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Abstract

This thesis defines and designs succinct indexes for several abstract data types (ADTs).

The concept is to design auxiliary data structures that ideally occupy asymptotically less

space than the information-theoretic lower bound on the space required to encode the given

data, and support an extended set of operations using the basic operators defined in the

ADT. As opposed to succinct (integrated data/index) encodings, the main advantage of

succinct indexes is that we make assumptions only on the ADT through which the main

data is accessed, rather than the way in which the data is encoded. This allows more

freedom in the encoding of the main data. In this thesis, we present succinct indexes for

various data types, namely strings, binary relations, multi-labeled trees and multi-labeled

graphs, as well as succinct text indexes. For strings, binary relations and multi-labeled

trees, when the operators in the ADTs are supported in constant time, our results are

comparable to previous results, while allowing more flexibility in the encoding of the given

data.

Using our techniques, we improve several previous results. We design succinct represen-

tations for strings and binary relations that are more compact than previous results, while

supporting access/rank/select operations efficiently. Our high-order entropy compressed

text index provides more efficient support for searches than previous results that occupy es-

sentially the same amount of space. Our succinct representation for labeled trees supports

more operations than previous results do. We also design the first succinct representations

of labeled graphs.

To design succinct indexes, we also have some preliminary results on succinct data

structure design. We present a theorem that characterizes a permutation as a suffix array,

based on which we design succinct text indexes. We design a succinct representation of

ordinal trees that supports all the navigational operations supported by various succinct

tree representations. In addition, this representation also supports two other encodings

schemes of ordinal trees as abstract data types. Finally, we design succinct representations

of planar triangulations and planar graphs which support the rank/select of edges in counter

clockwise order in addition to other operations supported in previous work, and a succinct

representation of k-page graph which supports more efficient navigation than previous

results for large values of k.
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Chapter 1

Introduction

The rapid growth of large sets of text and the need for efficient searches of these sets, have

led to a trend of succinct representation of text indexes as well as the text itself. Succinct

data structures were first proposed by Jacobson [55] to encode bit vectors, (unlabeled) trees

and planar graphs in space close to the information-theoretic lower bound, while supporting

efficient navigational operations. This technique was successfully applied to various other

abstract data types (ADTs), such as dictionaries, strings, binary relations [5] and labeled

trees [36, 5]. In addition, succinct data structures have been proved to be very useful in

practice. For example, Delpratt et al. [23] engineered the implementation of succinct trees

and reported that their structure uses 3.12 to 3.81 bits per node to encode the structure

of XML trees that have 57K to 160M nodes. Such space cost is merely a small percentage

of that of an explicit, pointer-based tree representation.

In most of the previous work, researchers encode the given data (or assume that the

data is encoded) in a specific format, and further construct auxiliary data structures on

it. They then use both the encoded data and the auxiliary data structures to support

various operations, e.g. [44, 36, 34, 52, 5]. Usually in this type of design, the auxiliary data

structures do not work if the given data is encoded in a different format, and therefore, the

encoding of the given data and the design of the auxiliary data structures are inseparable.

We thus call this type of design succinct integrated encodings of data structures.

A different line of research concentrates on reducing the size of the traditional text

indexes to allow fast text retrieval, without transforming the text (i.e. the given data)

1



2 CHAPTER 1. INTRODUCTION

to store it in specific formats. Therefore, in such research work, the representation of the

text indexes and the encodings of the text itself can be designed separately. For example,

Clark and Munro [21] designed a compact PAT tree which takes much less space than the

standard representation of a suffix tree, and used it to facilitate text retrieval.

The concept of separating the index and the given data was also used to prove the lower

bounds [24, 66, 39] and to analyze the upper bounds [80] on the space required to encode

some data structures: it limits the definition of the encoding to the index. For example,

Demaine and López-Ortiz [24] proved that any text index supporting pattern search in time

linear in the length of the pattern requires roughly the same amount of space as the text

itself. Miltersen [66] proved a lower bound of the size of any index supporting rank/select

operations on bit vectors, and Golynski [39] further improved his results. Sadakane and

Grossi [80] analyzed the space cost of their data structure by proving that the auxiliary

data structures occupy asymptotically less space than the given data.

In this thesis, we formulate the distinction between the index and the raw data, and

apply it to the design of succinct data structures. Given an ADT, our goal is to design

auxiliary data structures (i.e. succinct indexes) that ideally occupy asymptotically less

space than the information-theoretic lower bound on the space required to encode the

given data, and support an extended set of operations using the basic operators defined in

the ADT. Succinct indexes and succinct integrated encodings are closely related, but they

are different concepts: succinct indexes make assumptions only on the ADT through which

the given data is accessed, while succinct integrated encodings represent data in specific

formats. Succinct indexes are also more difficult to design: raw data plus a succinct index

is a succinct integrated encoding, but the converse is not true.

Although the concept of succinct indexes was previously followed mainly to design

space efficient text indexes, and was also presented as a technical restriction to prove

lower/upper bounds, we argue that in fact succinct indexes are more appropriate to the

design of a library of succinct tools for multiple usages than succinct integrated encodings,

and that they are even directly required in certain applications. Some of the advantages

of succinct indexes over succinct integrated encodings are:

1. A succinct integrated encoding requires the given data to be stored in a specific

format. However, a succinct index applies to any encoding of the given data that



1.1. ORGANIZATION OF THE THESIS 3

supports the required ADT. Thus when using succinct indexes, the given data can

be either stored to achieve maximal compression or to achieve optimal support of the

operations defined in the ADT.

2. The existence of two succinct integrated encodings supporting different operations

over the same data type does not imply the existence of a single encoding supporting

the union of the two sets of operations without storing the given data twice, because

they may not store it in the same format. However, we can always combine two

different succinct indexes for the same ADT to yield a single succinct index that

supports the union of the two corresponding sets of operations in a straightforward

manner.

3. In some cases, we need not store the data explicitly because it can be derived from

some other information in a manner that efficiently supports the operations defined

in the ADT. Hence a succinct index is the only additional memory cost.

In this thesis, we design succinct indexes for strings, binary relations, multi-labeled trees

and multi-labeled graphs, as well as succinct text indexes. We then apply these techniques

to various research problems, including the design of succinct integrated encodings to

achieve maximum compression. In order to achieve these results, we also design succinct

representations of unlabeled trees and graphs.

1.1 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 deals with the background knowledge of the research area. First we present

the notation and the word RAM machine model used throughout the thesis. We then

introduce the ADT bit vector including the operations on it and the prior results achieving

efficient implementation. This is a key structure for many succinct data structures and

the results in our paper. We also introduce the information-theoretic lower bound and the

notion of entropy, which are used to measure the space efficiency of our data structures.

Chapter 3 focuses on the design of the succinct indexes for strings and binary relations.

We also apply these indexes to design high-order entropy-compressed succinct integrated
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encodings for strings, and a succinct integrated encodings for binary relations using essen-

tially the information-theoretic minimum space. This chapter is based on part of the joint

work with Jérémy Barbay, J. Ian Munro and S. Srinivasa Rao [6].

In Chapter 4, we design succinct index structures for a text string to support efficient

pattern searching. Motivated by the fact that the standard representation of suffix arrays

uses more space than the theoretical minimum, we present a theorem that characterizes a

permutation as the suffix array of a binary string, and design a succinct representation of

suffix arrays of binary strings based on the theorem. We also generalize our results to text

strings drawn from larger alphabets, and apply the succinct indexes for strings to design

high-order entropy compressed text indexes. Most of this chapter is based on the joint

work with J. Ian Munro and S. Srinivasa Rao [52]. Section 4.7.3 is based on part of the

joint work with Jérémy Barbay, J. Ian Munro and S. Srinivasa Rao [6].

In Chapter 5, we first design a succinct integrated encoding of ordinal trees that sup-

ports all the navigational operations independently supported by various succinct tree

representations. We also show that our method supports two other encoding schemes of

ordinal trees as abstract data types. We then apply the succinct indexes for binary rela-

tions to design succinct indexes for multi-labeled trees. This chapter is based on the joint

work with J. Ian Munro and S. Srinivasa Rao [53], and part of the joint work with Jérémy

Barbay, J. Ian Munro and S. Srinivasa Rao [6].

In Chapter 6, we use the previous results in designing succinct indexes for vertex labeled

planar triangulations. We also apply succinct indexes for binary relations to design succinct

representations of edge labeled planar graphs and the more general k-book embedded

graphs. To achieve these results, we also improve some of the previous results on the

succinct representation of unlabeled graphs. This chapter is based on the joint work with

Jérémy Barbay, Luca Castelli Aleardi and J. Ian Munro [4].

Chapter 7 provides a brief summary, conclusions and some suggestions for future work.

Appendix A lists the definitions of most of the terms introduced in this thesis.



Chapter 2

Preliminaries

This chapter introduces some concepts, results and definitions used throughout this thesis.

2.1 Notation

We use n to denote the sizes of various problems. For example, when we consider a string,

we use n to denote the length of the string. When we consider a tree, we use n to denote

the number of the nodes in the tree. We define n for other problems in later chapters.

We use log2 x to denote the logarithm base 2 and lg x to denote dlog2 xe. Occasionally

this will matter.

We use [i] to denote the set {1, 2, ..., i}.

2.2 Machine Model

The word RAM model is a popular variation of the classic random-access machine (RAM)

model of Cook and Reckhow [22]. A RAM consists of an infinite number of memory cells

with addresses 0, 1, 2, ..., and a processor operating on them. The instruction set contains

instructions commonly available in real computers, including arithmetic operations, com-

puting the addresses of memory registers, data movement between registers, and control

(subroutine calls, branch, etc.). The execution of each instruction takes constant time.

5
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A word RAM is defined as a unit-cost random-access machine with word size w bits,

for some w, and its instruction set is similar to that found in present-day computers [49].

It differs from the standard RAM mainly in the assumption that the contents of all the

memory cells are integers in the range {0, ..., 2w − 1}, which allows some new instructions

that are natural on integers represented as strings of w bits. This model of computation

has become very popular in a broad range of algorithms and data structures that deal with

integer data and the structural information of combinatorial objects [49, 50, 30, 17, 36, 5,

80].

As with the RAM, there is no consensus on the set of arithmetic instructions available

on a word RAM, and researchers have been using various sets of arithmetic instructions

that are common in modern computers. In this thesis, we assume that these arithmetic

instructions include integer addition, subtraction, multiplication and division, left and right

shifts, and the bitwise Boolean operations (AND, OR and NOT). If we are dealing with

trees on n nodes or strings of length n, we usually assume that the word size is Θ(lg n)

bits, i.e. w = Θ(lg n). When all the n elements (for example, nodes or characters) are

stored sequentially in a certain order, Θ(lg n) is the minimum length of a word that allows

the address of an element to be stored using a constant number of memory cells. Thus this

is a common assumption. Hence we call our machine model a word RAM with word size

Θ(lg n) bits.

As can be seen above, we only make common assumptions in the machine model we

use, and thus this model is a general model, adopted by a wide range of research work [30,

45, 17, 73, 36, 5, 80, 56].

2.3 Bit Vectors

A key structure for many succinct data structures, and for the research work in this thesis,

is a bit vector B of length n that supports rank and select operations. We assume that

the positions in B are numbered 1, 2, . . . , n. For α ∈ {0, 1}, we consider the following

operations:

• bin rankB(α, x), the number of occurrences of α in B[1 . . . x];
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• bin selectB(α, r), the position of the rth α in B.

We omit the subscript B when it is clear from the context. Lemma 2.1 addresses the

problem of succinctly representing bit vectors, in which part (a) is from Jacobson [55] and

Clark and Munro [21], while part (b) is from Raman et al. [75].

Lemma 2.1. A bit vector B of length n with v 1s can be represented using either: (a)

n+o(n) bits, or (b) lg
(

n
v

)

+O(n lg lg n/ lg n) bits, to support the access to each bit, bin rank

and bin select in O(1) time.

A less powerful version of bin rank(1, x), denoted bin rank′(1, x), returns the number

of 1s in B[1 . . . x] in the restricted case where B[x] = 1.

Lemma 2.2 ([75]). A bit vector B of length n with v 1s can be represented using lg
(

n
v

)

+

o(v)+O(lg lg n) bits to support the access to each bit, bin rank′(1, x) and bin select(1, r)

in O(1) time.

2.4 Information-Theoretic Lower Bound and Entropy

There are several ways of measuring the space efficiency of succinct data structures (i.e.

succinctness). The two most common approaches are to compare the space cost of a suc-

cinct data structure with the information-theoretic lower bound of representing the corre-

sponding combinatorial object, and with the entropy of the corresponding combinatorial

object, respectively.

Jacobson [55] initially measured the succinctness of a data structure by comparing

its space cost to the information-theoretic minimum. Given a combinatorial object of n

elements, the information-theoretic lower bound of representing it is lg u bits, where u is

the number of different such combinatorial objects of size n. For example, there are 2n

different bit vectors of length n, thus the information-theoretic minimum of representing a

bit vector of length n is lg(2n) = n bits. Given a string of length n over alphabet [σ], the

information-theoretic minimum is dn log2 σe bits, as there are σn such strings.

Entropy is well-defined for strings, and has been extensively used to measure the text

compression algorithms.
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Definition 2.1. The zeroth order empirical entropy of a string S of length n over

alphabet [σ] is

H0(S) =
σ

∑

α=1

(pα log2

1

pα

) = −
σ

∑

α=1

(pα log2 pα),

where pα is the frequency of the occurrence of character α, and 0 log2 0 is interpreted as 0.

An ideal compressor that uses log2
1

pα
(or − log2 pα) bits to code the character α can

compress the string S to nH0(S) bits. This is the maximum compression we can achieve

using a uniquely decodable coding scheme in which each character is assigned a fixed code

word. In the worst case, when the characters of S occur at the same frequency, we have

nH0(S) = −n log2(
1
σ
) = n log2 σ, which is the information-theoretic lower bound. Thus

nH0(S) ≤ n log2 σ.

Definition 2.2. Consider a string S of length n over alphabet [σ]. Given another string

w ∈ [σ]k, we define the string wS to be a concatenation of all the single characters immedi-

ately following one of the occurrences of w in S. Then the kth order empirical entropy

of S is

Hk(T ) =
1

|S|
∑

w∈[σ]k

|wS|H0(wS).

To illustrate the string wS in Definition 2.2, consider the string S = aabacabbabc. For

example, if w = ab, then wS = abc.

nHk(S) is a lower bound in bits on the compression we can achieve using for each

character a code that depends on only the k characters preceding it.

The notion of entropy has also been used to measure the succinctness of data structures

supporting operations on strings [44, 63, 80, 6]. As the entropy for most other combinatorial

objects such as binary relations and graphs are not well-defined, it is less common to use

it to measure the succinctness for those data types. However, there are still definitions of

the entropies of some combinatorial objects that are not strings. For example, Ferragina et

al. [29] defined the entropy of labeled trees.

We use both methods to measure the succinctness of the data structures in this thesis.



Chapter 3

Strings and Binary Relations

This chapter deals with the problem of designing succinct indexes for strings and binary

relations, two basic data types with applications to many research problems, including sev-

eral described in later chapters. The chapter starts with a brief introduction in Section 3.1,

followed by a brief review of previous work in Section 3.2, and a summary of the existing

results we use in Section 3.3. In Sections 3.4 and Section 3.5, we design succinct indexes

for strings and binary relations, respectively. Section 3.6 presents two applications of these

results. Section 3.7 gives some conclusion remarks and suggestions for future work.

3.1 Introduction

The first data structure we consider is a string structure which supports efficient rank/select

operations. The rank/select operations on bit vectors in Section 2.3 can be generalized to

a string (or a sequence) S of length n over alphabet [σ], with the operations:

• string rankS(α, x), the number of occurrences of character α in S[1..x];

• string selectS(α, r), the position of the rth occurrence of character α in the string;

• string accessS(x), the character at position x in the string.

We omit the subscript S when it is clear from the context.

9
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These operations can be further generalized to binary relations. Consider a binary

relation R between a set of objects, [n], and a set of labels, [σ], under which each object

can be associated with zero or more labels. We use t to denote the number of object-

label pairs, and thus R can be treated as t pairs from [n]×[σ]. We consider the following

operations:

• label rankR(α, x), the number of objects labeled α up to (and including) x;

• label selectR(α, r), the position of the rth object labeled α;

• label accessR(x, α), whether object x is associated with label α.

We omit the subscript R when it is clear from the context.

The above operations on strings and binary relations have a number of applications [44,

34, 52, 41, 5], and hence supporting them efficiently is a fundamental problem in the design

of succinct data structures. We thus design succinct indexes for strings and binary relations

to support these operations.

We introduce succinct indexes in two steps: we first define the ADTs and then design

succinct indexes for these ADTs.

3.2 Previous Work

3.2.1 Strings

Grossi et al. [44] first generalized the bin rank and bin select operators to strings dur-

ing their research on designing compressed suffix arrays. They originally stored a set of

bit vectors and used the straightforward approach of encoding the bit vectors separately.

However, this used more space than the information-theoretic minimum. Based on the fact

that these bit vectors actually constitute a string (i.e. there is one and only one bit vector

that has a 1 at any given location), they designed a data structure called wavelet tree to

combine the bit vectors. A wavelet tree can be used to encode a string using nH0+o(n)·lg σ

bits to support string access, string rank and string select in O(lg σ) time.

To design a succinct integrated encoding for strings over large alphabets, Golynski et

al. [41] gave another encoding that uses n (lg σ + o(lg σ)) bits and supports string rank
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and string access in O(lg lg σ) time, and string select in constant time. The lg lg σ

factor in the above running time is more scalable for large alphabets than the lg σ factor

of wavelet trees. However, their encoding is not easily compressible.

3.2.2 Binary Relations

Based on a reduction from the support of rank/select on binary relations to that on strings,

Barbay et al. [5] proposed an encoding of binary relations using t(lg σ + o(lg σ)) bits to

support the operators label rank and label access in O(lg lg σ) time, and label select

in constant time. They also considered the following operations:

• label nb(α), the number of objects associated with label α;

• object rank(x, α), the number of labels associated with object x preceding and

including label α;

• object select(x, r), the rth label associated with object x;

• object nb(x), the number of labels associated with object x.

Their encoding supports the operators label nb and object nb in O(1) time, object rank

in O((lg lg σ)2) time, and object select in O(lg lg σ) time. They have an alternative

encoding using also t(lg σ + o(lg σ)) bits that supports label nb, object select and

object nb in O(1) time, label select, object rank and label access in O(lg lg σ) time,

and label rank in O(lg lg σ lg lg lg σ) time.

3.3 Preliminaries

3.3.1 Permutation

One important data structure we use in this chapter is a succinct representation of a

permutations on [n] that supports the efficient computations of the permutation and its

inverse. It is fairly straightforward to represent a permutation π to support π and π−1

in O(s) time for any parameter s > 0. We simply give the forward permutation and an
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auxiliary structure that gives for every sth position in every cycle of length greater than s,

the element s positions earlier in that cycle. Munro et al. [69] investigated this problem

and trimmed the space required to (1 + 1/s)n log2 n + O(n lg lg n/ lg n) bits.

To achieve this result, they explicitly encode the sequence π(1), π(2), ..., π(n) in n log2 n+

o(n) bits, but only use the operator π() to access the given data. Thus, this result can be

rewritten in the form of designing succinct indexes:

Lemma 3.1 ([69]). Given support for π() (or π−1()) in g(n) time on a permutation on

[n], there is a succinct index using n lg n/s + O(n lg lg n/ lg n) bits that supports π−1() (or

π()) in O(s · g(n)) time for any parameter s > 0.

3.3.2 y-fast Trie

Another important data structure we use is a y-fast trie, proposed by Willard [85] to encode

a set E that consists of v distinct integers in the universe [n] in O(v lg n) bits. It is an

improvement upon the stratified tree proposed by Van Emde Boas et al. [26]. Given an

integer x, the y-fast trie can be used to retrieve the largest integer in the set E that is less

than or equal to x in O(lg lg n) time.

If we treat the universe [n] as a bit vector B of length n, and the v integers in the

set as the positions of the 1s in B, the y-fast trie can be used to encode B in O(v lg n)

bits and support the retrieval of the position of the last 1 in B[1..x] in O(lg lg n) time. As

the integers in the set E are stored in the leaves of a y-fast trie, if we store their ranks

explicitly in the leaf nodes, we can augment the y-fast trie to support bin rankB(1, x) in

O(lg lg n) time using additional v lg n bits. More precisely, to compute bin rankB(1, x),

we first locate the last 1 in B[1..x] using the y-fast trie in O(lg lg n) time, and then retrieve

the rank stored in the corresponding leaf of the y-fast trie in constant time. Thus:

Lemma 3.2 ([85]). A bit vector B of length n with v 1s can be encoded using O(v lg n)

bits to support bin rankB(1, x) in O(lg lg n) time.

3.3.3 Squeezing Strings into Entropy Bounds

Sadakane and Grossi [80] investigated the problem of encoding a string in its compressed

form, while at the same time allowing efficient access to the string. Their main result is
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described in the following lemma:

Lemma 3.3 ([80]). A string S ∈ [σ]n can be encoded using nHk(S) + O( n
logσ n

(k lg σ +

lg lg n)) bits1. When k = o(logσ n), the above space cost is nHk(S) + lg σ · o(n) bits. This

encoding can be used to retrieve any O(lg n) consecutive bits of the binary encoding of the

string in O(1) time.

3.3.4 The Information-Theoretic Lower Bound of Representing

Binary Relations

We showed in Section 2.4 that the information-theoretic lower bound of representing a

string S ∈ [σ]n is dn log2 σe bits. Here we compute the information-theoretic lower bound

of the representation of a binary relation.

To compute the number of distinct binary relations formed by t pairs from an object

set [n] and a label set [σ], we observe that the set of these t pairs is a subset of the set

[n]× [σ]. Hence there are
(

nσ
t

)

such binary relations. Thus the information-theoretic lower

bound of representing a binary relation is lg
(

nσ
t

)

bits.

Barbay et al. [5] showed that when the average number of labels associated with each

object is small (more precisely, if t/n = σo(1)), the above lower bound is t(lg σ − o(lg σ))

bits.

3.4 Strings

3.4.1 Definitions

We first design succinct indexes for a given string S of length n over alphabet [σ]. We

adopt the common assumption that σ ≤ n (otherwise, we can reduce the alphabet size to

the number of characters that occur in the string). We define the ADT of a string through

the string access operator that returns the character at any given position of the string.

1González and Navarro [43] noted that the term (k lg σ + lg lg n) appears erroneously as (k + lg log
σ

n)

in [80]. Therefore, we use the correct formula in this chapter.
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To generalize the operators on strings defined in Section 3.1 to include “negative”

searches, we define a literal as either a character, α ∈ [σ], or its negation, ᾱ ∈ [σ]−{α} as

follows (we use the array notation for strings to refer to its characters and substrings):

Definition 3.1. Consider a string S[1 . . . n] over the alphabet [σ]. A position x ∈ [n]

matches literal α ∈ [σ] if S[x] = α. A position x ∈ [n] matches literal ᾱ if S[x] 6= α.

For simplicity, we define [σ̄] to be the set {1, . . . , σ}.

With this definition, we can use string rank and string select to perform negative

searches. For example, given the string bbaaacdd, we have that string rank(a, 7) = 4,

as there are 4 characters that are not a in the string up to position 7. We also have

string select(a, 3) = 6, as position 6 is the 3rd position whose character is not a.

We also consider the following operations on strings in addition to the three primary

operations introduced in Section 3.1:

Definition 3.2. Consider a string S ∈ [σ]n, a literal α ∈ [σ]∪ [σ̄] and a position x ∈ [n] in

S. The α-predecessor of position x, denoted by string pred(α, x), is the last position

matching α before (and not including) position x, if it exists. Similarly, the α-successor

of position x, denoted by string succ(α, x), is the first position matching α after (and not

including) position x, if it exists.

To illustrate the above two operations, consider the string bbaaacdd. We have that

string pred(a, 7) = 5, as position 5 is the last position in the string before position 7

whose character is a. We also have string pred(a, 5) = 2, as position 2 is the last position

before position 5 whose character is not a. By allowing α to be possibly a literal in the set

[σ̄], the α-predecessor/successor queries in fact generalize the colored predecessor/successor

queries defined by Mortensen [67, 68].

3.4.2 Supporting Rank and Select

We now design a succinct index to support rank/select operations on strings. We have the

following result.

Lemma 3.4. Given support for string access in f(n, σ) time on a string S ∈ [σ]n, there

is a succinct index using n·o(lg σ) bits that supports string rank for any literal α ∈ [σ]∪[σ̄]
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S =

E =

a b a a d c b d b c a a a d b b

1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0

0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

1
st

chunk 2
nd

chunk 3
rd

chunk 4
th

chunk

Figure 3.1: A sample string for the proof of Lemma 3.4.

in O((lg lg lg σ)2(f(n, σ) + lg lg σ)) time, and string select for any character α ∈ [σ] in

O(lg lg lg σ(f(n, σ) + lg lg σ)) time.

Proof. As string rank(α, x) = x−string rank(α, x) for α ∈ [σ], we only need show how

to support string rank and string select for α ∈ [σ].

First we conceptually treat the given string S and portions of S in several ways. We

treat S as an n × σ table E with rows indexed by 1, 2, . . . , σ and columns by 1, 2, . . . , n.

For any α ∈ [σ] and x ∈ [n], entry E[α][x] = 1 if S[x] = α, and E[α][x] = 0 otherwise.

Reading E in row major order yields a conceptual bit vector A of length σn with exactly

n 1s. We divide A into blocks of size σ. The cardinality of a block is the number of 1s in it.

A chunk of S is a substring of length σ (we assume that n is divisible by σ for simplicity),

so that for the ith chunk C, we have C[j] = S[(i − 1)σ + j], where i ∈ [n/σ] and j ∈ [σ].

Hence a chunk corresponds to a σ × σ segment of E, or σ equally spaced substrings of A.

We denote the block corresponding to the αth row of the segment of E corresponding to a

chunk C by Cα, where α ∈ [σ]. Figure 3.1 illustrates these concepts. In this example, let

C be the 4th chunk. Then we have C2 = 0011.

We first construct a bit vector B which stores the cardinalities of all the blocks in unary

(i.e. a block of cardinality l is stored as l 1s followed by a 0), in the order they appear in A,

so that B = 1l101l20 . . . 1ln0, where li is the cardinality of the ith block of A. The length of B

is 2n, as there are exactly n 1s in A, and n blocks. We store it using Part (a) of Lemma 2.1

in 2n+o(n) bits. For the example in Figure 3.1, B = 11100110101010101100101000110010.

Using this bit vector B, the support for string rank and string select operations

on S can be reduced, in constant time, to supporting these operations on a given chunk as

suggested by Golynski et al. [41, Section 2]. To be specific, to compute string rankS(α, x),
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let C be the chunk that position x is in (i.e. C is the uth chunk, where u = dx/σe).
We observe that string rankS(α, x) = string rankS(α, (u − 1)σ) + string rankC(α, x

mod α). The first item on the right side of this equation can be computed using B as

follows: Let a1 and a2 be the positions of the 0s in B that correspond to the last block in

the (α−1)st row of E, and the last block before block Cα in the αth row of E, respectively.

Then a1 = bin selectB(0, n(α − 1)/σ) and a2 = bin selectB(0, n(α − 1)/σ + u − 1).

Thus by the definition of B, the following equation holds: string rankS(α, (u − 1)σ) =

bin rankB(1, a2)−bin rankB(1, a1). Therefore, we only need compute string rankC(α, x

mod α).

To compute string selectS(α, r), we first compute the position, v, of the 1 in B

that corresponds to the rth α in S. Let the number of 1s in B[1..v] to be q. As there

are bin rankB(1, a1) 1s above the αth row in E, we have q = bin rankB(1, a1) + r. As

v = bin selectB(1, q), we can compute v in constant time. Let the block that contains

the qth 1 in A be the yth block in E in the row major order, and the chunk, C ′, that

contains the rth α be the wth chunk of the string S. Then y = bin rankB(0, v) + 1 and

w = y − (α − 1)n/σ. Thus we have string selectS(α, r) = string selectC′(α, q −
bin rankB(1, bin selectB(0, y − 1))) + (w − 1)σ.

Hence we only need show how to support string rank and string select on a given

chunk C.

We store the following data structures for each chunk C:

• We construct a bit vector X that stores the cardinalities of the blocks in C in unary

from top to bottom, i.e. X = 1l101l20 . . . 1lσ0, where lα is the number of 1s in the

block Cα. There are σ 1s in X, each corresponding to a character of the chunk, and

σ 0s, each corresponding to a block of the chunk. Hence the length of X is 2σ. We

store it in 2σ + o(σ) bits using Part (a) of Lemma 2.1.

• We construct an array R such that R[j] = bin rankD(1, j) mod k, where D is the

block CC[j], and k is a parameter which we fix later. Each element of R is an integer

in the range [0, k − 1], so R can be stored in σ lg k bits.

• We construct a conceptual permutation π on [σ], defined later in the proof. We store

an auxiliary structure P that takes O(σ lg σ/s+n lg lg n/ lg n) bits using Lemma 3.1,
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where s is a parameter which we fix later, and supports access to π in O(s · g(n, σ))

time, given O(g(n, σ))-time access to π−1.

• For each block Cα in a chunk C, let Fα be a “sparsified” bit vector for Cα, in which

only every kth 1 of Cα is present (i.e. Fα[j] = 1 iff Cα[j] = 1 and bin rank(1, j)

on Cα is divisible by k). We encode Fα using Lemma 3.2 in O(lg σ × lα/k) bits to

support bin rankFα
(1, i) in O(lg lg σ) time. All the Fα’s in a given chunk thus occupy

O(σ lg σ/k) bits in total.

We first show how to support bin rank′(1, j) on block D = CC[j] (note that D[j] = 1;

hence bin rank′(1, j) is defined and equivalent to bin rank(1, j)). For this, we first com-

pute C[j] using string access in f(n, σ) time. Then we compute bin rank(1, j) on

FC[j] in O(lg lg σ) time, which is equal to bbin rank′D(1, j)/kc. Hence, we can com-

pute kbbin rank′D(1, j)/kc in O(lg lg σ) time. We also retrieve R[j] in constant time,

which is equal to bin rank′D(1, j) mod k. As bin rank′D(1, j) = kbbin rank′D(1, j)/kc +

bin rank′D(1, j) mod k, we can compute bin rank′D(1, j) in O(f(n, σ) + lg lg σ) time.

The permutation π for a chunk C is obtained by writing down the positions (relative to

the starting position of the chunk) of all the occurrences of each character α in increasing

order, if α appears in C, for α = 1, 2, · · · , σ. For example, in Figure 3.1, let C be the

4th chunk. Then π = 1, 3, 4, 2. Using π−1 to denote the inverse of π (in the previous

example, π−1 = 1, 4, 2, 3), we see that π−1(j) is equal to the sum of the following two

values: the number of characters smaller than C[j] in C, and bin rank′(1, j) on block

D = CC[j]. The first value can be computed using X in constant time, as it is equal to

bin rankX(bin selectX(0, α−1)), and we have already shown how to compute the second

value in O(f(n, σ) + lg lg σ) time in the previous paragraph. Therefore, we can compute

any element of π−1 in O(f(n, σ) + lg lg σ) time. We can further use P to compute any

element of π in O(s(f(n, σ)+ lg lg σ)) time (note that the f(n, σ)+ lg lg σ term here comes

from the time required to retrieve a given element of π−1).

Golynski et al. [41, Section 2.2] showed how to compute string select on a chunk C by

a single access to π plus a few constant-time operations. This is achievable because π stores

the positions of the occurrences of characters that appears in C. More precisely, to compute

string selectC(α, r), we first use X to compute the number of the occurrences of α in C,
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which is d = bin rankX(1, bin selectX(0, α))−bin rankX(1, bin selectX(0, α−1)). We

return∞ if d < r. Otherwise, we have that string selectC(α, r) = π(bin selectX(0, α−
1) + r). When combined with our approach, we can support string select for any

character α ∈ [σ] in O(s(f(n, σ) + lg lg σ)) time.

Golynski et al. [41, Section 2.2] also showed how to compute string rank by calling

string select O(lg k) times. To be specific, to compute string rankC(α, x), let r1 =

kbstring rankC(α, x)/kc and r2 = r1 + k − 1. We can compute r1 and r2 in O(lg lg σ)

time, as bstring rankC(α, x)/kc is equal to bin rank(1, x) on Fα (i.e. the “sparsified”

bit vector for the block Cα). As r1 ≤ string rankC(α, x) ≤ r2, we then perform a

binary search in the range [r1, r2]. In each phase of the loop, we use string select to

check whether we have found the answer. Thus we can support operator string rank in

O(s lg k(f(n, σ) + lg lg σ)) time.

As there are n/σ chunks, the sum of the space costs of the auxiliary structures con-

structed for all the chunks is clearly O(n lg k + n lg σ(1/s + 1/k)) bits. Choosing s =

lg lg lg σ and k = lg lg σ makes the overall space cost of all the auxiliary structures to be

O(n(lg σ/ lg lg lg σ)) = n · o(lg σ). The query times for string select and string rank

would then be O((lg lg lg σ)2(f(n, σ) + lg lg σ)) and O(lg lg lg σ(f(n, σ) + lg lg σ)) respec-

tively. �

3.4.3 Supporting α-Predecessor and α-Successor Queries

We now extend our succinct indexes to support α-predecessor and α-successor queries.

Lemma 3.5. Using at most 2n+o(n) additional bits, the succinct index of Lemma 3.4 also

supports string pred and string succ for any character α ∈ [σ] in O((lg lg lg σ)2(f(n, σ)+

lg lg σ)) time, and these two operators for any literal α ∈ [σ̄] in O(f(n, σ) + lg lg σ) time.

Proof. We only show how to support string pred; string succ can be supported sim-

ilarly. For any α ∈ [σ], string pred(α, x) = string select(α, string rank(α, x) − 1).

Thus the operators string pred and string succ can be supported for any character

α ∈ [σ] in O((lg lg lg σ)2(f(n, σ) + lg lg σ)) time. Hence we only need show how to support

string pred(α, x) when α ∈ [σ̄].
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For this we require another auxiliary structure. In the bit vector A, there are n 1s, so

there are at most n runs of consecutive 1s. Assume that there are u runs and their lengths

are p1, p2, . . . , pu, respectively. We store these lengths in unary using a bit vector U , i.e.

