
Symbiotic/Competitive Coevolutionary Genetic

Programming: A Guide to the SCM

Implementation

John A. Doucette (jdoucett@cs.dal.ca)

January 20, 2010

1 What is...

1.1 This Guide

This document is intended to make the job of implementing a problem for the
Symbiotic/Competitive Coevolutionary Model of Genetic Programming (SCM
GP) code base easier. It describes the process required to implement a new
problem and existing problem types that may be easily extended.

1.2 SCM GP

SCM GP is an implementation of the symbiotic/competitive coevolutionary
bid-based genetic programming algorithm known as SBB. The algorithm is pre-
sented in full in [1]. Key requirements of the algorithm are

1. The problem of interest must be phrased as a mapping from a set
of real-valued inputs to some �nite set of outputs. The set of pos-
sible outputs is known as the �action� space, the terminology being
derived from the use of the model in control problems.

2. The problem of interest should have a large number of possible data
points available for study. The SBB algorithm's run time is asymp-
totically independent of the number of point available in total, and
requires a large variety of points for best results.

If your problem does not meet these criteria, you should address the issue. A
common failure of these conditions arises when the action space is non-�nite,
as in real-valued control problems. In these cases it is usually su�cient to
descretize the action space manually. For example, a problem allowing a real-
valued rotation could be limited to a subset of possible turns, perhaps allowing
relative rotations from the set ±{π/2, π/3, π/4} instead.

1

1.3 The Code Base

The code base for SCM GP is written in gnu C++, and designed for use and
compilation on *nix systems with gnu and make available. It is comprised of 15
source code �les and a make �le, summarized in table 1.

2 Adding a Problem

2.1 Make an Environment

The �rst step in implementing a new problem will be to make a new environment
class. This class describes a speci�c type of problem space. Fortunately, many
of the implementation details can be taken care of by abstracted superclasses.

2.1.1 Pick a Superclass

There are three superclasses to pick from in env.hpp: env, implicitEnv, and
explicitEnv.

implicitEnv problems are those where the environment is implicit. Rather
than specifying a set of data points to train or test on, you will only need to
specify a method of generating data points. In domains like puzzle solving, this
may be used to specify a class of puzzles, and allow random sampling from that
space to be done on the �y. It is useful when the space of possible problems is
large.

explicitEnv problems require a list of points to be provided for each run
of the program. This gives the user more direct control over which points are
used, but also limits the total number of points available, which may limit the
maximum e�cacy of the algorithm.

For problems which fall somewhere in the middle, or which require unique
�tness measures to be used, env provide a less abstracted superclass. Imple-
menting a problem as a descendant of env will be more work, but is often easier
than trying to �t a strange problem into one of the other environment types.
Sections 2.1.2-2.1.4 below detail the creation of a descendant of env. The other
classes are somewhat easier to �gure out, and so are not included.

2.1.2 Create a Class

Create a new class in the env.hpp �le that inherits from your superclass. Create
an problem speci�c data �elds. Create method prototypes for all inherited
methods and problem speci�c methods. See sections 2.1.3 and 2.1.4 below for
more details on the method constraints.

2.1.3 Implement Problem Speci�c Constructor, Destructor, and Misc.

Methods

Constraints:

2

F
il
e
N
am

e
P
u
rp
os
e

en
v
.c
p
p
/e
n
v
.h
p
p

Im
p
le
m
en
ts

an
ab
st
ra
ct
ed

en
v
ir
on
m
en
t
cl
as
s
w
it
h
d
es
ce
n
d
an
t
cl
as
se
s.

M
o
st

m
o
d
i�
ca
ti
on
s
w
il
l
b
e
m
ad
e
h
er
e.

le
ar
n
er
.c
p
p
/l
ea
rn
er
.h
p
p

Im
p
le
m
en
ts

a
le
ar
n
er

cl
as
s
T
h
is
cl
as
s
sh
ou
ld

_
n
ot
_

b
e
m
o
d
i�
ed

as
p
ar
t
of

a
n
ew

p
ro
b
le
m

im
p
le
m
en
ta
ti
on
.*

m
ai
n
.c
p
p

Im
p
le
m
en
ts

a
d
ri
ve
r
p
ro
gr
am

u
si
n
g
th
e
va
ri
ou
s
ob

je
ct
s.

S
m
al
l
m
o
d
i�
ca
ti
on
s
m
ay

b
e
re
q
u
ir
ed
.

m
is
c.
cp
p
/m

is
c.
h
p
p

M
is
c.

fu
n
ct
io
n
s
an
d
co
n
st
an
ts

u
se
d
b
y
ot
h
er

p
ar
ts

of
th
e
p
a
ck
ag
e.

S
h
ou
ld

n
ot

n
ee
d
to

b
e
m
o
d
i�
ed
.

p
oi
n
t.
cp
p
/p
oi
n
t.
h
p
p

Im
p
le
m
en
ts

a
p
oi
n
t
cl
as
s.

