
Initiating a Moving Target Network Defense with a Real-time
Neuro-evolutionary Detector

Robert J. Smith1, A. Nur Zincir-Heywood1, Malcolm I. Heywood1, and John T. Jacobs2

1Faculty of Computer Science, Dalhousie University, Halifax, NS. Canada
2Raytheon Space and Airborne Systems, 6380 Hollister Av. Goleta, California 93117-3114

Article originally appears at GECCO’16 Companion under ACM copyright 2016

Please cite http://dl.acm.org/citation.cfm?doid=2908961.2931681

Abstract

The moving network target defense (MTD) based approach to security aims to design and develop capabilities
to dynamically change the attack surfaces to make it more difficult for attackers to strike. One such capability is to
dynamically change the IP addresses of subnetworks in unpredictable ways in an attempt to disrupt the ability of
an attacker to collect the necessary reconnaissance information to launch successful attacks. In particular, Denial
of Service (DoS) and worms represent examples of distributed attacks that can potentially propagate through
networks very quickly, but could also be disrupted by MTD. Conversely, MTD are also disruptive to regular users.
For example, when IP addresses are changed dynamically it is no longer effective to use DNS caches for IP address
resolutions before any communication can be performed. In this work we take another approach. We note that the
deployment of MTD could be triggered through the use of light-weight intrusion detection. We demonstrate that
the neuro-evolution of augmented topologies algorithm (NEAT) has the capacity to construct detectors that operate
on packet data and produce sparse topologies, hence are real-time in operation. Benchmarking under examples of
DoS and worm attacks indicates that NEAT detectors can be constructed from relatively small amounts of data and
detect attacks ≈ 90% accuracy. Additional experiments with the open-ended evolution of code modules through
genetic program teams provided detection rates approaching 100%. We believe that adopting such an approach to
MTB a more specific deployment strategy that is less invasive to legitimate users, while disrupting the actions of
malicious users.

1 Introduction

Network security metaphors often take the form of walls, the more walls that are involved the more secure the
system, i.e. defense in depth. Systems are secured by surrounding themselves by, say, two walls with varying
degrees of security at each. Getting messages to the users of the inner wall requires a verification and obfuscation
process typically handled by a firewall with designated messengers (proxies) speaking for the outside and inside
worlds separately. However, even virtual walls tend to be difficult to adapt to new circumstances over time. Thus,
while network technology is evolving at a rapid pace, the walls by which we secure that technology still tend
to operate on the same notions from prior technological generations: sometimes operating efficiently is more
important than protecting against attacks targeting the system. The notion of securing networks has become more
important over time as the number of potential attack vectors increased through the proliferation of ubiquitous
computing and globalized networking (such as the Internet). Thus even modern network configurations are
largely static. Digital network components such as addresses and subnet configurations continue to be largely
unchanged due to the convenience of having a fixed parameter set.

A Moving Target (Network) Defense (MTD) attempts to embody the concept that a malleable, changing system
is more effective for combating attackers than a largely stationary one [1, 3, 16]. Different forms of ‘moving
target’ defence have been proposed, for example, searching for ‘good’ computer configurations that are deemed
more secure relative to a prior set of criteria [7]. In this research, given the overheads of performing MTD at
the network level, we concentrate on identifying the condition(s) under which to initiate a MTD for network
reconfiguration under a software defined networking (SDN) approach. Thus, from the big picture perspective,
having a static network configuration confers many advantages to the attacker, giving them time for planning
attacks and gathering network information. However, if we provide our network with some form of effective

1



Appears in GECCO’16 Companion under ACM copyright 2

MTD, we should be able to narrow the temporal factors of the information gathering process [5, 6]. That is to
say, assuming that information for planning an attack has been collected, by the time that the attack is initiated,
the network ‘connectivity’ has changed. Increasing product support for ‘software defined networks’ provides the
opportunity to carry the concept of a malleable, changing network closer to that of an autonomous system.