U = 1p101p20 · · · 1pu0. The length of U is n + u ≤ 2n, and we store it using Part (a) of

Lemma 2.1 in at most 2n + o(n) bits.

To support string pred(α, x) for α ∈ [σ̄], let c be the character such that α = c. We

first retrieve S[x− 1] using string access in f(n, σ) time. If S[x− 1] 6= c, then we return

x−1. Otherwise, we compute the number, j, of 1s up to position (c−1)σ+x−1 in A (this

position in A corresponds to the (x− 1)th position in the cth row in table E). Let C be the

chunk that contains the (x− 1)th position of S. As j = bin rankB(1, bin selectB(0, (c−
1)n/σ + b(x− 1)/σc)) + bin rank′Cc

(1, (x− 1) mod σ), we can compute j in O(f(n, σ) +

lg lg σ) time (the proof of Lemma 3.4 shows how to compute bin rank′D(1, k) in O(f(n, σ)+

lg lg σ) time, for any block D and position k such that D[k] = 1). The position in U that

corresponds to the (x − 1)th position in the cth row in table E is v = bin selectU(1, j).

Thus the number of consecutive 1s preceding and including position v in U is q = v −
bin selectU(0, bin rankU(0, v)). If q ≥ x− 1, then there is no 0 in front of position x− 1

in row c of table E, so we return −∞. Otherwise, we return x− q−1 as the result. All the

above operations take O(f(n, σ) + lg lg σ) time. Therefore, string pred and string succ

can be supported for any literal α ∈ [σ̄] in O(f(n, σ) + lg lg σ) time. �

Combining Lemmas 3.4 and 3.5, we have our first main result:

Theorem 3.1. Given support for string access in f(n, σ) time on a string S ∈ [σ]n,

there is a succinct index using n · o(lg σ) bits that supports:

• string rank for any literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ)2(f(n, σ) + lg lg σ)) time;

• string select for any character α ∈ [σ] in O(lg lg lg σ(f(n, σ) + lg lg σ)) time;

• string pred and string succ for any character α ∈ [σ] in O((lg lg lg σ)2(f(n, σ) +

lg lg σ)) time, and these two operations for α ∈ [σ̄] in O(f(n, σ) + lg lg σ) time.
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3.4.4 Using string select to Access the Data

We can alternatively define the ADT of a string through the string select(α, r) operator,

where α ∈ [σ]. Although this definition seems unusual, it has a useful application in

Section 4.7.3. With this definition, we have:

Theorem 3.2. Given support for string select (for any character α ∈ [σ]) in f(n, σ)

time on a string S ∈ [σ]n, there is a succinct index using n · o(lg σ) bits that supports

string rank, string pred and string succ for any literal α ∈ [σ] ∪ [σ̄], as well as

string access, in O(lg lg σf(n, σ)) time.

Proof. As in the proof of Lemma 3.4, we divide string S and its corresponding conceptual

table E into chunks and blocks, and construct bit vector B for the entire string, and bit

vector X and the auxiliary structure P for each chunk. We also store the same set of “spar-

sified” bit vectors, Fα’s, for each chunk. With the f(n, σ)-time support for string select

on S, using the method described in the proof of Lemma 3.4, we can support string rank

on S in O(lg lg σ + lg kf(n, σ)) time.

Now we provide support for string access. We first design the data structures sup-

porting the access to π and π−1 for any chunk C (see the proof of Lemma 3.4 for the

definition of π and π−1). We assume that C is the ith chunk of S. From the definition

of π we have that π(j) = bin select(1, r) on the block Cα, where the rth occurrence

of α in C corresponds to the jth 1 in X. As α = bin rankX(0, bin selectX(1, j)) + 1,

and r = bin selectX(1, j) − bin selectX(0, α − 1), α and r can be computed in O(1)

time. As bin selectCα
(1, r) = string select(α, r + z), where z is the number of 1s in

the αth row of E up to position (i − 1)σ, we only need show how to compute z. Let a1

and a2 be the positions of the 0s in B that correspond to the last block in the (α − 1)th

row of E, and the block in the αth row of E that ends at position (i − 1)σ, respectively.

Then a1 = bin selectB(0, (α− 1)n/σ) and a2 = bin selectB(0, (α− 1)n/σ + i− 1). As

z = bin rankB(1, a2) − bin rankB(1, a1), we can compute z in constant time. Thus we

can compute π(j) in f(n, σ) time. With the auxiliary structure P , we can further compute

any element of π−1 in O(sf(n, σ)) time by Lemma 3.1.

With the support for the access to π−1, we can now use the method of Golynski et

al. [41, Section 2.2] to compute C[j] as follows. We first compute π−1(j) in O(sf(n, σ))
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time. By the definition of π−1, we observe that the (π−1(j))th 1 in X corresponds to C[j].

Thus C[j] = bin rankX(0, π−1(j)) + 1. Therefore, we can compute C[j] in O(sf(n, σ))

time. Finally, by the equation C[j] = S[(i−1)σ + j] for the ith chunk of S, string access

can be supported in O(sf(n, σ)) time.

To analyze the space cost of the auxiliary data structures used to support string rank

and string access (B, X, y-fast tries, and P ), we observe that the same data structures

are defined in the proof of Lemma 3.1. Thus they occupy O(n lg σ(1/s+1/k)) bits. Choos-

ing s = lg lg σ and k = lg σ makes the overall space cost of all the auxiliary structures to be

O(n lg σ/ lg lg σ+n) = n·o(lg σ) bits. The query time for string rank and string access

would be O(lg lg σf(n, σ)).

Finally, we show how to support string pred and string succ. Same as the proof of

Lemma 3.5, we only need show how to support string pred for α ∈ [σ̄]. We construct

the bit vector U as in the proof of Lemma 3.5, which occupies at most 2n + o(n) bits. To

compute string pred(α, x) for α ∈ [σ̄], let c be the character such that α = c. We first

retrieve S[x − 1] in lg lg σf(n, σ) time. If S[x − 1] 6= c, then we return x − 1. Otherwise,

we compute the number, j, of 1s up to and including position (c − 1)σ + x − 1 in A

(this position in A corresponds to the (x − 1)th position in the cth row in table E). As

j = bin rankB(1, bin selectB(0, (c−1)n/σ))+string rankS(c, x−1), we can compute j

in O(lg lg σf(n, σ)) time. The position in U that corresponds to the (x−1)th position in the

cth row in table E is v = bin selectU(1, j). Thus the number of consecutive 1s preceding

and including position v in U is q = v−bin selectU(0, bin rankU(0, v)). If q ≥ x−1, then

there is no 0 in front of position x− 1 in row c of table E, so we return −∞. Otherwise,

we return x − q − 1 as the result. All the above operations take O(lg lg σf(n, σ)) time.

Therefore, string pred and string succ can be supported in O(lg lg σf(n, σ)) time. �

3.5 Binary Relations

3.5.1 Definitions

We consider a binary relation R, relating an object set [n] and a label set [σ], and containing

t pairs. We adopt the assumption that each object is associated with at least one label
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(thus t ≥ n), and n ≥ σ (the converse is symmetric). We show how to extend the results to

other cases by simple techniques after the proof of each Theorem. We define the interface of

the ADT of a binary relation through the operator object select defined in Section 3.2.2

that can be used to obtain the labels associated with a given object.

We generalize the definition of literals to binary relations:

Definition 3.3. Consider a binary relation formed by t pairs from an object set [n] and

a label set [σ]. An object x ∈ [n] matches literal α ∈ [σ] if x is associated with α. An

object x ∈ [n] matches literal ᾱ if x is not associated with α. For simplicity, we define

[σ̄] to be the set {1, . . . , σ}.

We also generalize the definition of α-predecessor and α-successor to binary relations.

Definition 3.4. Consider a binary relation formed by t pairs from an object set [n] and a

label set [σ], a literal α ∈ [σ]∪ [σ̄] and an object x ∈ [n]. The α-predecessor of object x,

denoted by label pred(α, x), is the last object matching α before (and not including) object

x, if it exists. Similarly, the α-successor of object x, denoted by label succ(α, x), is

the first object matching α after (and not including) object x, if it exists.

3.5.2 Succinct Indexes

Theorem 3.3. Given support for object select in f(n, σ, t) time on a binary relation R

formed by t pairs from an object set [n] and a label set [σ], there is a succinct index using

t · o(lg σ) bits that supports:

• label rank for any literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time;

• label select for any label α ∈ [σ] in O(lg lg lg σ(f(n, σ, t) + lg lg σ)) time;

• label pred and label succ for any label α ∈ [σ] in O((lg lg lg σ)2(f(n, σ, t)+lg lg σ))

time, and these two operations for any literal α ∈ [σ̄] in O(f(n, σ, t) + lg lg σ) time;

• object rank and label access for any literal α ∈ [σ]∪ [σ̄] in O(lg lg lg σf(n, σ, t)+

lg lg σ) time;

• label nb for any literal α ∈ [σ] ∪ [σ̄] and object nb in O(1) time.
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0 1 0 1 0
0 0 0 1 0
1 0 1 1 0
1 1 0 0 1

E= 
ROWS    = 3, 4,    1, 4,    3,    1, 2, 3,    4
COLUMNS = 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0

Figure 3.2: An example of the encoding of a binary relation.

Proof. As with strings, we also conceptually treat a binary relation as an n × σ table E,

and entry E[α][x] = 1 iff object x is associated with label α. A binary relation on t pairs

from [n]× [σ] can be stored as follows [5] (See Figure 3.2 for an example):

• a string ROWS of length t drawn from alphabet [σ], such that the ith label of ROWS is

the label of the ith pair in the column-major order traversal of E;

• a bit vector COLUMNS of length n + t encoding the number of labels associated with

each object in unary.

To design a succinct index for binary relations, we explicitly store the bit vector

COLUMNS using Part (a) of Lemma 2.1 in n + t + o(n + t) bits. We now show how to

support string access on ROWS using object select. To compute the ith character

in ROWS, we need compute the corresponding object, x, and the rank, r, of the corre-

sponding label among all the labels associated with x. The position of the 1 in COLUMNS

corresponding to the ith character in ROWS is l = bin selectCOLUMNS(1, i). Therefore,

x = bin rankCOLUMNS(0, l) + 1, and r = l − bin selectCOLUMNS(0, x − 1) if x > 1 (r = l

otherwise). Thus with these additional operations, we can support string access in

O(f(n, σ, t)) time using one call to object select in addition to some constant-time op-

erations.

We store a succinct index for ROWS using Theorem 3.1 in t·o(lg σ) bits. As we can support

string access on ROWS using object access, the index can support string rank for any

literal α ∈ [σ]∪ [σ̄] in O((lg lg lg σ)2(f(n, σ)+lg lg σ)) time, string pred and string succ

for any character α ∈ [σ] in O((lg lg lg σ)2(f(n, σ) + lg lg σ)) time, string pred and

string succ for any literal α ∈ [σ̄] in O(f(n, σ)+lg lg σ) time, and string select for any

character α ∈ [σ] in O(lg lg lg σ(f(n, σ)+lg lg σ)) time. With this, we can use the approach

of Barbay et al. [5, Theorem 1] to support label rank, label select and label access

operations on binary relations using rank/select on ROWS and COLUMNS as follows.
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To compute label rank(α, x), we observe that the position of the 0 in COLUMNS that cor-

responds to the xth column of E is j = bin selectCOLUMNS(0, x). Then the position of the last

label associated with object x in ROWS is k = bin rankCOLUMNS(1, j). As label rank(α, x) =

string rank
ROWS

(α, k), we can support label rank in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ))

time.

To compute label select(α, r), we first observe that the position of the rth occurrence

of α in ROWS is u = string select
ROWS

(α, r). The position of the 1 that corresponds to

this character in COLUMNS is v = bin selectCOLUMNS(1, u), which corresponds to object

bin rankCOLUMNS(0, v)+1. This object is the answer. Thus label select can be supported

in O(lg lg lg σ(f(n, σ, t) + lg lg σ)) time.

To compute object nb(x), we observe that the result is the xth number encoded in

COLUMNS in unary. Thus object nb(x) = bin rankCOLUMNS(1, bin selectCOLUMNS(0, x)) −
bin rankCOLUMNS(1, bin selectCOLUMNS(0, x − 1)), so we can support object nb in constant

time. We can support label nb for α ∈ [σ] in the same manner by encoding the number

of objects associated with each label in unary in another bit vector W . For the example in

Figure 3.2, W = 1101011101110. W occupies n + t + o(n + t) bits. To support label nb

for α ∈ [σ̄], we use the equation label nb(α) = n− label nb(c), where c is the label such

that α = c̄.

To support object rank, we construct, for each object y, a bit vector Gy of length σ,

in which Gy[β] = 1 iff object y is associated with label β and object rank(y, β) is divisible

by lg lg σ. We encode Gy using Lemma 3.2. Let lx be the number of labels associated

with x. Then the number of 1s in Gy is blx/ lg lg σc. Hence Gy occupies O(blx/ lg lg σc ×
lg σ) = O(lx lg σ/ lg lg σ) bits, and the total space cost of all the Gy’s is O(t lg σ/ lg lg σ)

bits. To compute object rank(x, α), let r1 = lg lg σbobject rank(α, x)/ lg lg σc and r2 =

r1+lg lg σ−1. We can compute r1 and r2 in O(lg lg σ) time, as bobject rank(α, x)/ lg lg σc
is equal to bin rank(1, α) on Gx. As r1 ≤ object rank(α, x) ≤ r2, we then perform a

binary search in the range [r1, r2]. In each phase of the loop, we use object select to

check whether we have found the answer. Thus we can support operator object rank in

O(lg lg lg σf(n, σ, t) + lg lg σ) time.

To compute label access(x, α), we make use of the fact that object x is labeled α iff

object rank(x, α)−object rank(x, α−1) is 1. Therefore, label access can be supported
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in O(lg lg lg σf(n, σ, t) + lg lg σ) time.

We now design algorithms to support label pred and label succ. We show how

to compute label pred(α, x); label succ can be supported similarly. The position of

the first label associated with x in ROWS is p = bin rankCOLUMNS(1, bin selectCOLUMNS(0, x−
1)) + 1. Thus the position of the last occurrence of character α in ROWS[1..p − 1] is q =

string pred
ROWS

(α, p), and the object associated with the label that corresponds to this

occurrence is bin rankCOLUMNS(0, bin selectCOLUMNS(1, q)) + 1. This object is the answer.

Hence we can support label succ(α, x) for α ∈ [σ] in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ))

time, and the same operation for α ∈ ¯[σ] in O(f(n, σ, t) + lg lg σ) time.

The space of the index is the sum of space cost of storing COLUMNS, W , Gy’s and the

index for ROWS, which is at most n+t+o(n+t)+n+t+o(n+t)+t lg σ/ lg lg σ+t ·o(lg σ) =

t · o(lg σ) bits. �

Note that the above approach also works without the assumption that each object

is associated with at least one label, though we can not use the inequality t ≥ n to

analyze the space cost. Thus without such an assumption, our succinct index occupies

t lg σ/ lg lg σ+n+o(n) bits. By the discussions in Section 3.3.4, the space cost of our succinct

index is a lower order term of the information-theoretic minimum, when t/n = σo(1) and

t ≥ n.

As we treat a binary relation as an n × σ boolean matrix with t 1s in the proof of

Theorem 3.3, our result also applies to the problem of succinctly representing a boolean

matrix to allow rank/select on rows and columns. By the analysis in the above paragraph,

our solution is particularly space-efficient for sparse boolean matrices.

3.6 Applications

3.6.1 High-Order Entropy-Compressed Succinct Encodings for

Strings

Given a string S of length n over alphabet [σ], we now design a high-order entropy-

compressed succinct encoding for it that supports string access, string rank, and

string select efficiently. Golynski et al. [5] considered the problem and suggested a
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method with space requirements proportional to the kth order entropy of a different but

related string. Here we solve the problem in its original form.

Theorem 3.4. A string S of length n over alphabet [σ] can be represented using nHk(S)+

lg σ · o(n) + n · o(lg σ) bits for any k = o(logσ n), to support:

• string access in O(1) time;

• string rank for any literal α ∈ [σ] ∪ [σ̄] in O(lg lg σ(lg lg lg σ)2) time;

• string select for any character α ∈ [σ] O(lg lg σ lg lg lg σ) time;

• string pred and string succ for any literal α ∈ [σ] in O(lg lg σ(lg lg lg σ)2) time,

and these two operations for any literal α ∈ [σ̄] in O(lg lg σ) time.

When σ = O(lg n/ lg lg n), S can be represented using nHk(S) + lg σ · o(n) + O(n) bits to

support the above operations in O(1) time.

Proof. We use Lemma 3.3.3 to store S in nHk(S) + O( n
logσ n

(k lg σ + lg lg n)) bits. When

k = o(logσ n), the above space cost is Hk(S) + lg σ · o(n). This representation allows us

to retrieve any O(lg n) consecutive bits of the string in O(1) time. Thus we can use it to

retrieve S[i] in O(1) time (i.e. string access can be supported in O(1) time).

We store a succinct index for S using Theorem 3.1, and the support for string rank,

string select, string pred and string succ for arbitrary σ immediately follows. The

overall space is nHk + lg σ · o(n) + O(n lg σ/ lg lg lg σ) = nHk(S) + lg σ · o(n) + n · o(lg σ).

When σ = O(lg n/ lg lg n), instead of constructing the entire succinct index for S, we

construct the following auxiliary structures. We conceptually divide the string into chunks

and blocks, and construct the bit vector B as in the proof of Lemma 3.4. This reduces the

support for string rank and string select on S, to the support for these two operations

on any given chunk C (see the proof of Lemma 3.4).

Let l = blog2 n/(2 log2 σ)c. We construct a table L, in which for each character α ∈ [σ],

each integer i ∈ [l], and each possible string D ∈ [σ]l, we store the results of queries

string rankD(α, i) and string selectD(α, i) (i.e. L[D,α, i] stores string rankD(α, i)

and string selectD(α, i)). As there are σl ≤ σlog2 n/(2 log2 σ) = σ
1
2

logσ n =
√

n different

strings of length l over alphabet [σ], We can encode each possible string using dlog2 n/2e
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bits, which fits in a constant number of words. We can store the result of each query

above in lg(l + 1) bits. Thus the table L occupies at most σ × l × √n × lg(l + 1) =

O(lg n/ lg lg n × √n × l lg l) = O(
√

n lg2 n) = o(n) bits. Using the table L, we can an-

swer queries string rank(α, i) and string select(α, i) on any string D ∈ [σ]l in con-

stant time by performing a table lookup on L (as L[D,α, i] stores the answers). We

can also support string rank and string select on any string G whose length, h, is

less than l. This can be done by first appending the string with the first character till

its length is l (on a word RAM, this step can be performed using a right shift of the

binary encoding of G in constant time), and then use the resulting string, F , as a param-

eter to perform table lookups. Finally, as string rankG(α, i) = string rankF (α, i) for

i ≤ h, and string selectG(α, i) = string selectF (α, i) if string selectF (α, i) ≤ h

(string selectG(α, i) =∞ otherwise), we can support string rank and string select

on G in constant time.

To support string rank and string select on any chunk C, we observe that l =

Ω(lg n/ lg lg n). Therefore, the length of a chunk is either shorter than l, or can be divided

into a constant number of substrings of length l and a substring of length at most l. To

handle the latter case (the first case is already supported in the above paragraph), when

answering string rankC(α, i), we using table L to compute the number of α’s in the

substrings that appear before position i, and using table L to compute string rank(α, i

mod l) on the substring that contains position i, and the sum of these values is the result.

To compute string selectC(α, i), we computer the number of occurrences of α in each

substring from left to right, and compute the subset sum, till we locate the substring that

contains the result. We then use table lookup to retrieve the result.

To support string pred and string succ, we construct the bit vector U using at

most 2n + o(n) bits as in the proof of Lemma 3.5, and use the same algorithm to support

string pred and string succ in constant time.

The auxiliary data structures B, L and U occupies O(n) bits in total, so the overall

space cost is nHk(S) + lg σ · o(n) + O(n) bits. �

Using similar approaches, we can design succinct encodings for binary relations based

on our succinct indexes, and compress the underlying strings (recall that we reduce the

operations on binary relations to rank/select on strings and bit vectors) to high-order en-
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tropies. Although there is no standard definition for the entropy of binary relations so that

we cannot measure the compression theoretically, we can still achieve much compression

in practice.

3.6.2 Binary Relations in Almost Information-Theoretic Mini-

mum Space

Theorem 3.5. A binary relation R formed by t pairs from an object set [n] and a label set

[σ] can be represented using lg
(

nσ
t

)

+ t · o(lg σ) bits to support:

• label rank for any literal α ∈ [σ] ∪ [σ̄] in O(lg lg σ(lg lg lg σ)2) time;

• label select for any label α ∈ [σ] in O(lg lg σ lg lg lg σ) time;

• label pred and label succ for any label α ∈ [σ] in O(lg lg σ(lg lg lg σ)2) time, and

these two operations for any literal α ∈ [σ̄] in O(lg lg σ) time;

• object rank and label access for any literal α ∈ [σ] ∪ [σ̄] in O(lg lg σ) time;

• label nb for any literal α ∈ [σ] ∪ [σ̄], object select and object nb in O(1) time.

Proof. We construct the bit vector COLUMNS as in the proof of Theorem 3.3 using n + t +

o(n+ t) bits. We also construct another bit vector BR, which lists the bits of the conceptual

table E (see the proof of Theorem 3.3 for the definition of E) in the column-major order.

For the example in Figure 3.2, BR = 00111001001011100001. We store BR using Lemma 2.2

in lg
(

nσ
t

)

+ o(t) + O(lg lg(nσ)) bits.

We now show how to compute object select(x, r) in constant time. To answer this

query, we need locate the row that contains the rth 1 in the xth column of E. The total

number of 1s in columns 1, 2, ..., x−1 of E is i = bin rankCOLUMNS(1, bin selectCOLUMNS(0, x−
1)). Thus, the rth 1 in the xth column of E is the (r + i)th 1 in BR, whose position

in BR is j = bin selectBR(1, r + i), which is in the (j − (x − 1)σ)th row of E. Hence

object select(x, r) = j−(x−1)σ. Therefore, we can support object select in constant

time.

With the constant-time support for object select, we can construct a succinct index

for R using Theorem 3.3, and the support for the operations listed follows directly.
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The overall space cost in bits is n+t+o(n+t)+lg
(

nσ
t

)

+o(t)+O(lg lg(nσ))+t·o(lg σ) =

lg
(

nσ
t

)

+ t · o(lg σ), as t ≥ n ≥ σ. �

Same as Theorem 3.3, the above approach also works without the assumption that each

object is associated with at least one label, though we can not use the inequality t ≥ n

to analyze the space cost. Thus without such an assumption, our succinct representation

occupies lg
(

nσ
t

)

+ t · o(lg σ) + n + o(n) bits. This is close to the information-theoretic

minimum.

3.7 Discussion

In this chapter, we have designed succinct indexes for strings and binary relation that,

given the support for the interface of the ADTs of these data types, support various useful

operations efficiently. When the operators in the ADTs are supported in constant time, our

results are comparable to previous results, while allowing more flexibility in the encoding

of the given data. We also generalized the queries on characters or labels to literals, to

support “negative” searches.

Using our techniques, we design a succinct encoding that represents a string of length n

over an alphabet of size σ using nHk+lg σ·o(n)+n·o(lg σ) bits to support access/rank/select

operations in O((lg lg σ)1+ε) time, for any fixed constant ε > 0. This is the first succinct

representation of strings supporting rank/select operations efficiently that occupies space

proportional to the high-order entropies of strings. We also design a succinct encoding

that represents a binary relation formed by t pairs from an object set [n] and a label set [σ]

using lg
(

nσ
t

)

+ t · o(lg σ) bits to support various types of rank/select operations efficiently.

This space cost is close to the information-theoretic minimum.

There are some related open problems. First, we are not certain whether the space costs

of our succinct indexes are optimal. Thus one open problem is to prove the lower bounds of

succinct indexes of strings and binary relations, or to further improve the results. Second,

the term t · o(lg σ) of representing a binary relation in Theorem 3.5 is a second-order term

only when t/n = σo(1). Thus it is an open problem to reduce this term.



Chapter 4

Text Indexes

This chapter deals with the problem of designing succinct text indexes to facilitate text

search. The chapter starts with an introduction in Section 4.1, followed by a brief review of

previous work in Section 4.2, and a summary of the existing results we use in Section 4.3.

In Sections 4.4, we present a theorem that characterizes a permutation as the suffix array

of a binary string. Based on this theorem, we design succinct text indexes for binary

strings in Section 4.5 and Section 4.6. We extend the above results to general alphabets

in Section 4.7. Section 4.8 gives some conclusion remarks and suggestions for future work.

4.1 Introduction

As a result of the growth of the textual data in databases, the World Wide Web and

applications such as bioinformatics, various indexing techniques have been developed to

facilitate full text searching. Given a text string T of length n and a pattern string P

of length m, whose symbols are drawn from the same fixed alphabet [σ], the goal is to

look for the occurrences of P in T . We consider three types of queries: existential queries,

cardinality queries, and listing queries. An existential query returns a boolean value that

indicates whether P is contained in T . A cardinality query returns the number, occ, of

occurrences of P in T . A listing query lists all the positions of occurrences of P in T . We

define pattern searching to be the process of answering all the above three types of queries

for a given pattern string.

30
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Inverted files [59] have been the most popular indexes used in practice. An inverted

file is a sorted list (index) of keywords, with each keyword having links to the records

containing that keyword in the text [51]. They can be easily adapted to give very efficient

indexes for texts that can be naturally parsed into a set of words, such as English text,

but not for DNA data or texts in far-eastern languages. Therefore, they are categorized as

word-level indexes. However, the search for an arbitrary pattern that does not necessarily

start at the beginning of a word is inefficient on inverted files.

A suffix tree [84] is a search tree whose leaves correspond (refer) to all the suffixes of the

text. The nodes of the tree are placed in lexicographic order of the suffixes to which they

refer. The search tree structure enables us to perform a query by searching the suffixes of

the text. Because suffix trees index each position in the text, they are categorized as full

text indexes, and are more powerful than inverted files. Using a suffix tree, we can support

existential and cardinality queries of an arbitrary pattern P in text T in O(m lg σ) time. We

need additional O(occ) time to answer listing queries. However, a standard representation

of a suffix tree requires somewhere between 4n lg n and 6n lg n bits, which is impractical

for many applications. Suffix arrays [65, 42] have been proposed to reduce the space cost

of suffix trees. The idea is to organize the suffix offsets in a sorted list using the suffixes as

sort keys instead of organizing them in a tree, which takes exactly n lg n bits. With a suffix

array, one can answer existential and cardinality queries in O(m lg n) time, and listing

queries in O(occ) extra time. Additional information about the lengths of the (longest)

common prefixes of pairs of suffixes of the text can be stored to speed up pattern search.

By precomputing and storing such information for 2n − 1 pairs of suffixes (see [48] for a

detailed description of such pairs), one can answer existential and cardinality queries in

O(m+lg n) time, and listing queries in O(occ) extra time. Unfortunately, straightforward

representation of such prefix length data takes (2n−1) lg n bits. Perhaps as a consequence,

suffix arrays are still less popular than inverted lists for large text collections.

The straightforward method to represent a suffix array is to treat it as a permutation

of the set of integers [n], the offsets of all the suffixes, and store it in n lg n bits. However,

there are σn−1 different texts of length n drawn from an alphabet of size σ (assume the last

character is a special end-of-file symbol not in the alphabet), and so there are σn−1 different

suffix arrays associated with them. Therefore, there is a canonical way to represent suffix
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arrays in O(n lg σ) bits.

In this chapter, we provide a categorization theorem that lets us tell which permutations

are suffix arrays and which are not. We further exploit this theorem to design space efficient

full-text indexes for fast text searching. We also apply our succinct indexes for strings to

make the index scalable for large alphabets, and to compress it.

The storage costs of the text indexes we design in this chapter are at least as much as

the space required to encode the texts (or compressed versions of the texts). This saves

a lot of space compared with the standard text indexing techniques mentioned in this

section. In fact, Demaine and López-Ortiz [24] proved that a text index that supports

pattern searching in time linear in the length of the pattern requires space proportional

to that of the text. Thus our text indexes are space efficient. Our research also shows

that with these succinct text indexes, the original texts no longer need be stored explicitly,

which is different from our results on designing succinct indexes for other combinatorial

objects. Thus the representations of the results of the succinct text indexes may be slightly

different from those of the succinct indexes in other chapters.

4.2 Previous Work

Using some of the techniques of succinct data structures, Grossi and Vitter [45, 46] pro-

posed the compressed suffix array structure, which is the first method that represents suffix

arrays drawn from alphabet [σ] in O(n lg σ) bits and supports access to any entry of the

original suffix array in O(logε
σ n) time, for any fixed constant ε, where 0 < ε < 1 (with-

out computing the entire original suffix array). Based on compressed suffix arrays, they

designed a full-text index that uses O(n lg σ) bits and answers existential and cardinality

queries in O( m
logσ n

+ logε
σ n) time. Listing queries can be answered in O(occ logε

σ n) addi-

tional time. Sadakane [78] proposed additional structures to make the compressed suffix

array a self-indexing data structure, using which we can retrieve any substring of the text

without storing the text itself. His structure uses O(nH0 + n) bits, where H0 is the zeroth

order entropy of the text, while supporting pattern searching in O(m lg n+occ lgε n) time.

Retrieving a part of the text of length l starting at any given position costs O(l + lgε n)

time. Grossi, Gupta and Vitter [44] further proposed a self-indexing data structure based
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on compressed suffix arrays that uses nHk + o(n) · lg σ bits, where Hk is the kth order

entropy of the text, while supporting pattern searching in O(m lg σ + polylog(n)) time.

The FM-index [30, 31] proposed by Ferragina and Manzini is based on the Burrows-

Wheeler compression [14]. It is a self-indexing data structure that encodes the text (drawn

from an alphabet of constant size) in O(nHk) + o(n) bits, and supports pattern searching

in O(m + occ lgε n) time. By designing additional data structures to facilitate listing

queries, they designed a full-text index that uses O(nHk lgε n) + o(n) bits and supports

pattern searching in O(m + occ) time [32]. Ferragina, Manzini, Mäkinen and Navarro [34]

proposed another variant of the FM-index which occupies nHk +O((n lg lg n)/ logσ n) bits,

and supports pattern searching in O(m lg σ + occ lg σ(lg2 n/ lg lg n)) time.

4.3 Preliminaries

4.3.1 Orthogonal Range Searching on a Grid

Assume that there are n points in an n×n grid (i.e. the coordinate of each point is in the

set [n] × [n]). Given a query range which is a rectangle on the grid (i.e. the range is of

the form [a, b]× [c, d], where a, b, c, d ∈ [n]), the orthogonal range searching is to report all

the points (x, y) such that a ≤ x ≤ b and c ≤ y ≤ d. Alstrup et al. [1] have the following

result on this problem.

Lemma 4.1 ([1]). Given n points in an n × n grid, there exists a data structure using

O(n lg1+δ n) bits, for any constant δ > 0, that supports orthogonal range searching in

O(lg lg n + k) time, where k is the number of the points in the given query range.

4.3.2 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT)) was proposed by Burrows and Wheeler [14] to

introduce a new class of text compression algorithms. To illustrate the BWT, we give a

running example, using the classical text T [1..n − 1] = mississippi (an example taken

from [28]) as the input text. We use T BWT to denote the Burrows-Wheeler transformed

string of T . It is performed in three steps:
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#mississippi
i#mississipp
ippi#mississ
issippi#miss
ississippi#m
mississippi#
pi#mississip
ppi#mississi
sippi#missis
sissippi#mis

ssissippi#mi
ssippi#missi

M

mississippi#
ississippi#m
ssissippi#mi
sissippi#mis
issippi#miss
ssippi#missi
sippi#missis
ippi#mississ
ppi#mississi
pi#mississip
i#mississipp
#mississippi

Cyclic Shifts of T#

Figure 4.1: Sorting the cyclic shifts of T# to construct the matrix M for the

text T = mississippi.

1. Append to the end of T an end-of-file symbol (denoted by #) smaller than any other

alphabet symbol.

In our example, we get T# = mississippi#.

2. Form a conceptual n×n matrix M whose elements are symbols, and whose rows are

the cyclic shifts of T#, sorted in lexicographic order.

Please refer to Figure 4.1 for the processing of our example.

3. Return the last column of M , which is the transformed text T BWT.

In our example, T BWT = ipssm#pissii.

Note that the process of sorting the cyclic shifts of T# is equivalent to the process of

sorting suffixes of T#. This is because the symbol # is smaller than any other alphabet

symbol, and no character occurring after the symbol # is compared.

The Burrows-Wheeler Transform is not a compression process by itself. However, when

combined with other simple compression techniques, it can compress a text string effec-

tively [14].
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4.3.3 Compression Boosting

The concept of compression boosting [38, 33] was proposed to design BWT-based compres-

sion algorithms to achieve good guaranteed compression performance. Given a compression

algorithm that can store a string using space proportional to its zeroth order entropy, a

compression booster can use it to compress the string in space proportional to its kth order

entropy. This is based on the claim that compressing a string up to its kth order entropy can

be achieved by optimally partitioning its Burrows-Wheeler transformed string and using a

zeroth-order compressor to compress each partition [38]. One variant of the compression

boosting technique used in our research was proposed by Ferragina et al.:

Lemma 4.2 ([34]). Consider a compression algorithm A that can store any string S of

length p in less than pH0(S) + f(p) bits, where f(p) is a non-decreasing concave func-

tion. Given a text string T of length n drawn from alphabet [σ], there is a partition,

S1, S2, · · · , Sz, of T BWT, such that, for any k ≤ 0, we have

z
∑

i=1

(A(Si)) ≤ nHk(T ) + σkf(n/σk),

where A(Si) is the number of bits required to store Si using algorithm A.

This partition can be computed in O(n) time.

4.4 Permutations and Suffix Arrays

In this section, we compare a suffix array with an arbitrary permutation of integers [n].

We then present a categorization theorem by which we can determine whether a given

permutation is a suffix array of a binary string. Based on the theorem, we give an efficient

algorithm that checks whether a permutation is a suffix array of a binary string.

