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Abstract

Scaling genetic programming to organize large complex combinations of programs remains an under investi-
gated topic in general. This work revisits the issue by first demonstrating the respective contributions of coevo-
lution and diversity maintenance. Competitive coevolution is employed to organize a task in such a way that the
most informative training cases are retained. Cooperative coevolution helps discover modularity in the solutions
discovered and, in this work, is fundamental to constructing complex structures of programs that still execute
efficiently (the policy tree). The role of coevolution and diversity maintenance is first independently established
under the task of discovering reinforcement learning policies for solving Rubik’s Cubes scrambled with 5-twists.
With this established, a combined approach is then adopted for building large organizations of code for represent-
ing policies that solve 5 to 8-twist combinations of the Cube. The resulting ‘deep’ policy tree organizes hundreds
of programs to provide optimal solutions to tens of millions of test cube configurations.

1 Introduction

Deep learning architectures emphasize the utilization of layers of neurons in order to represent increasingly ab-
stract features, or a factorized representation [19]. Such a representation is more efficient than the single hidden
layer methodology as epitomized by the support vector machine or multi-layer perceptron. One key development
for constructing such ‘deep learning architectures’ was the adoption of a layer-wise approach to model building,
although many basic issues are still under debate (e.g., is a layer wise approach even strictly necessary and what
representations are most effective and when?). However, it seems safe to say that in general the deep learning
architecture is here to stay.

In this work, we are interested in learning whether very deep organizations of programs can be usefully
discovered and efficiently deployed. The mechanism adopted takes the form of the repeated application of a
genetic programming (GP) metaphor for coevolving teams of programs. Such an approach provides for the
bottom up development of a hierarchy of teams. Each team level is the result of an independent cycle of evolution.
The resulting hierarchy consists of tens of layers of teams, reminiscent of a neural-like topology (each node is a
team of programs, with many teams at the lowest level, and a single team at the top). However, once evolved,
the layers are descended top-to-bottom with only a single team being executed at each level. The action resolved
at each level is to decide which team in the next lower level to execute next. On reaching ‘level 0’ the final team’s
action takes the form of a task specific atomic action (e.g. class label, discrete joystick direction). As such only
a small fraction of the architecture is executed per decision, making such an architecture particularly efficient to
execute despite its overall complexity.

Our underlying interest is to scale GP to increasingly difficult tasks. However, we also recognize the need to
structure the task such that incrementally more difficult instances (of the task) are encountered as additional levels
are evolved. Two basic mechanisms will be adopted for this purpose, competitive coevolution and incremental
evolution. Competitive coevolution will be employed to look after the low-level caching of ‘interesting’ training
configurations. Task transfer will guide the high-level complexification of the task and corresponding cycles of
evolution by introducing sub-tasks of increasing difficulty as the capability of solutions improves.

The task domain adopted in order to illustrate the potential of the approach takes the form of developing
policies to solve the Rubik’s Cube. Factors influencing this choice include: 1) adding additional twists (relative to
the solved Cube configuration) is synonymous with increasing task difficulty, thus the task itself is incrementally

1



Appears in GECCO’17 under ACM copyright 2

tuneable. Specifically, each additional twist of the Cube introduces a requirement to transfer previously evolved
policies as a starting point to solve the new problem as opposed to restarting evolution from a random population
each time; 2) the goal can be defined in terms of a single unchanging objective, thus independent of model
complexity or task difficulty; 3) there are a very large number of states, but there are also invariances/symmetries
in the task that a successful policy should be able to identify and generalize.

In short, we desire the resulting coevolved deep program hierarchy to represent a general policy for solving
progressively more difficult Rubik’s Cubes through a reinforcement learning interaction with the task. Policies
acquired for solving (Cube) sub-tasks over earlier levels of the architecture will be reused at later levels. Competi-
tive coevolution will identify specific Cube configurations that are useful for guiding the development of program
teams. Diversity maintenance will promote the development of multiple policies within any cycle of evolution.
New cycles of evolution will be initiated when either a performance threshold, γ, for the single best individual is
encountered, or a computational limit is encountered. The former condition triggers an increase in task difficulty,
the latter does not. Diversity maintenance implies that multiple policies collectively solve ≥ γ of the Cube config-
urations. Thus, invoking a new cycle of evolution implies that single policies can potentially lever the collective
capabilities of multiple policies from the previous cycle of evolution.

