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Abstract

The application of genetic programming (GP) to streaming data analysis appears, on the
face of it, to be a less than obvious choice. If nothing else, the (perceived) computational cost
of model building under GP would preclude its application to tasks with non-stationary
properties. Conversely, there is a rich history of applying GP to various tasks associated
with trading agent design for currency and stock markets. In this work, we investigate the
utility of a coevolutionary framework originally proposed for trading agent design to the re-
lated streaming data task of predicting individual household electric power consumption. In
addition, we address several benchmarking issues, such as effective preprocessing of stream
data using a candlestick representation originally developed for financial market analysis,
and quantification of performance using a novel ‘area under the curve’ style metric for
streaming data. The computational cost of evolving GP solutions is demonstrated to be suit-
able for real-time operation under this task and shown to provide classification performance
competitive with current established methods for streaming data classification. Finally, we
note that the individual household electric power consumption dataset is more flexible than the
more widely used electricity utility prediction dataset, because it supports benchmarking at
multiple temporal time scales.

1 Introduction

Investopedia1 gives the following definition for a ‘Technical Indicator’ or TI: “Any class of met-
rics whose value is derived from generic price activity in a stock or asset. Technical indicators
look to predict the future price levels, or simply the general price direction, of a security by
looking at past patterns.” As such, a significant body of research has appeared in which evo-
lutionary methods have been deployed for designing TI for use with a Decision Tree (DT) for
the purposes of specifying the actions of a trading agent under both foreign exchange (FX) and
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stock markets. The actions typically represent one of three decisions: buy, hold or sell. More-
over, the related task of financial forecasting employs the TI—DT agent to make predictions
regarding the state of the market at the next time step, i.e. will the market move up, down
or experience no change. The TI can be evolved independently of the DT (i.e., different TI
might act as better indicators for risk versus return [6], [11]) or, in a more recent development,
coevolved collectively in a single process [15], [12], [14], [18], [17], [19]. The coevolutionary
approach implies that performance is only ever expressed in terms of the ultimate performance
objective (wealth creation) as opposed to introducing surrogate performance metrics that at-
tempt to characterize what a good TI should represent.

Despite the wide range of research conducted in coevolving TI—DT agents for financial
trading and forecasting tasks, there has been little utilization under the related task of streaming
data classification [10]. In this work, we conduct an initial study to assess the potential for
deploying frameworks for designing TI—DT agents under the task of predicting movement
in power utility values, i.e. predicting whether the consumption of a utility (e.g., water, gas,
electricity) will decrease or increase at the next time step relative to the recent past (a task that
is also synonymous with that required for sentiment analysis in the analysis of document texts).

On the face of it, evolving TI—DT agents for financial decision making represents a partic-
ularly promising starting point. Both stock and FX markets represent environments in which
the underlying process is potentially non-stationary, implying that it is particularly important
to address the issue of when to rebuild agents. In the context of streaming data classification,
making decisions under non-stationary tasks is frequently equated with ‘shift’ and ‘drift’ [5,10].
Models may either take the form of ensembles of multiple decision makers and / or incremen-
tally react to each and every sample from the stream. A body of research has also been devel-
oped for characterizing stream content statistically and relating this to change detection (e.g.
Hoeffding Trees) [1, 7]. Moreover, because there is only ever one decision maker constructed,
the issue of which model to deploy for the purposes of ‘anytime classification’ is potentially
more straight forward to answer than under evolutionary methods.

For the purposes of this initial study we concentrate on the following points: 1) identifying
what needs to be addressed to facilitate the application of a previously proposed framework
for coevolving TI—DT agents under financial trading environments to the power consumption
task; 2) introduce the multi-temporal resolution electricity utilization data set assumed for
benchmarking purposes; and, 3) propose an ‘area under the curve’ style metric capable of
characterizing performance over the entire stream using a single scalar.