4.4.1 Valid and Invalid Permutations

We adopt the convention that the text T of length n is a string of n−1 symbols drawn from

the binary alphabet Σ = {a, b}, followed by a special end-of-file symbol #. We assume that
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a < # < b. The suffix array SA of T is then a permutation of [n] that corresponds to the

lexicographic ordering of the suffixes of T , i.e. the suffix of T that starts at position SA[i] is

ranked the ith among all the suffixes in lexicographic order. Based on our convention, there

are 2n−1 different text strings of length n, so there are at most 2n−1 different suffix arrays

associated with them. However, there are n! different permutations of [n]. Therefore, not

all of the n! permutations are suffix arrays. We call those permutations that are suffix

arrays valid permutations, and those that are not suffix arrays invalid permutations. For

example, the permutation 4, 7, 5, 1, 8, 3, 6, 2 is a valid permutation, because it is the suffix

array of the text abbaaba#, but the permutation 4, 7, 1, 5, 8, 2, 3, 6 is an invalid one because

it is not a suffix array of any text string. Because there are at most 2n−1 different suffix

arrays of length n, there is a canonical way to represent suffix arrays in O(n) bits. Grossi

and Vitter [45] gave the first non-trivial method to represent suffix arrays in O(n) bits and

support efficient searching (See Section 4.2). However, they did not provide a method to

characterize a permutation as a suffix array, and indeed mentioned it as an open problem.

We now address this problem.

4.4.2 A Categorization Theorem

As in Section 3.3.1, if M is a permutation, we denote its inverse by M−1. Hence the inverse

permutation of the suffix array SA is SA−1. We find this notation very useful as M−1[i]

simply says where i occurs in M , so M−1[i] < M−1[j] simply means i comes before j in

the permutation M . We first give two definitions on permutations.

Definition 4.1. Given a permutation M [1..n] of [n], we call it ascending-to-max iff for

any integer i where 1 ≤ i ≤ n− 2, we have:

(i) if M−1[i] < M−1[n] and M−1[i + 1] < M−1[n], then M−1[i] < M−1[i + 1], and

(ii) if M−1[i] > M−1[n] and M−1[i + 1] > M−1[n], then M−1[i] > M−1[i + 1].

Definition 4.2. Given a permutation M [1..n] of [n], we call it non-nesting iff for any

two integers i, j, where 1 ≤ i, j ≤ n− 1 and M−1[i] < M−1[j], we have:

(i) if M−1[i] < M−1[i+1] and M−1[j] < M−1[j +1], then M−1[i+1] < M−1[j +1], and
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(a) a valid permutation                        (b) an invalid permutation

4    7    5    1    8    3    6    2                    4    7    1    5    8    2    3    6

Figure 4.2: Valid and invalid permutations.

(ii) if M−1[i] > M−1[i + 1] and M−1[j] > M−1[j + 1], then M−1[i + 1] < M−1[j + 1].

Figure 4.2 shows the valid and invalid permutations presented in Section 4.4.1. In

each we draw an arrow from i to i + 1 for i = 1, 2, ..., n − 1, i.e. from position M−1[i] to

M−1[i + 1], and we denote it as arrow (i, i + 1). Arrows pointing to the right (or right

links) are drawn above the permutations, and arrows pointing to the left (or left links) are

drawn below the permutations. In an ascending-to-max permutation, all the arrows that

do not enclose the maximum value are in the direction that points towards the maximum

value in the permutation. In a non-nesting permutation, no arrow encloses another arrow

in the same direction. From Figure 4.2, we can see that (a) is both ascending-to-max and

non-nesting, but neither is true of (b), because arrow (2, 3) is in the direction away from

the maximum value, and right link (5, 6) encloses right link (2, 3).

We can now state our categorization theorem.

Theorem 4.1. A permutation is a suffix array of a binary string iff it is both ascending-

to-max and non-nesting.

Proof. In this proof, given two strings α and β, we use α ≺ β (α � β) to denote that

string α is lexicographically smaller (larger) than β. First, we prove that a suffix array is

ascending-to-max and non-nesting. Assume that we have a suffix array SA of length n.

Lemma 4.3 immediately follows from the definition of a suffix array.

Lemma 4.3. Given an integer i, where 1 ≤ i ≤ n−1, if SA−1[i] < SA−1[n], then T [i] = a.

If SA−1[i] > SA−1[n], then T [i] = b.

To prove the ascending-to-max feature, given an integer i where 1 ≤ i ≤ n− 2, we first

consider the case when SA−1[i] < SA−1[n] and SA−1[i + 1] < SA−1[n]. By Lemma 4.3,
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T [i] = T [i + 1] = a. Therefore, T [i, n] = aT [i + 1, n] ≺ T [i + 1, n]. By the definition of

the suffix array, we have SA−1[i] < SA−1[i + 1]. By similar reasoning, we can prove that

if SA−1[i] > SA−1[n] and SA−1[i + 1] > SA−1[n], then SA−1[i] > SA−1[i + 1]. This proves

the ascending-to-max feature.

To prove the non-nesting feature, assume we have two integers i, j, where 1 ≤ i, j ≤
n − 1 and SA−1[i] < SA−1[j]. We first consider the case when SA−1[i] < SA−1[i + 1]

and SA−1[j] < SA−1[j + 1]. By the definition of the suffix array, we have the following

three inequalities: (i) T [i, n] ≺ T [i + 1, n], (ii) T [j, n] ≺ T [j + 1, n], and (iii) T [i, n] ≺
T [j, n]. T [i] 6= # because i < n. We conclude that T [i] = a, because otherwise if

T [i] = b, then T [i, n] = bT [i + 1, n] � T [i + 1, n], which is a contradiction. Similarly, we

conclude that T [j] = a = T [i]. Because T [i, n] = aT [i + 1, n] ≺ T [j, n] = aT [j + 1, n], the

inequality T [i + 1, n] ≺ T [j + 1, n] holds, and the inequality SA−1[i + 1] < SA−1[j + 1]

follows immediately. By similar reasoning, we can prove that if SA−1[i] > SA−1[i + 1] and

SA−1[j] > SA−1[j+1], then SA−1[i+1] < SA−1[j+1]. This proves the non-nesting feature.

Second, we prove that any ascending-to-max and non-nesting permutation is a suffix

array. We first describe an algorithm [45] that constructs a text from its suffix array. Given

a suffix array SA of length n, we need find its corresponding text T . First, we assign # to

T [n]. We then scan SA to find the position v such that SA[v] = n. By Lemma 4.3, for the

ith entry in SA, where 1 ≤ i < v, we assign a to T [SA[i]]. For the jth entry in SA, where

v < j ≤ n, we assign b to T [SA[j]].

The above algorithm can construct a text string for any given input permutation M .

However, if M is not a suffix array, the suffix array of the text constructed is different from

M . We must prove that if M is ascending-to-max and non-nesting, it is the same as the

suffix array SA of the constructed text T . Assume that M [v] = n. Then in the text string

T , there are (v − 1) a’s and (n − v) b’s. In SA, the first (v − 1) entries point to suffixes

starting with an a, the vth entry points to suffix #, and the last (n − v) entries point to

suffixes starting with a b. Therefore, SA[v] = n = M [v]. Now we must prove that all the

other entries in M and SA are the same. We give a proof by contradiction. First we give

the following definition.

Definition 4.3. A reverse pair on two given permutations π1 and π2 is a pair of integers

(i, j), where 1 ≤ i, j ≤ n, such that π−1
1 [i] < π−1

1 [j] but π−1
2 [i] > π−1

2 [j], i.e. the relative
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positions of i and j in π1 and π2 are different.

Assume, contrary to what we are going to prove, that M is different from SA. Then

there exists at least one reverse pair on M and SA. We have the following lemma on reverse

pairs.

Lemma 4.4. For any reverse pair (i, j) on M and SA, one of the following two conditions

holds:

(i) M−1[i] < M−1[j] < v and SA−1[j] < SA−1[i] < v;

(ii) M−1[j] > M−1[i] > v and SA−1[i] > SA−1[j] > v.

To prove this lemma, we first consider the case when M−1[i] < M−1[j] < v. In this case,

according to the algorithm that generates T , we have T [i] = T [j] = a. By the definition

of suffix arrays, we immediately have SA−1[j] < SA−1[i] < v. The case when M−1[j] >

M−1[i] > v is similar. We only need consider the case when M−1[i] < v < M−1[j]. In

this case, T [i] = a and T [j] = b, so SA−1[i] < SA−1[j], which is a contradiction. Therefore

M−1[i] < v < M−1[j] never holds. �

With this lemma, we can continue the proof of the theorem.

There exists one reverse pair (g, h) such that g is the greatest among the first items

of all the reverse pairs. We observe that both g and h are less than n because neither

M−1[g] or M−1[h] is v. Therefore, the inequality 1 < g + 1, h + 1 ≤ n holds. We first

consider the case when pair (g, h) satisfies Condition (i) of Lemma 4.4. In this case, we

observe that M−1[g] < M−1[g + 1] and M−1[h] < M−1[h + 1], because otherwise, M is not

ascending-to-max. Because M is non-nesting, we have M−1[g+1] < M−1[h+1]. By similar

reasoning, we can prove that SA−1[g + 1] > SA−1[h + 1], as SA is also ascending-to-max

and non-nesting. Now we have another reverse pair (g + 1, h + 1). Its first item (g + 1) is

greater than g, which is a contradiction. We can reach a contradiction by similar reasoning

for the case when pair (g, h) satisfies Condition (ii) of Lemma 4.4. � (Thm 4.1)

We have the following corollary.

Corollary 4.1. For a text string T over alphabet {a, b}, if its longest run of a’s is of length

l1, and its longest run of b’s is of length l2, then its suffix array SA can be divided into

l1 + l2 + 1 segments numbered 1, 2, ..., l1 + l2 + 1, such that:
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(i) suffixes corresponding to the entries in segments 1, 2, ..., l1 are prefixed with l1, l1 −
1, ..., 1 a’s followed by b or #, respectively, and the right links in segment i point to

elements in segment (i + 1), for 1 ≤ i ≤ l1 − 1;

(ii) segment (l1 + 1) only has one entry, n;

(ii) suffixes corresponding to the entries in segments l1 +2, l1 +3, ..., l1 + l2 +1 are prefixed

with 1, 2, ..., l2 b’s followed by a or #, respectively, and the left links in segment j point

to elements in segment (j − 1), for l1 + 3 ≤ j ≤ l1 + l2 + 1.

Proof. By the definition of suffix arrays, we can divide SA into l1 + l2 + 1 segments in

the above way. Assume that a right link starts from the jth entry, which is in segment i

(1 ≤ i ≤ l1 − 1). Then T [SA[j]] is prefixed with l1 − i + 1 a’s, so T [SA[j] + 1] is prefixed

with l1 − i a’s. Hence the (SA−1[SA[j] + 1])th entry of SA is in segment i + 1, and this

is the entry that the right link points to. Similarly, we can prove that the left links in

segment j point to elements in segment (j − 1), for l1 + 3 ≤ j ≤ l1 + l2 + 1. �

4.4.3 An Efficient Algorithm to Check Whether a Permutation

is Valid

The proof of Theorem 4.1 suggests a method to determine whether a permutation is a

suffix array. We first construct a text string from the permutation by the method in the

proof, and then construct the suffix array of the text. If the suffix array constructed is the

same as the permutation, then the permutation is a suffix array. Otherwise, it is not. This

algorithm takes O(n) time and O(n) words of memory, because the construction of the text

string and the suffix array, and the comparison all cost O(n) time and space. However,

the constants hidden in the big-oh notation for suffix array construction algorithms are

large [57, 60], and these algorithms are hard to implement.

We have the following theorem on efficiently testing whether a permutation is valid.

Theorem 4.2. There is an algorithm that can test whether a permutation M of [n] is a

suffix array of a binary string in O(n) time using n + o(n) words of working space.
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Algorithm Check(M)

1. Scan M to compute M−1.

2. Scan M−1 to check whether M is ascending-to-max.

3. Check Condition (i) of the non-nesting feature by scanning M from the beginning.

At the ith step, compute M−1[M [i]+1]. If M−1[M [i]+1] > i, then keep the value.

If M satisfies the condition, the sequence of values computed and kept at each

step is ascending.

4. Similarly, check Condition (ii) of the non-nesting feature.

Figure 4.3: An algorithm to check whether a permutation is a suffix array.

Proof. Figure 4.3 shows a simple algorithm that determines whether a permutation is a

suffix array of a binary string using the characterization of Theorem 4.1. Each phase takes

O(n) time and the algorithm only needs n+O(1) additional words of memory to store M−1

and some other temporary results, which is roughly the same as the size of the input. �

A more restricted problem is studied by Burkhardt and Kärkkäinen [13]. They propose

a linear time algorithm to test whether a permutation is the suffix array of a given text

string.

4.5 Space Efficient Suffix Arrays Supporting Cardi-

nality Queries

We now explore Theorem 4.1 and Corollary 4.1 to design a space efficient full-text index.

Figure 4.4 shows the suffix array for the text abaaabbaaabaabb#. We divide the suffix

array into 6 segments using Corollary 4.1 and draw arrows as in Section 4.4.2. Each arrow

links a suffix to the suffix whose starting position is one character behind, i.e. each arrow

is from position SA−1[i − 1] in the suffix array to position SA−1[i], for i = 2, 3, ..., n. For

each position SA−1[i] in the suffix array, we consider the position SA−1[i − 1]. From the
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B           1    1    0    0    1     0     0     0    0     1    1    0     0    1     0    0 

B           0    0    1    1    0     0     1     1    1     0    0    1     1    0     1    1a

b

SA 8    3    9    4    12   1    10   5    13   16   7    2    11   15   6    14

Figure 4.4: An example of our data structures over the text abaaabbaaabaabb#.

arrows and Corollary 4.1, we observe that SA−1[i− 1] is either in the last segment before

position SA−1[i] whose corresponding suffixes start with a, if T [i− 1] = a, or in one of the

segments whose corresponding suffixes start with b or #. We design a text index based on

such information.

Theorem 4.3. Given a binary text string T of length n, there is an index structure using

n + o(n) bits that answers, without storing the raw text, existential and cardinality queries

on any pattern string P of length m in O(m) time.

Proof. We use SA to denote the suffix array of T , and we construct a bit vector Ba of

size n as follows. For i > 1, if T [i − 1] = a, we store a 1 in Ba[SA−1[i]], and we store a

0 otherwise. We set Ba[SA−1[1]] = 0. We conceptually define the analogous bit vector Bb

with the value Bb[SA−1[i]] = 1 iff T [i − 1] = b for i > 1, and Bb[SA−1[1]] = 0. Clearly

Bb is the complement of Ba except in position SA−1[1], where they are both 0. Each of

these bit vectors, in fact, stores the information of the Burrows-Wheeler transform (see

Section 4.3.2) of the text T [14]. (See Figure 4.4.)

We build rank structures over Ba using part (a) of Lemma 2.1. From this data on

Ba, and by storing SA−1[1], we can also perform rank queries on Bb in constant time.

However, to explain our algorithm, we retain the notion of two bit vectors. We also store

the number of a’s in an integer na. The bit vector Ba with corresponding rank structures,

na, and SA−1[1] are our main indexing data structures, which together use n + o(n) bits.

Figure 4.5 gives an algorithm for answering existential and cardinality queries using

the above data structures. This algorithm starts from the end of the pattern P and, at

each phase of the loop, computes the interval [s, e] of SA whose corresponding suffixes are
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Algorithm Count(T, P )

1: s← 1, e← n, i← m

2: while i > 0 and s ≤ e do

3: if P [i] = a then

4: s← bin rankBa
(1, s− 1) + 1, e← bin rankBa

(1, e)

5: else

6: s← na + 2 + bin rankBb
(1, s− 1), e← na + 1 + bin rankBb

(1, e)

7: i← i− 1

8: return max (e− s + 1, 0)

Figure 4.5: An algorithm for answering existential and cardinality queries.

prefixed with P [i,m]. To show the correctness of the algorithm, we need show that we

update the values of s and e correctly. Assume that at the beginning of phase m− i + 1,

the interval [s, e] of SA corresponds to suffixes that are prefixed with P [i + 1,m]. Assume,

without loss of generality, that P [i] = a. The entries of SA corresponding to suffixes

that start with a occupy the interval [1, na]. Because all such suffixes start with the same

character a, they are sorted according to the suffixes whose starting positions are one

character after them. Therefore, the lexicographically smallest suffix prefixed by P [i,m],

and the lexicographically smallest suffix prefixed by P [i + 1,m] that follows character a,

are one character apart in T by their starting positions. On the other hand, because

Ba[SA−1[i]] = 1 when T [i − 1] = a, bin rankBa
(1, s − 1) computes how many suffixes

smaller than P [i + 1,m] in lexicographic order follow character a in the original text T .

Therefore, bin rankBa
(1, s − 1) + 1 points to the lexicographically smallest suffix that

starts with P [i,m]. A similar analysis applies to e. Therefore, our algorithm is correct.

The runtime is clearly O(m).1 �

1Our algorithm is similar to the backward search algorithm of the FM-index [30]. An anonymous

reviewer of [52] commented that this result could also have been proved by combining the backward search

of FM-index [30] and wavelet trees [44].
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4.6 Space Efficient Self-indexing Suffix Arrays Sup-

porting Listing Queries

4.6.1 Locating Multiple Occurrences

Lemma 4.5. Using an auxiliary data structure of γn + o(n) bits, for any 0 < γ < 1, the

index structure in Theorem 4.3 can list all the occurrences in O(occ lg n) additional time.

Proof. We now apply the techniques developed by Ferragina and Manzini [30] to support

listing queries using our index structure.

To perform listing queries, we first show that given a position i in the original text

T , if we know SA−1[i], we can compute SA−1[i − 1] in constant time. We claim that if

Ba[SA−1[i]] = 1, then SA−1[i − 1] = bin rankBa
(1, SA−1[i]), and if Bb[SA−1[i]] = 1, then

SA−1[i − 1] = na + 1 + bin rankBb
(1, SA−1[i]). To prove this claim, we assume, without

loss of generality, that Ba[SA−1[i]] = 1. By the definition of Ba, we have that T [i− 1] = a.

Hence T [i− 1, n] = aT [i, n]. We observe that bin rankBa
(1, SA−1[i]) computes how many

suffixes smaller than or equal to T [i, n] in lexicographic order follow character a in the

original text T . As the suffixes whose starting positions are one character ahead of the

above suffixes are the suffixes of T that are smaller than or equal to aT [i, n] = T [i− 1, n]

in lexicographic order, we conclude that SA−1[i− 1] = bin rankBa
(1, SA−1[i]).

Now we describe our auxiliary data structure supporting listing queries. As shown

above, we can go backward in the text character by character in constant time. We

explicitly store every position of the original text that is of the form idlg n/γe + 1, for

i = 0, 1, ..., n/dlg n/γe − 1 (assume that n is a multiple of dlg n/γe for simplicity), and

organize them in an array S sorted by lexicographic order of the suffixes starting at these

positions. We use an additional bit vector F of length n to indicate whether a given

entry in SA points to a position that is stored in S. With S and F , we can retrieve the

occurrences. Recall that in Algorithm Count, we compute the interval [s, e] of SA in which

the entries point to the actual positions of all the occurrences of P in T . For each i ∈ [s, e],

we need find SA[i]. Figure 4.6 gives an algorithm for retrieving SA[i]. In this algorithm,

we check whether F [i] is 1. If it is, then S[bin rankF (1, i)] is the answer. If it is not, we

go backward in the text one step at a time. In each step, we find the index of the suffix
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Algorithm Retrieve(T, i)

1: j ← 0

2: while F [i] 6= 1 do

3: i← Backward(T, i)

4: j ← j + 1

5: return S[bin rankF (1, i)] + j

Algorithm Backward(T, i)

1: if Ba[i] = 1 then

2: i← bin rankBa
(1, i)

3: else

4: i← na + 1 + bin rankBb
(1, i)

5: return i

Figure 4.6: An algorithm for retrieving an occurrence.

array entry that points to the position one character before the current position. We stop

when we reach a position that is stored in S according to F , retrieve the position from S,

and the answer is the position retrieved plus the number of steps we go backward in the

text.

Array S uses at most γn bits because it has n/dlg n/γe entries and each of them

uses lg n bits. We use part (b) of Lemma 2.1 to store F , which uses lg
(

n
n/dlg n/γe

)

+

o(n) = O(n lg lg n/ lg n) + o(n) = o(n) bits. Because we store every dlg n/γeth position of

the original text, we need go backward at most dlg n/γe number of steps to locate each

occurrence. As each of the operations of going backward, rank and accessing any entry in

F and S costs constant time, we need O(lg n) time to locate an occurrence. �

When occ is large, retrieving all the occurrences is costly. We design additional ap-

proaches to speed up the reporting of occurrences in Sections 4.6.3 and 4.6.4.

4.6.2 Self-Indexing and Context Reporting

We now show how to make our data structures self-indexing.
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Lemma 4.6. Using an auxiliary data structure of ηn bits, for any 0 < η < 1, without

storing the text, the index structure in Theorem 4.3 can output a substring of length l that

starts at a given position in the text in O(l + lg n) time.

Proof. We make use of the property that the first na suffix array entries correspond to

suffixes starting with a, the (na+1)’st entry corresponds to suffix #, and the rest correspond

to suffixes starting with b. Therefore, we can output the substring T [i, i + l − 1] (without

retrieving T ) by locating the suffix array entry that points to each position in the substring.

To do this, we use an array V to store, for every (dlg n/ηe)th position in T , the index of its

corresponding entry in SA, sorted by its position in the text. Array V uses n
dlg n/ηe

× lg n ≤
ηn bits. Given the query to retrieve the substring T [i, i+ l−1], we locate the first position

in T after and including position j ≥ i + l − 1, such that the index of its corresponding

entry in SA is stored in V . To ensure that such a j always exists, we always store position

n in V . From V , we can retrieve the index of the suffix array entry that corresponds to

position j in T in constant time. We can now output T[j]. We then use the method in the

proof of Theorem 4.5 to walk backward in the text. At each step, we compute the index

of the suffix array entry that corresponds to a position in substring T [i, j] and output a

character according to it. We repeat until we output the string T [i, j] in reverse order,

from which we have the string T [i, i + l − 1].

Because we store the suffix array index for every dlg n/ηeth position in T , we have

i + l − 1 ≤ j ≤ i + l + dlg n/ηe − 2. Therefore, the above process outputs a substring of

length l using O(l + lg n) time. �

4.6.3 Speeding up the Reporting of Occurrences of Long Pat-

terns

Based on an idea in [32, 46], we show how to reduce the problem of reporting occurrences of

long patterns to orthogonal range queries on a two-dimensional grid and solve it efficiently.

Lemma 4.7. Using an auxiliary data structure of n + o(n) bits, the index structure in

Theorem 4.3 can support pattern searching on any pattern string P of length m in O(m +

occ) time, when m = Ω(lg1+µ n), for any µ where 0 < µ < 1.
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Proof. We use T ′ to denote the reverse of T , so T ′ = T [n]T [n − 1]...T [1]. We build a

suffix array for T ′ and denote it SA′. For any µ′ and c, where 0 < µ′ < 1 and c > 0, let

d = c lg1+µ′

n. We mark every position in T that is a multiple of d. For simplicity, we assume

that n is a multiple of d. Then the ith marked position is position id, for i = 1, 2, ..., n/d.

For the ith marked position, let s = id, which is its position in T . Let xi = SA−1[s],

which is the index of the entry of SA that corresponds to suffix T [s, n]. For the substring

T [1, s − 1] that appears before position s, its corresponding suffix in the reverse text is

T ′[n− s + 2, n]. Let yi = SA′−1[n− s + 2], which is the index of its corresponding entry in

SA′. We now have a set of pairs Q = {(x1, y1), (x2, y2), ..., (xn/d, yn/d)}. It is obvious that

all the xi’s and yi’s are different from each other, so the set Q corresponds to n/d points

on an n× n grid. We first observe the following.

Observation. Given a pattern P whose length is at least d, for any given occurrence of

P in T , there exists one and only one j, where 1 ≤ j ≤ d, such that the position of the jth

character in this occurrence is marked.

From this, we observe that for j = 1, 2, ..., d, if we can report all the occurrences of P

whose jth character is located at a marked position, we can report all the occurrences of

P in T . To report such occurrences for a given j, we first use Algorithm Count (Figure

4.5) to retrieve the interval [i1, i2] in SA in which all the entries correspond to suffixes of T

that start with P [j]P [j + 1]...P [m], and the interval [i3, i4] in SA′ in which all the entries

correspond to suffixes of T ′ that start with P [j − 1]P [j − 2]...P [1]. Let i3 = 1 and i4 = n

when j = 1. Now the problem has been reduced to an orthogonal range searching over n/d

points in an n× n grid: we need find all the points (xi, yi) in Q such that i1 ≤ xi ≤ i2 and

i3 ≤ yi ≤ i4. For any point (xi, yi) returned, its corresponding marked position in the text

is id. There exists an occurrence of P whose jth character is located at the above position.

Hence we return id− j + 1 as the position of the occurrence.

By Lemma 4.1, we can answer range queries over n/d points on an n/d × n/d grid in

O(lg lg n + k) time (k is the size of the answer), using O((n/d) lg1+δ n) = O(n/ lgµ′−δ n) =

o(n) bits, for any δ that satisfies 0 < δ < µ′ < 1. However, we need perform range queries

over n/d points in an n × n grid. We use the following approach based on the reduction

algorithm in Section 2.2 of [1].

Construct a bit vector X of length n, in which X[i] = 1 iff there exists an integer
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p such that xp = i. Because there are n/d points in Q, and all the xi’s are differ-

ent from each other, there are exactly d 1s in X. Thus we can store X using part (b)

of Lemma 2.1 in lg
(

n
n/d

)

+ o(n) = O(n lg lg n/ lg1+µ′

n) + o(n) = o(n) bits. Similarly,

we construct a bit vector Y of length n, in which Y [i] = 1 iff there exists an integer

l such that yl = i, and store it in o(n) bits using the same approach. We then con-

struct a set of points Q′ on an n/d × n/d grid as follows. For any point (xi, yi) in Q,

we store in Q′ a point (x′
i, y

′
i) = (bin rankX(1, xi), bin rankY (1, yi)). There is a one-to-

one correspondence between the points in Q and the points in Q′; given a point (x′
i, y

′
i)

in Q′, we can compute its corresponding point (xi, yi) in Q in constant time, because

(xi, yi) = (bin selectX(1, x′
i), bin selectY (1, y′

i)). We store Q′ in o(n) bits using the

approach described in the previous paragraph to support orthogonal range searching in

O(lg lg n + k) time. To support orthogonal range search over Q, assume that the given

query range is [a, b] × [c, d]. We first map this range to a range [a′, b′] × [c′, d′] on an

n/d × n/d grid where Q′ is in. By the definition of Q′, we observe that if X[a] = 1,

then a′ = bin rankX(1, a). Otherwise, a′ = bin rankX(1, a) + 1. Similarly, we have that

b′ = bin rankX(1, b). We compute c′ and d′ using bit vector Y in the same way. We then

retrieve the points in Q′ that are in the range [a′, b′]× [c′, d′], and locate their corresponding

points in the set Q. Therefore, we can answer range queries over Q in O(lg lg n + k) time

using data structures occupying o(n) bits.

To analyze the space cost of the data structures we construct in this proof, the set Q is

preprocessed in the above data structures using o(n) bits. The index structures constructed

over T ′ using Theorem 4.3 occupies additional n + o(n) bits. Therefore, our auxiliary data

structures occupy n + o(n) bits. To efficiently retrieve the occurrences, instead of using

Algorithm Count for each j, where 1 ≤ j ≤ d, we use it once on P over T , because during

the execution of the algorithm, for each suffix P [i,m] of P , we need compute the interval

of suffix array whose entries correspond to all the suffixes that start with P [i,m]. It is

the same with the reverse of P . This requires an additional working space of O(m) words.

Therefore, in O(m) time, we can retrieve all the intervals required. We need perform d

range queries, which cost O(lg1+µ′

n lg lg n + occ) = O(lg1+µ n + occ) time, for any µ such

that 0 < µ′ < µ < 1. Thus we can perform pattern searching in O(m + lg1+µ n + occ) =

O(m+ occ) time when m = Ω(lg1+µ n). �
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Combined with Theorem 4.3, Lemma 4.5, and Lemma 4.6, we have:

Theorem 4.4. Given a binary text string T of length n, there is an index structure using

n + o(n) bits that supports, without storing the raw text, for any pattern string P of length

m,

(i) pattern searching in O(m+ occ lg n) time using an additional γn+ o(n) bits, for any

0 < γ < 1.

(ii) when m = Ω(lg1+µ n), for any µ where 0 < µ < 1, pattern searching in O(m + occ)

time using an additional n + o(n) bits;

This data structure also supports the output of a substring of length l in O(l+lg n) time

using an additional ηn bits, for any 0 < η < 1.

4.6.4 Listing Occurrences in O(occ lgλ n) Additional Time Using

O(n) Bits

In this section, we give another implementation of our index structure that uses O(n) bits

and supports listing queries in O(m + occ lgλ n) time for any λ such that 0 < λ < 1 by

designing auxiliary structures to speed up the reporting of occurrences.

Lemma 4.8. Given a binary text string T of length n, for any λ such that 0 < λ < 1,

there is an index structure using O(n) bits that answers existential and cardinality queries

on any pattern P of length m in O(m) time, and listing queries in additional O(occ lgλ n)

time. This data structure also supports the output of a substring of length l in O(l/ lg n)

time.

Proof. To illustrate the approach, we take λ = 1/2. Let g = d
√

log2 ne. In this case, we

mark every position of the text T that is of the form 1+ ig, for i = 0, 1, ..., n/g−1 (assume

n is a multiple of g for simplicity). We use a bit vector G in which the jth bit is 1 iff the

jth entry in SA points to a marked position, and we store G using part (b) of Lemma 2.1.

We construct a text string T ∗ of length n/g drawn from the alphabet Σ′ = {0, 1, ..., 2g−
1}, in which symbol α corresponds to the αth smallest binary string of length g in lexico-

graphic order. We generate T ∗ by replacing every substring of length g in T that starts
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at a marked position by the corresponding symbol in Σ′. We also retain an array C that

stores the prefix sum of the vector of frequencies of the characters (binary strings of length

g) in T ∗. That is, for each character α, we count the number of occurrences of the char-

acters 0, 1, ..., α− 1 in T ∗, and store this value in C[α]. For each alphabet symbol α in Σ′,

we construct a bit vector Bα in which Bα[SA∗−1[i]] = 1 iff T ∗[i − 1] = α for i > 1, and

Bα[SA∗−1[1]] = 0. We store Bα using Lemma 2.2. We use an array Z to store, for each

position in SA∗ except position SA∗−1[1], the symbol that precedes the suffix it points to

in T ∗.

We claim that, for a given position SA∗−1[i] in SA∗, if Z[SA∗−1[i]] = α, then SA∗−1[i−
1] = C[α] + bin rank′Bα

(1, SA−1[i]). To prove this claim, we assume that Z[SA∗−1[i]] = α.

Then T ∗[i−1] = α. Hence T ∗[i−1, n] = αT ∗[i, n]. We observe that bin rankBα
(1, SA∗−1[i])

computes how many suffixes smaller than or equal to T ∗[i, n] in lexicographic order follow

character α in text T ∗. The suffixes smaller than or equal to T ∗[i − 1, n] in lexicographic

order can be categorized into two types. The first type includes suffixes whose first char-

acter is smaller than α in lexicographic order, and the number of such suffixes is stored

in C[α]. The second type includes suffixes that are prefixed with α, followed by suffixes

smaller than or equal to T ∗[i, n] in lexicographic order. The number of the suffixes of

the second type is bin rankBα
(1, SA∗−1[i]) as computed above. Hence we conclude that

SA∗−1[i − 1] = C[α] + bin rank′Bα
(1, SA∗−1[i]). With this claim, we can go backwards in

T ∗ by one position in constant time.

We build another set of data structures. We explicitly store every position of the

original text T that is of the form ig2 +1, for i = 0, 1, ..., dn/g2e− 1 , and organize them in

an array S ′ sorted by lexicographic order of the suffixes starting at these positions. We use

an additional bit vector F ′ of length n to indicate whether a given entry in SA points to a

position that is stored in S ′. Finally, we observe that, every gth position in T ∗ corresponds

to a position stored in S ′, as these positions are of the form ig2 + 1. We store another bit

vector W using part (b) of Lemma 2.1, in which W [i] = 0 iff SA∗[i] points to a position in

T ∗ that corresponds to a position stored in S ′.

Figure 4.7 shows our algorithm, in which Backward(T, i) is the algorithm in Section 4.6.1

that enable us to find SA−1[SA[i]− 1] for a given T and an index i of a suffix array entry

(see Figure 4.6). Given the index of an entry in SA that points to an occurrence of P , we
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Algorithm Retrieve2(T, i)

1: s1 ← 0

2: while G[i] 6= 1 do

3: i← Backward(T, i)

4: s1 ← s1 + 1

5: j ← bin rankG(1, i)

6: s2 ← 0

7: while W [j] 6= 1 do

8: j ← Backward∗(T ∗, j)

9: s2 ← s2 + 1

10: k ← bin selectG(1, j)

11: return S ′[bin rankF ′(1, k)] + s1 + s2g

Figure 4.7: An algorithm for retrieving an occurrence in O(
√

lg n) time.

first check whether it points to a marked position using G. If it does not, we can find the

closest marked position that precedes it by going backwards in T at most g times using

Backward. When we reach a marked position pointed to by the ith entry of SA, the index

of its corresponding entry in SA∗ is bin rankG(1, i). We check whether it corresponds

to a position stored in S ′ using W . If not, we use the method described above (we call

it Backward∗) to go backwards in T ∗, at most g times, until we reach a position of T ∗

that corresponds to a position stored in S ′. Assume that the jth entry of SA∗ points to

the above position. It corresponds to the k = bin selectG(1, j)th entry of SA. We then

retrieve S[bin rankF ′(1, k)]. Let s be the retrieved position. Assume that we go backwards

s1 steps to reach a marked position, and then another s2 steps to reach a position stored

in S, then the occurrence is s + s1 + s2g.