2 Background

2.1 Solving Rubik’s Cubes

The Rubik’s Cube1 is most frequently utilized as a benchmark for informed/heuristic search strategies (e.g., [18]).
The complexity of the task is well known, with in the order of 4.3× 1019 unique states. However, it also possesses
invariances that could potentially be learned as opposed to searched. Where search and learning differ is that the
result of a search process is a sequence of moves that provide a preferably optimal solution to a specific start state.
Changes to the start state require the search process to begin again from scratch. A good search strategy therefore
provides optimal solutions in as small a time–space complexity as possible. Conversely, learning algorithms
attempt to discover general policies that provide solutions to as many task configurations as possible, i.e. the
policy generalizes to unseen instances of the task,2 discovering optimal policies is an added benefit.

The work of El-Sourani et al. proposed a framework for evolving sequences of moves relative to specific
scrambled Cube configurations [8]. Specifically, Group theory was used to define a sequence of four subgroups
(goals) that incrementally guided the search for Cube twists that reached the goal. Each goal represented a (Cube)
subgroup with, say, corner cubies restricted to be in a certain orientation/position whereas edge cubies might be
undefined. The resulting sequence of actions would take the Cube from an initial scrambled state to the solution
state. However, changing the initial scrambled Cube by a single action would require the entire evolutionary
search process to begin from ‘scratch’. Solutions were not policies, just sequences of actions applied relative to a
specific start state, as in a search strategy.

In the case of evolving policies for directly solving Cube configurations, we note three works in particular. The
approach of [3, 20] both encountered limitations from the fitness function. However, a recent study indicated that
approximating a pair of the (Group theoretic) subgroup goals from El-Sourani et al. was sufficient to evolve GP
policies for Cubes scrambled with a 5-twists [23]. Specifically, Smith et al. demonstrate that task transfer between
the policies trained under the first goal (subgroup) could be transferred to that of the second (subgroup). It was
also remarked that policies might be directly evolved relative to the second subgroup without the first. Section 4.2
demonstrates that this is indeed possible, and then extends the 5-twist limit to cover up to 8-twist Cubes (or a 4

order of magnitude increase in the number of states).

2.2 Task transfer and code reuse

Task transfer collectively refers to a body of research in which the basic goal is to use solutions from different yet
related tasks as the starting point to leverage solutions to a new task. To do so, a task is implicitly or explicitly
being decomposed because it is too difficult to solve directly. Early examples included: 1) Incremental evolution
[10] in which a sequence of different goals under the same environment are sequentially solved using the same
population of policies. 2) Layered learning in which a set of independent tasks are solved, one policy per task,
and then recombined either by learning a switching policy or inserting them into a predefined decision tree [25].

1The 3× 3× 3 puzzle will be assumed throughout and ‘Cube’ will hereafter refer to this specific instance of the puzzle.
2Learning algorithms might be used to provide a distance metric for a heuristic search strategy [11, 2], where the distance metric has a lot

of impact on solution optimality. However, this is outside the purview of this work.
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Examples of this in GP include prior decompositions to aid the identification of policies for keepaway soccer [12]
and general solutions to the multiplexer task [1]. More recently, the scope of task transfer has been extended to
include transferring between domains with differing state spaces and goals [26]. For example, a GP population
might provide solutions to the keepaway soccer task and another shooting on goal, whereas a third population
would learn how to transfer these tasks into policies for playing half-field offence [16].

From a GP perspective the code reuse issue has appeared most recently under the general guise of tagging.
Tagging represents a mechanism by which approximate references can be achieved between calling and called
code within the same run [24]. Tagging also appears as a reference mechanism for reusing code from an earlier
run. Specifically, Keijzer et al. take code fragments from an earlier run and organize them into different categories
on the basis of the code arity [14]. Individuals from the referencing population may only define solutions in terms
of trees composed from references to tagged code. Finally, Jaśkowski et al. present a special form of crossover that
identifies code snippets from an earlier run for incorporation into individuals from the present run [13]. In both
cases, the authors recognize that the source of code need not be from the same task.