With this in mind, Section 2 summarizes FXGP a previously proposed approach for coe-
volving TI—DT decision makers. In doing so, we emphasize how FXGP addresses the issues
of change detection, anytime operation as well as coevolving TI and DT. Section 3 introduces
the data set and preprocessing performed to support benchmarking at multiple temporal res-
olutions. Section 5 presents the results of the benchmarking study, with conclusions made in
Section 6.

2 FXGP Algorithm Overview

The FXGP algorithm is used to predict the changes in the direction of movement of a measured
parameter, i.e. the analysis of currency pairs or stock prices. Specifically, TI are used to discover
temporal features, whereas each DT expresses a set of rules (defining a trading strategy). After
executing the TI—DT programs a decision is made to use one of a discrete number of actions.
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Figure 1: FXGP Train—Validate—Label cycle. The DT and TI populations are first symbolically
co-evolved over a Training data subset. A single DT with linked TI is identified over a Valida-
tion data subset. The resulting champion agent is then deployed until the retrain criterion is
met. Train and validation partitions can dynamically grow based on the number of exemplars
already encountered. The Train—Validate—Label cycle is then repeated until all data is labeled.

Under the streaming classification task the coevolution of TI—DT individuals will be used to
predict the movement in the next time step of the sequence (e.g., up, down, no change), or a
process synonymous with financial forecasting [15], [12], [14]. In this section we provide an
overview of the main parts of the FXGP algorithm [17–19].

The FXGP algorithm includes three major steps, each responsible for one of the following
tasks (Figure 1):

1. Training Step: Coevolution of decision tree (DT) population and technical indicator (TI)
population over a training data subset Nt.

2. Validation Step: Identification the best TI–DT combination (hereafter ‘TI–DT champion’)
over a validation data subset Nv.

3. Labelling Step: Deployment of a champion agent during which the labels are suggested
by the champion TI—DT pairing. Retraining is only triggered when some error threshold
is exceeded (retrain signal).2

The data partitions associated with Train, Validate and Label steps do not overlap. Moreover,
the formulation of the Validation and Label steps for the streaming data classification task
have been simplified from those used for trading tasks. The DT and TI population exist in
a symbiotic cooperative coevolutionary relationship (Figure 2). Thus, each DT utilizes some
subset of the available TI individuals and performance (fitness) is only expressed at the level of
the DT.

2.1 Training

Each training cycle begins with the complete reinitialization of DT and TI population content,
i.e. all previous DT and TI content is discarded and new individuals randomly generated [17].
The DT population has a fixed size, whereas the size of a TI population can vary between
generations. The TI population is initialized before the DT population. Each TI includes a
header that stores individual properties of a TI (Table 1) and a TI program. The TI program
assumes a register level transfer language with two registers, or ‘linear GP’ [4] (Table 2). The
R[0] register is an output register and contains a TI value after program execution.

The moving average of a TI (MA) at moment t is calculated as Eq. (1),

2Under the context of trading agent design this might take the form of a combination of multiple parameters
(maximum drawdown, number of consecutive losses, etc).
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DT Population TI Population

Figure 2: Symbiotic co-evolutionary relation between TI–DT Populations. Subsets of TI indi-
viduals are explicitly called by DT individuals. Any TI without at least one DT reference are
deleted (see TI with dash).

Table 1: TI Header.
Field Description

TIlinks How many times TI is linked to DT population
TItype Value or MA
TIperiod MA duration
TIshi f t Number of time steps back in a history

MAt =
∑t

j=n Vj

TIperiod
(1)

where Vt is a TI value and n = t− TIperiod
The TI header fields (Table 1) are initialized as follows:

• TIlinks counter is set to 0.

• TItype is randomly initialized with 0 (Value) or 1 (MA).

• TIperiod is randomly initialized with an integer that satisfies the following condition:
1 < TIperiod 6 period or ignored if TItype is Value.

• TIshi f t is randomly initialized with an integer that satisfies the following condition: 0 6 TIshi f t 6 shi f t.