As the above procedure calls Backward or Backward∗ at most g times, it takes O(g) =

O(
√

lg n) time. G uses lg
(

n
n/g

)

+ o(n) = O(n lg lg g/g) + o(n) = o(n) bits. C uses 2g lg n =

o(n) bits. W uses lg
(

n/g
dn/g2e

)

+ o(n/g) = o(n) bits. Array Z uses n
g
× g = n bits. S ′ uses

dn/g2e×lg n ≤ n lg n/ log2 n = n+o(n) bits. F ′ uses lg
(

n
dn/g2e

)

+o(n) = o(n) bits. Hence G,

W , Z, S ′ and F ′ use 2n+o(n) bits in total. We do not explicitly store T ∗ or SA∗. To analyze

the space cost of all the Bα’s, we make use of Stirling’s formula: n! =
√

2πn(n
e
)n(1+O( 1

n
)).
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With this, we have log2 n! = n log2 n − n log2 e + 1
2
log2 n + O(1). Assume that symbol α

occurs nα times in T ∗. Let l = n/g. Then Bα uses lg
(

l
nα

)

+ o(nα) + O(lg lg n) bits. We

rewrite the first term into:

lg

(

l

nα

)

< log2

(

l

nα

)

+ 1

= log2 l!− log2 nα!− log2(l − nα)! + 1

= l log2 l − l log2 e− nα log2 nα + nα log2 e− (l − nα) log2(l − nα)

+ (l − nα) log2 e +
1

2
(log2 l − log2 nα − log2(l − nα)) + O(1)

= l log2 l − nα log2 nα − (l − nα) log2(l − nα) + O(1)

= (l − nα) log2 l + nα log2 l − nα log2 nα − (l − nα) log2(l − nα) + O(1)

= nα log2

l

nα

+ (l − nα) log2

l

l − nα

+ O(1) (4.1)

To analyze the second term of equation 4.1, we rewrite it into nα log2(1+ nα

l−nα
)

l−nα
nα . By

the definition of e, this term is less than or equal to nα log2 e. With equation 4.1, we have:

lg

(

l

nα

)

< nα log2

el

nα

+ O(1) (4.2)

Note that equation 4.1 is true even for the special case when nα = 0, if we follow the

interpretation that 0 log2 0 = 1 used in Definition 2.1. Therefore, we have Bα < nα log2
el
nα

+

o(nj)+O(lg lg n). When we compute the total space cost of all the Bα’s, the last two items

of right hand side of this inequality clearly sum up to o(n). The first item sums up to

nH0(T
∗)/g + (lg e)n/g = nH0(T

∗)/g + o(n) ≤ n + o(n). Therefore, the Bα’s use at most

n + o(n) bits together. Hence all the auxiliary data structures use at most 3n + o(n) bits.

For an arbitrary λ, we design additional data structures of dλ−1e − 1 levels. Let p =

dlogλ
2 ne. At each level, we group pi bits to construct a string drawn from an alphabet of

size 2pi

, for i = 1, 2, ..., dλ−1e− 1. We design similar data structures and search algorithms

as described above. Data structures at each level occupy 2n+o(n) bits, and we store every

(pdλ
−1e)th position of T using data structures occupying at most n+o(n) that are similar to

S ′ and F ′. With these data structures, we can answer listing queries using O(m+occ lgλ n)

time. The overall data structures occupy (2dλ−1e − 1)n + o(n) bits2.

2This multi-level tradeoff is similar to the multi-level compressed suffix array by Grossi and Vitter [45].
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To output a substring of size l, we simply store T explicitly in n bits and output the

substring word by word (i.e. Θ(lg n) bits each time). �

4.6.5 Speeding up the Existential and Cardinality Queries of

Short Patterns

Another technique can be used to support existential and cardinality queries for patterns

of length at most lg n in O(1) time using 2n + o(n) bits of space, either with or without

any of our index structures.

Lemma 4.9. Given a binary text string T of length n, there is a data structure using

2n + o(n) bits that can answer existential and cardinality queries on any pattern P of

length m in constant time, when m ≤ lg n.

When combined with the index structure in Theorem 4.4, it can answer existential and

cardinality queries on any pattern P of length m in O(m− lg n) time, when m > lg n.

Proof. Construct a bit vector of length 2n which has 1s corresponding to all the suffix array

entries and 0s corresponding to all possible patterns of length lg n in the positions where

they “fit” in the suffix array (i.e. for a pattern A of length lg n, the suffix array entries

to the left of A correspond to suffixes whose prefixes of length lg n are lexicographically

smaller than A). We store a rank / select structure for this bit vector using part (a) of

Lemma 2.1 in 2n + o(n) bits. A cardinality query for a pattern is done by finding the

difference between the positions of pth and (p + 1)st 0s in the bit vector, where p is the

value obtained by treating the pattern as a number in binary (if m < lg n, we shift the

binary representations of p and p+1 to the left by (lg n−m) before the select operations).

The number of 1s between these two positions is the number of occurrences of the given

pattern. From the two positions, by performing rank operations, we can get the interval

of SA in which all the entries point to suffixes that are prefixed with P , and use our index

structures designed in Lemma 4.5 to list the occurrences.

We can further answer existential and cardinality queries in O(m − lg n) time for an

arbitrary pattern P whose length is longer than lg n. We first shift P to get its last lg n bits

and treat them as a new pattern P ′. We then use the method above to retrieve the range

of SA whose entries correspond to suffixes prefixed with P ′. Then we apply the backward
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search in algorithm Count for the remaining m − lg n bits of P , which takes O(m − lg n)

time. �

The above result is particularly useful when m = lg n+o(lg n). Combined with Theorem

4.4 and Lemma 4.8, we have:

Theorem 4.5. Given a binary text string T of length n, for any λ and µ such that

0 < λ, µ < 1, there is a data structure using O(n) bits that can answer existential and

cardinality queries on any pattern P of length m in O(m− lg n) time (when m > lg n), or

in constant time (when m ≤ lg n). This data structure can answer listing queries in ad-

ditional O(occ lgλ n) time. When m = Ω(lg1+µ n), this data structure can support pattern

searching in O(m+occ) time. It can also output a substring of T in O(l/ lg n) time, where

l is the length of the substring.

4.7 Extensions to Larger Alphabets

In this section, we generalize our previous results on binary text in Sections 4.4, 4.5 and

4.6 to the case of larger alphabets. We first compare a suffix array with an arbitrary

permutation of [n], and describe a categorization theorem by which we can determine

whether a given permutation is a suffix array. We then generalize our index structures to

the case of larger alphabets.

4.7.1 The Categorization Theorem

We adopt the convention that the text T of length n is a string of n − 1 symbols drawn

from alphabet [σ], followed by a special end-of-file symbol #, where # = 0. We follow the

convention that σ ≤ n. Based on our convention, there are σn−1 different text strings of

length n, so there are at most σn−1 different suffix arrays associated with them. However,

there are n! different permutations of [n]. Therefore, for a large enough n, not all of the

n! permutations are suffix arrays of texts drawn from an alphabet of size σ.

We first give two definitions on permutations.
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16   1    10   2    11   3    14   7    9    13   12   4    5    15   6    8

Figure 4.8: A permutation with 3 maximal ascending runs.

Definition 4.4. Given a segment [i, j] (1 < i ≤ j ≤ n) of a permutation M [1..n], we call

it an ascending run iff for any k, l where 1 ≤ k, l < n, if i ≤M−1[k] < M−1[l] ≤ j, then

M−1[k + 1] < M−1[l + 1].

Definition 4.5. Given an ascending run [i, j] of a permutation M [1..n], it is a maximal

ascending run iff for any segment [s, t] of M , if [s, t] ⊃ [i, j], then [s, t] is not an ascending

run.

Figure 4.8 shows a permutation with 3 maximal ascending runs. We draw arrows as

in Section 4.4.2. Each block (except the first block which corresponds to the suffix #)

contains one maximal ascending run of the permutation. If the start positions of two

arrows are in the same block, their end positions are in the same order as that of the start

positions. The permutation has 3 maximal ascending runs, and we can find a 3-symbol

string that corresponds to it, which is aaabbcacbaabbac#. However, there does not exist a

binary string whose suffix array is this permutation.

Now we can describe our theorem.

Theorem 4.6. A permutation M is a suffix array of a text string drawn from an alphabet

of size σ iff it has at most σ maximal ascending runs.

Proof. We first prove that a suffix array has at most σ maximal ascending runs.

For each alphabet symbol α, we assume that there are Nα characters in the text T

that lexicographically precede it. We claim that any of the σ segments [N1 + 1, N2], [N2 +

1, N3], ..., [Nσ + 1, Nσ+1] (let Nσ+1 = n) of SA is an ascending run if it is nonempty.

To prove this, we need prove that any given nonempty segment [Nα + 1, Nα+1], where

1 ≤ α ≤ n, is an ascending run. We only need consider the nontrivial case when there are

at least 2 entries in the segment. We observe that each suffix array entry in this segment
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corresponds to a text suffix whose first character is α according to the definition of suffix

arrays. Therefore, for any k, l where 1 ≤ k, l < n and Nα−1 +1 ≤ SA−1[k] < SA−1[l] ≤ Nα,

we have T [k, n] = αT [k + 1, n] ≺ T [l, n] = αT [l + 1, n], from which we can conclude that

T [k + 1, n] ≺ T [l + 1, n]. By the definition of suffix arrays, the inequality SA−1[k + 1] <

SA−1[l + 1] holds, which shows that [Nα−1 + 1, Nα] is an ascending run.

From above we observe that SA[2, n] can be divided into at most σ segments, each of

which is an ascending run. According to the definition of ascending run, SA[1] is not in

any ascending run, and because each maximal ascending run is the union of one or more

ascending runs described above (otherwise, if a maximal ascending run contains only part

of one of the above ascending run, we can extend it by appending the rest of the ascending

run to it), we can conclude that SA has at most σ maximal ascending runs.

Second, we prove that if a permutation M has σ maximal ascending runs, it is a suffix

array of a text drawn from an alphabet of size σ. To prove this, we first present an

algorithm to generate a text T drawn from an alphabet of size σ according to M , and then

we prove that the suffix array SA of T is the same as M .

We construct T as follows. Because no two maximal ascending runs intersect (otherwise

the union of the two ascending runs is another ascending run), and M [1] is not in any

ascending run, we can divide M [2, n] into σ segments, each of which is a maximal ascending

run. For each entry M [i], if it is in the αth segment, we set T [M [i]] = α. We also set

T [n] = #.

We divide SA into σ segments [N1 +1, N2], [N2 +1, N3], ..., [Nσ +1, Nσ+1] as above. We

have the following lemma on reverse pairs (see Definition 4.3) on M and SA:

Lemma 4.10. For any reverse pair (i, j) on M and SA, there exists α, where 1 ≤ α ≤ n,

such that Nα + 1 ≤M−1[i] < M−1[j] ≤ Nα+1 and Nα + 1 ≤ SA−1[j] < SA−1[i] ≤ Nα+1.

We prove this lemma by contradiction. Assume that the lemma is not true. Then there

are two cases. In the first case, M−1[i] and M−1[j] are not in the same segment. Then, by

the construction algorithm of T , we have T [i] < T [j]. By the definition of suffix arrays, we

have SA−1[i] < SA−1[j], which is a contradiction. In the second case, SA−1[i] and SA−1[j]

are not in the same segment. The proof in this case is the converse of the first case. �

We now continue to prove Theorem 4.6 by proving that reverse pairs do not exist.

Assume, contrary to what we are going to prove, there is one reverse pair (g, h) such that
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g is the greatest among the first items of all the reverse pairs. We observe that both g

and h are less than n because neither M−1[g] or M−1[h] is 1. Therefore, the inequality

1 < g + 1, h + 1 ≤ n holds. Assume, without the loss of generality, that M−1[g] < M−1[h].

According to Lemma 4.10, there exists α, where 1 ≤ α ≤ n, such that Nα + 1 ≤M−1[g] <

M−1[h] ≤ Nα+1 and Nα + 1 ≤ SA−1[h] < SA−1[g] ≤ Nα+1. From the construction method

of T , we observe that [Nα + 1, Nα+1] is a maximal ascending run of M . Therefore, the

inequality M−1[g+1] < M−1[h+1] holds. By the definition of Nα, we have T [g] = T [h] = α.

Because SA−1[h] < SA−1[g], the inequality T [h, n] = αT [h + 1, n] ≺ T [g, n] = αT [g + 1, n]

holds. Therefore, T [h + 1, n] ≺ T [g + 1, n]. By the definition of suffix arrays, we have the

inequality SA−1[h + 1] < SA−1[g + 1]. Now we have another reverse pair (g + 1, h + 1). Its

first item (g + 1) is greater than g, which is a contradiction. � (Thm 4.6)

Theorem 4.6 also applies to suffix arrays of binary texts, although in this case, its

presentation is different from that of Theorem 4.1. This is because in Theorem 4.1, we

assume that the end-of-file symbol, #, is lexicographically larger than the alphabet symbol

0 and smaller than 1 (this assumption, initially adopted by Grossi and Vitter [45, 46],

has the property that each binary text of length n has a distinct suffix array), while in

Theorem 4.6, we assume that # is smaller than all the alphabet symbols. Thus it is not

possible to generalize the definition of ascending-to-max to the case of general alphabets,

so we define maximal-ascending run and use it to present Theorem 4.6.

We discovered after the publication of [52] that our theorem is essentially equivalent

to Theorem 6 in [2], which shows given a permutation M , how to infer a string with a

minimal alphabet size whose suffix array is M . We choose to include our result as it was

discovered independently.

4.7.2 Space Efficient Suffix Arrays

We generalize the three types of indexes for binary strings designed in Sections 4.5 and 4.6

to general alphabets. We present our results in three theorems.

Theorem 4.7. Given a text string T of length n drawn from alphabet [σ] (σ = o( n
lg n

)),

there is an index structure using n lg σ + o(n) · lg σ bits (without storing the raw text)
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that can answer existential and cardinality queries on any pattern string P of length m in

O(m lg σ) time.

Proof. To generalize our index structures to text strings drawn from larger alphabets, we

conceptually think of having a bit vector Bα for each alphabet symbol α as in the proof

of Theorem 4.3, i.e. Bα[SA−1[i]] = 1 iff T [i − 1] = α for i > 1, and Bα[SA−1[1]] = 0.

Storing the σ bit vectors explicitly using part (a) of Lemma 2.1 costs nσ +o(n) bits, which

is impractical for large alphabets. However, by exploring the dependency of these σ bit

vectors, we can reduce the space cost. For any i > 1, there is one and only one α such

that Bα[SA−1[i]] = 1, and Bα[SA−1[1]] = 0 for any α. Therefore, we can remove the space

redundancy by combining these conceptual bit vectors to get a string in which the ith

character is α iff Bα[SA−1[i]] = 1, and the SA−1[1]th character is #. This string is in fact

T BWT, the Burrows-Wheeler transformed string of T (see Section 4.3.2). We use a wavelet

tree [44] (see Section 3.2.1 for a description) to encode T BWT. For any given k where 1 ≤
k ≤ n and k 6= SA−1[1], we can determine the character α such that Bα[k] = 1 in O(lg σ)

time with T BWT. The rank and select operations on each conceptual bit vector can also be

supported in O(lg σ) time by performing string rank and string select operations on

T BWT. In addition, we construct a conceptual array N of size σ such that for each alphabet

symbol α, N [α] stores the number of characters in the text that lexicographically precede

it.

With the above data structures, we can now modify the searching algorithm. Figure 4.9

presents the algorithm that answers existential and cardinality queries in the case of larger

alphabets. The correctness proof is essentially the same as that for Algorithm Count. As

each rank operation on a bit victor cost O(lg σ) time using A, the algorithm costs O(m lg σ)

time. T BWT can be stored in nH0(T
BWT)+o(n) · lg σ = nH0(T )+o(n) · lg σ ≤ n lg σ+o(n) · lg σ

bits (see Section 3.2.1). Array N uses σ lg n = o(n) bits, when σ = o( n
lg n

). �

Theorem 4.8. Given a text string T of length n drawn from alphabet [σ] (σ = o( n
lg n

)),

there is an index structure using n lg σ + o(n) · lg σ bits (without storing the raw text) that

supports, for any pattern P of length m,

(i) pattern searching in O((m + occ lg n) lg σ) time using an additional γn + o(n) bits,

for any 0 < γ < 1;
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Algorithm Count∗(T, P )

1: s← 1, e← n, i← m

2: while i > 0 and s ≤ e do

3: s← N [P [i]] + bin rankBP [i]
(1, s− 1) + 1, e← N [P [i]] + bin rankBP [i]

(1, e)

4: i← i− 1

5: return max (e− s + 1, 0)

Figure 4.9: Answering existential and cardinality queries in the case of larger

alphabets.

(ii) when m = Ω(lg1+µ n), for any µ where 0 < µ < 1, pattern searching in O(m lg σ +

occ) time using an additional n lg σ + o(n) bits.

It also supports the output of a substring of length l in O((l + lg n) lg σ) time using an

additional ηn bits, for any 0 < η < 1.

Proof. We construct the index structure of Theorem 4.7. To perform listing queries, we first

show that given a position i in the original text T , if we know SA−1[i], we can compute

SA−1[i − 1] in constant time. We claim that if Bα[SA−1[i]] = 1, then SA−1[i − 1] =

N [α] + bin rankBα
(1, SA−1[i]). The proof of the claim is essentially the same as the

correctness proof of algorithm Backward and Backward∗ in Sections 4.6.1 and 4.6.4. Since

finding the α such that Bα[SA−1[i]] = 1, and performing rank operation on Bα cost O(lg σ)

time each over T BWT, we can go backward in the text character by character in O(lg σ) time.

Therefore, using the auxiliary data structures (S and F ) of γn+o(n) bits and the searching

algorithm in the proof of Lemma 4.5, we can list all the occurrences in O(occ lg σ lg n) time.

The techniques in Section 4.6.3 can also be modified to speed up the listing queries of

long patterns. The only modification is that we use Algorithm Count∗(Figure 4.9) instead

of Algorithm Count (Figure 4.5) in the case of larger alphabets. Thus we can support

pattern searching in O(m lg σ + occ) time, when m = Ω(lg1+µ n).

Finally, the techniques in Section 4.6.2 can be used to make our data structures self-

indexing. Given the query to retrieve the substring T [i, i + l − 1], we first locate the first

position j whose value is stored in V (see the proof of Lemma 4.6), where j > i + l − 1.

From V , we can retrieve the index of the suffix array entry that corresponds to position
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j in T in constant time. From T BWT, we determine the character k such that Bk[j] = 1 in

O(lg σ) time, which means the character before the jth character in T is k. We can now

output T [j− 1]. We then use the method described above to walk backward in the text in

O(lg σ) time and repeat the above process. Thus we can output the substring T [i, i+ l−1]

in O((l + lg n) lg σ) time using V , which occupies ηn bits. �

Theorem 4.9. Given a text string T of length n drawn from alphabet [σ], for any constant λ

and µ such that 0 < λ, µ < 1, there is a data structure using O(n lg σ) bits that can answer

existential and cardinality queries on any pattern P of length m in O((m − lgσ n) lg σ)

time (when m > lgσ n), or in constant time (when m ≤ lgσ n). This data structure can

answer listing queries in additional O(occ lg σ lgλ n) time. When m = Ω(lg1+µ n), this

data structure can support pattern searching in O(m lg σ + occ) time using an additional

n lg σ + o(n) bits. It can also output a substring of T in O(l lg σ/ lg n) time, where l is the

length of the substring.

Proof. The techniques in Section 4.6.4 can be used directly in the case of larger alpha-

bets, except that now it takes O(lg σ lgλ n) time to locate each occurrence since the rank

operation on any bit vector over A costs O(lg σ) time, and the data structures in each of

the dλ−1e − 1 levels use 2n lg σ + o(n) bits. To apply the techniques in Section 4.6.5, we

consider patterns of length lgσ n instead of lg n. �

We observe a similarity with the alphabet-friendly FM-index discovered concurrently

with our work by Ferragina et al. [34]. The bit vectors and basic algorithms are essentially

the same. Our work differs from theirs in the auxiliary data structures and techniques used

to speed up the queries on long patterns and short patterns. We also designed a multi-level

trade-off between time and space.

Finally, we claim that the restriction σ = o( n
lg n

) in Theorem 4.7 and Theorem 4.8

can be removed by using a more recent implementation of wavelet trees by Mäkinen and

Navarro et al. [64]. In their implementation, they concatenate the bit vectors at each level

of the wavelet tree and use part (a) of Lemma 2.1 to store the concatenated bit vector at

each level. The resulting tree occupies n lg σ + o(n) · lg σ bits. In this implementation, to

count the number of characters in the text that are lexicographically smaller than a given

character, we can use their algorithm to locate the conceptual bit vector that corresponds to



4.7. EXTENSIONS TO LARGER ALPHABETS 61

the given character in the concatenated bit vector at the leaf level. The starting position

of this bit vector minus 1 is the answer. This process takes O(lg σ) time. Thus in the

proofs of Theorem 4.7 and Theorem 4.8, if we use this implementation, we can compute

any element of N in O(lg n) time without explicitly storing it. This removes the above

restriction, while still providing the same support for queries.

4.7.3 High-Order Entropy-Compressed Text Indexes for Large

Alphabets

We now show how to apply the succinct indexes for strings to design high-order entropy-

compressed text indexes. We first present the following lemma to encode strings in zeroth

order entropy while supporting rank and select (we following the convention that the size

of the alphabet is at most the size of the length of the string as in Chapter 3):

Lemma 4.11. A string S of length n over alphabet [σ] can be represented using n(H0(S)+

O(lg σ/ lg lg σ)) = n(H0(S) + o(lg σ)) bits to support string access and string rank for

any literal α ∈ [σ] ∪ [σ̄] in O(lg lg σ) time, and string select for any character α ∈ [σ]

in O(1) time.

Proof. As in the proof of Theorem 3.1, we consider the conceptual table E for string S.

Each row of E is a bit vector, and we denote the αth row by E[α] for α ∈ [σ]. For each

α ∈ [σ], we store E[α] using Lemma 2.2 in lg
(

n
nα

)

+ o(nα) + O(lg lg n) bits, where nα is

the number of occurrences of α in S. By equation 4.1 (see Section 4.6.4), E[α] occupies at

most nα lg en
nα

+ o(nα)+O(lg lg n) bits. Using this equation to sum the space cost of all the

E[α]’s for α ∈ [σ], the last two terms sum to o(n) + O(σ lg lg n) = O(n lg lg σ) (as σ ≤ n),

while the first term on the right-hand side sums to nH0(S) + n lg e. Therefore, the total

space cost is at most n(H0(S) + o(lg σ)) bits.

With the table E stored as above, string select can be supported in O(1) time, as

string select(α, i) = bin selectE[α](1, i), for α ∈ [σ]. With the constant-time support

for string select on S, we can construct a succinct index using Theorem 3.2 to support

string rank and string access in O(lg lg n) time. This index uses n · lg σ/ lg lg σ bits

according to the proof of Theorem 3.2, so the overall space cost is n(H0(S)+O(lg σ/ lg lg σ))

bits. �
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Compared with Theorem 3.4, Lemma 4.11 compresses the string to zeroth order entropy

instead of high-order entropy, but it supports navigational operations more efficiently. With

this lemma, we can now prove our theorem.

Theorem 4.10. A text string T of length n over alphabet [σ] can be stored using n(Hk(T )+

o(lg σ)) for any k ≤ β logσ n−1 and 0 < β < 1. Given a pattern P of length m, this encod-

ing can answer existential and cardinality queries in O(m lg lg σ) time, list each occurrence

in O(lg1+ε n lg lg σ) time for any ε where 0 < ε < 1, and output a substring of length l in

O((l + lg1+ε n) lg lg σ) time.

Proof. As stated in Section 4.7.2, there is a similarity between the indexing techniques

presented in that section and the alphabet-friendly FM-index discovered concurrently with

our work and presented by Ferragina et al. [34]. Here we borrow some techniques they

developed, and combine them with our results to prove this theorem.

In the proof of Theorem 4.7, we construct a bit vector Bα for each alphabet symbol α.

As observed in the proof, these bit vectors can be combined to get T BWT. We use Lemma 4.2

to partition T BWT into a set of strings S1, S2, · · · , Sz. We use Lemma 4.11 to encode each

string. We construct a bit vector B of length n, in which B[i] = 1 iff there exists a string

Sj, whose starting position is position i of T BWT. We encode B using part (b) of Lemma 2.1.

We construct a two-dimensional array M [1..z][1..σ], where M [i][α] stores the total number

of occurrences of character α in strings S1, S2, · · · , Si−1. We also construct N as in the

proof of Theorem 4.7.

With the above data structures, we can compute bin rankBα
(1, i). We observe that

this operation returns the number of occurrences of α in T BWT[1..i]. To support it, we

first locate the string Sj that position i is in. As j = bin rankB(1, j), we can locate

Sj in constant time. We also have position i of T BWT is the lth position of Sj, where

l = i − bin selectB(1, j) + 1. By the definition of M [α][j], we have bin rankBα
(1, i) =

M [α][j] + string rankSj
(α, l). As string rankSj

is supported in O(lg lg σ) time, we can

compute bin rankBα
(1, i) in O(lg lg σ) time. We can also compute Bα[i] in O(lg lg σ) time,

as Bα[i] is 1 iff string accessBj
(l) = α.

With the above operations supported, we now show how to answer queries. To answer

existential and cardinality queries, we directly apply the searching algorithm in the proof

of Theorem 4.7. The runtime is now O(m lg lg σ), as we can support the computation of
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bin rankBα
(1, i) in O(lg lg σ) time. To answer listing queries, we construct auxiliary data

structures S and F as in the proof of Theorem 4.8. We slightly modify the way they

are constructed by marking every lg1+ε nth position of the original text instead of every

dlg n/γeth position. This is to reduce the space cost of S and F to o(n) bits. With such

a modification and the support of the operations stated in the previous paragraph, we

list each occurrence of P in O(lg1+ε n lg lg σ) time. Finally, the support for self-indexing

can be achieved by using the technique in the proof of Theorem 4.8. We also reduce the

space cost of V to o(n) by storing, for every (lg1+ε n)th position in T , the index of its

corresponding entry in SA. The time required to output a substring of length l is thus

O((l + lg1+ε n) lg lg σ).

To analyze the space cost of all the data structures, the encoding of Bα’s occupy
∑z

i=1(|Si|H0(Si) + O(lg |Si| lg σ/ lg lg σ)) bits in total. B occupies lg
(

n
z

)

+ o(n) bits. M

occupies zσ lg n bits. N occupies σ lg n bits. All the other data structures occupy o(n)

bits. Therefore, the total space cost in bits is:
z

∑

i=1

(|Si|H0(Si) + O(lg |Si| lg σ/ lg lg σ) + zσ lg n + lg

(

n

z

)

+ σ lg n + o(n)

<
z

∑

i=1

(|Si|H0(Si) + O(lg |Si| lg σ/ lg lg σ)) + z(σ + 1) lg n + σ lg n + o(n)

=
z

∑

i=1

(|Si|H0(Si) + O(lg |Si| lg σ/ lg lg σ) + (σ + 1) lg n) + σ lg n + o(n).

By the definition of order notations, there exists a constant c, such that the above value is

bounded by
z

∑

i=1

(|Si|H0(Si) + c lg |Si| lg σ/ lg lg σ + (σ + 1) lg n) + σ lg n + o(n).

We then apply Lemma 4.2 to bound the above value by:

nHk(T )+ cn lg σ/ lg lg σ +O(σk+1 lg n)+ o(n) = nHk(T )+n · o(lg σ)+O(σk+1 lg n)+ o(n).

(4.3)

When k ≤ β logσ n − 1 for 0 < β < 1, we have σk+1 ≤ nβ. In this case, the third item in

equation 4.3 is bounded by o(n), so equation 4.3 is bounded by nHk(T )+n·o(lg σ)+o(n) =

n(Hk(T ) + o(lg σ)). �
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Grossi et al. [44] designed a text index that uses nHk + o(n) · lg σ bits, and supports

existential and cardinality queries in O(m lg σ+polylog(n)) time (See Section 4.2). Golyn-

ski et al. [41] reduced the lg σ factor in the query time to a lg lg σ, but their index is not

easily compressible. Our text index has the advantages of both these indexes.

4.8 Discussion

In this chapter, we gave a theorem that characterizes a permutation as the suffix array

of a binary string. Based on the theorem, we designed a succinct representation of suffix

arrays of binary strings that uses n+o(n) bits (the theoretical minimum plus a lower order

term), and answers existential and cardinality queries in O(m) time without storing the

raw text. With additional data structures in γn + o(n) bits, for any 0 < γ < 1, we can

answer listing queries in O(m + occ lg n) time in the general case. For long patterns (i.e.

when m = Ω(lg1+µ n)), for 0 < µ < 1, we answer listing queries in O(m + occ) time using

an additional n + o(n) bits. Using only ηn + o(n) additional bits, for any 0 < η < 1,

we can make our index a self-indexing structure, which can output a substring of length

l in O(l + lg n) time without storing the raw text, and this technique saves a lot of space

especially for text strings drawn from larger alphabets. Another implementation of our

index uses O(n) bits, answers listing queries in O(m + occ lgλ n) time, for 0 < λ < 1, and

outputs a substring of length l in O(l/ lg n) time. This implementation also provides the

same support for long patterns. An independent approach that answers existential and

cardinality queries for patterns of length at most lg n in O(1) time using 2n + o(n) bits of

space is also presented. In addition to designing text indexes, an efficient algorithm that

checks whether a given permutation is a suffix array of a binary string is also developed.

Each of the three different implementations of our index structures has its own merits.

The first one (Theorem 4.3), although only supporting existential and cardinality queries,

has space cost of only n + o(n), which is optimal. The constant factor of the second one

(Theorem 4.4) is also small. The third approach (Theorem 4.5) supports more efficient

searching using O(n) space. When combined with the compressed suffix tree designed by

Grossi and Vitter [45], it supports listing queries in O( m
lg n

+ occ lgµ n), which is the same

as their result [45].
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We also generalized our results to the case of larger alphabets. When we apply our

succinct indexes for strings to succinct text indexes, we design a text index using n(Hk(T )+

o(lg σ)) bits that supports pattern searching in O(m lg lg σ+occ(lg1+ε n lg lg σ)) time. This

is the first high-order entropy text index that supports cardinality queries in O(m lg lg σ)

time.

An open problem in this field is to design a text index using O(n lg σ) bits to support

pattern searching in O(m + occ) time.



Chapter 5

Trees

This chapter deals with the problem of designing succinct representations of (unlabeled) or-

dinal trees and multi-labeled trees. The chapter starts with an introduction in Section 5.1,

followed by a brief review of previous work in Section 5.2, and a summary of the existing

results we use in Section 5.3. In Section 5.4, we design a succinct representation of ordinal

trees that supports all the navigational operations supported by various succinct tree repre-

sentations. In Section 5.5, we show that our method supports two other encoding schemes

of ordinal trees as abstract data types. We design succinct indexes for multi-labeled trees

in Section 5.6. Section 5.7 gives some conclusion remarks and suggestions for future work.

5.1 Introduction

Trees are fundamental data structures in computer science. Two forms are of particular

importance. An ordinal tree is a rooted tree in which the children of a node are ordered

and specified by their rank, while in a cardinal tree of degree k, each child of a node is

identified by a unique number from the set [k]. In this chapter, we mainly consider ordinal

trees.

The straightforward representation of trees explicitly associates with each node the

pointers to its children. Thus, an ordinal tree of n nodes is represented by Θ(n) words

or Θ(n lg n) bits. This representation allows straightforward, efficient parent-to-child nav-

igation in trees. However, as current applications often consider very large trees, such a

66
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representation often occupies too much space.

To solve this problem, various methods have been proposed to encode an ordinal tree

of n nodes in 2n + o(n) bits, which is close to the information-theoretic minimum of

2n−O(lg n) bits (as there are
(

2n
n

)

/(n + 1) different ordinal trees), while supporting vari-

ous navigational operations efficiently. These representations are based on various traversal

orders of the nodes in the tree: preorder (in which each node is visited before its descen-

dants) and postorder (in which each node is visited after its descendants) are well-known.

The DFUDS (depth first unary degree sequence) order in which all the children of a node are

visited before its other descendants [10, 9] is another useful ordering. However, different

representations of trees usually support different sets of navigational operations. It is de-

sirable to design a succinct representation that supports all the navigational operations of

various succinct tree structures. We consider the following operations:

• child(x, i): the ith child of node x for i ≥ 1;

• child rank(x): the number of left siblings of node x plus 1;

• depth(x): the depth of x, i.e. the number of edges in the rooted path to node x;

• level anc(x, i): the ith ancestor of node x for i ≥ 0 (given a node x at depth d, its

ith ancestor is the ancestor of x at depth d− i);

• nbdesc(x): the number of descendants of node x;

• degree(x): the degree of node x, i.e. the number of its children;

• height(x): the height of the subtree rooted at node x;

• LCA(x, y): the lowest common ancestor of nodes x and y;

• distance(x, y): the number of edges of the shortest path between nodes x and y;

• leftmost leaf(x) (rightmost leaf(x)): the leftmost (or rightmost) leaf of the sub-

tree rooted at node x;

• leaf rank(x): the number of leaves before node x in preorder plus 1;
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• leaf select(i): the ith leaf among all the leaves from left to right;

• leaf size(x): the number of leaves of the subtree rooted at node x;

• node rankPRE/POST/DFUDS(x): the position of node x in the preorder, postorder or DFUDS

order traversal of the tree;

• node selectPRE/POST/DFUDS(r): the rth node in the preorder, postorder or DFUDS order

traversal of the tree;

• level leftmost(i) (level rightmost(i)): the first (or last) node visited in a pre-

order traversal among all the nodes whose depths are i;

• level succ(x) (level pred(x)): the level successor (or predecessor) of node x, i.e.

the node visited immediately after (or before) node x in a preorder traversal among

all the nodes whose depths are equal to depth(x).

Motivated by the research on XML databases, the problem of representing trees with

labels has attracted much attention. A labeled tree is a tree in which each node is as-

sociated with a label from a given alphabet [σ], while in a multi-labeled tree, each node

can be associated with more than one label. We use n to denote the number of nodes

in a labeled/multi-labeled tree, and t to denote the total number of node-label pairs in

a multi-labeled tree. A node y is a α-child/descendant/ancestor of a node x if it is a

child/descendant/ancestor of x associated with label α. The operations on labeled/multi-

labeled trees not only include the pure navigational operations discussed above, but also

include powerful label-based queries. For example, one may need to retrieve all the α-

children of a given node.