Generally missing in the above approaches, however, is the ability to explicitly distinguish context when in-
corporating previously evolved code. This is central to the approach adopted here, and explicit in say, layered
learning frameworks for task decomposition, albeit with the use of prior knowledge. Our challenge is to discover
how to reuse the results from previous runs without explicit information regarding what code should be used
where. One framework that does explicitly address this issue is teaming with a (cooperatively) coevolved bidding
mechanism [21, 27]. The output from a team is resolved by executing all the programs and identifying the single
program with ‘maximum’ output. Such a program has won the right to suggest its action, which is just a discrete
atomic action. However, such an action could also be a pointer to a previously evolved team [20], in which case,
a mechanism now exists for hierarchically organizing previously evolved teams. To date such a framework has
been used to construct two layers of code [20, 17, 6, 15, 16], but scaling beyond this to organize a large body of
code into hierarchies of ten or more has not been demonstrated.

2.3 Symbiotic Bid-based GP

As noted above, the cooperative coevolution of programs for GP teams (hereafter symbiotic bid-based GP (SBB))
has been demonstrated as a building block for organizing code hierarchies of depth 2. As such SBB will provide
the basic ‘module’ from which we will construct much deeper organizations of code, hence will be summarized
in more detail. A total of three populations appear in the original SBB formulation [20, 6, 17] as employed here:
point population, team population and bid-based program population.

Point population (P) defines the initial state for a set of training scenarios against which fitness is evaluated. At
each generation some fraction of Point population individuals are replaced, or the ‘point gap’ (GP). In the Rubik’s
Cube task Point individuals, pk, represent initial states for the Cube. For simplicity, the Point population content
is sampled without replacement (uniform p.d.f.) from the set of training Cube initial configurations (Section 4.1).

Team population (T) individuals assume a variable length representation that indexes some subset of the
members of the (bid-based) program population (B). Thus, teams are initialized with a program compliment
sampled with uniform probability over the interval [2, ..., ω]. Fitness is only estimated at the Team population
and a diversity metric (detailed below) used to reduce the likelihood of premature convergence. As per the Point
population, a fraction of the Team individuals are deterministically replaced at each generation (GT).

Fitness evaluation between Point and Team population assumes a Pareto archive formulation [9, 4]; thus, teams
are marked as dominated or not, with dominated Teams prioritized for replacement. Points are rewarded for
providing pairwise distinctions between teams, however, the number of non-dominated individuals is generally
observed to fill the population. A secondary measure for ranking individuals is then employed to maintain
diversity. Specifically, a fitness sharing formulation is employed [22, 9, 21]:

si = ∑
k

(
G(tmi, pk)

∑j G(tmj, pk)

)
(1)

where G(tmi, pk) is the task dependent reward defining the quality of policy tmi on Cube configuration pk.
Bid-based program population (B) consists of bid-based GP individuals that may appear in multiple teams

[21]. Each bid-based individual, bGPi, defines an action, bGPi.(a), and program, bGPi.(p). Algorithm 1 summarizes
the process of evaluating each team relative to a Cube configuration. Each program executes its program (Step
2.(a)) and the program with maximum output ‘wins’ the right to suggest its corresponding action (Step 2.(b)).
Actions are discrete and represent either a task specific atomic action (i.e., one of the 12 quarter turn twists, Step
2.(c)) or a pointer to a previously evolved team (from an earlier cycle of evolution, Step 2.(d)). Unlike Point and
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Algorithm 1 Evaluation of team, tmi on initial Cube configuration pk ∈ P. ~s(t) is the vector summarizing Cube
state (Figure 1) and t is the index denoting the number of twists applied relative to the initial Cube state. A is the
set of atomic actions, in this case the 12 quarter turn twists (clockwise–counter clockwise 90◦ twist to each Cube
face).

1. Initialize state space or t = 0 :~s(t)← pk;

2. While ((~s(t) 6= SolvedCube) AND (t < MaxTwist))

(a) For all programs, bGPj, indexed by tmi execute their programs relative to the current state,~s(t)

(b) Identify the program with maximum output or
bGP∗ = arg(maxbGPj∈tmi

[bGPj.(p)←~s(t)])

(c) IF (bGP∗.(a) == A)
THEN update Cube state with action
s(t = t + 1)← ApplyTwist[~s(t) : bGP∗.(a)]

(d) ELSE tmi ← bGP∗.(a)
GOTO Step 2.(a)

3. ApplyFitnessFunction(~s(t))

Team populations, the size of the Program population floats as a function of the variation operator(s), Table 1 .
Moreover, after GT team individuals are deleted, any program that does not receive a Team pointer is also deleted,
i.e. task specific fitness is only expressed at the level of teams.