Table 2: TI functions. R[x] denotes the content of the register x and R[y] denotes the content of
either: 1) the register y, 2) an attribute value, or 3) a an attribute c3. . . c6 value TIshi f t time steps
back in a history (where x 6= y and x and y ∈ {0, 1}).

Function Definition

Addition R[x]← R[x] + R[y]
Subtraction R[x]← R[x]− R[y]
Division R[x]← R[x]÷ 2
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Table 3: DT Header. Data structure for recording DT specific properties.

Field Description

DTsize DT size, nodes
DTscore DT score (partition specific detection rate)

Initialization of the DT population is conducted after that of the TI population. Each DT can
contain a different number of rules, DTsize, chosen stochastically over the interval: 1 < DTsize 6
nodes. Each DT node is represented as one of the following conditional statements [19]:

• IF (Xt > Yt) THEN 〈arg1〉 ELSE 〈arg2〉

• IF ((Xt > Yt) and (Xt−n < Yt−n)) THEN 〈arg1〉
ELSE 〈 arg2〉

where n is a shift back in a history relative to the current location, t; Xt 6= Yt and Xt and Yt are
randomly selected and can be an attribute value or a TI. Every time that a TI is linked to a new
DT the corresponding TIlinks counter is incremented. Likewise, arg1 and arg2 are randomly
assigned as either a pointer to a different node, or one of the class labels appropriate to the
streaming classification task. Table 3 summarizes the two DT headers characterizing properties
specific to each DT.

Every generation, the gap DT individuals with the lowest DTscore are deleted and replaced.
Any TI associated with a deleted DT have their corresponding TIlinks counter decremented.
Any TI with TIlinks equal to 0 is considered useless and deleted, decreasing the TI population
size (Fig. 2). Following the deletion of worst DT (and implicated TI), mutation is used to
add gap × (TIpopulation size) TIs and then add gap × DTsize DTs. Evolution stops when the
maximum number of generations, Tmax, is reached or when the best DTscore was not improved
within plateau generations.

2.2 Validation

The validation process is used to identify the best TI–DT agent. Validation is performed over the
partition of data that follows the training partition (Figure 1). If the DTscore of a champion agent
after validation is higher than drLimit, then the selected agent is deployed for data labelling. If
the best DTscore is less than drLimit, both DT and TI population are discarded and training is
repeated. This process is simpler than employed under a trading agent context [17–19].

2.3 Labelling

Prediction is performed using the TI–DT champion agent identified during Validation. Re-
training is triggered when the number of wrongly classified instances reaches hitMax. When
the hitMax limit is reached, the labelling stops and the whole Train—Validate cycle is repeated.
The exemplars encountered during labelling defines the total size of the train and validate par-
titions unless it is less than tvMax (Table 4). Such a process is again distinct from that assumed
under a trading agent context [18, 19].

Indeed, the task of change detection represents an ongoing topic of interest to streaming
data classification [5, 10]. In this work, change detection is synonymous with the concept of an
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Table 4: Complete FXGP parameter list for DT and IT populations.

Parameter Value Description

hitMax 10 Max number of errors to
retraining

tvMax 20000 Max total size of train and
validation partitions, can-
dlesticks

tvMin 336 or 672 Min total size of train and
validation partitions, can-
dlesticks

tvRatio 0.33 Validation to train parti-
tions ratio

Tmax 10000 Max number of genera-
tions

plateau 200 Plateau size, generations
shift 4 Max time shift, candle-

sticks
gap 0.25 Populations gap
trees 100 DT population size
nodes 5 Max DT size, nodes
drLim 0.6 Score limit
indicators 100 Initial TI population size
length 8 Max length of a TI pro-

gram, steps
period 72 Max MA period
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Table 5: Dataset 0 – Original individual household electric power consumption. Attribute
information.