The first result of this chapter is to extend the succinct ordinal trees based on tree

covering (TC) by Geary et al. [36, 37] to support all the operations on trees proposed in

other work. We compare our results with existing results in Table 5.1, in which the columns

BP and DFUDS list the results of tree representations based on balanced parentheses and

DFUDS (see Section 5.2 for an introduction of these two approaches), respectively, and

the columns old TC and new TC list the results by Geary et al. [36, 37] and our results,

respectively.
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operations BP [70, 71, 72,

17, 74, 62]

DFUDS [10,

9, 56, 6]

old TC [36,

37]

new

TC

child, child rank X X X X

depth, level anc X X X X

nbdesc, degree X X X X

node rankPRE, node selectPRE X X X X

node rankPOST, node selectPOST X X X

height X X

LCA, distance X X X

leftmost leaf, rightmost leaf X X X

leaf rank, leaf select X X X

leaf size X X X

node rankDFUDS, node selectDFUDS X X

level leftmost, level rightmost X

level succ, level pred X X

Table 5.1: Navigational operations supported in O(1) time on succinct ordinal

trees using 2n + o(n) bits.

Our second result deals with BP and DFUDS representations as abstract data types,

showing that any operation to be supported by BP or DFUDS in the future can also be

supported by TC efficiently. Our third result is a succinct index for multi-labeled trees that

supports efficient retrieval of α-children/descendants/ancestors of a given node.
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5.2 Previous Work

5.2.1 Ordinal Trees

Jacobson’s succinct tree representation [55] was based on the level order unary degree

sequence (LOUDS) of a tree, which lists the nodes in a level-order traversal1 of the tree

and encodes their degrees in unary. With this, Jacobson [55] encoded an ordinal tree in

2n + o(n) bits to support the selection of the first child, the next sibling, and the parent

of a given node in O(lg n) time under the bit probe model. Clark and Munro [21] further

showed how to support the above operations in O(1) time under the word RAM model

with Θ(lg n) word size.

As the original work on the LOUDS ordering supports only a very limited set of oper-

ations, various researchers have proposed different ways to represent ordinal trees using

2n + o(n) bits. The following are the three main approaches.

Based on the isomorphism between balanced parenthesis sequences (BP) and ordinal

trees, Munro and Raman [70, 71] proposed another type of succinct representation of

trees. The BP sequence of a given tree can be obtained by performing a depth-first traver-

sal, and outputting an opening parenthesis each time a node is visited, and a closing

parenthesis immediately after all its descendants are visited. They presented a succinct

representation of an ordinal tree of n nodes in 2n + o(n) bits based on BP, which supports

parent2, nbdesc, depth, node rankPRE/POST and node selectPRE/POST in constant time, and

child(x, i) in O(i) time. Munro et al. [72] provided constant-time support for leaf rank,

leaf select, leftmost leaf, rightmost leaf and leaf size on the BP representation

using o(n) additional bits, which has applications to design space-efficient suffix trees. The

constant-time support for degree was provided by Chiang et al. [17], and the support for

level anc, level succ and level pred in constant time was further provided by Munro

and Rao [74]. Recently, Lu and Yeh [62] showed how to support child, child rank,

height, LCA and distance in constant time.

1The ordering puts the root first, then all of its children, from left to right, followed by all the nodes

at each successive level (depth).
2We use parent(x) to denote the parent of node x, which is a restricted version of level anc, as

parent(x) = level anc(x, 1).
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Another type of succinct tree representation is based on the depth first unary degree

sequence (DFUDS). The DFUDS sequence represents a node of degree d by d opening paren-

theses followed by a closing parenthesis. All the nodes are listed in preorder (an extra

opening parenthesis is added to the beginning of the sequence), and each node is num-

bered by its opening parenthesis in its parent’s description (DFUDS number). Benoit et

al. [10, 9] presented a succinct tree representation based on DFUDS that occupies 2n + o(n)

bits and supports child, parent, degree and nbdesc in constant time. In their repre-

sentation, each node is referred to by the position of the first of the d + 1 parentheses

representing it. Jansson et al. [56] extended this representation using o(n) additional

bits to provide constant-time support for child rank, depth, level anc, LCA, distance3,

leftmost leaf, rightmost leaf, leaf rank, leaf select, leaf size, node rankPRE and

node selectPRE. Barbay et al. [6] further showed how to support node rankDFUDS and

node selectDFUDS.

Finally, a more recent approach to represent static ordinal trees is based on a tree

covering algorithm (TC). Geary et al. [36, 37] proposed an algorithm to cover an ordinal

tree with a set of mini-trees, each of which is further covered by a set of micro-trees. Their

representation occupies 2n+o(n) bits, and supports child, child rank, depth, level anc,

nbdesc, degree, node rankPRE/POST and node selectPRE/POST in constant time.

See Table 5.1 in Section 5.2 for a complete list of operations that each of the three

representations supports. For an example of the LOUDS, BP and DFUDS sequences of a given

ordinal tree, see Figure 5.1.

5.2.2 Labeled and Multi-Labeled Trees

Geary et al. [36, 37] defined labeled extensions of the first six operators defined in Sec-

tion 5.1. Their data structures support those operators in constant time using simple

auxiliary data structures to store label information in addition to their succinct ordi-

nal tree representation [36, 37]. However, the overall space required is 2n + n
(

lg σ +

O(σ lg lg lg n/ lg lg n)
)

bits, which is much more than the lower bound of n log2 σ + 2n −
O(lg n) bits suggested by information theory.

3Jansson et al. [56] did not explicitly show how to support distance, but the support for it directly

follows the support for depth and level anc.
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DFUDS:           ((()((())(())))()((())))

LOUDS:          11011101001100111000000    
BP:                   ((()(()())())((()()())))

Figure 5.1: An example of the LOUDS, BP and DFUDS sequences of a given ordinal

tree.

Ferragina et al. [29] proposed another structure based on the xbw transform of a labeled

tree, which conceptually builds a compressed suffix array for all the labeled rooted paths

in the tree. It supports locating the first child of a given node x labeled α in constant

time, and finding all the children of x labeled α in constant time per child. But it does

not efficiently support the retrieval of the ancestors or descendants by labels. Also it uses

2n lg σ + O(n) bits, which is almost twice the minimum space required to encode the tree.

Ferragina et al. [29] also showed how to use a wavelet tree to reduce the size to n lg σ+O(n)

bits, but each of the above operations then takes O(lg σ) time. This structure can be

further compressed to nHk + O(n) bits, where Hk is the kth order entropy of labeled trees

they defined [29], based on the context of upward paths of the nodes. Another interesting

operation supported by the above representation is the subpath query, which returns the

number of nodes whose upward paths are prefixed with a given pattern. Given a pattern

of length p, the above representation can answer the subpath query in O(p lg σ) time.

Based on the succinct integrated encoding for binary relations, Barbay et al. [5] gave an

encoding for labeled trees using n (lg σ + o(lg σ)) bits to support the retrieval of the ances-

tors or descendants by labels in O(lg lg σ) time per node. It also supports the computation

of the number of descendants (of a given node) associated with a given label in O(lg lg σ)

time. The same technique is generalized to represent multi-labeled trees in t (lg σ + o(lg σ))
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Algorithm cover(x, M) [36, 37]

1. If x is a leaf, make {x} a PCM and return.

2. Otherwise, x has one or more children, x1, x2, · · · , xd. Call cover(x1), cover(x2),

· · · , cover(xd).

3. If x1, x2, · · · , xd are all roots of newly created mini-trees, make {x} a PCM and

return.

4. Otherwise, one or more children of x are roots of PCM’s. Y = {S1, S2, · · · , Sp}
denotes the set of PCM’s whose roots are children of x.

5. If |⋃ Y | < M − 1, make {x} ∪ (
⋃

Y ) a PCM and return.

6. Otherwise, repeat the following steps:

(a) Create a mini-tree Z =
⋃{{x}, Sq, Sq+1, · · · , Sr}, where Sq is the leftmost

PCM in Y and r is the index such that |Z| ≥M but |Z − Sr| < M .

(b) Y ← Y − {Sq, Sq+1, · · · , Sr}.
(c) If

⋃

Y < M − 1, output Z ∪ (
⋃

Y ) as a mini-tree and return.

(d) Otherwise, output Z as a mini-tree and go to step (a).

Figure 5.2: An algorithm to cover an ordinal tree [36, 37].

bits and support the same operations4.

5.3 Preliminaries

5.3.1 Succinct Ordinal Tree Representation Based on Tree Cov-

ering

In this section, we briefly summarize the succinct ordinal trees based on tree covering

proposed by Geary et al. [36, 37], which we extend in Section 5.4 to support new operations.

In particular, we introduce the notation and list the data structures we reuse here.

4In this proposal, we assume that each node of the tree is associated with at least one label (thus t ≥ n),

and that n ≥ σ. The results can be extended to other cases by simple reductions shown in Section 3.5 for

binary relations.
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Figure 5.3: An example of covering an ordinal tree with parameters M = 8 and

M ′ = 3, in which the solid curves enclose mini-trees and dashed curves enclose

micro-trees.

The Tree Covering Algorithm Geary et al. [36, 37] proposed an algorithm to cover

an ordinal tree by mini-trees of size Θ(M) for a given parameter M . Any two mini-trees

computed by this algorithm either do not intersect (i.e. have one or more common nodes),

or only intersect at their common root. Figure 5.2 presents the algorithm cover, whose

parameters include a node x and M . It either creates a set of new mini-trees rooted at

x, or designates a set of nodes as a partially completed mini-tree, or PCM (we use
⋃

S to

denote ∪T∈ST ). We can pass the root node as the parameter to cover an ordinal tree T by

mini-trees of size Θ(M). Note that at the end of the algorithm, there might be a PCM at

the root of T , and we make it a mini-tree. This is the only mini-tree whose size may be

smaller than Θ(M).

Geary et al. [36, 37] showed that the size of any mini-tree is at most 3M − 4, and the

size of any mini-tree that does not contain the root of the entire tree is at least M . In their

paper, they choose M = dlg4 ne to cover a given tree T by mini-trees. They further use

the same algorithm with the parameter M ′ = dlg n/24e to cover each mini-tree by a set

of micro-trees. We use the same parameters and procedure to cover ordinal trees in this

chapter. Figure 5.3 gives an example of covering an ordinal tree using this algorithm.

Identifying Mini-trees, Micro-trees, and Nodes Geary et al. [36, 37] list the mini-

trees t1, t2, · · · in an order such that in a preorder traversal of T , either the root of ti is

visited before that of ti+1, or if these two mini-trees share the same root, the children of the

root of ti are visited before the children of the root of ti+1. The ith mini-tree in the above
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sequence is denoted by µi. All the micro-trees in a mini-tree are also listed in the same

order, and the jth micro-tree in mini-tree µi is denoted by µi
j. When the context is clear,

we also refer to this micro-tree using µj. A node is denoted by its preorder number from an

external viewpoint. To further relate a node to its position in its mini-tree and micro-tree,

they define the τ -name of a node x to be a triplet τ(x) =< τ1(x), τ2(x), τ3(x) >, which

means that node x is the τ3(x)th node visited in a preorder traversal of micro tree µ
τ1(x)
τ2(x).

For a node that exists in more than one mini-tree and/or micro-tree, its lexicographically

smallest τ -name is its canonical name, and the copy of the node with the canonical name

is called a canonical copy. For example, in Figure 5.3, node 11 is in mini-tree µ2 and

micro-tree µ2
1, and its τ -name is < 2, 1, 3 >. The canonical name of node 17 is < 1, 2, 1 >.

Geary et al. [36, 37] also defined the notion of preorder boundary nodes. A node is a

tier-1 (or tier-2) preorder boundary node iff during a preorder traversal of the tree, it is

either the first or the last node of a mini-tree (or micro-tree). For example, in Figure 5.3,

nodes 1, 2, 15, 22, 28 and 30 are tier-1 preorder boundary nodes. Nodes 2, 3, 5, 7, 10, 12,

14, 15 and others are tier-2 preorder boundary nodes.

Extended Micro-trees To enable the efficient retrieval of the children of a given node,

Geary et al. [36, 37] proposed the concept of extended micro-trees. To compute the set of

extended micro-trees, each micro-tree is initially made into an extended micro-tree, and

each of its nodes is called an original node of the extended micro-tree. Every node x that

is the root of a micro-tree is promoted into the extended micro-tree to which its parent,

y, belongs. If y belongs to more than one micro-tree, then we first retrieve the rightmost

sibling to the left of x that is not the root of a micro-tree. If such a node exists, x is

promoted into the extended micro-tree to which it belongs. Otherwise, x is promoted into

the micro-tree that has the canonical copy of y. A node promoted into an extended micro-

tree is called a promoted node. For example, the extended version of the micro-tree µ1
1 has

original nodes 1, 16 and 30, and promoted nodes 17 and 22. Geary et al. [36, 37] proved

the following lemma.

Lemma 5.1 ([36, 37]). Consider a node x that is not the root of any micro-tree. Then (at

least a promoted copy of) each of x’s children is in the extended micro-tree that contains x

as an original node.
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To bound the size of micro-trees, Geary et al. [36] defined a type 1 extended micro-tree

to be a micro-tree whose size is at most 1
4
lg n, and an extended micro-tree whose size

is larger than 1
4
lg n is called a type 2 extended micro-tree. They further proved that the

number of type 2 extended micro trees is O(n/(lg n)2), and they have O(n/ lg n) original

nodes in total.

The Main Data Structures

Here we list the main data structures designed by Geary et al. [36, 37] upon which we

construct additional auxiliary data structures. The main data structures are designed to

represent each individual extended micro-tree. They take 2n + o(n) bits in total for an

ordinal tree of n nodes and can be used as building blocks to construct the representation

of the tree at a higher level. The following data structures are constructed for a given

extended micro tree µi of oi original nodes and pi promoted nodes, if it is a type 1 extended

micro-tree:

• A header information to indicate the type of the extended micro-tree, and to encode

pi and oi.

• A bit array treei of 2(pi + oi)-bit to encode µi. Recall that there are at most

22n different ordinal trees of n nodes, so there exists a canonical way to encode an

ordinal tree in 2n bits. Geary et al. [36, 37] chose to encode treei using the balanced

parenthesis sequence.

• A bit vector nodetypesi of lg
(

pi+oi

oi

)

bits (constructed using Part (b) of Lemma 2.1)

to tell whether the jth node of µi in preorder is an original node.

• An encoding of all edges that leave µi (edgesi):

– A bit vector of pi bits to indicate whether a promoted node is in the same mini-

tree as µi, listed by the preorder of the promoted nodes. The number of 1s in

this bit vector is denoted by p′i.

– To store the τ -names of the original copies of the promoted nodes, only pi − p′i
τ1-names and pi τ2-names are stored.
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If µi is a type 2 extended micro-tree, we store the same information except that treei

now consists of an O(pi+oi)-bit DFUDS representation by Benoit et al. [10, 9] to represent µi,

and a 2oi-bit encoding to store the tree structure of the corresponding micro-tree excluding

the promoted nodes.

Geary et al. [36, 37] also defined the implicit representations of micro-trees and showed

that given an extended micro-tree, we can compute the implicit representation of the

micro-tree corresponding to it (excluding its promoted nodes) in constant time. To encode

a micro-tree of m nodes, they first encode its size using lg(3M ′) = O(lg lg n) bits. Then,

as there are at most 22m different micro-trees of m nodes, there exists a canonical way to

encode it in 2m bits (Geary et al. [36, 37] chose to use the balanced parenthesis sequence).

The implicit representation of a micro-tree consists of the above two parts. The data

structures constructed for each type 2 extended micro-tree already explicitly stores the

implicit encoding of its corresponding micro-tree excluding the promoted nodes. For a

type 1 micro-tree µi, the data structures treei and nodetypesi uniquely determines the

structure of its corresponding micro-tree excluding the promoted nodes. Geary et al. [36,

37] claimed that the concatenation of treei and nodetypesi has at most 3
4
lg n bits for a

type 1 extended micro-tree. Based on the fact, they designed an o(n)-bit data structure to

retrieve the implicit representation of the micro-tree corresponding to a type 1 extended

micro tree in constant time.

5.3.2 Range Maximum/Minimum Query

Given an array D of n integers and an arbitrary range [i, j], where 1 ≤ i ≤ j ≤ n,

the range maximum query (or range minimum query) retrieves the leftmost maximum (or

minimum) value among the elements in D[i..j]. Bender and Farach-Colton presented a

simple algorithm to support range maximum/minimum queries on D in constant time

using O(n lg n) bits [8]. Based on this algorithm, Sadakane [79] showed how to support

the range minimum/maximum query in O(1) time on an array of n integers encoded in

the form of balanced parentheses using o(n) additional bits. This approach does not work

when the integers are stored explicitly in an array, but a useful observation of Sadakane’s

algorithm is that, when the starting and ending positions of the range are multiples of lg n,

it only uses the auxiliary data structures constructed to support range maximum/minimum
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queries, without accessing D.

Lemma 5.2 ([79]). Given an array D[1..n] of integers, there is an auxiliary data structure

of o(n) bits that, when the starting and ending positions of the range are multiples of lg n

(i.e. the given range is of the form [k lg n..l lg n]), this auxiliary data structure can, without

accessing the array D, support ranged maximum/minimum queries in O(1) time.

5.3.3 Lowest Common Ancestor

The problem of supporting operator LCA on ordinal trees was initially studied for the

explicit, pointer-based representation of trees. Bender et al. [8] showed how to support

LCA using an additional O(n lg n) bits5 for any tree representation through a reduction to a

particular case of range minimum query. If we store the tree using the tree representation

by Geary et al. [36, 37], we have:

Lemma 5.3. An ordinal tree can be represented in O(n lg n) bits to support LCA and the

operations listed in the column old TC of Table 5.1 in O(1) time.

5.3.4 Visibility Representation of Graphs

In a visibility representation of graphs, vertices are mapped to horizontal segments and

edges to vertical segments that intersect only adjacent vertex segments [82]. Various visi-

bility representations have been proposed in the literature. In this chapter, we adopt the

notion of weak visibility representation [82].

Definition 5.1 ([82]). A weak visibility representation of a graph G is a mapping of

its vertices into non-overlapping horizontal segments called vertex segments and of its

edges into vertical segments called edge segments. Under this mapping, the edge between

any two given vertices x and y is mapped to an edge segment whose end points are on the

vertex segments of x and y, and this edge segment does not cross any other vertex segment.

5It is not shown in [8] how much space their data structures occupy. However, it is easy to verity that

the space cost is O(n lg n) bits.
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Figure 5.4: An example of a weak visibility representation of a planar graph.

For an example of a weak visibility representation of a planar graph, see Figure 5.4. In

this figure, vertex segments are represented by solid horizontal lines, while edge segments

are represented by dashed vertical lines. It is clear that a graph that admits a weak

visibility representation is a planar graph [82]. Duchet et al. [25] further proved that every

planar graph has a weak visibility representation6.

5.3.5 Balanced Parentheses

Munro and Raman [71] showed how to succinctly represent a balanced parenthesis sequence

S of length 2n, where there are n opening parentheses and n closing parentheses, to support

the following operations:

• rank openS(i) (rank closeS(i)), the number of opening (closing) parenthesis in the

sequence up to (and including) position i;

• select openS(i) (select closeS(i)), the position of the ith opening (closing) paren-

thesis in the sequence;

• find closeS(i) (find openS(i)), the matching closing (opening) parenthesis for the

opening (closing) parenthesis at position i;

• excessS(i), the number of opening parentheses minus the number of closing paren-

theses in the sequence up to (and including) position i;

6Duchet et al. [25] adopted the notion of S-representation, which is identical to weak visibility repre-

sentation.
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• encloseS(i), the closest enclosing (matching parenthesis) pair of a given matching

parenthesis pair whose opening parenthesis is at position i.

The subscript S is omitted when it is clear from the context. Their result is:

Lemma 5.4 ([71]). A sequence of balanced parentheses S of length 2n can be repre-

sented using 2n+o(n) bits to support the operations rank open, rank close, select open,

select close, find close, find open, excess and enclose in constant time.

5.4 New Operations Based on Tree Covering (TC)

We now extend the succinct tree representation proposed by Geary et al. [36, 37] to support

more operations on ordinal trees. We achieve this by constructing o(n)-bit auxiliary data

structures in addition to their main data structures listed in Section 5.3.1 that use 2n+o(n)

bits. Recall that we denote a node by its preorder number. As the conversion between the

preorder number and the τ -name of a given node can be done in constant time [36, 37], we

omit the steps of performing such conversions in our algorithms (e.g. we may return the

τ -name of a node directly when we need return its preorder number). We use T to denote

the (entire) ordinal tree.

5.4.1 height in O(1) Time with o(n) Extra Bits

We first give the following definition.

Definition 5.2. Node x is a tier-1 (or tier-2) preorder changer if x = 1, or if nodes

x and (x− 1) are in different mini-trees (or micro-trees).

For example, in Figure 5.3, nodes 1, 2, 16, 22, and 30 are tier-1 preorder changers.

Nodes 16, 17, 20, 22, 26 and others are tier-2 preorder changers. It is obvious that all the

tier-1 preorder changers are also tier-2 preorder changers. In order to bound the number

of tier-1 (or tier-2) preorder changers, we first prove the following lemma.

Lemma 5.5. If node x is a tier-1 (or tier-2) preorder changer that is not the root of any

mini-tree (or micro-tree), then node (x− 1) is the last node of its mini-tree (or micro-tree)

in preorder.
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Proof. We only prove the theorem in the case when node x is a tier-1 preorder changer,

and the case when node x is a tier-2 preorder changer can be handled similarly.

Let i = τ1(x− 1) and j = τ1(x). Then mini-trees µi and µj contain nodes (x− 1) and

x, respectively. Let r be the root of µj. Then r < x. As nodes (x − 1) and x are in two

different mini-trees, we have r < x− 1. There are two cases.

In the first case, node r is also the root of µi. Then, by the tree covering algorithm, all

the nodes of mini-tree µi are before node x in preorder. Therefore, node (x− 1) is the last

node in µi in preorder.

In the second case, node r is not the root of µi. Then µi and µj do not intersect. As

µi contains node (x− 1) and µj contains node x, by the tree covering algorithm, either all

the nodes of µi appears before those of µj in preorder, or the root of µi, s, is a descendant

of a leaf node of µj that appears before x in preorder. If the former is true, then x is the

root of µj, which is a contradiction. Thus s is a descendant of a leaf node of µj whose

preorder number is smaller than x. By the tree covering algorithm, all the nodes of µi are

before node x in preorder. Therefore, node (x− 1) is the last node in µi. �

We have the following lemma to bound the number of tier-1 (or tier-2) preorder chang-

ers.

Lemma 5.6. The total number of tier-1 (or tier-2) preorder changers in any tree is at

most twice the number of mini-trees (or micro-trees).

Proof. We only show how to bound the number of tier-1 preorder changers, and the number

of tier-2 preorder changers can be bounded similarly.

We first present a method to map each tier-1 preorder changer to a tier-1 preorder

boundary node (see Section 5.3.1 for the definition of preorder boundary nodes). To map

a tier-1 preorder changer x to a tier-1 preorder boundary node, there are two cases:

1. Node x is the root of the mini-tree it is in. In this case, we map x to itself, as it is

also a tier-1 preorder boundary node.

2. Node x is not the root of the mini-tree it is in. In this case, by Lemma 5.5, node

(x−1) is the last node of the mini-tree it is in. Hence node (x−1) is a tier-1 preorder

boundary node. We map x to node (x− 1).
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For example, in Figure 5.3, the tier-1 preorder changers 1, 2, 16, 22, and 30 are respec-

tively mapped to the following tier-1 preorder boundary nodes: 1, 2, 15, 22 and 29. As

seen above, our approach maps each tier-1 preorder changer to either itself or the node

immediately preceding it in preorder. Therefore, at most two different tier-1 preorder

changers can be mapped to the same tier-1 boundary node. As each mini-tree has at most

two boundary nodes, this implies that the number of tier-1 preorder changers is at most

four times the number of mini-trees.

To further prove that the number of tier-1 preorder changers is at most twice the

number of mini-trees, we observe that each mini-tree of size larger than 1 has exactly two

tier-1 boundary nodes. Hence it suffices to prove that if two preorder changers, y and

z, are mapped to the same tier-1 preorder boundary node u under this mapping, then

the mini-tree that u is in has only 1 node. We observe that y are z are mapped to the

same tier-1 preorder boundary node only if they are visited consecutively during a preorder

traversal. Without loss of generality, we assume that y = z − 1. By the description of the

mapping, we conclude that u = y and that y is the root of its mini-tree. We also have

that z is not the root of its mini-tree. As z is a tier-1 preorder changer, by Lemma 5.5, we

conclude that node y is the last node in preorder of the mini-tree it is in. As y is also the

first node in preorder of its mini-tree, we conclude that the mini-tree that y is in is of size

1. This completes the proof. �

We now design auxiliary data structures to support height. We have the following

lemma.

Lemma 5.7. Using o(n) additional bits, operation height can be supported in O(1) time

on TC.

Proof. To compute height(x), we compute x’s number of descendants, d, using nbdesc [36,

37] (see Section 5.2.1). Then all the descendants of x are nodes x + 1, x + 2, · · · , x + d.

We have the formula: height(x) = maxd
i=1(depth(x + i))− depth(x) + 1. Therefore, the

computation of height(x) can be reduced to answering the range maximum query (see

Section 5.3.2) on the conceptual array D[1..n], where D[j] = depth(j) for 1 ≤ j ≤ n. For

any node j, we can compute depth(j) in O(1) time [36, 37]. We now show how to support

the range maximum query on D using o(n) additional bits without storing D explicitly.
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We construct the o(n)-bit auxiliary data structure of Lemma 5.2. We can use it to

provide constant-time support for the range minimum/maximum query without accessing

the array, when the starting and ending positions of the range are multiples of lg n. To

support the general case without explicitly storing the array D, we construct (we assume

that the ith tier-1 and tier-2 preorder changers are numbered yi and zi, respectively):

• A bit vector B1[1..n], where B1[i] = 1 iff node i is a tier-1 preorder changer;

• A bit vector B′
1[1..n], where B′

1[i] = 1 iff node i is a tier-2 preorder changer;

• An array C1[1..l1] (l1 denotes the number of tier-1 preorder changers), where C1[i] =

τ1(yi);

• An array C ′
1[1..l

′
1] (l′1 denotes the number of tier-2 preorder changers), where C ′

1[i]

stores a pair of items < τ2(zi), τ3(zi) >;

• An array E[1..l′1], where E[i] is the τ3-name of the node, ei, with maximum depth

among the nodes between zi and zi+1 (including zi but excluding zi+1) in preorder

(we also consider the conceptual array E ′[1..l′1], where E ′[i] = depth(ei), but we do

not store E ′ explicitly);

• A two-dimensional array M , where M [i, j] stores the value δ such that E ′[i + δ]

is the maximum between and including E ′[i] and E ′[i + 2j], for 1 ≤ i < l′1 and

1 ≤ j ≤ dlg lg ne;

• A table A1, in which for each pair of nodes in each possible micro-tree, we store the

τ3-name of the node of the maximum depth between (inclusive) this pair of nodes

in preorder. This table could be used for several trees. We show how to implement

table A1 later in this proof.

There are O(n/ lg4 n) tier-1 and O(n/ lg n) tier-2 preorder changers, so B1 and B′
1 can

be stored in o(n) bits using Part (b) of Lemma 2.1. C1, C ′
1 and E can also be stored

in o(n) bits (each element of C ′
1 in O(lg lg n) bits). As M [i, j] ≤ 2dlg lg ne, we can store

each M [i, j] in dlg lg ne bits, so M takes O(n/ lg n × lg lg n × lg lg n) = o(n) bits. To

encode A1, we use a modified version of the implicit representation of the micro-tree (see
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Section 5.3.1 for a description of the implicit representations of micro-trees), together with

the τ3 names of any two pairs of nodes in the micro-tree, to index A1. As each micro-tree

has at most 3M ′ nodes, we can uniquely encode a micro-tree of m nodes using exactly 6M ′

bits, by inserting 6M ′− 2m opening parentheses before its balanced parenthesis sequence.

Thus the total number of entries of A1 is 26M ′ × 3M ′ × 3M ′ = O(n1/4 lg2 n). Note that

some combinations of micro-trees and the τ3 names of the pairs of nodes are invalid. For

example, some parenthesis sequences of length 6M ′ do not correspond to any micro-tree,

or a τ3 name may be greater than the size of the micro-tree. We store a −1 in each entry of

A1 corresponding to an invalid combination, and store the τ3-names of the answers for the

rest. Thus each entry occupies O(lg n) bits. Therefore, A1 occupies O(n1/4 lg3 n) = o(n)

bits. Hence these auxiliary structures occupy o(n) bits.

With the above auxiliary data structures, we can support the range maximum query

on D. Given a range [i, j], we divide it into up to three subranges: [i, di/ lg ne lg n],

[di/ lg ne lg n, bj/ lg nc lg n] and [bj/ lg nc lg n, j]. The result is the largest among the max-

imum values of these three subranges. The range maximum query on the second subrange

is supported by Lemma 5.2, so we consider only the first (the query on the third one, and

the case where [i, j] is indivisible using this approach can be supported similarly).

To support range maximum query for the range [i, di/ lg ne lg n], we first use B′
1 to

check whether there is a tier-2 preorder changer in this range. If not, then all the nodes

in the range are in the same micro-tree. We use µk
l to denote this micro-tree. Then k =

C1[bin rankB1(1, i)] and l is the first item of the pair stored in C ′
1[bin rankB′

1
(1, i)]. The

implicit representation of a micro-tree can be computed from its corresponding extended

micro-tree in constant time. We further insert a number of opening parentheses before its

balanced parenthesis representation (this can be done using a shift operation), and use it

with the τ3-names of the nodes i and di/ lg ne lg n to index into the table A1. This way we

can retrieve the result in constant time.

If there are one or more tier-2 preorder changes in [i, di/ lg ne lg n], let node zu be the

first one and zv be the last. We further divide this range into three subranges: [i, zu],

[zu, zv) and [zv, di/ lg ne lg n]. We can compute the maximum values in the first and the

third subranges using the method described in the last paragraph, as the nodes in either

of them are in the same micro-tree. To perform range maximum query on D with the
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range [zu, zv), by the definition of E ′, we only need perform the query on E ′ with range

[u, v − 1]. we observe that [u, v) = [u, u + 2s) ∪ [v − 2s, v), where s = dlg(v − 1 − u)e.
As v − u < zv − zu < lg n, we have s ≤ dlg lg ne. Thus using M [u, s] and M [v − 2s, s],

we can retrieve from E the τ3-names of the nodes corresponding to the maximum values

of E ′ in [u, u + 2s] and [v − 2s, v], respectively. To retrieve the τ2-names and τ3-names of

these two nodes, we observe that it suffices to compute the τ2-names and τ3-names of the

nodes zu and zv−2s . As they correspond to the uth 1 and the (v − 2s)th 1 in B′
1, we can

easily compute their τ2-names and τ3-names using B1, B′
1, C1 and C ′

1. Between the two

nodes retrieved using the above process, the one with the larger depth is the node with

the maximum depth in range [zu, zv]. �

5.4.2 LCA and distance in O(1) Time with o(n) Extra Bits

We now show how to support LCA on TC.

Lemma 5.8. Using o(n) additional bits, operation LCA can be supported in O(1) time on

TC.

Proof. We precompute a tier-1 macro tree as follows. First remove any node that is not

a mini-tree root. For any two remaining nodes x and y, there is an edge from x to y iff

among the remaining nodes, x is the nearest ancestor of y in T . The tier-1 macro tree has

O(n/ lg4 n) nodes, and we store it using Lemma 5.3 in O(n/ lg4 n× lg n) = o(n) bits. For

each mini-tree root of T , we also store its preorder number in the tier-1 macro tree. This

also takes O(n/ lg4 n× lg n) = o(n) bits.

Similarly, for each mini-tree, we precompute a tier-2 macro tree which only has the

micro-tree roots. Each tier-2 macro tree has O(lg3 n) nodes, and we store it using Lemma 5.3

in O(lg3 n lg lg n) bits. For the root of each mini-tree, we also store its preorder number in

the corresponding tier-2 macro tree. This also takes O(lg3 n lg lg n) bits for each mini-tree.

As there are O(n/ lg4 n) mini-trees, the overall space used is O(n lg lg n/ lg n) = o(n) bits.

We also construct a table A2 to store, for each possible micro-tree and each pair of

nodes in it (indexed by their τ3-names), the τ3-name of their lowest common ancestor.

Similarly to the analysis in the proof of Lemma 5.7, A2 occupies o(n) bits.
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Algorithm LCA(x, y)

1. If x and y are in the same micro-tree, retrieve their LCA using a constant-time

lookup on A2 and return.

2. If x and y are not in the same micro-tree, but are in the same mini-tree, retrieve

the roots, u and v, of the micro-trees that x and y are in, respectively.

3. If u = v, return u as the result.

4. If u 6= v, retrieve their lowest common ancestor, w, in the tier-2 macro tree.

5. Retrieve the two children, i and j, of w in the tier-2 macro tree that are ancestors

of x and y, respectively using depth and level anc. Then retrieve the parents, k

and l, of i and j in T , respectively.

6. If k and l are in two different micro-trees, return w as the result. Otherwise, return

LCA(k, l).

7. If x and y are in two different mini-trees, retrieve the roots, p and q, of the two

different mini-trees, respectively.

8. If p = q, return p as the result. Otherwise, similarly to Steps 4 and 5, retrieve two

nodes a and b, such that a and b are the children of the lowest common ancestor,

c, of p and q in the tier-1 macro tree, and they are also the ancestors of p and q,

respectively. Retrieve the parents, r and s, of p and q in T , respectively.

9. If r and s are in two different mini-trees, return c. Otherwise, return LCA(r, s).

Figure 5.5: An algorithm for computing LCA.
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Figure 5.5 presents the algorithm to compute LCA. The correctness is straightforward

and it clearly takes O(1) time. �

With the support for LCA and depth, the support for distance is trivial.

Corollary 5.1. Operation distance can be supported on TC in O(1) time.

Proof. To compute distance(x, y), first compute z = LCA(x, y). Then use distance(x, y) =

(depth(x)− depth(z)) + (depth(y)− depth(z)) to compute the result. �

5.4.3 leftmost leaf and rightmost leaf in O(1) Time

Lemma 5.9. Operations leftmost leaf and rightmost leaf can be supported on TC in

O(1) time.

Proof. given a node x with preorder number i, postorder number j, and m descendants,

we observe that the postorder number of its left-most leaf is j − m, and the preorder

number of its rightmost leaf is i + m. Thus the support of these two operations follows

the constant-time support for nbdesc, node rankPRE, node rankPOST, node selectPRE and

node selectPOST. �

5.4.4 leaf rank and leaf size in O(1) Time with o(n) Extra Bits

We first give the following definition.

