

q
j=1 DRj

q
(2)

4http://www.cs.waikato.ac.nz/weka/

Appears in CEC’12 under IEEE copyright 7

Figure 4: Example visualization of data set with subspaces. The ‘Class label’ indicates cluster membership and is
only used for post training evaluation along with classification style performance metrics such as Detection Rate.

where DRj =
TPj

TPj+FNj
is the detection rate of class j. Simplicity is formed by cluster count of a CS, total number

of (unique) attributes indexed by a CS, and the number of attributes per subspace cluster. Relevancy includes the
ratio of irrelevant attributes over relevant attributes as indexed by a partitioning and also the ratio of irrelevant
attributes indexed by a CS over total relevant attributes in a data set. Efficiency is represented by algorithm
runtime on a common CPU.

ESC is run 50 times each data set with different seed numbers. The ‘centre’ individual5 on the final Pareto
front is selected at the end of each run, making a pool of 50 ESC solutions for each data set. We visualize the
distribution of values for each performance measure based on this pool using violin plots. A sample set of violin
plots is shown in Figure 5. The median values of this distribution provide the basis for the summary performance
plots of Figures 6 to 9. The 1-d clustering algorithm used in process 1 is EM [13], and the EMO algorithm used in
process 3 is the modified NSGA-II developed by Jensen [10]. The selection of the EM algorithm for identifying 1-d
centroids mirrors the use of the EM algorithm as the representative full-space clustering algorithm.

ESC parameterization assumes a CS population of 100 and a maximum of 1,000 generations. All mutation
probabilities assume an initial value of 0.1. ESC also provides for the declaration of a min / max range of attributes
and min / max number of SCC per CS: respectively 2 (min) and 20 (max). As such this attempts to guard against
long tails in the Pareto front of candidate solutions discovered by NSGA-II. Note also that the parameterization is
common to all data sets, and as such better results might well be possible though data specific fine tuning.

To determine the optimal set of parameters for MINECLUS we run an extensive search over the range recom-
mended by MINECLUS authors for α, β, and ω, and select the parameter setting that gives the best results on each
data set. Since the true number of clusters is unknown in reality we run MINECLUS with different values for k.
We use the range [2, 20] for k, thus mirroring that for ESC. Therefore values reported for MINECLUS represent
the median of 19 runs on each data set.

PROCLUS requires priori knowledge for the average dimensionality of subspace clusters, l. For data sets
where different subspace clusters have a varying number of attributes, we run PROCLUS with different values
for l, enumerating attribute counts of all subspace clusters as well as the average dimensionality of all clusters.
PROCLUS is also run for different values for k ∈ [2, 20]. In total 10 runs with different seed numbers are performed
for each pair of k and l, therefore 19× 10 runs are performed for PROCLUS on each data set if subspace clusters
have similar dimensionality, and 19 × 10 × L runs if subspace clusters have different dimensionality; where L
defines the number of different values used for l. Given that ESC actually needs to discover these parameters
during learning, it appears to be something of a moot point that PROCLUS only requires two parameters.

EM is capable of finding the number of clusters (but assumes that all the attributes appear in each cluster),
so there is no explicit need to provide a value for k a priori. However, similar to MineClus, EM has learning
parameters that were retuned for each data set. Once the optimized values for all parameters are found (for each
data set) we run EM with 10 different seed numbers and report the median value of 10 runs for each performance

5The centre of a bi-objective Pareto front (PF) is merely the individual |F|/2 where |F| is the number of individuals on the PF and F is the
(dominance) ordered set of PF individuals at the last generation.

Appears in CEC’12 under IEEE copyright 8

Table 1: Summary of benchmarking data sets.