Attribute Description (one-minute measure-
ments)

a1 date
a2 time
a3 global active power: household

global minute-averaged active
power (in kilowatt)

a4 global reactive power: house-
hold global minute-averaged reac-
tive power (in kilowatt)

a5 voltage: minute-averaged voltage
(in volt)

a6 global intensity: household global
minute-averaged current intensity
(in ampere)

a7 sub metering 1: energy sub-
metering No. 1 (in watt-hour of ac-
tive energy). It corresponds to the
kitchen, containing mainly a dish-
washer, an oven and a microwave
(hot plates are not electric but gas
powered)

a8 sub metering 2: energy sub-
metering No. 2 (in watt-hour of
active energy). It corresponds to
the laundry room, containing a
washing-machine, a tumble-drier,
a refrigerator and a light

a9 sub metering 3: energy sub-
metering No. 3 (in watt-hour of
active energy). It corresponds to
an electric water-heater and an air-
conditioner
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Table 6: ‘Dataset 1’ dataset. Attribute information (30 minutes grouping).

Attribute Description

b1 date (first ‘a1’ value within 30 min-
utes interval)

b2 time ‘t’ (first ‘a2’ value within 30

minutes interval)
b3 sum of a3 within 30 minutes inter-

val
b4 sum of a4 within 30 minutes inter-

val
b5 sum of a5 within 30 minutes inter-

val
b6 sum of a6 within 30 minutes inter-

val
b7 sum of a7 within 30 minutes inter-

val
b8 sum of a8 within 30 minutes inter-

val
b9 sum of a9 within 30 minutes inter-

val
label ‘1’ IF b3(t + 1) ≥ b3(t)

‘-1’ otherwise

error threshold. Only on detecting change is a new policy constructed. This is distinct from
continuous frameworks for model building [17], where the weights of a neural network might
be adapted on a continuous basis.

We also note that in order to operate under real-time conditions and therefore have a cham-
pion available on an ‘anytime’ basis, it is necessary for the Train–Validate cycle to complete
before the next exemplar in the sequence appears. If a new TI–DT champion is not available
within this period then the champion previously available is required to continue to produce
labels.

3 Data

In this work we apply the FXGP algorithm to the prediction of movement at the next time
step for individual household electric power consumption. The original dataset consists of
consumption measured at one-minute intervals over a period of 47 months (December 2006 —
November 2010) [16].3 This dataset has a much higher resolution with respect to the units of
time than the frequently employed ‘Australian New South Wales Electricity Market’ data [9].
The high level of sampling available, implies that multiple datasets can be constructed from the
same source data by assuming different periodicities for constructing source statistics.

Table 5 summarizes the attributes of the original dataset, hereafter ‘Dataset 0’. This data is
then preprocessed and converted into five separate datasets: ‘Dataset 1’ through ‘Dataset 5’. All

3http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
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Table 7: Dataset 2 – Attribute information (30 minute candlesticks, 2 class classification). Note
that attributes c3 through c6 represent those potentially indexed by a TI

Attribute Description

c1 date (first ‘a1’ value within 30 min-
utes interval)

c2 time ‘t’ (first ‘a2’ value within 30

minutes interval)
c3 first ‘a3’ value within 30 minutes

interval
c4 highest ‘a3’ value within 30 min-

utes interval
c5 lowest ‘a3’ value within 30 minutes

interval
c6 last ‘a3’ value within 30 minutes

interval
label ‘1’ IF b3(t + 1) ≥ b3(t)

‘-1’ otherwise

the resulting datasets assume an ARFF format that is accepted by frameworks for data stream
mining such as MOA [3]. Specifically, the goal is to predict the movement in the ‘global active
power’ attribute (a3, Table 5).

Dataset 1 was obtained by summing the one-minute measurements within consecutive 30

minute intervals and labelling as shown in Table 6. Dataset 1 will represent the base case
dataset.