In this research, we propose to treat the MTD as a policy which is enacted once suspicious behaviour is iden-
tified. The MTD is only initiated relative to the detection of specific network behaviours. Recent demonstrations
of MTD have focused on the capacity to resist Worm attacks (e.g., [5, 6]). Hence, if we can demonstrate robust
detection of such attacks, a software defined network can then explicitly introduce defensive actions such as a
complete MTD (or MTD targeting specific services / ports) depending on the policy assumptions. To do so, we
construct a packet generator for a cross-section of packet ‘types’, and then assume a neuro-evolutionary approach
for constructing detectors. We demonstrate that rather than aiming to learn everything, we can build ‘expert’ de-
tectors which can identify different types of attacks. An analysis of possible contradictions in the labels provided
by each detector is then used to construct a detector for resolving exceptions, or real-time forensics. Adopting such
a strategy enables us to incrementally build new detectors for different types of attacks and specifically resolve
exceptions when they appear. The resulting framework is benchmarked through a simulated SDN, where an SDN
provides the flexibility necessary to support the automation of network counter-measures in practice.

2 Background

Moving Target Defense (MTD) attempts to address key issues with static network configuration [3]. One of the
major criticisms of classic network design and security is that the addresses are typically statically assigned by a
naming service (e.g. DNS). This issue is likely due in part to the limited IPv4 address space. However, there are
several proposed solutions to overcome the static addressing issue. One such work attempted to create a temporal
naming system which would create identifiers for host pairs on a network and regularly rotate identifiers which
have been in use for extended periods of time [1, 3, 16]. By creating a real-time unique mapping for hosts and
IP addresses they could limit the exposure of intra-network information gathering by rearranging the way hosts
communicate within a given network based on pre-determined temporal parameters. Another approach is to
provide rotational addressing using software defined networks and OpenFlow controllers [5].

The bottom line is that each host is associated with different unique subsets of (pseudo) IP addresses. This
implies that only host X may communicate with host Y using this IP address. Moreover, the interval of time
for which this host-IP ‘binding’ holds is also a stochastic parameter. Earlier works for MTD also introduced a
temporal scheme for ‘IP hopping’ [1] or were incompatible with current network protocols [16]. Conversely, Jafar
et al. maintain compatibility with current IPv4 and IPv6 networks and also introduce a spatial element to the
randomization process for constructing (pseudo) IP addresses.

The underlying approach of [5, 6] is to create a name-to-address mapping that is a function of both source
identity as well as time of the request. In their work, each source needs a range of addresses for the temporal
hops. The wider the range of such addresses is the greater the potential for hiding the true identity of network
structure. Conversely, if addresses are just periodically switched, the same association between nodes exists. Jafar
et al. avoid this because hosts are also subject to different periods of time during which their name-to-address
mapping holds. This is based on the host spatial locations.

The network infrastructure to support such a process, consists of two components, a controller and a gateway.
A gateway performs the translation from real IP to pseudo IP addresses used on a subnet. It is the controller
that acts as the name server responsible for distributing spatiotemporal mappings between host pairs and their
(pseudo) IP addresses. Thus, each time that communication between a pair of hosts is necessary, the gateway is
contacted in order to find the relevant pseudo address. Every message sent has to be verified by the name server
before communication can take place. The penalty for this is the extra cost of having to repeatedly communicate
with gateways due to the temporal nature of the translation between real to pseudo IP addresses, i.e. the changing
of addresses on the institutional (local) network quickly becomes irrelevant. Moreover, even under a MTD, the
gateway has to assume a static address in order for each host to contact it. This means, that the gateway can
always be identified, turning it into a static target.

3 Methodology

Previous research with a MTD articulated a basic goal of reacting to Worm attacks, but without actually simulating
the action of the proposed framework on a network [5, 6]. Hence, a policy is established for modifying the network



Appears in GECCO’16 Companion under ACM copyright 3

Figure 1: Architecture of a SDN-based simulated network for data generation and evaluation. Detectors (or ‘AI’)
appear at each host. Gateway node represents the location for a name server (DNS). Under MTD all requests for
(pseudo) IP would first have to visit the gateway as no caching at a host is possible.

(the MTD), but as a consequence introduce limitations in terms of responsiveness (as reviewed in Section 2). In
this work, we will take a data driven approach to first detecting the types of attack and then on detection, we will
initiate a MTD as a policy decision using a simulated SDN. Given the emphasis of MTD with regards to combating
Worm attacks we will use the detection of such attacks as the basis for evaluating our MTD initiator.