Note that Algorithm 1 incorporates the concept of program hierarchy [20, 6, 17, 15]. Specifically, after the
first cycle of evolution, we anticipate that the best team will not outright solve the task. However the diversity
mechanism will reward teams for solving different points. Thus, a second cycle of evolution can be conducted with
entirely new point, team and program populations in which the only difference is that actions in the level of a c+ 1
cycle of evolution are pointers to teams evolved in cycle c. In this way programs can be hierarchically organized
in to policy trees [20, 6, 17, 15]. Evaluation always begins at the single team from the point–team–program
population combination undergoing fitness evaluation. However, until teams from level c = 1 are encountered,
the action associated with a winning program will always be a pointer to a team at a lower level (Step 2.(d)).
Hence, team evaluation is recursive until a first level team is evaluated, returning an atomic action (Step 2.(c)), in
this case one of 12 quarter turn twists.

Given the symbiotic relation between Team and Program populations, variation operators operate hierarchi-
cally [21, 7]. Thus, crossover operates on a pair of parents from the team population. Mutation at the Team
population may add or delete programs, relative to the current Program population content. Finally, Programs
can be modified by first cloning a program and then introducing variation in the program program through
(instruction) add / delete or instruction field specific mutation.

3 Evolving deep program hierarchies

This work will build on the works of [8] and [23] in the following specific ways in order to evolve policies that
provide optimal solutions for Rubik’s Cube configurations scrambled up to 8 twist:

A single subgroup will represent the goal state. This corresponds to the penultimate subgroup from [8], or
G3. The G3 subgroup consists of 6.63× 105 unique states. In comparison there are a total of 4.3× 1019 unique Cube
states spread over 0 to 20 twists. Moreover, transforming between G3 and G4 (the solution Cube configuration)
only employs half turns [8].

Incremental evolution will be assumed to steadily increase the difficulty of the task (Point population content)
from 5-twist to 8-twist. The earlier study of [23] demonstrated that under 5-twist Cube configurations performance
of a single best policy might solve ≈ 80% of the scrambled Cubes. However, other members of the population
typically solve the additional 20% of Cube configurations. Providing that we are able to maintain sufficient policy
diversity, adding more layers will eventually build single policies solving more of the Cube configurations.

Diversity maintenance is fundamental for ensuring that policy diversity within a layer is maintained. This will
be supported through a combined approach of competitive coevolution and fitness sharing (Section 2.3). Without
this we demonstrate that the quality of an individual’s best solution and the cumulative performance across all
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Figure 1: Rubik’s Cube Representation. (a) Unfolded original Cube - {u, d, r, l, f , b} denote ‘up’, ‘down’, ‘right’,
‘left’, ‘front’, ‘back’ faces respectively. Integers {0, ..., 8} denote facelet. (b) Equivalent vector representation as
indexed by GP individuals. Colour content of each cell is defined by the corresponding ASCI encoded character
string for each of the 6 facelet colours across the ‘unfolded’ Cube.

policies is significantly worse (Section 4.2.1).
Algorithm 2 summarizes the process we adopt for incrementally evolving arbitrarily deep policy trees through

multiple independent cycles of evolution. At each evolutionary cycle a new level, c, of teams is added. Each
team in the current cycle may represent a root node potentially solving all test cases (Figure 2). However, the
combination of fitness sharing and competitive coevolution has the potential to ensure that different policies at
each level solve different Cubes.

On each new cycle of evolution, c, the Point and Team populations are initialized to the population size (less
‘Gap’ individuals). P(c, 0) initialization reflects some number of twists applied to a Cube, which when c = 1,
twist = 5, Step 1a. The Team population is initialized and by implication the initial Program population is
initialized with twice as many programs as there are teams (the minimum team size). The main loop of Step 1c
performs up to tmax generations or stops when the best team (tm∗) solves γ = 60% of the Point population content.

A breeder model of evolution is assumed, thus at each generation a fixed number of points (GP) and teams
(GT) are added and deleted, e.g. Steps 1(c)i and 1(c)vii in the case of the Point population. Adding teams implies
that the variation operators are applied, potentially also resulting in the generation of new programs. Step 1(c)iii
represents the inner loop during which fitness evaluation is performed and then fitness sharing enforced (Step
1(c)iv). The best team is identified (tm∗) and then used to test for adding a new cycle of evolution under: the
current Cube (twist) difficulty; or with the next level of Cube difficulty (Step 1d).