Dataset 2 represents a characterization of the original ‘a3’ attribute using the aggregation
of ‘open-high-low-close’ information over the 30 minute period (Table 7). This corresponds to
the widely employed ‘candlestick’ representation for price data in financial or stock data, i.e. a
preprocessing step that potentially reduces the amount of noise in the original measurements.
Note that the criteria for the label are still relative to the definition for attribute ‘b3’ in Dataset
1. Dataset 3 assumes the same preprocessing of the attributes into 30 minute candlestick’s,
but casts the labelling task into one of three categories (less, approximately the same, or more)
as opposed to one of two (Table 8). In this work, ‘approximately the same’ is taken to imply
within ±10% of the previous value, resulting in a approx. equal total representation of each
class (Table 9). Naturally, enforcing a tighter constraint would result in the ‘equal to’ class
becoming less frequent.

Dataset 4 and Dataset 5 were processed in the same way as Dataset 2 and Dataset 3 respec-
tively, but with candlesticks estimated over consecutive 15 minutes intervals. Table 9 provides a
summary of the static properties of each dataset. The datasets are available publicly for research
purposes.4

4http://web.cs.dal.ca/~mheywood/Data/
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Table 8: Dataset 3 – Attribute information (30 minutes candlesticks, 3 class classification). Note
that attributes c3 through c6 represent those potentially indexed by a TI

Attribute Description

c1 date (first ‘a1’ value within 30 min-
utes interval)

c2 time ‘t’ (first ‘a2’ value within 30

minutes interval)
c3 first ‘a3’ value within 30 minutes

interval
c4 highest ‘a3’ value within 30 min-

utes interval
c5 lowest ‘a3’ value within 30 minutes

interval
c6 last ‘a3’ value within 30 minutes

interval
label ‘1’ IF b3(t + 1) > 1.1 ∗ b3(t)

‘-1’ IF b3(t + 1) < 0.9 ∗ b3(t)
‘0’ otherwise

4 Streaming data AUC style metric

Metrics for performance evaluation of streaming data are in itself the subject of active research.
That is to say, not only is the model under continuous development throughout the stream,
but the underlying process creating the data is potentially non-stationary. As a consequence,
it is desirable that the performance metric should be able to characterize performance over the
course of the stream. Specifically, we note three distinct types of metric:

• Prequential error metrics: characterize ‘accuracy’ and explicitly include a decay/ forget-
ting factor relative to older instances [8]. We note that such metrics unfortunately become
less meaningful as the degree of class representation becomes imbalanced [20].

• Measures of (label) autocorrelation: are designed to reflect the sensitivity of a streaming
classifier to label autocorrelation [2]. Specifically, even if a stream is balanced (in the
representation of multiple classes) as a whole, this does not necessarily mean that it is
well mixed. In particular, if classes appear locally in batches with the same class label,

Table 9: Datasets summary.

Dataset Attributes Instances Classes Class distribution

Dataset 0 9 2075259 n/a n/a
Dataset 1 9 68320 2 32893, 35427

Dataset 2 6 68320 2 32893, 35427

Dataset 3 6 68320 3 23946, 25181, 19193

Dataset 4 6 136632 2 65924, 70708

Dataset 5 6 136632 3 46649, 48622, 41361
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then sophisticated models of classification might perform significantly worse than very
simple single-bit predictors. The ‘No class’ classifier results reported later reflect such a
metric (discussed further in Section 5.1).

• Rate based metrics: provide for the incremental estimate of the confusion matrix through-
out the stream [10,20]. As such, any scalar performance metric derived from the confusion
matrix can be plotted as a function of progress through the stream and consequently char-
acterize incremental development of a classifier over the course of the stream.

A Rate based metric is assumed in this work, in particular the multi-class Detection Rate
(DR) formulation [10]. Previous experience with this metric demonstrated better discrimina-
tory properties than prequential error metrics over a cross-section of streaming classification
datasets [20]. In the following, the multi-class DR is summarized and a corresponding formu-
lation for quantifying overall stream performance in terms of the ‘area under the curve’ (AUC)
is described. The motivation for the latter is that all the above classes of metric express perfor-
mance as a ‘trajectory’ (of the metric) against time. In order to explicitly quantify the difference
between trajectories associated with different classification algorithms, the quality of any given
trajectory needs to be re-expressed as a single scalar value before application of statistical tests.
To date, general practice has been to assume the last numerical value from the (streaming data)
performance metric as the scalar value [1, 7]. This approach emphasizes performance towards
the end of the stream as opposed to recognizing the quality of results throughout the stream.
The purpose of the AUC metric proposed here is to more accurately capture (as a single scalar
value) the performance of a classifier over the duration of the stream as a whole.