Detectors will operate on TCP packet header and payload information in order to provide real-time operation
for the detectors. Detectors will be developed for specific classes of attacks using the data formats discussed in
Section 3.1

3.1 Packet Format

TCP packet format is modelled in terms of 5 categories of information:

1. Source IP – 4 bytes

2. Destination IP – 4 bytes

3. Source Port – 4 bytes

4. Destination Port – 4 Bytes

5. Payload – 32 Bytes (8× 4)

Thus, from a detector’s perspective packets consist of 48 bytes or 12 integers. Potentially these values provide
12 attributes from which to construct the detector. However, a neural representation will be assumed for the
detector in which case each neurone performs the operation: y = f (net) and net = ∑ wixi where f (·) is the
sigmoid activation function. Learning gradients will only exist if the attributes are normalized such that most
of the variation in attributes appears in the transition region of the activation function. With this in mind, all 12
attributes are normalized to the interval [−1.0, 1.0].

Three classes of packets will be generated: Normal, LAND, and Worm. Normal traffic packets were designed
to communicate data between hosts on a 10.0.0.X network where 1 ≤ X ≤ 17. Specifically, four hosts appear on
each of three routers and one router has five hosts: 4× 3 + 5 = 17 (Figure 1). This corresponds to the complexity
that might appear in a class C network within a university campus or government / commercial organization.
The ports could be anything in the port range, the IPs were always on the network, and the payload represented
hashes on a database of text phases.

LAND packets represent DoS attacks in which the objective is to trick host(s) into opening all their ports. At
the packet level this amounts to explicitly requesting a source and destination IP address with the same value.1 All

1http://www.juniper.net/techpubs/en_US/junos12.1/topics/concept/denial-of-service-network-land-attack-understanding.
html



Appears in GECCO’16 Companion under ACM copyright 4

the remaining attributes assumed properties that overlapped with the definitions used for a normal packet. Worm
packets were designed to specifically attack port 139 (i.e. as per the Sasser worm) with a buffer overflow, i.e. an
internal propagation or IntProp exploit.2 The payload in this case takes the form of ASCII character sequences (as
opposed to the hashed text of normal or LAND packets). In short, we are emphasizing light-weight detection at
the packet level. More detailed detection could take place at the behavioural level (say, in terms of network flow
preprocessing), but only at the expense of no longer supporting real-time operation. Moreover, features might
also be designed to ‘recognize’ specific attacks, however, doing so also potentially leads to brittle ‘signature style’
detectors that can be evaded by mimicry style attacks (e.g., [8]). In this work, we therefore require our light-weight
detector to recognize general properties within single packets that can potentially mark it as malicious. Given that
flagging an attack would then initiate a MTD, additional forensic analysis could be performed in parallel to resolve
the nature of attacks in greater detail.

3.2 Neuro-evolution

Two independent detectors are evolved one for detecting each threat. In this case, the NEAT framework was
assumed for each detector (Section 3.2.1). The question then arises as to how to combine the two detectors (building
a combined detector is possible, but implies that any updates to the detector requires a complete reconstruction).
One possible approach could be to evolve a third network, the gate, which learns under what conditions to
switch/mix between either of the ‘experts’. In practice, a simpler solution was found by using the output of
each expert to explicitly flag ambiguity. That is to say, a committee architecture using gating is appropriate when
ambiguity exists between the expert outcomes. However, in this setting the cases corresponding to erroneous
detection were most likely to be flagged by the ability of detectors to actually flag ambiguity.

In the following, we first summarize the properties that make neuro-evolution through NEAT particularly
useful. Then, we establish the design approach adopted for disambiguation of detectors. Section 4 will present
the empirical findings within the context of the system design established below.

3.2.1 NEAT

Neuro-evolution of Augmenting Topologies (NEAT) is an approach to neuro-evolution in which crossover context
is explicitly supported [12, 13], i.e. previous to the NEAT algorithm, there was no basis for contextual infor-
mation. Thus, arbitrary switching groups of neurones between two parents would result in children with very
ineffectual behaviours. Conversely, NEAT makes use of a genotype that explicitly marks unique links (between
nodes) and therefore provides the basis for enforcing minimal levels of structural context between pairs of par-
ents. Moreover, the NEAT algorithm leverages the concept of complexification, where the initial population is
limited to single neurones, and incrementally lets the neural network (NN) topology ‘complexify’ as the search
process progresses. In short, instead of relying on user-made neural networks with which the algorithm attempts
to properly re-weight, the algorithm begins with some base neurone (typically a fully connected bipartite graph
between input nodes and output nodes) and attempts to incrementally modify the network structure by adding
nodes throughout the learning process. This means that if the task is linearly separable, then such solutions will
be found first. Conversely, if the task is not linearly separable, then NEAT will incrementally ‘complexify’ the
topology as opposed to the user having to guess an appropriate non-linear representation.