Each time a new cycle of evolution completes, a new level is added to a policy tree. Each team in the current
cycle of evolution, c, represent candidate root nodes for a policy tree, were Algorithm 1 defines how execution
passes down through the policy tree until an atomic action is finally returned. Only atomic actions change the
state of the Cube. The underlying hypothesis of this work is that the strength of policies improves as the depth
increases.

The performance function identifies how close a Cube state is to the G3 subgroup [23]. Unlike the earlier work
of [23] we assume that SBB may directly identify policies finding states corresponding to the G3 subgroup without
additional guidance from a separate G2 subgroup. Specifically, fitness is defined by:

G(tmi, pk) = min
t=0,...,twist

(40× oc + 10× pe|tmi, pk, t) (2)

where oc is the count for the number of corners that are not oriented and pe is the count for the number of miss
positioned edges. Likewise, fitness is expressed relative to an initial Cube configuration, pk, and up to a maximum
of twist moves as identified by candidate policy tmi. Note that this is substituted into Eqn. (1) in order to provide
a measure of behavioural fitness sharing, Step 1(c)iv.

As noted above, G3 consists of 6.63× 105 unique (goal) states, each of may then have twists applied to them to
denote a scrambled Cube (Steps 1a and 1(c)i of Algorithm 2). Given that we are interested in developing policies
finding optimal paths to any G3 subgroup configuration we generate extensive databases for twist = {5, 6, 7, 8}
away from the subgroup. Indeed, this step is more expensive than the development of policies, however, it is
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Algorithm 2 Process for incremental evolution of a deep policy tree. twist(= 5) is the number of twists introduced
to create a candidate scrambled Cube relative to the goal state. MaxTwist(= 9) sets a scrambled Cube twist limit.
P(c, t) is the Point population content at level c generation t. T(c, t) is the equivalent for the Team population.
GP, GT are the number of points/teams removed/added per generation. tm∗ records the best team performance
at a scrambled Cube difficulty set by twist.

1. while (twist < MaxTwist)

(a) P(c, 0)← Seed(Psize − GP, Cube(twist))

(b) T(c, 0)← Seed(Tsize − GT , ω)

(c) for (t = 0; t < tmax AND tm∗ < γ; t = t + 1)

i. P(c, t)← Seed(GP, Cube(twist))
ii. T(c, t)← VarOp(GT)

iii. ∀tmi ∈ T(c, t) AND ∀pk ∈ P(c, t)
A. Eval G(tmi, pk)

iv. ∀tmi ∈ T(c, t) : Eval(si)

v. Rank(P(c, t))
vi. Rank(T(c, t))

vii. Delete(P(c, t), GP)
viii. Delete(T(c, t), GT)

ix. Update(tm∗)

(d) if tm∗ ≥ γ then twist = twist + 1

(e) c++

(f) Reset(tm∗)

necessary in order to guarantee the correct validation under test.

4 Empirical Study

4.1 Parameterization

The ‘classic’ 3× 3× 3 Rubik’s Cube is composed from 26 cubies of which 8 are corner, 12 are edge and 6 are centre
cubies. Centre cubies have a fixed location, thus define the colour for each face. Given this overall composition
there are a total of 8× 3+ 12× 2+ 6 = 54 facelets defining the state of any cube configuration. Figure 1 summarizes
the relation between the vector of 54 integers as ‘seen’ by GP and an unwrapped Cube. Each set of 9 integers
represents a discrete face of the cube itself. These faces are identified by their 5th integer { f 4, r4, d4, ..., b4} which
represents the centre facelet and therefore the required colour for each 9 integer set (Cube face).

Parameters for SBB assume those used by [23] and represent the training effort for each cycle of evolution (Table
1). This implies that after a cold start, the GT = 20 new teams are evaluated on Psize = 150 Cube configurations
from the Point population. The 100 Teams carried over from the previous generation only need evaluation on the
GP = 50 new Points introduced at this generation. Thus, there are 8, 000 evaluations per generation and a total of
tmax × GP + 100 = 2, 500, 100 Cube configurations encountered (typically just once) per evolutionary cycle c.