4.1 Multi-class DR for streaming data

The following definition for the online estimation of multi-class detection rate will be as-
sumed [10, 20]. First, a per class detection rate is defined as

DRc(t) =
tpc(t)

tpc(t) + f nc(t)
(2)

where t is the exemplar index, and tpc(t), f nc(t) are the respective online counts for true
positive and false negative rates for class ‘c’ up to this point in the stream.

The multi-class Detection Rate now has the form

DR(t) =
1
C ∑

c=[1,...,C]
DRc(t) (3)

4.2 AUC style metric for streaming data

The ‘area under the curve’ (AUC) metric is typically deployed within the context of summariz-
ing the properties of a ‘receiver operating characteristic’ (ROC) [13]. A ROC, in turn, is used
to quantify the robustness of a model in relation to a pair of ‘orthogonal’ performance metrics5

with the goal of defining the best ‘operating point’ trading off the two metrics.

5Typically, true positive rate and false positive rate are assumed, but precision and recall are also widely
used [13].



Work appears in WCCI’16 with IEEE copyright 12

In the case of streaming data we note that we desire the performance metric (multi-class DR
of Eq. (3)) to be maximized at all time steps. Thus, the ‘area under the curve’ over the duration
of stream has the form

streamAUC =
1
T ∑

t=[1,...,T]
DR(t) (4)

Note that this represents an arithmetic process for approximating the ‘area under the curve,’ so
interpretations of AUC values specific to ROC source data should not be made [13].

5 Experimental Setup and Results

Each preprocessed dataset was divided in two parts. The data from 2006 was used to define
the FXGP parameterization, whereas the data from January 2007 to November 2010 was used
for the data stream experiments. Thus, the first TI–DT champion was deployed, starting from
January 1, 2007, whereas the last week of the 2006 was used to train and validate agents during
the very first Train—Validate—Label cycle (336 and 672 candlesticks for 30-minute and 15-
minute candlesticks respectively) in case of FXGP and to do initial training of MOA classifiers.

5.1 Impact of candlestick preprocessing

The FXGP algorithm assumes data in the form of price time series, i.e. data preprocessed as can-
dlesticks (datasets Data 2. . . Data 5, Table 9). Several models from the open-source MOA frame-
work [3] are used to characterize the effectiveness (or otherwise) of the data pre-processing into
candlesticks. Specifically, the ‘No Change’ classifier, Naive Bayes and Hoeffding Trees will be
used. The No Change classifier represents a 1-bit state-machine in which the ‘prediction’ re-
flects that of the last prediction as long as the last prediction was correct. A missed prediction
results in the state changing to predict the new class. Such a predictor does not make any use
of the attribute information, only knowledge of the labels. Previous research has demonstrated
that such a naive model is capable of surprisingly strong performance when there is a low
amount of mixing (turnover) in consecutive labels [2]. Both the Naive Bayes and Hoeffding
Tree classifiers represent well known algorithms for streaming data classification and appear in
a number of monographs, e.g. [1, 7].

The results obtained in the case of all available attributes (Dataset 1) and 30-minute can-
dlesticks (expressed relative to a single attribute) are shown in Figure 3. Naturally, the No
change classifier is not impacted by the preprocessing of the attribute data (it never employs
any attribute information). Conversely, the Naive Bayes classifier does not show any particular
preference, whereas predictions using the Hoeffding Tree do improve when using candlestick
preprocessing. Expressing this using the stream AUC metric from Eq. (4) Section 4 indicates
that this can be quantified in terms of a 4% improvement (Table 10). Hereafter we will assume
candlestick preprocessing for the remainder of the study (Dataset 2 through 5).