Definition 5.3. Each leaf of a mini-tree (or micro-tree) is a pseudo leaf of the original

tree T . A pseudo leaf that is also a leaf of T is a real leaf. Given a mini-tree (or micro-

tree), we mark the leftmost real leaf of the mini-tree (or micro-tree), and the first real leaf

in preorder after each subtree of T rooted at a node that is not in the mini-tree (or micro-

tree), but is a child of a node in it. These nodes are called tier-1 (or tier-2) marked

leaves.

For example, in Figure 5.3, nodes 6, 11 and 15 are pseudo leaves of micro-tree µ2
1,

among which nodes 6 and 15 are real leaves, while node 11 is not. Nodes 23 and 29 are

tier-2 marked leaves. We observe the following property of the real leaves of a mini-tree

(or micro-tree).
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Property 5.1. Given a mini-tree (or micro-tree) and a pair of its tier-1 (or tier-2) marked

leaves such that there is no marked leaf between them in preorder, the real leaves visited

in preorder between these two leaves (including the left one but excluding the right) have

the property that, when listed from left to right, their leaf ranks are consecutive integers.

The real leaves that are to the right of (and including) the rightmost marked leaf have the

same property.

Geary et al. [36, 37] showed how to convert the preorder number of a given node to its

τ -name. The algorithm and auxiliary data structures can be easily adapted to solve the

easier problem of converting the preorder number of a given node to its preorder rank in

its mini-tree.

Lemma 5.10. Given a node x, its preorder number in its mini-tree can be computed in

O(1) time using o(n) additional bits.

Proof. We use the bit vector B1 constructed in the proof of Lemma 5.7. In addition, we

construct an array P [1..l1] (l1 denotes the number of tier-1 preorder changers), where P [i]

stores the preorder number of yi (yi denotes the ith tier-1 preorder changer) in its mini-tree.

Thus P uses O(n/ lg4 n × lg lg n) = o(n) bits. To compute the preorder number of x in

its mini-tree, we first check whether x is a tier-1 preorder changer using B1. If it is, then

P [bin rankB1(1, x)] is the answer. Otherwise, we locate the nearest tier-1 preorder changer

y preceding x in preorder in constant time, using y = bin selectB1(1, bin rankB1(1, x)).

As x, y and the nodes visited between them in a preorder traversal are in the same mini-tree,

we conclude that the preorder number of x in its mini-tree is P [bin rankB1(1, x)]+x−y. �

Now we can present our result on supporting leaf rank.

Lemma 5.11. Using o(n) additional bits, operation leaf rank can be supported in O(1)

time on TC.

Proof. For each mini-tree µi, we store the ranks of its tier-1 marked leaves in an array Mi,

sorted by their preorder numbers. We also construct a bit vector Ki, whose length is the

size of the mini-tree. The jth bit of Ki is 1 iff the jth node of µi in preorder is a tier-1 marked

leaf. Observe that each tier-1 marked leaf (except perhaps the first real leaf in a mini-tree)
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corresponds to a distinct edge that leaves its mini-tree (which in turn corresponds to a

distinct mini-tree root). Hence the number, m1, of tier-1 marked leaves is at most twice as

many as the number of mini-trees, which is O(n/ lg4 n). Therefore, the total space cost of

all the Mis is O(n/ lg4 n×lg n) = o(n). We assume that µi has ti nodes and li tier-1 marked

leaves, and that there are n1 mini-tree in total, then the total size of all the Kis (constructed

using Part (b) of Lemma 2.1) is
∑n1

i=1dlog2

(

ti
li

)

e ≤∑n1

i=1 log2

(

ti
li

)

+n1 ≤ lg
(

n
m1

)

+n1 = o(n).

Similarly, the number of tier-2 marked leaves is at most twice the number of micro-trees.

For each micro-tree and each of its tier-2 marked leaf x, let y be the last tier-1 marked leaf

visited before x during a preorder traversal (if x is a tier-1 marked leaf then set y = x). We

compute the difference of leaf rank(x) and leaf rank(y). As we do not visit any node

outside the mini-tree after y and before x in a preorder traversal, this value is O(lg4 n).

For each micro-tree µi
j, we store the difference values computed in the above way for its

tier-2 marked leaves in an array Di
j, sorted by the preorder numbers of the tier-2 marked

leaves. We also construct a bit vector Li
j, whose length is the size of µi

j. The kth bit of Li
j

is 1 iff the kth node of the micro-tree in preorder is a tier-2 marked leaf. The total space

cost of all the Di
js is O(n lg lg n/ lg n). Similarly to the analysis of the space cost of all the

bit vector Kis, we also have that the total space cost of bit vector Li
js is o(n).

In order to locate each Di
j and each Li

j, we need additional data structures, as we

cannot afford storing pointers indicating their addresses in storage for each micro-tree (we

can afford doing so for each mini-tree to locate the Mis and Kis though, as there are

O(n/ lg4 n) mini-trees). We concatenate all the Di
js, sorted by the lexicographic order of

their micro-trees (we treat each micro-tree µi
j as a pair < i, j > when sorting the micro-

trees by lexicographic order), and store the resulting array, D, instead of storing each Di
j

separately. To locate the starting and ending positions of each Di
j in D, we construct an

additional bit vector D′ to encode the number of elements of each Di
j in unary. More

precisely, if Di
j has k elements (i.e. if there are k tier-2 marked leaves in micro-tree µi

j),

we represent it by 1k−10, and concatenate all such encodings by the lexicographic order of

the corresponding micro-trees to construct D′. Thus the length of D′ is the number of the

tier-2 marked leaves in T , and the number of 1s in it is the number of micro-trees. Thus it

can be stored in o(n) bits using Part (b) of Lemma 2.1. To locate the starting and ending

positions of each Di
j in D, it suffices to computer the number, p, of micro-trees preceding
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µi
j in lexicographic order, since Di

j = D[bin selectD′(0, p − 1) + 1, bin selectD′(0, p)].

We store for each mini-tree µi the number of micro-trees in mini-trees µ1, µ2, · · · , µi−1, and

this takes O(n/ lg4 n× lg n) = o(n) bits in total. Thus p is equal to the sum of j and this

value stored in µi. The bit vectors Li
j can be stored in a similar manner using o(n) bits so

that each of them can be located in constant time.

We construct a table A4. For each possible micro-tree and each pair of its nodes

(denoted by their τ3-names), we store the number of pseudo leaves of the micro-tree between

them. Similarly to the analysis in the proof of Lemma 5.7, we have that the space used by

A4 is o(n) bits.

With the above data structures of o(n) bits, we can now compute leaf rank(x). We can

assume that x is a leaf, because otherwise leaf rank(x) = leaf rank(leftmost leaf(x)).

We assume that τ(x) =< i, j, k >. We first compute the preorder number, r, of x

in its mini-tree using Lemma 5.10. If Ki(r) = 1, then x is a tier-1 marked leaf, and

Mi[bin rankKi
(1, r)] is the result. Otherwise, if Li

j(k) = 1, then x is a tier-2 marked leaf,

and Mi[bin rankKi
(1, r)] + Di

j[bin rankLi
j
(1, k)] is the result. Otherwise, we locate the

closest tier-2 marked leaf, y, to the left of x in µi
j using Li

j, and compute the number of

pseudo leaves, p, between y and x using a table lookup on A4. As there is no edge leaving

the micro-tree between y and x, all the pseudo leaves between them are real leaves. Thus

by Property 5.1, Mi[bin rankKi
(1, r)] + Di

j[bin rankLi
j
(1, k)] + p is the result. �

With the constant-time support for leaf rank, leftmost leaf and rightmost leaf,

the following corollary is immediate.

Corollary 5.2. Operation leaf size can be supported on TC in O(1) time.

5.4.5 leaf select in O(1) Time with o(n) Extra Bits

We observe the following property.

Property 5.2. Given a leaf x that is not a tier-1 (or tier-2) marked leaf, if the closest

tier-1 (or tier-2) marked leaf to the left is node y (or node z), then τ1(x) = τ1(y) (or

τ2(x) = τ2(z)).

Based on the above property, we can support leaf select as follows.
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Lemma 5.12. Using o(n) additional bits, operation leaf select can be supported in O(1)

time on TC.

Proof. Assume that T has l leaves. We list all the leaves from left to right, and number

them 1, 2, ..., l. We construct the following auxiliary data structures:

• A bit vector B5[1..l], where B5[i] = 1 iff the ith leaf is a tier-1 marked leaf;

• A bit vector B′
5[1..l], where B′

5[i] = 1 iff the ith leaf is a tier-2 marked leaf;

• An array C5[1..l5] (l5 denotes the number of tier-1 marked leaves), where C5[i] is the

τ1-name of the ith tier-1 marked leaf;

• An array C ′
5[1..l

′
5] (l′5 denotes the number of tier-2 marked leaves), where C ′

5[i] is of

the form < qi, ri >, such that qi and ri are the τ2 and τ3-names of the ith tier-2

marked leaf, respectively;

• A table A5, in which for each possible micro-tree, each of its pseudo leaves (denoted

by its τ3-name), and each integer between 1 and 3M ′, we store the τ3-name of the

pseudo leaf whose leaf rank minus that of the given pseudo leaf is equal to the given

integer.

As there are O(n/ lg4 n) tier-1 marked leaves and O(n/ lg n) tier-2 marked leaves, B5,

B′
5, C5 and C ′

5 occupy o(n) bits. Similarly to the analysis in the proof of Lemma 5.7, we

have that the space used by A5 is o(n) bits. Thus the above auxiliary data structures

occupy o(n) bits.

With the above auxiliary data structures, we can now support leaf select. To com-

pute leaf select(i) (x denotes the result), by Property 5.2, τ1(x) = C5[bin rankB5(1, i)],

and τ2(x) is the first item of the pair stored in C ′
5[bin rankB′

5
(1, i)]. To compute τ3(x), if

B′
5[i] = 1, then τ3(x) is the second item, j, of the same pair. Otherwise, we use x’s micro-

tree, j, and i− select1(B
′
5, bin rankB′

5
(1, i)) as parameters to perform a table lookup on

A5 to compute τ3(x). �
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5.4.6 node rankDFUDS in O(1) Time with o(n) Extra Bits

Lemma 5.13. Using o(n) additional bits, operation node rankDFUDS can be supported in

O(1) time on TC.

Proof. We use the following formula proposed by Barbay et al. [7]: node rankDFUDS(x)

=

{

child rank(x)− 1 + node rankDFUDS(child(parent(x), 1)) if child rank(x) > 1;

node rankPRE(x) +
∑

y (degree(parent(y))− child rank(y)) otherwise.

where y∈anc(x)\r (we denote the set of ancestors of x by anc(x) and the root of T by r).

This formula reduces the support of node rankDFUDS to the support of computing S(x) =
∑

y∈anc(x)\r degree(parent(y))− childrank(y) for any given node x [7]. We use u(x) and

v(x) to denote the roots of the mini-tree and micro-tree that node x is in, respectively.

Then we compute S(x) as the sum of the following three values as suggested by Barbay et

al. [7]: S1(x) = S(u(x)), S2(x) = S(v(x)) − S(u(x)), and S3(x) = S(x) − S(v(x)). It is

trivial to support the computation of S1(x) in constant time: for each mini-tree root i, we

simply precompute and store S(i) using O(n/ lg3 n) = o(n) bits. However, we cannot do

the same to support the computation of S2(x). This is because there are O(n/ lg n) micro-

trees, and we need O(lg n) bits to store S(j) for each micro-tree root j. The approach of

Barbay et al. [7] does not solve the problem, either, because Property 1 in [7] does not

hold. We propose the following approach.

We extend the mini-trees using the same method used to extend micro-trees (see Sec-

tion 5.3.1). Thus, similarly to Lemma 5.1, we have:

Property 5.3. Except for the roots of mini-trees, all the other original nodes have the

property that (at least a promoted copy of) each of their children is in the same extended

mini-tree as themselves.

For node x that is not the root of a mini-tree (S2(x) = 0 otherwise), we further divide

S2(x) into two parts. Assume that w(x) is the child of u(x) that is also an ancestor of

x (w(x) can be computed in constant time using depth and level anc). Then S2(x)

is equal to the sum of S(w(x)) − S(u(x)) and S(v(x)) − S(w(x)) (denoted by S ′
2(x)). As

S(w(x))−S(u(x)) = degree(u(x))−childrank(w(x)), we can compute it in constant time.

By Property 5.3, we conclude that S ′
2(x) is at most as large as the size of the extended

mini-tree that x is in. We categorize extended mini-trees into two types: small extended
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mini-trees whose size is at most lg5 n, and large extended mini-trees whose size is greater

than lg5 n. As each large extended mini-tree has O(lg5 n) promoted nodes, and there are

O(n/ lg4 n) promoted nodes in T , we have that there are O(n/ lg9 n) large extended mini-

trees, which have O(n/ lg5 n) original nodes in total. For the roots of the micro trees that

are original nodes of small extended mini-trees, we need O(n lg lg n/ lg n) = o(n) bits to

store their corresponding S ′
2 values. For the roots of the micro trees that are original

nodes of large extended mini-trees, we need O(n/ lg5 n × lg n) = o(n) bits to store their

corresponding S ′
2 values. An additional bit vector of o(n) bits can tell us in which type of

extended mini-tree a micro-tree root is presented. Thus we can support the constant-time

computation of S2(x).

The constant-time support for the computation of S3(x) is similar. We also reduce the

computation of S3(x) to the computation of S ′
3(x) = S(x)−S(q(x)), where q(x) is the child

of v(x) that is also an ancestor of x. S ′
3(x) is bounded by the size of the extended micro-

tree that x is originally in. We categorize extended micro trees into three types: small

extended micro-trees, whose size is at most 1
4
lg n; medium extended micro-trees, whose

size is greater than 1
4
lg n, but not greater than lg2 n; and large extended micro-trees, whose

size is greater than lg2 n. Similarly, there are O(n/ lg n) original nodes in medium micro

trees, and O(n/ lg2 n) original nodes in large micro trees. For all the small micro-trees, we

can use an o(n)-bit table to support constant-time lookup of the S ′
3 values of each node in

it. For all the medium micro trees, we can store the S ′
3 values of all their original nodes

using O(n lg lg n/ lg n) = o(n) bits. For all the large micro-trees, we can store the S ′
3 values

of all their original nodes using O(n/ lg2 n × lg n) = o(n) bits. Thus we can support the

computation of S3(x) in constant time. �

5.4.7 node selectDFUDS in O(1) Time with o(n) Extra Bits

In this section, we first define the τ ∗-name of a node and show how to convert τ ∗-names

to τ -names. Then we show how to convert DFUDS numbers to τ ∗-names. We define the

τ ∗-name of a node as follows:

Definition 5.4. Given a node x whose τ -name is τ(x) =< τ1(x), τ2(x), τ3(x) >, its

τ
∗-name is τ ∗(x) =< τ1(x), τ2(x), τ ∗

3 (x) >, if x is the τ ∗
3 (x)th node of its micro-tree in

DFUDS order.
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For example, in Figure 5.3, node 29 has τ -name < 3, 1, 5 > and τ ∗-name < 3, 1, 4 >.

To convert the τ ∗-name of a node to its τ -name, we have:

Lemma 5.14. Given the τ ∗-name of a node x, τ(x) can be computed in O(1) time using

o(n) additional bits.

Proof. We only need compute τ ∗
3 (x) and use table lookup for this purpose. For every

micro-tree, and for every node (numbered by its DFUDS number) in the tree, we store its

corresponding preorder number. Similarly to the analysis in the proof of Lemma 5.7, we

have that the space used by this table is o(n) bits. �

The idea of computing the τ ∗-name given a DFUDS number is to store the τ ∗-names of

some of the nodes, and compute the τ ∗-names of the rest using these values. It is similar

to the algorithm in Section 4.3.1 of [36, 37] to support node selectPRE. However, as we

cannot define boundary nodes for DFUDS traversal, it is not trivial to apply the algorithm.

We begin with the following definition.

Definition 5.5. List the nodes in DFUDS order, numbered 1, 2, ..., n. The ith node in

DFUDS order is a tier-1 (or tier-2) DFUDS changer if i = 1, or if the ith and (i−1)th nodes

in DFUDS order are in different mini-trees (or micro-trees).

For example, in Figure 5.3, nodes 1, 2, 16, 3, 17, 22 and 30 are tier-1 DFUDS changers,

and nodes 2, 16, 3, 6, 7, 11, 4 and others are tier-2 DFUDS changers. It is obvious that all

the tier-1 DFUDS changers are also tier-2 DFUDS changers. We have the following lemma.

Lemma 5.15. The number of tier-1 (or tier-2) DFUDS order changers in any tree is at

most four times the number of mini-trees (or micro-trees).

Proof. We only show how to bound the number of tier-1 DFUDS changers, and the number

of tier-2 DFUDS changers can be bounded similarly.

List the mini-trees t1, t2, · · · in an order such that in a DFUDS traversal of T , either the

root of ti is visited before that of ti+1, or if these two mini-trees share the same root, the

children of the root of ti are visited before the children of the root of ti+1. We call the

number assigned to each mini-tree in the above way the DFUDS number of each mini-tree.
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In the rest of this proof, for simplicity, we use mini-tree i to refer to the mini-tree with

DFUDS number i.

For a tier-1 DFUDS changer x, if it is in mini-tree i, and the node visited immediately

before x in DFUDS traversal is in mini-tree j, we say that x is related to mini-trees i and j

(if x = 1, then we set j to 0). We also say that x is associated with mini-tree max(i, j).

We have:

Property 5.4. If a tier-1 DFUDS changer x is related to mini-trees i and j, and is associated

with mini-tree i, then the root of mini-tree j cannot be a descendant of the root of mini-tree

i.

The correctness of this property is clear, because otherwise, we have j > i. Then x is

associated with mini-tree j, which is a contradiction.

In the above notation, each tier-1 DFUDS changer is related to at most two mini-trees,

but is associated with exactly one mini-tree. Therefore, we only need prove that for each

mini-tree i, there are at most 4 changers that are associated with it. There are three cases.

Case 1: the root of mini-tree i is not shared with any other mini-tree. We first locate

the DFUDS changers that are related to mini-tree i. It is clear that the root of mini-tree

i (denoted by x) is related to it. In a DFUDS traversal, after visiting x, we visit x’s right

siblings if they exist, and then the descendants of x’s left siblings if they exist. There

nodes are outside mini-tree i. Thus the first node among these nodes (if they exist) in

DFUDS order is a DFUDS changer related to mini-tree i. We then visit x’s descendants, so

the leftmost child of x (if x is not a leaf) is related to mini-tree i if it is a DFUDS changer

(i.e. if x has right siblings or at least one of x’s left siblings is not a leaf node) and it

is in mini-tree i. When we visit x’s descendants in DFUDS order, we may visit mini-trees

whose roots are x’s descendants, and this results in more DFUDS changers that are related

to mini-tree i. Note that by Property 5.4, these nodes are not associated with mini-tree i.

After visiting all of x’s descendants that are in mini-tree i, the nodes we visit are outside

this mini-tree. Thus the first node among these nodes (if there are any) in DFUDS order is

also related to mini-tree i. Therefore, the only possible tier-1 DFUDS changers associated

with mini-tree i are (note that not all of they are necessarily associated with mini-tree i,

and some of them may not even be tier-1 DFUDS changers or may not even exist):



96 CHAPTER 5. TREES

• Node x, the root of mini-tree i as defined above;

• Node y, the leftmost right sibling of x if it exists, or otherwise, node z, the first node

visited in a DFUDS traversal among all the descendants of the left siblings of x;

• Node u, the leftmost child of x in mini-tree i;

• Node v, the node visited immediately after all the descendants of x are visited in a

DFUDS traversal.

Case 2: the root of mini-tree i is shared with other mini-trees, but the DFUDS number

of any other tree that shares the same root is larger than i. In this case, similarly to

the analysis in the first case, there are at most 3 tier-1 DFUDS changers associated with

mini-tree i. They are node x, either node y or node z, and node u, as defined in Case 1.

Note that in this case, neither node v (defined above) or the leftmost right sibling of u is

associated with mini-tree i, although they are related to mini-tree i.

Case 3: the root of mini-tree i is shared with another mini-tree whose DFUDS number

is smaller than i. In this case, similarly to the analysis for the above two cases, there are

at most 4 tier-1 DFUDS changers that may be associated with mini-tree i. They are:

• Node p, the leftmost child of x in mini-tree i;

• Node q, the first node visited in a DFUDS traversal among all the descendants of the

left siblings of p;

• Node w, the leftmost child of p in mini-tree i;

• Node v, defined in Case 1. �

With the above definition and lemma, we can now support node selectDFUDS.

Lemma 5.16. Using o(n) additional bits, operation node selectDFUDS can be supported in

O(1) time on TC.

Proof. We design the following auxiliary data structures.

• A bit vector B7[1..n], where B7[i] = 1 iff the ith node in DFUDS order is a tier-1

DFUDS changer;
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• A bit vector B′
7[1..n], where B′

7[i] = 1 iff the ith node in DFUDS order is a tier-2

DFUDS changer;

• An array C7[1..m7] (m7 denotes the number of tier-1 DFUDS changers), where C7[i] is

the τ1-name of the ith tier-1 DFUDS changer in DFUDS order;

• An array C ′
7[1..m

′
7] (m′

7 denotes the number of tier-2 DFUDS changers), where C ′
7[i] is

of the form < qi, ri >, such that qi and ri are the τ2 and τ3-names of the ith tier-2

DFUDS changer in DFUDS order.

The number of 1s in B7 is m7, which is O(n/ lg4 n) by Lemma 5.15. We can store B7

using Part (b) of Lemma 2.1 in O(lg
(

n
n/ lg4 n

)

) = o(n) bits. Similarly, m′
7 = O(n/ lg n)

and we can store B′
7 in o(n) bits. C7 occupies O(n/ lg4 n× lg n) = o(n) bits. C ′

7 occupies

O(n/ lg n× lg lg n) = o(n) bits. Therefore, the above data structures occupy o(n) bits.

To support node selectDFUDS(i), by Lemma 5.14, we only need compute the τ ∗-name

of the ith node in DFUDS order. We use < t1, t2, t3 > to denote the result. By the def-

inition of tier-1 DFUDS changers, we immediately have that t1 is equal to the τ1-name of

the last tier-1 DFUDS changer up to and including the ith node in DFUDS order, which is

C7[bin rankB7(1, i)]. Similarly, t2 is equal to the τ2-name of the last tier-2 DFUDS changer

up to and including the ith node in DFUDS order, which is the first item of the pair stored

in C ′
7[bin rankB′

7
(1, i)] (we use k to denote the second item of this pair, which is the τ3-

name of this tier-2 DFUDS changer). Now we only need compute t3. We first locate the

last tier-2 DFUDS changer up to the ith node in DFUDS order. We assume that it is the

jth node in DFUDS order. Then j = bin selectB′

7
(1, bin rankB′

7
(1, i)). Finally we have

t3 = k + i− j. �

5.4.8 level leftmost and level rightmost in O(1) Time with o(n)

Extra Bits

We define the ith level of a tree to be the set of nodes whose depths are equal to i in the

tree.

Lemma 5.17. Using o(n) additional bits, operations level leftmost and

level rightmost can be supported in O(1) time on TC.
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Proof. We only show how to support level leftmost; level rightmost can be supported

similarly.

We first show how to compute the τ1-name, u, of the node level leftmost(i). Let h

be the height of T . We construct a bit vector B8[1..h], in which B8[j] = 1 iff the nodes

level leftmost(j−1) and level leftmost(j) are in two different mini-trees, for 1 < j ≤ h

(we set B8[1] = 1). Let l8 be the number of 1s in B8, and we construct an array C8[1..l8] in

which C8[k] stores the τ1-name of the node level leftmost(bin selectB8(1, k)). As the

τ1-name of the node level leftmost(i) is the same as that of the leftmost node at level

bin selectB8(1, bin rankB8(1, i)), we have that u = C8[bin rankB8(1, i)]. To analyze the

space cost of B8 and C8, we observe that if a given value, p, occurs q times in C8, then

the mini-tree µp has at least q − 1 edges that leave µp. Thus the number of 1s in C8 that

correspond to the nodes in a given mini-tree is at most the number of edges that leave

the mini-tree plus 1. Therefore, l8 is at most the number of mini-trees plus the number of

edges that leave a mini-tree, which is O(n/ lg4 n). Hence B8 and C8 occupy o(n) bits.

To support the computation of the τ2-name, v, of the node level leftmost(i), we

construct a bit vector B′
8[1..h], in which B′

8[j] = 1 iff the nodes level leftmost(j − 1)

and level leftmost(j) are in two different micro-trees, for 1 < j ≤ h (we set B′
8[1] = 1).

Let l′8 be the number of 1s in B′
8, and we construct an array C ′

8[1..l
′
8] in which C ′

8[l] stores

the τ2-name of the node level leftmost(bin selectB′

8
(1, l)). Similarly, we have that

l′8 = O(n/ lg n), so B′
8 and C ′

8 occupy o(n) bits. We also have v = C ′
8[bin rankB′

8
(1, i)], so

we can compute v in constant time.

To compute the τ3-name of this node in constant time, we construct a table A8, which

stores for each possible micro-tree and each integer l in the range [1, 3M ′], the τ -name

of the leftmost node at level l. Similarly to the analysis in the proof of Lemma 5.7, A8

occupies o(n) bits. �

5.4.9 level succ and level pred in O(1) Time with o(n) Extra Bits

We first give the following definition.

Definition 5.6. A tier-1 (or tier-2) preorder segment is a sequence of nodes x, (x +

1), · · · , (x + i) that satisfies:
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• Node x is a tier-1 (or tier-2) preorder changer;

• Node (x + i + 1) is a tier-1 (or tier-2) preorder changer if x + i + 1 ≤ n;

• None of the nodes (x+1), (x+2), · · · , (x+ i) is a tier-1 (or tier-2) preorder changer.

For example, in Figure 5.3, nodes 16, 17, 18, 19, 20 and 21 form a tier-1 preorder

segment. Nodes 22, 23, 24 and 25 form a tier-2 preorder segment. We sort the tier-1 (or

tier-2) preorder segments by the preorder numbers of the tier-1 (or tier-2) preorder changers

that they respectively contain. We denote the ith tier-1 (or tier-2) preorder segment in this

order to be the ith tier-1 (or tier-2) preorder segment of the tree. By Definition 5.6, the

following properties of preorder segments are immediate.

Property 5.5. The following basic facts hold:

• The nodes in the same tier-1 (or tier-2) preorder segments are in the same mini-tree

(or micro-tree);

• Two different tier-1 (or tier-2) preorder segments do not share any node;

• The number of tier-1 (or tier-2) preorder segments is equal to the number of tier-1

(or tier-2) preorder changers;

• A tier-1 preorder segment can be divided into one or more tier-2 preorder segments.

We now prove two lemmas on preorder segments.

Lemma 5.18. Consider a node x at the ith level of T . Let L(x) be the set of nodes such

that y ∈ L(x) iff all the following conditions are satisfied:

• y > x;

• Node y is at the ith level of T ;

• Node x and node y are in the same tier-1 preorder segment.
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If L(x) is not empty, then the node in L(x) with the smallest preorder number is x’s

level successor.

The same claim is true for the set L′(x) consisting of the nodes that are in the tier-2

preorder segment that x is in, and that satisfy the first two conditions above.

Proof. Let z be the node in L(x) with the smallest preorder number. Let the level successor

of x be v. Assume, contrary to what we are going to prove, that v 6= z. Then, by the

definition of level successor, we have x < v < z. Therefore, v /∈ L(x). As node v satisfies

the first two conditions, we conclude that node x and node v are not in the same tier-1

preorder segment. However, as node x and node z are in the same tier-1 preorder segment,

the above inequality (x < v < z) contradicts Definition 5.6.

The same reasoning applies to the set L′(x). �

Lemma 5.19. Consider two different tier-1 (or tier-2) preorder segments A and B. If

there are two nodes x and y in A and B respectively, such that x and y are at the same

level of T and x is to the left of y, then any node of A at a given level (if such a node

exists) is to the left of all the nodes of B at the same level (again if such nodes exist).

Proof. First it is clear that x < y. As all the nodes in a given tier-1 (or tier-2) preorder

segment are consecutive in preorder, we conclude that the preorder number of any node

in A is smaller than the preorder number of any node in B. This lemma immediately

follows. �

We say that a tier-1 (or tier-2) preorder segment A is to the left of another tier-1 (or

tier-2) preorder segment B, if there are two nodes x and y in A and B respectively, such

that x and y are at the same level of T and x is to the left of y. By Lemma 5.19, such

a relationship always exits between two arbitrary tier-1 (or tier-2) preorder segments that

have nodes at the same level.

We now consider the problem of retrieving the leftmost node in a given tier-1 (or tier-2)

preorder segment at a given level.

Lemma 5.20. There is an o(n)-bit auxiliary data structure that supports, given a node

x and an integer i, the computation of the leftmost node at the ith level in the tier-1 (or

tier-2) preorder segment that contains x in O(1) time on TC.
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Proof. We construct the following auxiliary data structures (p1 denotes the total number

of tier-1 preorder segments):

• A table A9, which stores for each possible micro-tree and two integers k and l in the

range [1, 3M ′], the τ -name of the leftmost node after node k in preorder that is at

level l of the micro-tree;

• An array E, in which E[j] stores the preorder number of the node with the smallest

depth in the jth tier-1 preorder segment;

• B1, B′
1, C1 and C ′

1 as in the proof of Lemma 5.7;

• A bit vector Bj
9 for the jth tier-1 preorder segment (for j = 1, 2, · · · , p1), in which

Bj
9[u] = 1 iff the leftmost nodes at level (sj + u − 2) and at level (sj + u − 1)

(sj and lj denote the minimum and maximum depths of the nodes in the jth tier-

1 preorder segment, respectively) are in two different tier-2 preorder segments, for

1 < u ≤ lj − sj + 1 (set Bj
9[1] = 1);

• An array Cj
9 for the jth tier-1 preorder segment (for j = 1, 2, · · · , p1), in which Cj

9 [w]

is of the form < qw, rw >, such that qw and rw are the τ2 and τ3-names of the tier-2

preorder changer in the tier-2 preorder segment that contains the leftmost node of

this tier-1 preorder segment at level (bin selectBj
9
(1, w) + sj − 1).

Similarly to the analysis in the proof of Lemma 5.7, A9 occupies o(n) bits. Array E has

O(n/ lg4 n) entries, and each entry occupies O(lg lg n) bits, so E occupies o(n) bits. B1,

B′
1, C1 and C ′

1 occupy o(n) bits by the proof of Lemma 5.7. To analyze the space costs of

all the Bj
9s and Cj

9s, we claim that the total number of 1s in all the Bj
9s is m1 = O(n/ lg n)

(we will prove this fact later in this proof). Let dj be the number of 1s in Bj
9, and fj

be the number of nodes in the jth tier-1 preorder segment. Then the total size of all the

Bj
9s (constructed using Part (b) of Lemma 2.1) is

∑p1

j=1dlog2

(

lj−sj+1
di

)

e ≤ ∑p1

j=1 lg
(

fj

dj

)

≤
∑p1

j=1 log2

(

fj

dj

)

+p1 ≤ lg
(

n
m1

)

+p1 = o(n). As there are m1 elements in all the Cj
9s and each

of them occupies O(lg lg n) bits, we have all the Cj
9s occupy o(n) bits. Thus these auxiliary

data structures occupy o(n) bits in total.

To compute the leftmost node at the ith level in the tier-2 preorder segment that contains

x, by Property 5.5, we can use the fact that the nodes in this tier-2 preorder segment are



102 CHAPTER 5. TREES

in the same micro-tree. Let y be the root of this micro-tree. Then the ith level of the tree

T is the (v = i − depth(x))th level of this micro-tree. As the node, z, with the smallest

preorder number in this tier-2 preorder segment is a tier-2 preorder changer, we can locate

z in constant time using B1, B′
1, C1 and C ′

1. We then use this micro-tree, integers z and v

as parameters to retrieve the leftmost node at level v that is in this micro-tree and is after

node z in preorder. If this node is in z’s tier-2 preorder segment (this can be checked in

constant time using B′
1), we return it as the answer. Otherwise, we return ∞.

We then show how to support the computation of the leftmost node at the ith level

in the tier-1 preorder segment that contains x. Assume that the tier-1 preorder segment

that contains x is the jth tier-1 preorder segment. Since we already know how to find the

leftmost node at a given level for any given tier-2 preorder segment, it suffices to locate

the tier-2 preorder changer in the tier-2 preorder segment that contains this node. This

can be computed in constant time using Bj
9 and Cj

9 , as the τ2 and τ3-names of this tier-2

preorder changer is stored in Cj
9 [bin rankBj

9
(1, i−sj +1)] (sj can be computed in constant

time using E, B1, B′
1, C1, C ′

2).

It only remains to prove that m1 = O(n/ lg n). It suffices to prove that dj (recall that

it is the number of 1s in Bj
9) is at most twice the number of tier-2 preorder segments in

the jth tier-1 preorder segment. Assume that the tier-2 preorder segment A occurs more

than once (in the form of the combination of the τ2 and τ3 names of the tier-2 preorder

changer in it) in Cj
9 . Consider the tth occurrence of A in Cj

9 for t > 1. Assume that the

(t− 1)th and the tth occurrences of A correspond to the g1
th and the g2

th levels in the tree

(i.e. the leftmost nodes at the g1
th and the g2

th levels of the tree are in A, but the leftmost

nodes at the (g1 − 1)th and the (g2 − 1)th levels of the tree are not). Then there is one

or more tier-2 preorder segments in the jth tier-1 preorder segment to the left of A whose

nodes are at levels between (but excluding) the g1
th and the g2

th levels of the tree. We

map the tth occurrence of A to the rightmost one (or one of the rightmost ones) among

these tier-1 preorder segments. This way we can map each occurrence (except the first

occurrence) of a tier-2 preorder segment in Cj
9 to a tier-2 preorder segment in the same

tier-1 preorder segment. This mapping is an injective function. Thus the total number

of occurrences (except the first occurrences) of all the tier-2 preorder segments in Cj
9 is

at most the number of the tier-2 preorder segments in the jth tier-1 preorder segment.
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Figure 5.6: The tier-1 level successor graph of the tree in Figure 5.3 and its weak

visibility representation.
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Figure 5.7: The tier-2 level successor graph of the tree in Figure 5.3.