Data Total Attr # Total Inst # Total SCC # Noise Attr #
set Min Dim # Max Dim # Min Inst % Max Dim %

50D4C 50 1289 4 10

Spherical 10 10 8 43

200D5C 200 2000 5 50

Rectangular 10 50 10 25

500D4C 500 1286 4 100

Ellipsoidal 100 100 13 32

800D10C 800 3814 10 240

Mixed 10 100 4 16

1000D10C 1000 2729 10 900

Spherical 10 10 3 20

0
50

10
0

15
0

20
0

1

●

Cmpctnss

5
10

15
20

1

●

SCC #

0
50

10
0

15
0

20
0

1

●

Attr #
5

10
15

20

1

●

AttPerSCC #

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1

●

DR

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1

●

Acc

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1

●

Pur

0
2

4
6

8

1

●

Idx Rel

0
2

4
6

8

1

●

Tot Rel

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

1

●

Time

Figure 5: ESC algorithm performance distributions on the 800D10C data set over 50 runs.

measure i.e., EM is reported following the identification of data specific parameterization.

4.2 Experimental Results

All data sets in our work (Table 1) are identified using the convention: XDYC, where X represents the dimen-
sionality and Y specifies the cluster count of data set, e.g. 1000D10C is a 1000-dimensional data set with 10

subspace clusters embedded in it. As noted above the data sets have 50 to 1000 dimensions, 1000 to 4000 instances,
subspaces with 10 to 100 attribute count, and 3% to 43% coverage per subspace cluster. Within-cluster values
are sampled from different distributions making hyper-spherical, hyper-rectangular, hyper-ellipsoidal, and mixed
subspace clusters. Table 1 summarizes data sets properties.

A sample violin plot depicting the distribution of each performance w.r.t. the 50 ESC solutions on 800D10C is
shown in Figure 5. The first column shows the primary (compactness) objective values. Columns 2, 3 and 4 report
simplicity category measures: subspace cluster centroids count (SCC#), total number of attributes indexed by CS
(Attr#), and average number of attributes per SCC (AttPerSCC#). Three accuracy category measures appear in
columns 5, 6 and 7: detection rate (DR), accuracy (Acc), and purity of a CS (Pur). The ratio of irrelevant attributes
to indexed relevant attributes (Idx Rel), and the ratio of irrelevant attributes to total relevant attributes (Tot Rel)
represent the relevancy measures (columns 8 and 9) and are followed by time column representing the efficiency
of the algorithm in terms of CPU time in seconds.

Appears in CEC’12 under IEEE copyright 9

Figure 6: Median of detection rate as a representative of accuracy measures category for different methods.

Figure 7: Median of (log) runtime for different methods on a common CPU platform.

In order to summarize this information for a meaningful comparison between the four methods and five data
sets we utilize a representative measure from each category, and use the median values to establish a performance
point for each method over all data sets. Class-wise detection rate (DR) will represent the accuracy category, total
attribute count of a CS (Attr #) represents partitioning simplicity, the relevancy of a CS is determined by the ratio
of relevant over irrelevant attributes (Idx Rel), and efficiency of a CS is shown by algorithm runtime. Figures 6 to
9 summarize performance under each of the four performance metrics across the clustering algorithms and data
sets.

As Figure 6 shows, out of the five data sets, ESC and EM most consistently return solutions with the strongest
DR. Naturally, ESC does so without data set specific parameter tuning (required for EM) and addresses the
identification of subspaces (EM solutions utilize all attributes). Conversely, PROCLUS always produces the poorest
solutions, and MINECLUS fails to return results for data sets with more than 200 attributes.

The runtime curve of MINECLUS in Figure 7 clearly shows a strong rise as dimensionality increases from 50 to
200 attributes precluding its utility on the larger data sets. PROCLUS is by far the fastest method among the four,
however, it returns the least accurate results. ESC appears to scale gracefully as dimensionality increases. Thus,
ESC takes almost the same time producing results for the 50 dimensional data set as the 500 dimensional data set.
Indeed it appears that the ESC runtime is strongly dependent on data set cardinality rather than dimensionality.
This is illustrated by comparing the cardinality of the 800- versus 1000-d data sets: the runtime of the latter is
shorter care of its smaller instance count, or 2103 versus 3814.

Cluster simplicity curves are summarized in Figure 8. ESC consistently provides very simple results with no

Appears in CEC’12 under IEEE copyright 10

Figure 8: Median of (log) attribute count as a representative of simplicity measures category for different methods.