S
h
ou
ld

_
n
ot
_

b
e
m
o
d
i�
ed
.*

sc
m
.c
p
p
/s
cm

.h
p
p

Im
p
le
m
en
ts

an
S
C
M

cl
as
s.

A
lm

os
t
al
l
m
o
d
i�
ca
ti
on
s
n
ot

m
ad
e
to

th
e
en
v
.*

�
le
s
w
il
l
b
e
m
ad
e
h
er
e.

sh
ap
es
.c
p
p
/s
h
ap
es
.h
p
p

Im
p
le
m
en
ts

so
m
e
si
m
p
le
ge
om

et
ri
c
co
n
st
ru
ct
s
u
se
d
in

so
m
e
sa
m
p
le
p
ro
b
le
m
s.

P
ro
b
ab
ly

d
o
es

n
ot

n
ee
d
to

b
e
m
o
d
i�
ed
.

te
am

.c
p
p
/t
ea
m
.h
p
p

Im
p
le
m
en
ts

a
te
am

cl
as
s.

S
h
ou
ld

_
n
ot
_

b
e
m
o
d
i�
ed
.
*

m
ak
e�
le

T
h
e
m
ak
e
�
le
.

T
ab
le
1:

B
re
ak
d
ow

n
of

�
le
s
in

S
C
M

G
P
.
E
n
tr
ie
s
d
en
ot
ed

w
it
h
a
*
sh
ou
ld

n
ot

b
e
m
o
d
i�
ed
.

3

Your classes constructor must include an argument �int mstep�, and be of
the form:

myclass(...., int mstep,) : env(mstep) {

2.1.4 Implement the Abstracted Methods

The abstracted methods will be called by various components of the SCM GP
system, so you should be careful when implementing them. They are:

double act(point *p, long int action, vector <double> &state, long step_number, bool &stop)

- The method should modify the state vector according to the action. If more
actions are permitted, set end to false, otherwise set it to true. The return value
should be the fraction of maximum reward obtained by taking this action. For
example, in classi�cation, actions correspond to labels, so act simply checks if
p->label == action, and return 1 or 0 accordingly. Stop is immediately set
to true. In control problems though, we might allow the agent to continue
providing actions until step_number exceeds some threshold (often mstep).

double test(team* t, string prefix, boolean last)

-The method should evaluate t across some set of problem exemplars and return
an aggregate measure of their performance. If last is true, it may print some
data, or do a longer than normal evaluation. Pre�x may be printed as an
identi�er of the particular evaluation method being used at the moment.

point * initUniformPoint(long gtime, set<long> usedIds)

-The method should return a new point sampled at random from the envi-
ronment. gtime is the current time in the run (measured in terms of speci�c
function types of function calls, not seconds). usedIds may be used to avoid
creating duplicate points if necessary.

2.2 Make a Model

Now that the environment is implemented, a model needed. A model is a class
that describes how to parse problem speci�c parameters, constructs and stores
a problem speci�c environment object, and drives the learning process.

2.2.1 Pick a Superclass

Like with env, we can pick from scm, scmImplicit, or scmExplicit. The instruc-
tions below detail only how to inherit from scm.

2.2.2 Create a Class

Make a new class in the scm.hpp header �le. It should have a data �eld of
whatever the environment you created was called. See below for constraints
and requirements on methods.

4

2.2.3 Implement Problem Speci�c Constructor, Destructor, and Misc.

Methods

Constructor must have the form
myclass(map <string, string> &args) : scm(args)
-args will map the names of arguments in a parameter �le to the correspond-

ing values. The constructor should extract any problem speci�c parameters
and pass them to it's environment variable during initialization. The construc-
tor must set the _numActions �eld of the superclass to match the size of the
problem speci�c action space. The constructor must insert pointers to PRO-
FILE_SIZE new randomly sampled points into the superclass's _pro�lePoints
vector.

The deconstructor is responsible for freeing the points in _pro�lePoints,
even though they belong to the superclass.

2.2.4 Implement the Abstracted Methods

The methods are:
void initPoints()
-inserts pointers to _Psize-_Pgap new random points into the superclass's

_P vector. Note that this can be done using the env's initUniformPoint method.
Points should be created with a gtime of -1.

void genPoints(long gtime)
- When this method is called, _P in the superclass will have less than _Psize

members. This method should add new random points until _Psize members
are present. Points should be created with a gtime of gtime.

void stats(long gtime, long level)
-The method should print data to cout (optional).
void test(long level)
-The method should call the test function of env for each of the elements in

the superclass's _M vector (_M contains pointers to teams). It should print a
result indicating which team was the best and what it's aggregate score on the
test was to cout.

2.3 Modify the Driver

The driver.cpp �le reads in the parameters, determines the type of model to
build (based on the �envType� parameter), and creates it. Modify this �le to
recognize your new problem type.

References

[1] Pitir Paper

5