Since the initial development of NEAT, there have been multiple frameworks developed for evolving neural
networks with contextual information (e.g., EANT [10], rtNEAT [11]). However, in this research the original NEAT
algorithm is considered complex enough for the purposes of this task. The specific code distribution assumed in
this work is that of jNEAT.3

3.2.2 Committee machines

Real-time operation requires a ‘light-weight’ detector, implying that the detectors should be as efficient as possible.
Thus, increasing accuracy of the detector(s) by large numbers of classifiers in parallel to construct an ensemble
against which majority voting is performed would not be appropriate. Conversely, assuming a gating architecture
as popularized by the ‘mixtures-of-experts’ framework (e.g., [4]) could potentially represent a viable approach that
also remains light-weight. The gate represents a neural network that learns under what conditions to switch and
/ or mix between the labels suggested by the experts. However, such architectures provide most leverage when
experts consistently disagree over a significant portion of the classification task. Instead, for the most part the

2http://www.iss.net/threats/172.html
3http://nn.cs.utexas.edu/?jneat



Appears in GECCO’16 Companion under ACM copyright 5

Table 1: Interpreting the outcome from the LAND (DoS) and Internal Propagation (worm) detection ‘expert’ neural
networks. As long as both experts do not label the same packet as an attack no corrective action is necessary. If
both experts label the packet as an attack a third ‘disambiguation’ network is deployed

NEAT expert Interpretation Action
LAND (DoS) Int Prop (Worm)

0 0 Normal packet valid
0 1 Worm packet valid
1 0 LAND packet valid
1 1 Ambiguous invalid

experts – NEAT trained to recognize single attack types – are accurate. What potentially could also be corrected,
without reference to some external oracle, is the case when they both attempt to label a packet as different types
of attack, see Table 1, or a form of forensic disambiguation.

Training of the expert networks is performed using 320 training packets and 400 validation packets each. At the
end of this process the ambiguous scenario from Table 1 accounts for ≤ 6% of the data expert networks employed
for training. We can then use the trained expert networks to bootstrap the data generation process such that
40, 000 packets are created that conform to the ‘ambiguous’ expert outcome.4 These packets were then divided
into 10, 000 each for training and validation and 20, 000 for test purposes. Training of each expert network was
performed for 400 generations whereas 1, 000 generations were used to evolve the disambiguation neural network.

In all cases the fitness function takes the form of the multi-class detection rate, where the per class detection
rate has the form:

DRc =
tpc

tpc + f nc
(1)

where tpc, f nc are the counts for true positive and false negative rates w.r.t. class c.
The multi-class detection rate now has the form:

DR =
1
C ∑

c=[1,...,C]
DRc (2)

Under the expert networks the C = 2 or normal and malicious, whereas under the disambiguation network the
two classes take the form of LAND and IntProp.

3.3 Teams of Programs

A second framework in which task decomposition forms a central theme is that of teams of programs (a genetic
programming paradigm). Specifically, the SBB framework will be assumed where this enables the size of teams
to be discovered as well as the programs [2].5 SBB employs two populations, a team population and a program
population. Each individual from the team population (tmi) defines a candidate team by indexing a subset of
programs from the program population. In assuming a variable length representation, team size is evolved.
Programs (symj) learn context for suggesting a class label. With respect to team, tmi, and packet, pk, only program
sym ∈ tmi with maximum output under packet pk wins the right to suggest its label. Such a framework has
demonstrated the capacity to decompose classification tasks through cooperative coevolution [9].

4 Empirical Study

4.1 Parameterization

As detailed in Section 3.1, the state of our packet structure is expressed as a vector of 12 floating point values
derived from the data in our custom designed packets. Each integer represents a component of the custom packet,
including source and destination IP addresses, source and destination ports, sequence number, acknowledgement

4Implies that roughly 800, 000 packets were created to do so.
5jSBB implementation employed from https://web.cs.dal.ca/~mheywood/Code/



Appears in GECCO’16 Companion under ACM copyright 6

Table 2: NEAT Parameters. Both Expert NN and Disambiguation NN were generated using the same parameters.