5.2 Dataset 2 and 3 — 30 minute candlesticks

Each experiment includes a single run for MOA (‘Hoeffding Tree’, ‘Naive Bayes’ and ‘No
Change’) and 100 independent runs for FXGP. Hence, results for GP reflect a spread from
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Figure 3: MOA. Full set of attributes (Dataset 1) vs 30 minutes candlesticks (Dataset 2). ‘Can-
dles’ and ‘9 attributes’ denote attribute type employed.

Table 10: AUC summary statistics. Raw data versus Candle preprocessing

Classifier Dataset AUC

MOA Hoeffding Tree Dataset 2 0.638

MOA Hoeffding Tree Dataset 1 0.613

MOA Naive Bayes Dataset 2 0.573

MOA Naive Bayes Dataset 1 0.571

MOA No Change Dataset 2 0.426

MOA No Change Dataset 1 0.426

the worst of the 100 runs to the best. The results for binary classification of 30-minute candle-
sticks are shown in Figure 4 and the results of ternary classification (30-minute candlesticks)
are shown in Figure 5. Table 11 details the streaming AUC statistic for both binary and ternary
classification tasks.

Given the formulation adopted for labelling the data, adding a third class will only increase
the potential for label mixing relative to the binary case, hence the reduction in performance as
measured by the stream AUC statistic reflects this bias. Indeed, all classifiers return a reduction
in detection rate when going from the binary to ternary formulation. The relative ranking
of the models (in terms of Detection Rate) between each formulation of the dataset remains
unchanged; in particular, No change < Naive Bayes < Hoeffding Tree < FXGP.
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Figure 4: Dataset 2: 30 minute candlesticks, binary classification task.
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Table 11: AUC summary statistics, Dataset 2 and 3: 30 minute candlesticks, binary and ternary
classification

Classifier binary (Dataset 2) ternary (Dataset 3)

FXGP best 0.673 0.554

FXGP median 0.663 0.536

FXGP worst 0.657 0.532

MOA Hoeffding Tree 0.638 0.493

MOA Naive Bayes 0.573 0.459

MOA No Change 0.426 0.354
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Figure 5: Dataset 3: 30 minute candlesticks, ternary classification task.

5.3 Dataset 4 and 5 — 15 minute candlesticks

The results of assuming preprocessing using the 15-minute candlesticks are shown in Figure 6

and Figure 7, for the binary and ternary classification tasks respectively. Table 12 summarizes
the resulting quantification as reflected by the stream AUC metric.

The No class classifier again represents the worst case detection rate throughout. Like-
wise, the relative ranking of the other models is unchanged from the case of candlesticks es-
timated over a 30 minute interval. However, what is now interesting is that comparing FXGP
performance using 15 minute candlesticks and 30 minute candlesticks returns an increase in
performance when estimating the candlestick over the shorter period. Indeed, testing for the
significance of this using an unpaired two-tailed Student’s t-test (99% confidence interval) in-
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Figure 6: Dataset 4: 15 minute candlesticks, binary classification task.
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Table 12: AUC summary statistics, Dataset 4 and 5: 15 minute candlesticks, binary and ternary
classification

Classifier binary (Dataset 4) ternary (Dataset 5)

FXGP best 0.678 0.566

FXGP median 0.672 0.557

FXGP worst 0.673 0.550

MOA Hoeffding Tree 0.626 0.503

MOA Naive Bayes 0.561 0.468

MOA No Change 0.443 0.358

dicates that a statistically significant improvement appears in the case of FXGP on Dataset 4

versus 2 and Dataset 5 versus 3.6 Also of note is that the eventual DR at the end of the stream
might be higher in the case of the 30-minute scenarios under FXGP (compare Figures 4 to 6

and likewise Figures 5 to 7). However, in the case of the 15-minute scenarios the point in the
stream at which, say, a 55% DR is first reached is much earlier. Given that there is little / no
regression in DR, the corresponding stream AUC is significantly higher.