Therefore, dj is at most twice the number of these tier-2 preorder segments. �

We now define the notion of level successor graphs.

Definition 5.7. The tier-1 (or tier-2) level successor graph G = {V,E} is an undi-

rected graph in which the ith vertex, vi, corresponds to the ith tier-1 (or tier-2) preorder

segment, and the edge (vi, vj) ∈ E iff there exist nodes x and y in the ith and jth tier-1 (or

tier-2) preorder segments, respectively, such that either x is y’s level successor, or y is x’s

level successor.

See Figure 5.6 for the tier-1 level successor graph of the tree in Figure 5.3. Figure 5.7

gives the tier-2 level successor graph of the same tree. We have the following lemma about

level successor graphs.

Lemma 5.21. A tier-1 (or tier-2) level successor graph is a planar graph.

Proof. To prove the planarity of the tier-1 successor graph G = {V,E}, it suffices to

construct a weak visibility representation for it (see Section 5.3.4). This is based on a

similar idea in Section 2 of [74].
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Let si and li be the minimum and maximum depths of the nodes in the ith tier-1

preorder segment, respectively. We represent the vertex vi of the tier-1 successor graph

(recall that it corresponds to the ith tier-1 preorder segment) using a vertex segment whose

endpoints are (si, i) and (li, i) (if li = si, we increase li by a small constant less than 1, such

as 0.5). For an edge (vi, vj) ∈ E, where i < j, we locate a node, x, in the ith tier-1 preorder

segment whose level successor is in the jth tier-1 preorder segment. Let v = depth(x). We

then represent the edge (vi, vj) using an edge segment whose endpoints are (v, i) and (v, j).

See Figure 5.6 for an example.

We need prove that none of the edge segments cross any vertex segment that does not

contain its endpoints. Assume, contrary to what we are going to prove, that the edge

segment for the edge (va, vb), where a < b, crosses the vertex segment for the vertex vc.

Let the endpoints of this edge segment to be (k, a) and (k, b). Then we have a < c < b.

Let y be the node at level k in the ath tier-1 preorder segment whose level successor, z, is

in the bth tier-1 preorder segment. As the above edge segment crosses the vertex segment

for vc, then there exists at least one node in the cth tier-1 preorder segment whose depth

is k. Let u be one of such nodes. Then y < u < z, which is a contradiction.

The planarity of the tier-2 successor graph can be proved using the same approach. �

With these results, we now support level succ and level pred.

Lemma 5.22. Using o(n) additional bits, operations level succ and level pred can be

supported in O(1) time on TC.

Proof. We only show how to support level succ; level pred can be supported similarly.

We construct the following auxiliary data structures (p1 and p2 denote the total number

of tier-1 and tier-2 preorder segments, respectively):

• All the auxiliary data structures constructed in the proof of Lemma 5.20;

• An array E ′ of length p2, in which E ′[i] stores the τ3-name of the node with the

smallest depth in the ith tier-2 preorder segment;

• A table A′
9 that stores for each possible micro-tree and each node in it (identified

by its τ3-name), the τ3-name of its level successor in the micro-tree if it exists, or 0

otherwise;
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• A bit vector Ki for the ith tier-1 preorder segment (for i = 1, 2, · · · , p1), in which

Ki[j] = 1 iff the level successors of the rightmost nodes in the ith tier-1 preorder

segment at level (si + j − 2) and at level (si + j − 1) (si and li denote the minimum

and maximum depths of the nodes in the ith tier-1 preorder segment, respectively)

are in two different tier-1 preorder segments, for 1 < j ≤ li − si + 1 (set Ki[1] = 1);

• An array Gi for the ith tier-1 preorder segment (for i = 1, 2, · · · , p1), in which Gi[j]

stores the preorder number of the tier-1 preorder changer in the tier-1 preorder seg-

ment that contains the level successor of the rightmost node of the ith tier-1 preorder

segment at level (bin selectKi
(1, j) + si − 1), for 1 < j ≤ li − si + 1;

• A bit vector K ′
i for the ith tier-2 preorder segment (for i = 1, 2, · · · , p2), in which

K ′
i[j] = 1 iff the level successors of the rightmost nodes in the ith tier-2 preorder

segment at level (s′i + j − 2) and at level (s′i + j − 1) (s′i and l′i denote the minimum

and maximum depths of the nodes in the ith tier-2 preorder segment, respectively)

are in two different tier-2 preorder segments, for 1 < j ≤ l′i − s′i + 1 (set K ′
i[1] = 1);

• An array G′
i for the ith tier-2 preorder segment (for i = 1, 2, · · · , p2), in which G′

i[j]

is of the form < qj, rj >, such that qj and rj are the τ2 and τ3-names of the tier-2

preorder changer in the tier-2 preorder segment that contains the level successor of the

rightmost node of the ith tier-2 preorder segment at level (bin selectK′

i
(1, j)+si−1),

for 1 < j ≤ l′i − s′i + 1.

Array E ′ takes O(n/ lg n× lg lg n) = o(n) bits. Similarly to the analysis in the proof of

Lemma 5.7, table A′
9 occupies o(n) bits. To analyze the space costs of all the Kis, Gis, K ′

is

and G′
is, we claim that the total number of 1s in all the Kis (or K ′

is) is k1 = O(n/ lg4 n) (or

k2 = O(n/ lg n)). We will prove this fact later in this proof. With this we can prove that

all the Kis, Gis, K ′
is and G′

is occupy o(n) bits following the same approach used to analyze

the space costs of all the Bi
9s and Ci

9s in the proof of Lemma 5.20. We also concatenate

all the K ′
is and G′

is and construct an o(n)-bit auxiliary structure similar to the structure

constructed in the proof of Lemma 5.11 so that we can locate each of them in constant

time. Therefore, all the auxiliary data structures occupy o(n) bits.

To compute level succ(x), we first check whether its level successor is in the same

tier-2 preorder segment that x is in (assume that x is in the jth tier-2 preorder segment),
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and if it is, compute its preorder number. We perform a constant-time lookup on table A′
9

to compute x’s level successor, y, in its micro-tree. If y does not exist, of if y is not in the

jth tier-2 preorder segment (this can be checked using B′
1 in constant time), then x’s level

successor is not in the same tier-2 preorder segment. Otherwise, by Lemma 5.18, we can

return y as the result.

If x’s level successor is not in the jth tier-2 preorder segment, we locate the node with the

smallest depth in this tier-2 preorder segment and compute its depth (we denote the result

by t). This can be done in constant time as shown in the proof of Lemma 5.20 (we use E ′

instead of E). We then compute the τ2 and τ3-names (denoted by u and v respectively) of

the tier-2 preorder changer in the tier-2 preorder segment that contains x’s level successor.

These are stored in G′
j[bin rankKj

(1, depth(x)− t + 1)]. This information is sufficient to

determine whether x and its level successor are in the same tier-1 preorder segment using

the following approach. Check where there exists a node z such that τ(z) =< τ1(x), u, v >

using the approach that converts τ -names to preorder numbers [36, 37](see Section 5.3.1).

If z does not exist, then x and its level successor are not in the same tier-1 preorder

segment. If z exists but it is not a tier-2 preorder changer (i.e. B′
1[z] = 0), or if z ≤ x,

then x and its level successor are not in the same tier-1 preorder segment. Otherwise, we

use Lemma 5.20 to locate the leftmost node of the tier-2 preorder segment that contains

z at level depth(x). If such a node does not exist, or if its appears to the left of x, then x

and its level successor are not in the same tier-1 preorder segment. Otherwise, we return

this node as the result.

The case when x and its level successor are not in the same tier-1 preorder segment can

be handled using a similar approach as described in the above paragraph using the Kis

and Gis.

It now remains to prove that k1 = O(n/ lg4 n) and k2 = O(n/ lg n). We only show

how to bound k1; k2 can be bounded similarly. There are two types of 1s in Ki. A 1 of

the first type corresponds to the first occurrence of a tier-1 preorder changer in Gi. The

second type consists of the remaining 1s. We first prove that the number of the 1s in all

the Kis of the first type is O(n/ lg4 n). We map the ith tier-1 preorder segment to vertex

vi in the tier-1 level successor graph. Give a 1 of the first type, if it is in Ka and the

corresponding item in Ga stores the preorder number of a tier-1 preorder changer in the
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bth tier-1 preorder segment, we map it to the edge (va, vb). This mapping is a bijection.

Thus the number of 1s of the first type is equal to the number of edges in the tier-1 level

successor graph, which is O(n/ lg4 n) as the graph is planar. To prove that the number

of the 1s in all the Kis of the second type is O(n/ lg4 n), we show how to map each of

them to a distinct edge segment in the weak visibility representation of the tier-1 level

successor graph. Consider the two 1s in Ki that correspond to the (w − 1)th and the wth

occurrences of a tier-1 preorder changer in Gi (assume that this tier-1 preorder changer is

in the jth tier-1 preorder segment), where w > 1. Assume that these two 1s correspond to

the gth and the lth level of T . Then there exists at least one vertex segment such that the

x-coordinates of its endpoints are between but excluding g and l, and they are between

the vertex segments that correspond to vi and vj. We map the 1 in Ki that corresponds

to the wth occurrences of the above tier-1 preorder changer in Gi to the lowest one among

these vertex segments. It is clear that each 1 is mapped to a distinct vertex segment this

way. This completes the proof. �

With the new operations supported in this section, we can now present the main result

of this chapter.

Theorem 5.1. An ordinal tree of n nodes can be represented using 2n+o(n) bits to support

all the operations listed in Section 5.1 in O(1) time.

5.5 Computing a Subsequence of BP and DFUDS

We now consider the efficient computation of any O(lg n) consecutive bits of the BP or

DFUDS sequence of a given tree represented by TC (Theorem 5.2). This result shows that any

operation to be supported by BP or DFUDS in the future, can be supported by TC efficiently.

5.5.1 O(lg n)-bit Subsequences of BP in O(f(n)) Time with n/f(n)+

o(n) Extra Bits

Lemma 5.23. For any f(n) such that f(n) = O(lg n) and f(n) = Ω(1), using n/f(n) +

O(n lg lg n/ lg n) additional bits, any O(lg n)-bit subsequence of BP can be computed from

TC in O(f(n)) time.
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Proof. We use BP[1..2n] to denote the BP sequence. Recall that each opening parenthesis in

BP corresponds to the preorder number of a node, and each closing parenthesis corresponds

to the postorder. Thus the number of opening parentheses corresponding to tier-1 (or tier-

2) preorder changers is O(n/ lg4 n) (or O(n/ lg n)), and we call them tier-1 (or tier-2)

marked opening parentheses.

We first show how to compute the subsequence of BP starting from a tier-2 marked

opening parenthesis up to (but not including) the next tier-2 marked opening parenthesis.

We use j and k to denote the positions of these two parentheses in BP, respectively, and thus

our goal is to compute BP[j..k − 1]. We construct the following auxiliary data structures:

• A bit vector B10 of length 2n, whose ith bit is 1 iff BP[i] corresponds to a tier-1 marked

opening parenthesis;

• A bit vector B′
10 of length 2n, whose ith bit is 1 iff BP[i] corresponds to a tier-2 marked

opening parenthesis;

• An array C10 of length m1 (m1 denotes the number of tier-1 marked opening paren-

theses), where C10[i] stores the τ1-name of the node corresponding to the ith tier-1

marked opening parenthesis;

• An array C ′
10 of length m2 (m2 denotes the number of tier-2 marked opening paren-

theses), where C ′
10[i] is of the form < qi, ri >, where qi and ri are the τ2 and τ3-names

of the node corresponding to the ith tier-2 marked opening parenthesis, respectively;

• A table A10, in which for each possible micro-tree and each one of its nodes, we store

the subsequence of the balanced parentheses sequence of the micro-tree that starts

from the opening parenthesis corresponding to this node to the end of this sequence,

and we also store the length of such a subsequence.

As m1 = O(n/ lg4 n) and m2 = O(n/ lg n), the bit vectors B10 and B′
10 can be stored

in O(n lg lg n/ lg4 n) and O(n lg lg n/ lg n) bits, respectively, using Part (b) of Lemma 2.1.

C10 and C ′
10 occupy O(n/ lg3 n) and O(n lg lg n/ lg n) bits, respectively. As the length of

the balanced parentheses of each micro-tree is at most 6M ′, similarly to the analysis in the

proof of Lemma 5.7, we have that the space used by A10 is O(26M ′×M ′×M ′) = O(n1/4 lg2 n)

bits. Therefore, these auxiliary data structures occupy O(n lg lg n/ lg n) bits in total.

To compute BP[j..k − 1], we first compute, in constant time, the τ -names of the tier-

2 preorder changers, x and y, whose opening parenthesis are stored in BP[j] and BP[k],
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respectively, using B10, B′
10, C10 and C ′

10. The algorithm is similar to the one used in

the proof of lemma 5.16. We then perform a constant-time lookup on A10 to retrieve

the subsequence of the balanced parenthesis sequence of x’s micro-tree, starting from the

opening parenthesis corresponding to x, to the end of this sequence. Let P [1..l] denote the

result. As there is no edge leaving x’s micro-tree between and including nodes x and y−1,

P [1..k−j] is the result if l ≥ k−j. Otherwise, x must correspond to the last marked tier-2

opening parenthesis of its micro-tree, so there are k − j − l closing parentheses between

the subsequence P [1..l] and the tier-2 marked opening parenthesis that corresponds to y.

Thus, BP[j..k − 1] can either be computed in constant time if its length is at most lg n, or

any lg n-bit subsequence of it can be computed in constant time.

To compute any O(lg n)-bit subsequence of BP, we conceptually divide BP into blocks

of size lg n. As any O(lg n)-bit subsequence spans a constant number of blocks, it suffices

to support the computation of a block. For a given block with u tier-2 marked opening

parentheses, we can run the algorithm described in the last paragraph at most u + 1

times to retrieve the result. To facilitate this process, we choose a function f(n) where

f(n) = O(lg n) and f(n) = Ω(1). We explicitly store the blocks that have 2f(n) or more

tier-2 marked opening parentheses, which takes at most 2n/(lg n× 2f(n))× lg n = n/f(n)

bits. We concatenate the blocks that are explicitly stored, and in order to retrieve any of

these blocks in constant time, we construct a bit vector L of length n/ lg n, where L[i] = 1

iff the ith block is stored explicitly. L occupies n/ lg n+o(n/ lg n) using Part (a) of Lemma

2.1. If the ith block is explicitly stored, its starting position in the concatenated sequence

constructed above is lg n(bin rankL(1, i) − 1) + 1. Thus, a block explicitly stored can be

computed in O(1) time, and a block that is not can be computed in O(f(n)) time as it has

less than 2f(n) tier-2 marked opening parentheses. The total space cost of all the auxiliary

data structures now becomes n/f(n) + O(n lg lg n/ lg n) bits. �

5.5.2 O(lg n)-bit Subsequences of DFUDS in O(f(n)) Time with

n/f(n) + o(n) Extra Bits

To support the computation of a word of the DFUDS sequence, recall that the DFUDS sequence

can be considered as the concatenation of the DFUDS subsequences of all the nodes in
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preorder (See Section 5.2.1). Thus the techniques used in the proof of Lemma 5.23 can

be modified to support the computation of a subsequence of DFUDS. We first prove the

following lemma.

Lemma 5.24. Consider a node x that is not the root of any micro-tree. Then its DFUDS

subsequence in the extended micro-tree that contains it as an original node is the same as

its DFUDS subsequence in T .

Proof. Recall that the DFUDS subsequence of a node of degree d consists of d opening

parenthesis following by a closing parentheses (See Section 5.2.1). Thus it suffices to prove

that the degrees of x in T and in the extended micro-tree that contains it as an original

node are the same. This is true by Lemma 5.1. �

We now show how to support the computation of a subsequence of DFUDS.

Lemma 5.25. For any f(n) such that f(n) = O(lg n) and f(n) = Ω(1), using n/f(n) +

O(n lg lg n/ lg n) additional bits, any O(lg n)-bit subsequence of DFUDS can be computed

from TC in O(f(n)) time.

Proof. We use U [1..2n] to denote the DFUDS sequence. We define the tier-1 (or tier-2)

marked positions of U to be the starting positions of the DFUDS subsequences of the tier-1

(or tier-2) preorder changers in U . Thus the number of tier-1 (or tier-2) marked positions

is O(n/ lg4 n) (or O(n/ lg n)).

We first show how to compute the subsequence of U starting from a tier-2 marked

position up to (but not including) the next tier-2 marked position in U . We use j and k to

denote these two positions in U , respectively, and thus our goal is to compute U [j..k − 1].

We construct the following auxiliary data structures:

• A bit vector B11 of length 2n, whose ith bit is 1 iff U [i] corresponds to a tier-1 marked

position;

• A bit vector B′
11 of length 2n, whose ith bit is 1 iff U [i] corresponds to a tier-2 marked

position;

• An array C11 of length m1 (m1 denotes the number of tier-1 marked positions), where

C11[i] stores the τ1-name of the node corresponding to the ith tier-1 marked positions;
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• An array C ′
11 of length m2 (m2 denotes the number of tier-2 marked positions), where

C ′
11[i] is of the form < qi, ri >, where qi and ri are the τ2 and τ3-names of the node

corresponding to the ith tier-2 marked positions, respectively;

• A table A11, in which for each possible type 1 extended micro-tree and each one of

its nodes, we store the subsequence of the DFUDS sequence of the extended micro-tree

that starts from the starting position of the DFUDS subsequence of this node in this

extended micro-tree, to the end of this sequence, and we also store the length of such

a subsequence.

As m1 = O(n/ lg4 n) and m2 = O(n/ lg n), the bit vectors B11 and B′
11 can be stored in

O(n lg lg n/ lg4 n) and O(n lg lg n/ lg n) bits, respectively, using Part (b) of Lemma 2.1. C11

and C ′
11 occupy O(n/ lg3 n) and O(n lg lg n/ lg n) bits, respectively. As the size of a type

1 extended micro-tree is at most 1
4
lg n, the length of the DFUDS sequence of each type 1

extended micro-tree is at most 1
2
lg n. Similarly to the analysis in the proof of Lemma 5.7,

we have that the space used by A11 is O(2
1
2

lg n× lg n× lg n) = O(n1/2 lg2 n) bits. Therefore,

these auxiliary data structures occupy O(n lg lg n/ lg n) bits in total.

To compute U [j..k − 1], we first compute, in constant time, the τ -names of the tier-2

preorder changers, x and y, whose DFUDS subsequences start at positions j and k in U ,

respectively, using B11, B′
11, C11 and C ′

11. We then compute the subsequence V of the

DFUDS sequence of x’s extended micro-tree (x is an original node in it) that starts from the

starting position of x’s DFUDS subsequence in this extended micro-tree, to the end of this

sequence. If x is in a type 1 extended micro-tree, we can retrieve V in constant time using

A11. If not, then the DFUDS representation of this extended micro-tree (it is now a type 2

extended micro-tree) is explicitly stored (see Section 5.3.1). We can compute the starting

position of V in the DFUDS sequence of x’s extended micro-tree in constant time using the

algorithm that converts the preorder number of a node to the starting position of its DFUDS

subsequence [56] (note that this is what exactly the operation node selectPRE does on

DFUDS representations; see Section 5.2.1). Therefore, we can either compute V in constant

time if its length is at most lg n, or compute any lg n-bit subsequence of it in constant time.

Note that the nodes that are represented by U [j..k − 1] is in the same micro-tree. Thus if

x is not a root of any micro-tree, then by Lemma 5.24, we have U [j..k − 1] = V [1..k − j].

If x is the root of its extended micro-tree, then we compute its degree d, and replace its
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representation in V by d opening parentheses followed by a closing parenthesis. We use V ′

to denote this modified version of V . As all the nodes in V ′ are represented by their DFUDS

subsequences in T , we have U [j..k − 1] = V ′[1..k − j]. Therefore, U [j..k − 1] can either be

computed in constant time if its length is at most lg n, or any lg n-bit subsequence of it

can be computed in constant time.

To compute any O(lg n)-bit subsequence of U , we conceptually divide U into blocks

of size lg n. Without the loss of generality, we assume that the starting position of the

subsequence is greater than 1 (as U [1] =′ (′)). As any O(lg n)-bit subsequence spans

a constant number of blocks, it suffices to support the computation of a block. For a

given block with u tier-2 marked positions, we can run the algorithm described in the last

paragraph at most u + 1 times to retrieve the result. We use the exact same approach

presented in the proof of Lemma 5.23 to speed up this process, and the result of this lemma

follows. �

Combining Lemma 5.23 and Lemma 5.25, we have:

Theorem 5.2. Given a tree represented by TC, any O(lg n) consecutive bits of its BP or

DFUDS sequence can be computed in O(f(n)) time, using at most n/f(n)+O(n lg lg n/ lg n)

extra bits, for any f(n) where f(n) = O(lg n) and f(n) = Ω(1).

5.6 Multi-Labeled Trees

5.6.1 Definitions

We now consider a multi-labeled tree. Recall that n denotes the number of nodes in the

tree, [σ] denotes the label alphabet, and t denotes the total number of node-label pairs. As

with binary relations, we adopt the assumption that each node is associated with at least

one label. To design succinct indexes for multi-labeled trees, we define the interface of

the ADT of a multi-labeled tree through the following operator: node label(x, i), which

returns the ith label associated with node x in lexicographic order.

We store the tree structure as part of the index (as it takes negligible space), and hence

do not assume the support for any navigational operation in the ADT. Recall that we refer

to nodes by their preorder numbers (i.e. node x is the xth node in the preorder traversal).



5.6. MULTI-LABELED TREES 113

DFUDS: ((()((()))(()))((()))) 

6 1110954

2 3

1

87

Figure 5.8: An ordinal tree (where each node is assigned its rank in DFUDS order)

and its DFUDS representation [9].

The navigational operations we need support on ordinal trees to construct succinct indexes

for multi-labeled trees include child, child rank, depth, level anc, nbdesc, degree, LCA,

node rankDFUDS and node selectDFUDS. To support these operations, we have two options.

One option is to use Theorem 5.1 to encode an ordinal tree using 2n+o(n) bits. The other

option, which was the original approached that we used in [6], is to augment the DFUDS

representation [10, 9, 56] to support all these operations. We prove the following lemma.

Lemma 5.26. Using the DFUDS representation [10, 9, 56], an ordinal tree with n nodes

can be encoded in 2n+o(n) bits to support child, child rank, depth, level anc, nbdesc,

degree, LCA, node rankDFUDS and node selectDFUDS in O(1) time.

Proof. As it is shown in [10, 9, 56] how to support all the navigational operations listed

in the lemma except node rankDFUDS and node selectDFUDS, we only need provide support

for these two operations. We use the operations supported by Lemma 5.4, as it is used to

encode the DFUDS sequence[10, 9, 56].

In the balanced parentheses representation of the DFUDS sequence of the tree [9], each

node corresponds to an opening parenthesis and a closing parenthesis. We observe that

in the sequence, the opening parentheses correspond to DFUDS order, while the closing

parentheses correspond to the preorder. For example, in Figure 5.8, the 6th node in DFUDS

order (which is the 5th node in preorder) corresponds to the 6th opening parenthesis, and

the 5th closing parenthesis.

With this observation, node selectDFUDS(x) means that for the node x (recall that it
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corresponds to the xth closing parenthesis), we need to compute the rank of the corre-

sponding opening parenthesis among all the opening parentheses. To compute this value,

we consider the subsequence of the DFUDS representation of the tree that represents a node

and all its descendants. In this subsequence, the number of closing parentheses minus

the number of opening parentheses is equal to 1. Therefore, if x is the rth child of its

parent, then the closing parenthesis that comes before the DFUDS subsequence of node

x matches the opening parenthesis that is r positions before the closing parenthesis in

the DFUDS subsequence of x’s parent. To make use of this fact, we first find the opening

parenthesis that matches the closing parenthesis that comes before the DFUDS subsequence

of node x. Its position in the sequence is: j = find open(select close(x − 1)). With

j, we can compute the starting position of the subsequence of the parent of x, which is

p = select close(rank close(j))+1, and child rank(x) (denoted by r as above), which

is r = select close(rank close(p) + 1)− j. Finally, rank open(p + r − 1) is the result.

The computation of node rankDFUDS(r) is exactly the inverse of the above process. �

We now define permuted binary relations and present a related lemma that we use to

design succinct indexes for multi-labeled trees.

Definition 5.8. Given a permutation π on [n] and a binary relation R ⊂ [n] × [σ], the

permuted binary relation π(R) is the relation such that (x, α) ∈ π(R) if and only if

(π−1(x), α) ∈ R.

Lemma 5.27. Consider a permutation π on [n], such that the access to π(i) and π−1(i) is

supported in O(1) time. Given a binary relation R ⊂ [n]× [σ] of cardinality t, and support

for object access on R in f(n, σ, t) time, there is a succinct index using t · o(lg σ) bits

that supports on both R and π(R):

• label rank for any literal α ∈ [σ] ∪ [σ̄] in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time;

• label select for any label α ∈ [σ] in O(lg lg lg σ(f(n, σ, t) + lg lg σ)) time;

• label pred and label succ for any character α ∈ [σ] in O((lg lg lg σ)2(f(n, σ, t) +

lg lg σ)) time, and these two operations for any literal α ∈ [σ̄] in O(f(n, σ, t)+lg lg σ)

time;
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• object rank and label access for any literal α ∈ [σ]∪ [σ̄] in O(lg lg lg σf(n, σ, t)+

lg lg σ) time;

• label nb for any literal α ∈ [σ] ∪ [σ̄] and object nb in O(1) time.

Proof. As object accessπ(R)(x, r) = object accessR(π−1(x), r), we can support the op-

erator object access on π(R) in f(n, σ, t) time. Therefore, we can use Theorem 3.3 to

construct succinct indexes for R and π(R) and use the combined data structure to support

the above operations. The total space cost is thus t · (lg σ) bits. �

To efficiently find all the α-ancestors of any given node, for each node and for each of

its labels α we encode the number of α-ancestors of x. To measure the maximum number

of such ancestors, we define the recursivity of a node, motivated by the notion of document

recursion level of a given XML document [87].

Definition 5.9. The recursivity ρα of a label α in a multi-labeled tree is the maximum

number of occurrences of α on any rooted path of the tree. The average recursivity ρ

of a multi-labeled tree is the average recursivity of the labels weighted by the number of

nodes associated with each label α (denoted by tα): ρ = 1
t

∑

α∈[σ](tαρα).

Note that ρ is usually small in practice, especially for XML trees. Zhang et al. [87]

observed that in practice the document recursion level (when translated to our more precise

definition, it is the maximum value of all ραs minus one, which can be easily used to bound

ρ) is often very small: in their data sets, it was never larger than 10.

5.6.2 Succinct Indexes

Theorem 5.3. Consider a multi-labeled tree on n nodes and σ labels, associated in t

relations, of average recursivity ρ. Given support for node label in f(n, σ, t) time, there

is a succinct index using t · o(lg σ) bits that supports (for a given node x) the enumeration

of:

• the set of α-descendants of x (denoted by D) in O(|D|(lg lg lg σ)2(f(n, σ, t)+ lg lg σ))

time;
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• the set of α-children of x (denoted by C) in O(|C|(lg lg lg σ)2(f(n, σ, t)+lg lg σ)) time;

• the set of α-ancestors of x (denoted by A) in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ) +

|A|(lg lg ρα + lg lg lg σ(f(n, σ, t) + lg lg σ))) time using t(lg ρ + o(lg ρ)) bits of extra

space.

Proof. We encode the underlying ordinal tree structure in 2n + o(n) bits using either

Theorem 5.1 or Lemma 5.26. The sequence of nodes referred by their preorder (DFUDS or-

der) numbers and the associated label sets form a binary relation Rp (Rd). Operations

node rankDFUDS and node selectDFUDS provide constant-time conversions between the pre-

order numbers and the DFUDS order numbers, and node label supports object access on

Rp. By Lemma 5.27, we can construct succinct indexes for Rp and Rd using t · o(lg σ) bits,

and support label rank, label select and label access operations on either of them

efficiently.

Using the technique of Barbay et al. [5, Corollary 1], the succinct index for Rp enables us

to enumerate all the descendants of node x matching label α in O(|D|(lg lg lg σ)2(f(n, σ, t)+

lg lg σ)) time (we can alternatively use the succinct index for Rd to achieve the same result).

More precisely, we keep using label succ to retrieve the nodes after but not including x

that are associated with α, till we reach a node whose preorder number is greater than

or equal to (x + nbdesc(x)). Similarly, the succinct index of Rd enables us to enumerate

all the children of node x matching α in O(|C|(lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time, as the

DFUDS order traversal lists the children of any given node consecutively.

As there is no order in which the ancestors of each node are consecutive, we store

for each label α of a node x the number of ancestors of x (including x) matching α. To

be specific, for each label α such that ρα > 1, we represent those numbers in one string

Sα ∈ [ρα]tα (see Definition 5.9 for the definitions of ρα and tα), where the ith number of

Sα corresponds to the ith node labeled α in preorder. The lengths of the strings Sαs are

implicitly encoded in Rp. We also encode for each label α its recursivity ρα in unary, using

at most t + σ + o(t + σ) bits. We use the encoding of Golynski et al. [41, Theorem 2.2](see

Section 3.2.1) to encode each string Sα in tα(lg ρα + o(lg ρα)) bits to support string rank

and string access in O(lg lg ρα) time and string select in constant time. The total

space used by these strings is
∑

α∈[σ] tα(lg ρα+o(lg ρα)) bits. By concavity of the logarithmic
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function, this is at most
(

∑

α∈[σ] tα

) (

lg
(∑

α∈[σ] tαρα
∑

α∈[σ] tα

)

+ o
(∑

α∈[σ] tαρα
∑

α∈[σ] tα

))

= t(lg ρ + o(lg ρ)).

To support the enumeration of all the α-ancestors of a node x, we first find from Rp the

number, px, of nodes labeled α preceding x in preorder using label rank. Then we iterate

i from 1. In each iteration, we first find the position pi in Sα of the character i immediately

preceding position px: it corresponds to the pi
th node labeled α in preorder (this can be

located using label select on Rp). If this node is an ancestor of x (this can be checked

using depth and level anc in constant time), output it, increment i and iterate, otherwise

stop. Each iteration consists of a label select operation on Rp and some rank and select

operations on Sα, so each is performed in O(lg lg ρα + lg lg lg σ(f(n, σ, t) + lg lg σ)) time.

Hence it takes O((lg lg lg σ)2(f(n, σ, t)+lg lg σ)+ |A|(lg lg ρα +lg lg lg σ(f(n, σ, t)+lg lg σ)))

time to enumerate A. �

We can also support the retrieval of the first α-descendant, child or ancestor of node x

that appears after node y in preorder.

Corollary 5.3. The structure of Theorem 5.3 also supports (for any two given nodes x

and y) the selection of:

• the first α-descendant of x after y in preorder in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ))

time;

• the first α-child of x after y in preorder in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time;

• the first α-ancestor of x after y in preorder in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ) +

lg lg ρα) time.

Proof. Using the index in Theorem 5.3, we can easily support the first operation; we merely

need retrieve the first node labeled α after y using label succ and then check whether

it is a descendant of x. The support for the second operation is nontrivial only when y

is a descendant of x. (otherwise, the result is either the first α-child of x or ∞). In this

case, we first locate the child of x, node u, that is also an ancestor of y using depth and

level anc. Then the problem is reduced to the selection of the first α-child of x after u

in preorder, which can be computed by performing label succ on Rd.

To support the search for the first α-ancestor of x after y, we assume that y precedes x

in preorder (otherwise the operator returns ∞), and that y is an ancestor of x (if not, the
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problem can be reduced to the search for the first α-ancestor of node x after node LCA(x, y)).

Using label succ on the relation Rp and some navigational operators, we can find the first

α-descendant z of y in preorder in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time. Node z is not

necessarily an ancestor of x, but it has the same number, i, of α-ancestors as the node we

are looking for. We can retrieve i from the string Sα in O(lg lg ρα) time. Finally, the first

α-ancestor of x after y is the α-node corresponding to the value i immediately preceding

the position corresponding to x in Sα, found in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ) + lg lg ρα)

time. �

The operations on multi-labeled trees are important for the support of XPath queries

for XML trees [5, 3]. The main idea of our algorithms is to construct indexes for binary

relations for different traversal orders of the trees. Note that without succinct indexes, we

would encode different binary relations separately and waste a lot of space.

We finally show how to use these succinct indexes to design a succinct integrated

encoding of multi-labeled trees.

Corollary 5.4. Consider a multi-labeled tree on n nodes and σ labels, associated in t

relations, of average recursivity ρ. It can be represented using lg
(

nσ
t

)

+ t · o(lg σ) bits to

support (for a given node x) the enumeration of:

• the set of α-descendants of x (denoted by D) in O(|D|(lg lg lg σ)2 lg lg σ) time;

• the set of α-children of x (denoted by C) in O(|C|(lg lg lg σ)2 lg lg σ) time;

• the set of α-ancestors of x (denoted by A) in O((lg lg lg σ)2 lg lg σ + |A|(lg lg ρα +

lg lg σ lg lg lg σ)) time using t(lg ρ + o(lg ρ)) bits of extra space.

It also supports (for any two given nodes x and y) the selection of:

• the first α-descendant of x after y in preorder in O((lg lg lg σ)2 lg lg σ) time;

• the first α-child of x after y in preorder in O((lg lg lg σ)2 lg lg σ) time;

• the first α-ancestor of x after y in preorder in O((lg lg lg σ)2 lg lg σ + lg lg ρα) time

using t(lg ρ + o(lg ρ)) bits of extra space.



5.7. DISCUSSION 119

Proof. In the proof of Theorem 5.3 and Corollary 5.3, we use Theorem 3.5 to encode the

binary relation Rp, and construct a succinct index for Rd using Lemma 5.27. This corollary

immediately follows. �

The discussions in Chapter 3 on the more general case of binary relations when each

object may be associated with zero or more labels (instead of at least one label) also apply

to the more general case for multi-labeled trees when each node may be associated with

zero or more labels.