Parameter Value
p_trait_param_mut_prob 0.5
p_trait_mutation_power 1.0

p_linktrait_mut_sig 1.0
p_nodetrait_mut_sig 0.5
p_weight_mut_power 2.5

p_recur_prob 0.0
p_disjoint_coeff 1.0
p_excess_coeff 1.0

p_mutdiff_coeff 0.4
p_compat_threshold 3.0
p_age_significance 1.0
p_survival_thresh 0.2

p_mutate_only_prob 0.25

p_mutate_random_trait_prob 0.1
p_mutate_link_trait_prob 0.1
p_mutate_node_trait_prob 0.1

p_mutate_link_weights_prob 0.9
p_mutate_toggle_enable_prob 0.2
p_mutate_gene_reenable_prob 0.05

p_mutate_add_node_prob 0.03

p_mutate_add_link_prob 0.08

p_interspecies_mate_rate 0.0010

p_mate_multipoint_prob 0.3
p_mate_multipoint_avg_prob 0.3

p_mate_singlepoint_prob 0.3
p_mate_only_prob 0.2
p_recur_only_prob 0.0

p_pop_size 500

p_dropoff_age 50

p_newlink_tries 50

p_print_every 10

p_babies_stolen 0

p_num_runs 1

p_num_trait_params 8

epoch 1,000

number, and a payload. The integers were then divided by the maximum value a signed integer could represent
to produce a float in the interval [0.0, 1.0] (see Section 3.1 for the rationale).

There is potentially a large number of parameters that could be tuned when evolving neural networks with
NEAT, a complete declaration is provided in Table 2. However, most of these follow from the defaults provided in
the jNEAT implementation. One area in which we diverged from the typical parameterization was with respect to
the disambiguation network. In particular, although NEAT initializes with networks defined by a single neurone,
each neurone is fully connected. Parameters were therefore modified for the disambiguation network in order to
encourage the removal of links, thus promoting the design of neural network topologies that did not necessarily
index all the attribute space. From the larger topological perspective, this also introduced a bias to finding sparse
topologies.

4.2 Results with NEAT

As there are a total of three independent networks, we will consider each one alone and then look at the combined
results.



Appears in GECCO’16 Companion under ACM copyright 7

Figure 2: Example fitness (upper curve) and speciation (lower curve) for the LAND expert over time. Note the
periodic resetting of species as plateauing / stagnation is detected.

Figure 3: Example NN topology representing the LAND expert.

4.2.1 LAND Expert

The LAND network needs to distinguish the difference between normal and LAND (i.e., DoS) attacks (see Section
3.1). Figure 3 provides an example of a typical training curve, and Figure 2 provides an illustrative topology of
a champion solution post training. From the resulting topology, it is clear that the task is not linearly separable,
but likewise the resulting network is also reasonably sparse. Table 3 summarizes the confusion matrix for test
performance in terms of the median over 20 independent runs. We also note the performance under test of the
best individual as identified from training, where this reflects the performance of the individual that would be
deployed in practice.

4.2.2 Internal Propagation Expert

The Internal Propagation network needs to distinguish the difference between normal and Internal Propagation or
IntProp (i.e., worm) attacks (see Section 3.1). Figure 5 provides an example of a typical training curve, and Figure
4 provides an illustrative topology of a champion solution post training. Clearly a more complex topology results
under the LAND attack, implying that the identification of an internal propagation (IntProp) attack is a more

Table 3: Confusion matrix for LAND NN. Mean performance (%) of 20,000 Test packets (best individual). Results
averaged over 20 runs.

Actual NEAT expert
Label LAND Normal

LAND 86.8 (93.8) 13.2 (6.2)
Normal 15.3 (9.0) 84.7 (91.0)



Appears in GECCO’16 Companion under ACM copyright 8

Figure 4: Example fitness (upper curve) and speciation (lower curve) for the Internal Propagation expert over time.
Note the periodic resetting of species as plateauing / stagnation is detected.

Table 4: Confusion matrix for IntProp NN. Mean performance (%) of 20,000 Test packets (best individual). Results
averaged over 20 runs.

Actual NEAT expert
Label IntProp Normal

IntProp 82.9 (92.9) 17.1 (7.1)
Normal 12.7 (7.6) 87.3 (92.4)

demanding task than detecting LAND attacks. Table 4 summarizes the confusion matrix for test performance in
terms of the median over 20 independent runs. We also note the performance under test of the best individual as
identified from training, where this reflects the performance of the individual that would be deployed in practice.