Figure 9: Median of irrelevant attribute count / relevant attribute count as a representative of relevancy measures
category for different methods.

Appears in CEC’12 under IEEE copyright 11

more than: 3 attributes per subspace cluster or a maximum of 20% of the total attributes per clustering solution
for the lower-dimensional data sets (< 500); and no more than 10 attributes per subspace cluster or a maximum
of 10% of total attributes per clustering solution for high-dimensional data sets (> 500). This, however has one
exception: when ten 10-d subspace clusters are embedded in a 1000-d data set along with 900 irrelevant attributes.
Since the average dimensionality of subspaces are known to PROCLUS as an input parameter, PROCLUS returns
results that are slightly simpler than ESC results; albeit without matching the DR of ESC.

Attribute relevancy (Figure 9) is only evaluated for subspace clustering algorithms since EM uses all attributes
for each cluster. Although ESC is the best approach in this regard on data sets between 50 and 800 dimensions;
the relevancy is not as good on 800- and 1000-d data sets. The challenge in the 800-d data set is that the attribute
support set of different clusters vary significantly from 10 to 100, whereas the challenge of the 1000-d data set
is that 90% of attributes are not relevant to the clustering task. These two reasons underlie the inability of all
methods to consistently identify relevant attribute subsets.

In addition to the performance measures mentioned above it should also be considered that it usually takes a
long time to tune parameters for MINECLUS and EM, whereas parameters for PROCLUS and ESC are straight-
forward to identify. Moreover, MINECLUS, PROCLUS, and EM parameters are data set dependant; whereas as
demonstrated here ESC parameters are robust across a set of data sets.

Another factor to recognize is that values used to generate all curves in Figures 6 through 9 are the medians
of performance measures of solutions laying on the centre of the Pareto front from NSGA-II (process 3). We
introduced a simple heuristic to sample a single solution from each run, where this has a bias for selecting
the solution with the midpoint performing compactness–cluster count. It seems necessary to design a more
sophisticated pruning method for ESC Pareto fronts. For example if we manually prune the pool of PF solutions
to include only the best 10% of PF solutions, the median DR for 800-d data set, for instance, would improve from
the current value of 0.73 to 0.84, and from 0.40 to 0.48 for the 1000-d data set.

5 Conclusion

A new method for subspace clustering is presented. This work utilizes a hierarchical data structure to assemble
subspace cluster centroids from a grid of 1-d cluster centroids. The task of finding the best combination of
subspace cluster centroids is converted into a combinatorial search. To do so, an endosymbiotic relation is adopted
for defining a population of SCC independently from the population of candidate cluster solutions; thus each
CS represents a combination of individuals from the SCC population. ESC is applied to a variety of artificial
synthetic data sets ranging from 50 to 1000 attributes, and 1000 to 4000 instances, with different characteristics.
ESC solutions demonstrated better accuracy and simplicitly compared to its competitors in most cases. Moreover,
the computational cost of ESC appears to be a function of exemplar count as opposed to dimensionality.

In [7] connectivity was demonstrated to be an effective secondary objective in interaction with the primary
compactness objective. However, estimating connectivity under a subspace clustering context appears to be pro-
hibitively expensive [21]. Specifically, the neighbours of each data instance need to be detected anew for each
subspace. Due to this limitation connectivity is not scalable with increasing instance count. One solution to this
problem might be to adopt a subsampling algorithm to reduce the number of instances involved in evaluating the
connectivity objective of a clustering solution. In other words a subset of instances can be used instead of all
instances to calculate the connectivity of a clustering solution. Future work will investigate the impact of adopting
such a scheme.

Acknowledgment

This work is supported by ISSNet - NSERC Strategic Network and NSERC CRD programs. All research was
conducted at the Dalhousie Faculty of Computer Science NIMS Laboratory, http://www.cs.dal.ca/projectx.