5.4 Quantifying the role of retraining

Sections 5.1 to 5.3 implicitly assumed that the individual household electric power consumption
dataset would benefit from retraining or an explicitly online / streaming approach to model
building. In order to provide some quantification for this perceived benefit we explicitly turn
off the retraining step for FXGP. Thus, the first ‘Train—Validate’ cycle is performed (relative to
the same one week of data) and thereafter the TI–DT champion identified during the Validate
stage is deployed to make the predictions thereafter. Figure 8 reflects the distribution of DR
across the remainder of the stream (30 minute candlestick, binary classification). Note that for
comparative purposes, DR for the curves for Hoeffding Tree, Naive Bayes and No Change clas-
sifier still reflect training throughout the stream, whereas the FXGP curves reflect performance
without retraining. Previously, FXGP was able to return worst case performance that exceed the
best baseline model. Now, without retraining, best case performance fails to reach that of the
Hoeffding Tree and worst case performance is considerably worse than Naive Bayes (although

6Corresponds to a p-value < 2.2× 10−16 in both cases w.r.t. the 100 runs.
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Figure 7: Dataset 5: 15 minute candlesticks, ternary classification task.
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still better than the No Change baseline). Indeed, the worst case profile reflects a detection rate
of ≈ 50% or no better than labelling the data all one class. The wide variation in performance
of FXGP reflects the difficulty in choosing a model when it is not possible to guarantee that
the training data is representative of the underlying task (as is the case when non-stationary
properties exist). Moreover, note that this is the same set of GP models that when retraining is
enabled perform better than all baseline streaming classifiers. In short, change detection and
retraining is central for correcting GP as the stream progresses.

5.5 Quantifying the cost of permitting retraining

FXGP does not train incrementally, but when retraining is triggered, then the content of TI and
DT populations are both reset and evolution begins from a completely new initialization of ran-
dom individuals. Such an approach was assumed following a benchmarking study comparing
incremental evolution (some or all the population is retained between evolutionary cycles) to
the ‘flush-and-restart’ methodology assumed here [17]. Naturally, this also has implications for
the (computational) cost of rebuilding a champion solution, potentially setting a limit to the
degree to which real-time operation can be supported. We therefore quantify this cost from the
perspective of the CPU time to coevolve an entirely new TI—DT pair (Figure 9).7

Given that the time between retraining events is several orders of magnitude lower than the
interval between new data samples (15 or 30 minutes) it is readily apparent that FXGP is capable
of real-time operation under this task domain. Naturally, the number of retrigger events is a
function of the number of classes (difficulty of the task) and cardinality of the data stream, but
in all cases remains < 1% of stream content. Thus, between ≈ 200 to ≈ 1000 retraining events
are sufficient to maintain synchronization with the non-stationary properties of the stream.
However, without retraining, it is generally not possible to identify good predictors (Figure 8).

7
2.8 GHz iMac, Intel Core i7 CPU.
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Figure 8: Dataset 2: 30 minute candlesticks, binary classification task — 100 runs of FXGP
without retraining. Hoeffding Tree, Naive Bayes and No Change classifier retain retraining.
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Figure 9: CPU time in seconds necessary to coevolve a completely new TI—DT champion.
Distribution estimated over 100 runs.

6 Conclusion

This work makes three specific conclusions: Firstly, GP can be applied to streaming data clas-
sification tasks and remain computationally feasible without recourse to specialist hardware
/ software support (e.g. no use was made of multi-threading or multi-core execution), while
the performance of the classifier is competitive with that of other algorithms. Secondly, we
demonstrate the utility of an AUC style metric for providing a more general way to quantify
performance of a classifier over the duration of the stream as a whole. The AUC metric could
potentially be applied to any number of streaming performance indicators. Thirdly, we demon-
strate the effectiveness of preprocessing data using a candlestick representation. Naturally, such
a representation assumes that there is sufficient data present in the stream for construction of
each candlestick. If the data was only available at, say, 30 minute intervals and this was also
the rate at which predictions were required, then preprocessing using candlesticks would not
be appropriate.
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