Training commences with Cubes scrambled with twist = 5 quarter turn twists and finishes once twist = 8 is
successfully solved (MaxTwist = 9). The number of training Cube configurations per twist is always 2, 500, 100;
which are repeated if a target Cube twist cannot be solved in a single cycle of evolution. Testing is performed with
an additional 15, 000, 000 unique Cube configurations per twist(= {5, 6, 7, 8}). In all cases, each scrambled Cube
configurations needs solving by a policy in the correct number of twists in order for it to be considered solved (i.e.
the solution is optimal).
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Figure 2: Illustrative example for generic structure of policy trees during evolution at level c. Teams at level c are
under evolution. Teams at any other level are no longer evolved. Arcs represent program actions, e.g. tm1 is a
team with two programs with actions pointing to teams tma and tmd at level c− 1. During execution of team tm1
either team tma or tmd would be selected (Algorithm 1). The process of evaluating programs within a team would
then repeat at levels c− 1 and c− 2. The actions at level c− 2 take the form of atomic actions, thus applying an
action to the Cube.

Table 1: SBB parameters. tmax generations are performed for each cycle of evolution. Team specific variation oper-
ators PD, PA define the prob. of deleting or adding a program. Program specific variation operators Pm, Ps, Pd, Pa
define the prob. of instruction mutation, instruction swapping, and deleting or adding an instruction. ‘cond’ is a
conditional operator that switches the sign of a operand if taken [21, 7].

Parameter Value
Max. Programs per team (ω) 9

Population size (Tsize, Psize) 120, 150

Gap size (GT , GP) 20, 50

PD, PA 0.1
Max. Generations (tmax) 50,000

Programs
Max. Num. instructions 64

Pm, Ps, Pd, Pa 0.1
Operands {+,−,×,÷, cos, exp, log, cond}
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Figure 3: Median percent of 5-twist test Cubes solved across the entire population. Solid curve are individual-wise
performance of team policies. Dashed curves are the cumulative performance assuming descending rank order.

4.2 Results

4.2.1 Role of diversity

In order to construct an effective deep program hierarchy (policy tree) it is necessary for there to be sufficient
diversity of policies as represented by the teams at any level in the hierarchy. Without this there cannot be any
leverage of policy abilities when a new cycle of evolution is invoked (see levels in Figure 2). Moreover, although
2, 500, 100 scrambled Cubes might be encountered during the construction of teams at any level of the policy tree,
at any training epoch there are only Psize = 150 Cube configurations present. Given that we only reward a policy
when it solves a Cube optimally, an efficient decomposition of the overall task between different teams at the same
level of the policy tree is considered desirable. There are two basic components contributing to this:

• the ability of competitive coevolution to archive3 useful Cube configurations for retention within the Point
population between consecutive generations, and;

• fitness sharing maintaining diversity in what Cube configurations different teams (policy trees) are able to
solve.

The contribution of each was validated on the first scrambled Cube twist configuration of twist = 5 and
gamma = 100% in order to remove any other factors from the experiment. Runs were performed with: (1) both
competitive coevolution and fitness sharing enabled or Both; (2) competitive coevolution enabled, but fitness
sharing disabled or Comp. only; (3) competitive coevolution disabled, but fitness sharing enabled or Sharing only,
i.e. GP Cube configurations are selected for replacement entirely randomly at each generation.

Figure 3 summarizes the resulting median performance of the resulting population of policies on the 15, 000, 000
test Cube configurations (expressed as a percentage of Cubes that each team solved optimally). Note that both
the individual-wise performance of each team is expressed and the cumulative performance of the population of
teams (as ordered in descending individual team-wise order). For reference purposes we also included a curve
for the performance of policies as initialized (no training).

A clear ranking appears with support for competitive coevolution having the biggest single impact on the
quality of policies. Moreover, the (ranked) population distributions for each configuration will compared using
the (two-tailed) pair-wise t-Test for: Both-versus-Comp. only; Comp. only-versus-Sharing only; and Sharing only-
versus-Random initial policies (Table 2). Applying a post hoc test in the form of the Holm-Bonferroni method
at the p-values from Table 2 does not change the outcome (Null hypothesis rejected, each sequentially applied
configuration is significantly better than the previous).

3Archive size is the difference between population size and gap Psize − GP = 100.
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Table 2: Statistics for ranked population under configurations representing Both, Competition only, Sharing only
and Initial population of policies as trained/tested on 5-twist Cubes. Two-tailed pair-wise t-Test with α = 0.05.