References

[1] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, and Jong Soo Park. Fast algorithms for
projected clustering. In ACM SIGMOD International Conference on Management of Data, SIGMOD ’99, pages
61–72, New York, NY, USA, 1999. ACM.

Appears in CEC’12 under IEEE copyright 12

[2] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: ordering points to identify
the clustering structure. In ACM International Conference on Management of Data, pages 49–60, New York, NY,
USA, 1999. ACM.

[3] C. Bacquet, A. N. Zincir-Heywood, and M. I. Heywood. Genetic optimization and hierarchical clustering
applied to encrypted traffic identification. In IEEE Symposium on Computational Intelligence in Cyber Security,
pages 194–201, 2011.

[4] J. M. Daida, C. S. Grasso, S. A. Stanhope, and S. J. Ross. Symbionticism and complex adaptive systems
I: Implications of having symbiosis occur in nature. In Proceedings of the Annual Conference on Evolutionary
Programming, pages 177–186. MIT Press, 1996.

[5] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John-Wiley and Sons, 2002.

[6] E. W. Forgy. Cluster analysis of multivariate data : efficiency versus interpretability of classifications. Biomet-
rics, 21:768–769, 1965.

[7] J. Handl and J. Knowles. An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolu-
tionary Computation, 11(1):56 –76, feb. 2007.

[8] M. I. Heywood and P. Lichodzijewski. Symbiogenesis as a mechanism for building complex adaptive systems:
A review. In EvoApplications: Part 1, volume 6024 of LNCS, pages 51–60. Springer, 2010.

[9] E. Hruschka, R. Campello, A. Freitas, and A. de Carvalho. A survey of evolutionary algorithms for clustering.
IEEE Transactions on Systems, Man, and Cybernetics: Part C, 39(2):133–155, 2009.

[10] M.T. Jensen. Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms.
IEEE Transactions on Evolutionary Computation, 7(5):503 – 515, oct. 2003.

[11] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer-Verlag,
2001.

[12] Y. Lu, S. Wang, S. Li, and C. Zhou. Particle swarm optimizer for variable weighting in clustering high-
dimensional data. Machine Learning, 82(1):43–70, 2011.

[13] G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley-Interscience Publication, 1997.

[14] Gabriela Moise, Arthur Zimek, Peer KrÃűger, Hans-Peter Kriegel, and JÃűrg Sander. Subspace and projected
clustering: experimental evaluation and analysis. Knowledge and Information Systems, 21:299–326, 2009.

[15] Emmanuel Müller, Stephan Günnemann, Ira Assent, and Thomas Seidl. Evaluating clustering in subspace
projections of high dimensional data. International Conference on Very Large Data Bases, 2:1270–1281, August
2009.

[16] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high dimensional data: a review.
ACM SIGKDD Explorations Newsletter, 6:90–105, June 2004.

[17] Anne Patrikainen and Marina Meila. Comparing subspace clusterings. IEEE Transactions on Knowledge and
Data Engineering, 18:902–916, 2006.

[18] D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number of clusters. In
International Conference on Machine Learning, pages 727–734, 2000.

[19] T. Piatrik and E. Izquierdo. Subspace clustering of images using ant colony optimization. In IEEE International
Conference on Image Processing, pages 229–232, 2009.

[20] I. A. Sarafis, P. W. Trinder, and A. M. Z. Zalzala. Towards effective subspace clustering with an evolutionary
algorithm. In IEEE Congress on Evolutionary Computation, pages 797–806, 2003.

[21] A. Vahdat, M.I. Heywood, and A.N. Zincir-Heywood. Bottom-up evolutionary subspace clustering. In IEEE
Congress on Evolutionary Computation, pages 1 –8, july 2010.

[22] E. Vorhees. The effectiveness and efficiency of agglomerative hierarchical clustering in document retrieval.
Phd thesis, Cornell University, Department of Computer Science, Ithaca, NY, USA, 1985.

[23] Man Lung Yiu and Nikos Mamoulis. Frequent-pattern based iterative projected clustering. IEEE International
Conference on Data Mining, 0:689, 2003.