4.2.3 Disambiguation Network

The Disambiguation network needs to distinguish the difference between LAND and Internal Propagation attacks,
or the ‘conflict’ case of Table 1, Section 3.1. Figure 7 provides an example of a typical training curve, and Figure 6

provides an illustrative topology of a champion solution post training. This is the most demanding task, however,
sparseness is also widely apparent. Table 5 summarizes the confusion matrix for test performance in terms of the
median over 20 independent runs. We also note the performance under test of the best individual as identified
from training, where this reflects the performance of the individual that would be deployed in practice.

4.2.4 Combined performance

Sections 4.2.1 through 4.2.3 discussed performance on an individual-wise basis. Here, we review the overall
‘system’ performance. The relative complexity of each NN comprising the overall architecture is summarized in
terms of the respective node counts (Table 6). These results reinforce the observations made in the earlier sections,
with LAND detection representing the simplest task and the final disambiguation step being the most complex.

Overall detection rates for the system under unseen test conditions are summarized in Table 7. This reflects
the average Detection rate of each class under test conditions: 10,000 normal; 5,000 LAND; 5,000 IntProp. packets.
None of this data was used to construct models. Also summarized is the best of model performance, as in the
test performance of the best individual as identified from the training conditions. In short, the model deployed

Table 5: Confusion matrix for Disambiguation NN. Mean performance (%) of 20,000 Test packets (best). Results
averaged over 20 runs.

Actual NEAT expert
Label IntProp Normal

IntProp 83.3 (90.8) 16.6 (9.2)
Normal 16.6 (9.7) 83.4 (90.3)



Appears in GECCO’16 Companion under ACM copyright 9

Figure 5: Example NN topology representing the IntProp expert.

Figure 6: Example fitness (upper curve) and speciation (lower curve) for the Disambiguation NN over time. Note
the periodic resetting of species as plateauing / stagnation is detected.

Table 6: Relative complexity of each NN.

Neural Network Mean node count Std. Deviation
LAND (DoS) 13.3 3.39

IntProp (worm) 17.8 2.71

Disambiguation 65.5 11.24



Appears in GECCO’16 Companion under ACM copyright 10

Figure 7: Example NN topology representing the Disambiguation neural network.

Table 7: NEAT – Overall confusion matrix. Mean performance (%) of 20,000 Test packets (best individual). Results
averaged over 20 runs.

Actual NEAT
Label Normal LAND IntProp

Normal 80.8 (90.8) 10.7 (0.5) 8.5 (8.7)
LAND 4.5 (10.0) 91.5 (82.1) 4.0 (7.9)
IntProp 15.9 (0.6) 14.5 (6.8) 69.5 (92.6)

would be capable of detecting Normal and IntProp (worm) packets with detection rates > 90% and LAND (DoS)
packets with > 80%. Note that this refers to attacks that are characterized (identified) at the packet level on a
packet-by-packet basis. Attacks characterized across multiple packets would imply detection through, say, flow
style features (at the loss of real-time operation).

4.3 Teaming GP

Section 4.2 demonstrated that the task is not linearly separable (solutions would take the form of a single neurone)
and indicated that task decomposition is beneficial (total of three neural networks deployed in combination). As
noted in Section 3.3, the SBB framework has the potential to take this further as the process of discovering the
amount of ‘modularity’ is in itself performed through evolution.

Table 8 summarizes the resulting performance of SBB as deployed under test conditions. Considerable benefits
appear to be availed through pursuing open-ended task decomposition as opposed to assuming a prior class
wise decomposition, as under NEAT. Naturally, we make no claims regarding the generality of this outcome, and
adopting other forms of neuro-evolution might give similar results.



Appears in GECCO’16 Companion under ACM copyright 11

Table 8: Teaming GP – Overall confusion matrix. Mean performance (%) of 20,000 Test packets (best individual).
Results averaged over 20 runs.