Both Comp. only Share only Random
Mean 49.22 44.46 17.18 4.07

Variance 1.01 0.98 0.54 0.01

Pair-wise test
Row-V-Column Both Comp. only Share only

Comp. only 3.6× 10−32

Share only 9.9× 10−102

Random 1.05× 10−37

Table 3: General architectural properties of policy trees evolved as task difficulty (twist) increases.

Properties of policy tree
Task 5 twist 6 twist 7 twist 8 twist

# levels (per task) 2 3 13 28

Total levels constructed 2 5 18 46

Properties of best individual
Total # of Teams 17 62 295 887

Total # of Programs 20 115 306 919

Total # of Instructions 785 7185 19,125 54,811

It is also apparent that the population wide diversity is only maintained when both competitive coevolution
and fitness sharing are present. That is to say, in anything other than the ‘Both’ parameterization, the cumula-
tive curves provide little additional increase in the number of test cases solved. However, under the combined
parameterization, not only is the single best individual significantly better than either of the other configurations,
but the cumulative performance of the top 20 teams is sufficient for solving all test configurations. Naturally, this
says nothing about how easy or difficult it might be to resolve the conditions under which switching between the
policy of different teams should take place. This will be the subject of the evaluation of the framework for evolving
deep program hierarchies.

4.2.2 Complexification of policies

Evolution of the deep hierarchy of programs (a deep policy tree) is an interactive process. Given the conditions
for evolving a new level of the hierarchy (Section 3) multiple levels might appear for the same Cube twist count.
Table 3 summarizes the development of levels as a function of Cube twist. Naturally, as the number of Cube
twists increases (synonymous with task difficulty increasing) there is an increase in the number of levels added.
However, what was interesting was the dramatic increase in the number of levels once we reached Cubes scrambled
with 8 twists. Moreover, the number of teams/programs/instructions associated with a solution (policy) is much
higher than the authors have seen reported to date in the literature. It is important to note, however, that only a
fraction of the complexity embedded in a policy tree need be executed per decision. Specifically, only one team per
level is evaluated per (state–action) decision. Thus, even in the case of the most complex policy tree the worst case
number of programs executed would be 46×ω = 432. In comparison, a deep learning neural network architecture
requires all neurons to be evaluated for every single decision, resulting in millions of calculations per action and
a requirement for special purpose hardware support, e.g. GPUs.

Figure 4 provides an illustration of the resulting policy tree for the case of the champion after evolution against
the first two Cube twists (twist = {5, 6}). The first row of nodes are not teams, but illustrate programs employed
by level 1 teams. Nodes at levels 1 through 5 represent teams. Thus, the number of arcs emulating from each
node to the layer below represent the number of programs within a team. The linkage of an arc between a node at
level c and c− 1 represent which team is selected for execution next should the corresponding program provide
the ‘winning bid’ (see also Figure 2 and the associated commentary).
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Table 4: Percent of each Cube twist test set optimally solved for top 5 team policies (rank identified relative to
strongest training performance on highest training level). Training level denotes the maximum level of Cube twist
encountered during training. Test level defines the level of Cube twist deployed during test.

Training level 5 6 7 8

Test level 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

Rank 1 policy 71.7 43.2 11.9 6.5 73.6 67.5 23.5 7.9 71.4 70.1 68.6 29.4 72.6 71.1 64.8 63.5
Rank 2 policy 69.8 40.1 13.9 7.2 71.5 63.0 17.7 7.6 70.6 69.3 66.3 21.8 73.7 71.6 66.0 61.6
Rank 3 policy 67.1 34.7 10.3 7.0 66.4 61.1 23.8 4.9 71.6 70.1 60.6 26.5 75.8 72.5 64.4 57.2
Rank 4 policy 62.3 39.6 11.6 6.2 69.8 56.5 14.0 6.2 71.3 65.3 58.2 13.6 72.1 70.9 63.0 56.6
Rank 5 policy 61.3 31.6 10.8 6.7 72.0 56.2 17.5 7.0 70.8 64.2 57.3 21.2 73.6 71.6 61.5 53.9

Mean 66.5 37.8 11.7 6.7 70.6 60.9 19.3 6.7 71.1 67.8 62.2 22.5 73.6 71.5 63.9 58.6

Table 5: Ranking of the training–test treatments for the Friedman test.