Actual NEAT
Label Normal LAND IntProp

Normal 92.3 (99.8) 4.0 (0.02) 3.7 (0.14)
LAND 0.27 (0) 99.5 (100) 0.2 (0)
IntProp 0.42 (0) 0.23 (0) 99.3 (100)

5 Conclusion

MTD when applied to dynamically modifying the network address space is currently assumed to be applied on a
continuous basis. However, there are several costs involved, not least that host machines can no longer cache their
IP. This implies that every IP request has to be referred to the DNS (inserting a bottleneck in any communication)
while implying that the DNS identity has to be static. In this work, we consider MTD to be a policy deployed
under conditions as identified by a suitable light-weight detector. Light-weight implies that the detector is required
to operate from packet data as opposed to flow data. We investigate two examples of exploit within this context:
DoS and worms (code that self propagates). Naturally, such a detector would act as the first wall in a multifaceted
defense, with other detectors and / or stochastic mechanism acting as triggers for initiating a MTD.

The NEAT algorithm is shown to be an effective framework for identifying sparse neural network topologies
for detecting the two primary attack types. Particular attention is paid to resolving which type of attack has been
initiated. From the MTD initiation perspective, just the two ‘expert’ networks is sufficient for determining when to
initiate MTD. Investigating the open-ended evolution of task decomposition through the coevolution of programs
indicated further improvements.

Future work could consider alternative types of detector and benchmark with light-weight signature based
detectors. Previous research has demonstrated that various machine learning methods are capable of providing
effective detectors [14, 15]. However, MTD represents an area in which a detector may operate more interactively
with counter-measures with the goal of providing a more autonomous system, opening the opportunity to main-
tain the operation of a network as opposed to merely closing ports (denying access to legitimate and illegitimate
users alike).

6 Acknowledgements

This research is supported by Raytheon SAS. The research is conducted as part of the Dalhousie NIMS Lab at:
https://projects.cs.dal.ca/projectx/.

References

[1] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis. Defending against hitlist worms using
network address space randomization. Computer Networks, 51(12):3471–3490, 2007.

[2] J. A. Doucette, A. R. McIntyre, P. Lichodzijewski, and M. I. Heywood. Symbiotic coevolutionary genetic
programming. Genetic Programming and Evolvable Machines, 13:71–101, 2012.

[3] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront. Mt6d: A moving target ipv6 defense. In Military
Communications Conference, (MILCOM), pages 1321–1326, 2011.

[4] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural
Computation, 3:79–87, 1991.

[5] J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random host mutation: Transparent moving target defense
using software defined networking. In Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, pages 127–132, 2012.



Appears in GECCO’16 Companion under ACM copyright 12

[6] J. H. H. Jafarian, E. Al-Shaer, and Q. Duan. Spatio-temporal address mutation for proactive cyber agility
against sophisticated attackers. In Proceedings of the First ACM Workshop on Moving Target Defense, pages
69–78, 2014.

[7] D. J. John, R. W. Smith, W. H. T. abd D. A. Cañas, and E. W. Fulp. Evolutionary based moving target cyber
defense. In Proceedings of the ACM Genetic and Evolutionary Computation Conference, pages 1261–1268, 2014.

[8] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood. Evolutionary computation as an artificial attacker:
generating evasion attacks for detector vulnerability testing. Evolutionary Intelligence, 4:243–266, 2011.

[9] P. Lichodzijewski and M. I. Heywood. Symbiosis, complexification and simplicity under GP. In Proceedings
of the ACM Genetic and Evolutionary Computation Conference, pages 853–860, 2010.

[10] J. H. Metzen, M. Edgington, Y. Kassahun, and F. Kirchner. Performance evaluation of EANT in the robocup
keepaway benchmark. In IEEE International Conference on Machine Learning and Applications, pages 342–347,
2007.

[11] K. Stanley, B. Bryant, and R. Miikkulainen. Real-time neuroevolution in the nero video game. IEEE Transactions
on Evolutionary Computation, 9(6):653–668, 2005.

[12] K. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[13] K. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary complexification. Journal of
Artificial Intelligence Research, 21:63–100, 2004.

[14] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin. Intrusion detection by machine learning: A review. Expert
Systems with Applications, 36:11994–12000, 2009.

[15] S. X. Wu and W. Banzhaf. The use of computational intelligence in intrusion detection: A review. Applied Soft
Computing, 10(1):1–35, 2010.

[16] J. Yackoskia, P. Xie, H. Bullen, J. Li, and K. Sun. A self-shielding dynamic network architecture. In Military
Communications Conference, (MILCOM), pages 1381–1386, 2011.