Test Training exposure
set 5-twist 6-twist 7-twist 8-twist

5-twist 66.5 (4) 70.6 (3) 71.1 (2) 73.6 (1)
6-twist 37.8 (4) 60.9 (3) 67.8 (2) 71.5 (1)
7-twist 11.7 (4) 19.3 (3) 62.2 (2) 63.9 (1)
8-twist 6.7 (3.5) 6.7 (3.5) 22.6 (2) 58.6 (1)

Avg. Rank (Rj) 3.875 3.125 2 1

4.2.3 Generalization

So far we have demonstrated the contribution of competitive coevolution and fitness sharing within a single layer,
and the non-linear relation between the number of Cube twists employed to scramble Cubes and the number
of policy tree levels incrementally introduced during training. Naturally, unless the resulting models generalized
over the test partition (15, 000, 000 unseen Cube configurations per twist) there would not be any point in pursuing
such complexity. Table 4 summarizes performance of the top five ranked policies (from the population) over the
test partition as each additional twist is added to the Cube.

The Friedman test may now be applied to establish the significance of the treatment, in this case does pro-
viding additional twists result in stronger policies [5]. Specifically, the Friedman test provides a non-parameteric
alternative to the repeated measures ANOVA test. First the ranks of the average model performance are identified
(Table 5), the null hypothesis that we are initially attempting to reject is that there is no pattern to the ranking. If
the null hypothesis can be rejected, then the Nemenyi post hoc test will be applied to establish the significance.

The resulting Freidman statistic (χ2
F) has a value of 11.375, whereas the number of degrees of freedom are k = 4

and n = 4. The corresponding critical value for a significance level of 0.1 is 6.3, hence the null hypothesis is rejected
(i.e., χ2

F > 6.3). Applying the Nemenyi Post Hoc test defines the critical difference: CD = qα

√
k(k + 1)÷ (6N) by

which models should differ for a significant difference to appear. Again assuming a significance level of 0.1 implies
that qα = 2.291, resulting in a CD of 2.09. For a significant difference to appear there needs to be a difference in
the pairwise average ranks of CD + Rj. Relative to Table 5, the 7- and 8-twist treatments are significantly different
from the 5- and 6-twist cases.

In summary the following general properties are apparent: (1) During training a performance threshold for
the single best individual policy γ = 60% was assumed. On the first instance of satisfying a new performance
goal (Training level twist, Table 4) the resulting test performance is in the interval of 60− 70%. (2) As more twists
are introduced during training, the performance of policies under earlier Cube twist counts continues to see small
improvements.4 Thus, solving Cube configurations with a larger twist count does not detract from the ability to
solve Cube configurations at the lower twist counts. Moreover, the average performance of the top five policies
generally improves as performance improves on the later twist counts. (3) Performance on as yet unseen Cube
twists (e.g. a policy trained on 5-twist Cubes, but tested on 6-, 7-, 8-twist Cubes) appears to drop off by at least
40% for each additional twist. This might be correlated with the ≈ 30% change in state between consecutive twists.

4A 1% improvement in the number of Cube configurations solved corresponds to an additional 150, 000 Cube configurations.
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5 Conclusion

A framework is proposed for incrementally evolving deep policy trees. Each ‘node’ of the resulting tree is a team
of programs. Evolution appears in multiple independent cycles, each cycle evolving a new set of root nodes to
potential policy trees. Policy trees are evolved bottom up (starting from policies consisting of a single node team
at level 1). As additional cycles of evolution are performed, the new teams learn to select between teams evolved
at the previous cycle. This means that large numbers of teams and programs (representing tens of thousands of
instructions) can be organized, yet still be ‘light weight’ to execute (in comparison to, say, the computational cost
of deep learning or monolithic GP).

The framework is validated using a scalable approach to solving Rubik’s Cube configurations through rein-
forcement learning. Thus, a policy tree needs evolving in which the goal is to solve a scrambled Cube in the
optimal number of steps. We demonstrate that competitive coevolution and fitness sharing are critical compo-
nents of the framework. Testing on 4× 15 million = 60 million unseen test Cubes indicates that the best single
policy is able to solve ≈ 68% of the test Cubes optimally, or 40.8 million Cubes.

Future work will consider alternative parameterizations in which the training target is increased from 60% of
the training Cubes solved, to say 80% of the Cubes solved. What impact this would have on the complexity of the
resulting policy trees remains to be seen.
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Figure 4: Graphical representation of a 6-twist policy tree where only (approximately) the 80% most used edges
are accounted for.