5.7 Discussion

In this chapter, we design a succinct representation of ordinal trees, based on that of

Geary et al. [36, 37], that supports all the navigational operations supported by various

succinct tree representations while requiring only 2n + o(n) bits. It also supports efficient

level-order traversal, a useful ordering previously supported only with a very limited set

of operations [55]. Our second contribution expands on the notion of a single succinct

representation supporting more than one traversal ordering, by showing that our method

supports two other encoding schemes as abstract data types. In particular, it supports ex-

tracting a word (O(lg n) bits) of the balanced parenthesis sequence [71] or depth first unary

degree sequence [10, 9] in O(f(n)) time, using at most n/f(n)+o(n) additional bits, for any

f(n) in O(lg n) and Ω(1). We then further design succinct indexes and integrated encodings

of multi-labeled trees to support the efficient retrieval of α-children/descendants/ancestors

of a given node.

There are a few open problems. The first open problem is whether we can compute any

O(lg n)-bit subsequence of BP or DFUDS in constant time using o(n) additional bits for TC.

Our result in Theorem 5.2 is in the form of time/space tradeoff and we do not know whether

it is optimal. Other interesting open problems include the support of the operations that

are not previously supported by BP, DFUDS or TC. One is to support rank/select operations

on the level-order traversal of the tree. It is not supported by previous research except the

trivial support for it on Jacobson’s representation directly based on the level-order traversal

of the trees, in which each node is identified by its level-order number [55]. Another one

is to support level leftmost (level rightmost) on an arbitrary subtree of T , which is
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not supported by previous research, either. Finally, for multi-labeled trees, as it requires

t(lg ρ + o(lg ρ)) bits of extra space to support the efficient retrieval of α-ancestors of a

given node, an open problem is to reduce this additional storage cost, or to prove that it

is necessary.



Chapter 6

Planar Graphs and Related Classes

of Graphs

This chapter deals with the problem of designing succinct representations of unlabeled and

multi-labeled graphs. The chapter starts with an introduction in Section 6.1, followed by a

brief review of previous work in Section 6.2. We describe existing results that we use and/or

improve upon in Section 6.3. We present succinct indexes for triangulated planar graphs

with labels associated with their vertices or edges in Section 6.4, and use them to design

succinct indexes for multi-labeled planar graphs. To achieve these results, we describe a

succinct representation of unlabeled planar triangulations which supports the rank/select

of edges in ccw (counter clockwise) order in addition to the other operations supported in

previous work. We present a succinct encoding for k-page graphs with labels associated

with their edges in Section 6.5. To achieve this result, we design a succinct representation

for a k-page graph when k is large which supports various navigational operations more

efficiently. We conclude with a discussion of our results in Section 6.6.

6.1 Introduction

Graphs are fundamental combinatorial objects in mathematics and in computer science.

They are widely used to represent various types of data, such as the link structure of the

web, geographic maps, and surface meshes in computer graphics. As modern applications

121
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often process large graphs, the problem of designing space-efficient data structures to rep-

resent graphs has attracted a great deal of attention. In particular the idea of succinct

data structures has been applied to various classes of graphs [55, 70, 18, 17, 12, 15, 16].

Previous work focused on succinct graph representations which support efficiently test-

ing the adjacency between two vertices and listing the edges incident to a vertex [70, 15, 16].

However, in many applications, such connectivity information is associated with labels on

the edges or vertices of the graph, and the space required to encode those labels dominates

the space used to encode the connectivity information, even when the encoding of the la-

bels is compressed [54]. For example, when surface meshes are associated with properties

such as color and texture information, more bits per vertex are required to encode those

labels than to encode the graph itself. We address this problem by designing succinct

representations of labeled graphs, where labels from alphabet [σ] are associated with edges

or vertices. These representations efficiently support label-based connectivity queries, such

as retrieving the neighbors associated with a given label. We assume that all the graphs

are simple graphs.

We investigate three important classes of graphs: planar triangulations, planar graphs

and k-page graphs. Planar graphs, and in particular planar triangulations, correspond to

the connectivity information underlying surface meshes. Triangle meshes are one of the

most fundamental representations for geometric objects: in computational geometry they

are one natural way to represent surface models, and in computer graphics triangles are

the basic geometric primitive for efficient rendering. k-page graphs have applications in

several areas, such as sorting with parallel stacks [83], fault-tolerant processor arrays [77]

and VLSI (very large scale integration) design [20].

6.2 Previous Work

Here we briefly review related work on succinct unlabeled graphs. As most graphs in prac-

tice have particular combinatorial properties, researchers usually exploit these properties

to design succinct representations.

Jacobson [55] was the first to propose a succinct representation of planar graphs. His

approach is based on the concept of book embedding by Bernhart and Kainen [11]. A k-page
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embedding is a topological embedding of a graph with the vertices along the spine and edges

distributed across k pages, each of which is an outerplanar graph. The minimum number of

pages, k, for a particular graph has been called the pagenumber or book thickness. Jacobson

showed how to represent a k-page graph using O(kn) bits to support adjacency tests in

O(lg n) bit probes, and listing the neighbors of a vertex x in O(d(x) lg n + k) bit probes,

where d(x) is the degree of x.

Munro and Raman [70, 71] improved his results under the word RAM model by showing

how to represent a graph using 2kn + 2m + o(kn + m) bits to support adjacency tests and

the computation of the degree of a vertex in O(k) time, and the listing of all the neighbors

of a given vertex in O(d+k) time. Gavoille and Hanusse [35] proposed a different tradeoff.

They proposed an encoding in 2(m+i) lg k+4(m+i)+o(km) bits, where i is the number of

isolated vertices, to support the adjacency test in O(k) time. As any planar graph can be

embedded in at most 4 pages [86], these results can be applied directly to planar graphs.

In particular, a planar graph can be represented using 8n + 2m + o(n) bits to support

adjacency tests and the computation of the degree of a vertex in O(1) time, and the listing

of all the neighbors of a given vertex x in O(d(x)) time [70, 71].

A different line of research based on the canonical ordering of planar graphs was taken

by Chuang et al. [18, 19]. They designed a succinct representation of planar graphs of n

vertices and m edges in 2m+(5+ε)n+o(m+n) bits, for any constant ε > 0, to support the

operations on planar graphs in asymptotically the same amount of time as the approach

described in the previous paragraph. Chiang et al. [17] further reduced the space cost to

2m + 3n + o(m + n) bits. When a planar graph is triangulated, Chuang et al. [18, 19]

showed how to represent it using 2m + 2n + o(m + n) bits.

Based on a partition algorithm, Castelli Aleardi et al. [15] proposed a succinct repre-

sentation of planar triangulations with a boundary. Their data structure uses 2.175 bits

per triangle to support various operations efficiently. Castelli Aleardi et al. [16] further

extended this approach to design succinct representations of 3-connected planar graphs

and triangulations using 2 bits per edge and 1.62 bits per triangle respectively, which

asymptotically match the respective entropy of these two types of graphs.

Finally, Blandford et al. [12] considered the problem of representing graphs with small

separators (the graph separator considered in their main result is a vertex separator, i.e.
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a set of vertices whose removal separates the graph into two approximately equally sized

parts). This is useful because many graphs in practice, including planar graphs [61], have

small separators. They designed a succinct representation using O(n) bits that supports

adjacency tests and the computation of the degree of a vertex in O(1) time, and the listing

of all the neighbors of a given vertex x in O(d(x)) time.

6.3 Preliminaries

6.3.1 Multiple Parentheses

Chuang et al. [18, 19] proposed the succinct representation of multiple parentheses, a string

of O(1) types of parentheses that may be unbalanced. Thus a multiple parenthesis sequence

of p types of parentheses is a sequence over the alphabet {′(1
′, ′)1

′, ′(2
′, ′)2

′, · · · , ′(p
′, ′)p

′}. We

call ′(i
′ and ′)i

′ type-i opening parenthesis and type-i closing parenthesis, respectively. The

operations considered are:

• m rankS(i, α): the number of parentheses α in S[1..i];

• m selectS(i, α): the position of the ith parenthesis α;

• m firstS(α, i) (m lastS(α, i)): the position of the first (last) parenthesis α after

(before) S[i];

• m matchS(i): the position of the parenthesis matching S[i];

• m encloseS(k, i1, i2): the position of the closest matching parenthesis pair of type k

which encloses S[i1] and S[i2].

We omit the subscript S when it is clear from the context.

Chuang et al. [18, 19] showed how to to support the above operations

Lemma 6.1 ([18, 19]). Consider a string S of O(1) types of parentheses that is stored

explicitly. Then there is an auxiliary data structure using o(|S|) bits that supports the

operations listed above in O(1) time.

We show how to improve this result in Lemma 6.8, and propose an encoding for the

case when the number of types of parentheses is non-constant in Theorem 6.7.
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Figure 6.1: A triangulated planar graph of 12 vertices with its canonical spanning

tree T 0 (on the left). On the right, it shows the triangulation induced with a

realizer, as well as the local condition.

6.3.2 Realizers and Planar Triangulations

Our general approach, in much of this chapter, is based on the idea of realizers of planar

triangulations (see Figure 6.1 for an example).

Definition 6.1 ([81]). A realizer of a planar triangulation T is a partition of the set of

the internal edges into three sets T0, T1 and T2 of directed edges, such that for each internal

vertex v the following conditions hold:

• v has exactly one outgoing edge in each of the three sets T0, T1 and T2;

• local condition: the edges incident to v in counterclockwise (ccw) order are: one

outgoing edge in T0, zero or more incoming edges in T2, one outgoing edge in T1,

zero or more incoming edges in T0, one outgoing edge in T2, and finally zero or more

incoming edges in T1.

A fundamental property of realizers (characterizing very finely the planarity of planar

triangulations) that we use extensively in Section 6.4 is:

Lemma 6.2 ([81]). Consider a planar triangulation T of n vertices, with exterior face

(v0, v1, vn−1). Then T always admits a realizer R = (T0, T1, T2) and each set of edges in

Ti is a spanning tree of all internal vertices. More precisely:

• T0 is a spanning tree of T \ {v1, vn−1};

• T1 is a spanning tree of T \ {v0, vn−1};
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• T2 is a spanning tree of T \ {v0, v1}.

As we consider undirected planar triangulations, we orient each internal edge when we

compute the realizers. For each edge in Ti, if we reverse its direction, we get a different set

of directed edges. We use T−1
i to denote this set. We also use the following lemma in this

chapter.

Lemma 6.3 ([81]). If T0, T1 and T2 are realizers of a planar triangulation T , then for

i ∈ {0, 1, 2}, there is no directed cycle in the set Ti ∪ T−1
i+1 ∪ T−1

i+2 (indices are modulo 3).

6.4 Planar Triangulations

6.4.1 Three New Traversal Orders on a Planar Triangulation

A key notion in the development of our results is that of three new traversal orders of

planar triangulations based on realizers. Let T be a planar triangulation of n vertices and

m edges, with exterior face (v0, v1, vn−1). We denote its realizer by (T0, T1, T2) following

Definition 6.1. By Lemma 6.2, T0, T1 and T2 are three spanning trees of the internal nodes

of T , rooted at v0, v1 and vn−1, respectively. We add the edges (v0, v1) and (v0, vn−1) to T0,

and call the resulting tree, T 0, the canonical spanning tree of T [18, 19]. In this section, we

denote each vertex by its number in canonical ordering , which is the ccw preorder number

in T 0 (i.e. vertex i or vi denotes the ith vertex in canonical ordering). We use (x, y) to

denote the edge between two vertices x and y.

Definition 6.2. The zeroth order, π0, is defined on all the vertices of T and is simply

given by the preorder traversal of T0 starting at v0 in counterclockwise order (ccw order).

The first order, π1, is defined on the vertices of T \ v0 and corresponds to a traversal

of the edges of T1 as follows. Perform a preorder traversal of the contour of T0 in a ccw

manner. During this traversal, when visiting a vertex v, we enumerate consecutively its

incident edges (v, u1), . . . , (v, ui) in T1, where v appears before ui in π0. The traversal of

the edges of T1 naturally induces an order on the nodes of T1: each node (different from

v1) is uniquely associated with its parent edge in T1.

The second order, π2, is defined on the vertices of T \{v0, v1} and can be computed in

a similar manner by performing a preorder traversal of T0 in clockwise order (cw order).



6.4. PLANAR TRIANGULATIONS 127

0 1

2
3

45

6

7
8

9

10

11

0
4

3

2

5

6

7

8

9

10

1 0

1

2
3

4
5

6
7

8

9

11 3 5 7

π1

4 2 6 10 9 8 4 326 510 9 8 7

π2

0 1

2
7

108

9

3
4

11

5

6

5

21 108 11

432 610 987

43

1

65 97

DFUDS

11

π0
21 10843 65 97 21 843 65 97

Figure 6.2: A planar triangulation induced with one realizer. The three orders

π0, π1 and π2, as well as the order induced by a DFUDS traversal of T0 are also

shown.

When visiting in cw order the contour of T0, the edges in T2 incident to a node v are listed

consecutively to induce an order on the vertices of T2.

Note that the orders π1 and π2 do not correspond to previously studied traversal orders

on the trees T1 and T2, as they are dependent on T0 through π0 (see Figure 6.2). To show

that all the internal nodes are listed in π2 and π3, it suffices to prove the following lemma.

Lemma 6.4. Consider an edge (vi, vj) in T1 (or T2). If i < j (or i > j), then vi is vj’s

parent in T1 (or T2).

Proof. We only consider the case when the edge (vi, vj) is in T1; the claim for the case

when (vi, vj) is in T2 can be proved similarly.

As the case when i = 1 is trivial, and there is no edge in T1 that is incident to v0 or

vn−1, we only need consider the case when vi and vj are internal vertices.

We first prove that vi is not vj’s ancestor in T0. Assume, contrary to what we are going

to prove, that vi is vj’s ancestor in T0. Recall that the edges in T0, T1 and T2 are oriented

toward the parent nodes incident to them. Then there is a directed path from vj to vi in

T0. As there is an edge in T1 between vi and vj, there is a directed cycle from vj to vi and

then back to vj using edges from the set T0 ∪ T−1
1 or the set T−1

1 ∪ T−1
0 (depending on the

direction of the edge (vi, vj)), which contradicts Lemma 6.3.

Let vk be the lowest common ancestor of vi and vj in T0. As i < j and vi is not vj’s

ancestor in T0, the path from vi to vk in T0, the path from vj to vk in T0 and the edge

(vi, vj) define a closed region R (see Figure 6.3). Assume, contrary to what we are going to
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Figure 6.3: Region R in the proofs of Lemma 6.4 and Lemma 6.6.

prove, that vj is vi’s parent in T1. Then, according to the local condition in Definition 6.1,

the parent of vj in T2 in either inside R or on the boundary of R. As there is a directed

path from vj to vn−1 and vn−1 is neither inside R or on its boundary, we conclude that

there exists a node vt either in the path from vi to vk in T0, or in the path from vj to

vk, that is vj’s ancestor. In the former case, there is a directed cycle vi, · · · , vt, · · · , vj, vi

consisting of edges in the set T0 ∪ T−1
1 ∪ T−1

2 . In the latter case, there is a directed cycle

vj, · · · , vt, · · · , vj consisting of edges in the set T0 ∪ T−1
2 . Either of these two observations

contradicts Lemma 6.3. �

The following lemma is crucial, as it puts in correspondence the labels of the neighbors

of a vertex with a finite number of substrings.

Lemma 6.5. For any node x, its children in T1 (or T2), listed in ccw order (or cw order),

have consecutive numbers in π1 (or π2). In the case of T0, the children of x are listed

consecutively by a DFUDS traversal of T0.

Proof. This lemma directly follows the local condition and the ccw traversal we perform

on T0 to construct π1 and π2. To be specific, the edges between x and its children in T1 are

all incoming edges incident to x in T1, and because of the local condition in Definition 6.1,

they are encountered consecutively when listing the edges incident to x in ccw order (and

just before visiting the outgoing edge of x in T0). A similar argument holds for π2 and

π0. �
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Figure 6.4: The multiple parenthesis string encoding of the planar triangulation

in Figure 6.2.

6.4.2 Representing Planar Triangulations

We consider the following operations on unlabeled planar triangulations:

• adjacency(x, y), whether vertices x and y are adjacent;

• degree(x), the degree of vertex x;

• select neighbor ccw(x, y, r), the rth neighbor of vertex x starting from vertex y in

ccw order if x and y are adjacent, and ∞ otherwise;

• rank neighbor ccw(x, y, z), the number of neighbors of vertex x between (and in-

cluding) the vertices y and z in ccw order if y and z are both neighbors of x, and ∞
otherwise;

• Πj(i), given the number of a vertex in π0, returns the number of the same vertex in

πj (for j ∈ {1, 2});

• Π−1
j (i), given the number of a vertex in πj, returns the number of the same vertex in

π0 (for j ∈ {1, 2}).

To represent a planar triangulation T , we compute a realizer (T0, T1, T2) of T following

Lemma 6.2. We then encode the three trees T0, T1 and T2 using a multiple parenthesis

sequence S of length 2m consisting of three types of parenthesis. S is obtained by per-

forming a preorder traversal of the canonical spanning tree T 0 = T0 ∪ (v0, v1) ∪ (v0, vn−1)
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and using different types of parentheses to describe the edges of T 0, T1 and T2. We use

parentheses of the first type, namely ′(′ and ′)′, to encode the tree T 0, and other types

of parentheses, ′[′, ′]′, ′{′, ′}′, to encode the edges of T1 and T2. We use S0, S1 and S2

to denote the subsequences of S that contain all the first, second, and the third types of

parentheses, respectively. We construct S as follows (see Figure 6.4 for an example).

Let v0, . . . , vn−1 be the ccw preorder of the vertices of T 0. Then the string S0 is simply

the balanced parenthesis encoding of the tree T 0 [70, 71] (see Section 5.2.1): S0 can be

obtained by performing a ccw preorder traversal of the contour of T 0, writing down an

opening parenthesis when an edge of T 0 is traversed for the first time, and a closing

parenthesis when it is visited for the second time. During the traversal of T 0, we insert

in S a pair of parentheses ′[′ and ′]′ for each edge of T1, and a pair of parentheses ′{′ and
′}′ for each edge in T2. More precisely, when visiting in ccw order the edges incident to a

vertex vi, we insert:

• A ′[′ for each edge (vi, vj) in T1, where i < j, before the parenthesis ′)′ corresponding

to vi;

• A ′]′ for each edge (vi, vj) in T1, where i < j, after the parenthesis ′(′ corresponding

to vj;

• A ′}′ for each edge (vi, vj) in T2, where i > j, after the parenthesis ′(′ corresponding

to vi;

• A ′{′ for each edge (vi, vj) in T2, where i > j, before the parenthesis ′)′ corresponding

to vj.

The relative order of the parentheses ′[′, ′]′, ′}′ and ′{′ inserted between two consecutive

parentheses of the other type, i.e. ′(′ or ′)′, does not matter. For the simplicity of the

proofs in this section, we assume that when we insert a parenthesis pair for an edge in T1

(or T2), we always ensure that the positions of this pair in S either enclose or are enclosed

in those for an edge that shares the same parent node in the same tree. Thus the string

S is of length 2m, consisting of three types of parenthesis. It is easy to observe that the

subsequences S1 and S2 are balanced parenthesis sequences of lengths 2(n−1) and 2(n−2),

respectively.
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We first observe some basic properties of the string S. Recall that a node vi can be

referred to by its preorder number in T 0, and by the position of the matching parenthesis

pair of the first type corresponding to it (let pi and qi respectively denote the positions of

the opening and closing parentheses of this pair in S). Let be pf (or ql) be the position of

the opening (or closing) parenthesis in S corresponding to the first (or last) child of node

vi in T 0.

Property 6.1. The following basic facts hold:

• Two nodes vi and vj are adjacent if and only if there is one common incident edge

(vi, vj) in exactly one of the trees T 0, T1 or T2;

• pi < pf < ql < qi;

• The number of edges incident to vi and not belonging to the tree T0 is (pf − pi− 1) +

(qi − ql − 1);

• If vi is not a leaf in T0, between the occurrences of the ′(′ that correspond to the

vertices vi and vi+1 (note that the ′(′ corresponding to vi+1 is at position pf), there

is exactly one ′]′. Similarly, there is exactly one ′{′ between the ′)′ that correspond to

the vertices vi and the ′)′ at position ql.

We now prove following lemma that is important to our representation.

Lemma 6.6. In the process of constructing S, the two parentheses of the second type (or

the third type) inserted for each edge in T1 (or T2) form a matching parenthesis pair in S.

Proof. We only prove the lemma for parentheses of the second type; the claim for paren-

theses of the third type can be proved similarly.

Recall that for each edge (vi, vj) in T1, where i < j, we insert a ′[′ and a ′]′ into S. We

first prove that between these two parentheses, the position of parenthesis ′[′ in S is before

that of parenthesis ′]′. As the case when i = 1 is trivial, and no edge in T1 is incident to

v0 or vn−1, we only need consider the case when vi and vj are internal vertices. By the

process of constructing S, it suffices to prove that the parenthesis ′)′ corresponding to vi

appears before the parenthesis ′(′ corresponding to vj. Assume, contrary to what we are
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going to prove, that this is not true. As the parenthesis ′(′ corresponding to vi appears

before the parenthesis ′(′ corresponding to vj (this is because i < j), we conclude that the

parenthesis pair corresponding to vi in S0 encloses the pair corresponding to vj. Thus vi

is an ancestor of vj in T0. Therefore, there is directed path from vj to vi using edges from

the set T0. By Lemma 6.4, vi is vj’s parent in T1, so the edge (vi, vj) is oriented toward

vi. Hence there is a directed cycle vj, · · · , vi, vj using edges from the set T0 ∪ T−1
1 , which

contradicts Lemma 6.3.

We now only need prove that the two parenthesis pairs of the second type inserted for

two different edges in T1 either do not intersect, or one is enclosed in the other. Let (vi, vj)

(i < j) and (vp, vq) (p < q) be two edges that are not incident to the same node in T1 (the

case when these two edges are incident to the same node in T1 is trivial). As shown in

the proof of Lemma 6.4, we have that vi is not vj’s ancestor in T0, and that vp is not vq’s

ancestor in T0. Let vk be the lowest common ancestor of vi and vj. We define the region R

as in the proof of Lemma 6.4 (see Figure 6.3). Without the loss of generality, we assume

that p < i. There are two cases.

We first consider the case when vp is vi’s ancestor. If vp is also vj’s ancestor, then the

parenthesis pair of the first type corresponding to vp encloses the pairs corresponding to vi

and vj. By the process we use to construct S, the two parenthesis pairs of the second type

inserted for edges (vi, vj) and (vp, vq) do not intersect. If vp is not vj’s ancestor, then it is

in the path from vi to vk in T0, excluding vi and vk. We observe that the parenthesis ′[′

inserted for (vp, vq) is after that inserted for (vi, vj). By the local condition in Definition 6.1

and the planarity of the graph, we also have the vertex vq is either inside region R, or is

in the path from vj to vk in T0. Therefore, q < j. Thus the parenthesis ′(′ corresponding

to vq is before the parenthesis ′(′ corresponding to vj. Hence the parenthesis ′]′ inserted

for (vp, vq) is before that inserted for (vi, vj). Therefore, the parenthesis pair of the second

type inserted for (vp, vq) is enclosed in that inserted for (vi, vj).

We then consider the case when vp is not vi’s ancestor. In this case, the parenthesis
′)′ corresponding to vp appears before that corresponding to vi. Thus the parenthesis ′[′

inserted for (vp, vq) appears before that inserted for (vi, vj). As vp is outside R, by the

planarity of the graph, vq is either outside R, or on R’s boundary. We also observe that

vq cannot be in the path from vj to vk in T0, because otherwise, by the local condition in
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Definition 6.1, vp is either in R or in the path from vi to vk in T0. Therefore, vq is either

before vi in canonical order, or is a descendant of vi, or is after vj in canonical order. In the

first two cases, the parenthesis pairs of the second type inserted for (vp, vq) and (vi, vj) do

not intersect. In the last case, the parenthesis pair of the second type inserted for (vi, vj)

is enclosed by that for (vp, vq). �

Observe that S0 is the balanced parenthesis encoding of the tree T0 [70, 71], so that if

we store S0 and construct the auxiliary data structures for S0 as in [70, 71, 17, 74, 62], we

can support a set of navigational operators on T0 (see Section 5.2.1). S can be represented

using Lemma 6.1 in 2m lg 6 + o(m) = 2mdlog2 6e+ o(m) = 6m + o(m) bits. However, this

encoding does not support the computation of an arbitrary word in S0, so that we cannot

navigate in the tree T0 without storing S0 explicitly, which will cost essentially 2 additional

bits per node. To reduce this space redundancy, and to decrease the item 2mdlog2 6e to

2m log2 6 + o(m), we have the following lemma.

Lemma 6.7. The string S can be stored in 2m log2 6 + o(m) bits to support the operators

listed in Section 6.3.1 in O(1) time, as well as the computation of an arbitrary word, or

Θ(lg(n)) bits of the balanced parenthesis sequence of T0 in O(1) time.

Proof. We construct a conceptual bit vector B1 of 2m bits, so that B1[i] = 1 iff S[i] =′ (′

or S[i] =′)′. We construct another conceptual bit vector B2 of 2m−2n bits for the 0s in B2

(recall that there are 2n parentheses of the first type), so that B2[i] = 1 iff the parenthesis

corresponds to the ith 0 in B1 is either ′[′ or ′]′. We store B1 and B2 using Part (b) of

Lemma 2.1 to support rank/select operations on them. The space cost of storing B1 and

B2 is thus lg
(

2m
2n

)

+ o(m) + lg
(

2m−2n
n

)

+ o(m). To analyze the above space cost, we use the

equality log2 n! = n log2 n − n log2 e + 1
2
log2 n + O(1) as in Section 4.6.4. We have (note

that m = 3n− 3):

log2

(

2m

2n

)

+ log2

(

2m− 2n

2n− 2

)

= log2

(

6n− 6

2n

)

+ log2

(

4n− 6

2n− 2

)

= log2(
(6n− 6)!

(2n)!(4n− 6)!
× (4n− 6)!

(2n− 2)!(2n− 4)!
)
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= log2

(6n− 6)!

(2n)!(2n− 2)!(2n− 4)!

< log2

(6n)!

((2n)!)3

= log2(6n)!− 3 log2(2n)!

= 6n log2(6n)− 6n log2 e +
1

2
log2(6n)− 3(2n log2(2n)− 2n log2 e +

1

2
log2(2n)) + O(1)

= 6n log2 3− log2 n + O(1)

< 6n log2 3 + O(1)

= 2m log2 3 + O(1)

Therefore, the two bit vectors B1 and B2 occupy 2m log2 3 + o(m) bits.

In addition, we store S0, S1 and S2 using Lemma 5.4. The space cost of storing these

three sequences is 2n + o(n) + 2(n− 1) + o(n) + 2(n− 2) + o(n) = 2m + o(m) bits. Thus

the total space cost is 2m log2 6 + o(m) bits.

B1 and B2 can be used to compute the rank/select operations over S if we treat each

type of (opening and closing) parentheses as the same character. For example, to compute

the number of parentheses of the third type in S[1..i], we can first compute the number

of 0s in S[1..i] (j denotes the result). Then we have the number of parentheses of the

third type in S[1..i] is bin rankB2(0, j). Other rank/select operations can be supported

similarly. On the other hand, S0, S1 and S2 can be used to support operations on the

parentheses of the same type. By representing all these data structures, the operations

listed in Section 6.3.1 can be easily supported in constant time. As we store S0 explicitly

in our representation, we can trivially support the computation of an arbitrary word of

S0. �

The same approach can be directly applied to a sequence of O(1) types of parentheses

that may be unbalanced.

Lemma 6.8. Consider a multiple parenthesis sequence M of n parenthesis of p types,

where p = O(1). M can be stored using n log(2p) + o(n) bits to support the operators listed

in Section 6.3.1 in O(1) time, as well as the computation of an arbitrary word, or Θ(lg(n))

bits of the balanced parenthesis sequence of the parentheses of a given type in M in O(1)

time.
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Proof. Let ni be the number of parenthesis of type i in M . Let li =
∑p

j=i nj. Thus l1 = n

and lp = np. For i = 1, 2, · · · , p − 1, we construct a bit vector Bi[1..li], where Bi[k] = 1

iff the kth parenthesis among the parentheses of types i, i + 1, · · · , p in M is of type i.

We store all the Bis using Part (b) of Lemma 2.1. Thus the space cost of all the Bis is
∑p−1

i=1 [lg
(

li
ni

)

+ o(li)] <
∑p−1

i=1 [log2

(

li
ni

)

+ 1 + o(n)] =
∑p−1

i=1 log2

(

li
ni

)

+ o(n). To analyze the

above space cost, we again use the equality log2 n! = n log2 n − n log2 e + 1
2
log2 n + O(1)

as in Section 4.6.4 (Let H∗
0 (M) be the zeroth order entry of M when we replace each

occurrence of the parentheses of the same type by one distinct character). We have:

p
∑

i=1

log2

(

li
ni

)

= log2

p
∏

i=1

(

li
ni

)

= log2

p
∏

i=1

li!

ni!(li − ni)!

= log2

p
∏

i=1

li!

ni!li+1!

= log2(
l1!

n1!l2!
× l2!

n2!l3!
× · · · × lp−1!

np−1!lp!
)

= log2

n!

n1!× n2!× · · · × np!

= log2 n!−
p

∑

i=1

log2(ni!)

= n log2 n− n log2 e +
1

2
log2 n−

p
∑

i=1

(ni log2 ni − ni log2 e +
1

2
log2 ni) + O(1)

= n log2 n− n log2 e +
1

2
log2 n− [

p
∑

i=1

(ni log2 ni)− n log2 e +

p
∑

i=1

1

2
log2 ni] + O(1)

= n log2 n−
p

∑

i=1

(ni log2 ni) + O(log2 n)



136 CHAPTER 6. PLANAR GRAPHS AND RELATED CLASSES OF GRAPHS

=

p
∑

i=1

(ni log2

n

ni

) + O(log2 n)

= nH∗
0 (M) + O(log2 n)

≤ n log2 p + O(log2 n)

Thus the space cost of all the Bis is n log2 p + o(n) bits.

Let Mi be the subsequence of M that contains all the parentheses of type i. Note that

Mi may be unbalanced. We use the approach of Chuang et al. [18, 19] to encode all the

Mis while supporting all the operations on balanced parentheses listed in Section 5.3.5 on

them. More precisely, let ui be the difference between the number of opening and closing

parentheses in Mi. We can either insert ui opening parentheses before the beginning of

Mi or append ui closing parentheses to the end of Mi to make it a balanced parenthesis

sequence (M ′
i denotes such a sequence and n′

i denotes its length). We have n′
i ≤ 2ni. To

encode M ′
i while allowing the computation of any O(lg n)-bit substring of M ′

i [j] in constant

time, we only need store Mi and ui which occupies ni+lg n bits. We also build the auxiliary

data structures for M ′
i using Lemma 5.4. Thus it takes ni + lg n + o(n′

i) = ni + o(ni)

bits to encode Mi while supporting all the operations on balanced parentheses listed in

Section 5.3.5 on Mi. Hence the space cost of all the Mis is n + o(n) bits. Therefore, the

total space cost of all the data structures is n log2(2p) + o(n) bits.

As we can perform rank/select operations for each type of parentheses in M using Bis,

and we can support all the operations on balanced parentheses listed in Section 5.3.5 on

Mis, the algorithms used in the proof of Lemma 6.7 can be used to support in O(1) time

the operators listed in Section 6.3.1 on M . An arbitrary word of the parenthesis sequence

of type i in M can be computed using Mi. �

The following theorem shows how to support the navigational operations on triangu-

lations. While the space used here is a little more than that of Chiang et al. [17] (see

Section 6.2), the explicit use of the three parenthesis sequences seems crucial to exploiting

the realizers to support Πj(i) and Π−1
j (i) efficiently (for j ∈ {1, 2}).

Theorem 6.1. A planar triangulation T of n vertices and m edges can be represented

using 2m log2 6+o(m) bits to support operators adjacency, degree, select neighbor ccw,
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rank neighbor ccw as well as the Πj(i) and Π−1
j (i) (for j ∈ {1, 2}) in O(1) time.

Proof. We construct the string S for T as shown in this section, and store it using

2m log2 6 + o(m) bits by Lemma 6.7. Recall that S0 is the balanced parenthesis encoding

of T0, and that we can compute an arbitrary word of S0 from S. Thus we can construct

additional auxiliary structures using o(n) = o(m) bits [70, 71, 17, 74, 62] to support the

navigational operations on T0 (see Section 5.2.1). As each vertex is denoted by its number

in canonical ordering, vertex x corresponds to the xth opening parenthesis in S0. We now

show that these data structures are sufficient to support the navigational operations on T .

To compute adjacency(x, y), recall that x and y are adjacent iff one is the parent of the

other in one of the trees T0, T1 and T2. As S0 encodes the balanced parenthesis sequence

of T0, we can trivially check whether x (or y) is the parent of y (or x) using existing

algorithms on S0 [70, 71] (see Section 5.2.1). To test adjacency in T1, we recall that x is

the parent of y iff the (only) outgoing edge of y, denoted by a ′]′, is an incoming edge of

x, denoted by a ′[′. It then suffices to retrieve the first ′]′ after the yth ′(′ in S, given by

m first(′[′, m select(y,′ (′)), and compute the index, i, of its matching closing parenthesis,
′[′, in S. We then check whether the nearest succeeding closing parenthesis ′)′ of the ′[′

retrieved, located using m first(′)′, i), matches the xth opening parenthesis ′(′ in S. If it

does, then x is the parent of y in T1. We use a similar approach to test the adjacency in

T2.

To compute degree(x), let d0, d1 and d2 be the degrees of x in the trees T0, T1 and T2

(in this proof, we denote the degree of a node in a tree as the number of nodes adjacent to

it), respectively, so that the sum of these three values is the answer. To compute d0, we use

S0 and the algorithm to compute the degree of a node in an ordinal tree using its balanced

parenthesis representation by Chiang et al. [17] (see Section 5.2.1). To compute d1 + d2, if

x has children in T0, we first compute the indices, i1 and i2, of the xth and the x+1th ′(′ in

S, and the indices, j1 and j2, of the (n−x)th and the (n−x+1)th ′)′ in S in constant time.

By the third item of Property 6.1, we have the property d1+d2 = (i2−i1−1)+(j2−j1−1).

The case when x is a leaf in T0 can be handled similarly.

To support select neighbor ccw and rank neighbor ccw, we make use of the local

condition of realizers in Definition 6.1. The local condition tells us that, given a vertex x,

its neighbors, when listed in ccw order, form the following six types of vertices: x’s parent
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in T0, x’s children in T2, x’s parent in T1, x’s children in T0, x’s parent in T2, and x’s

children in T1. The ith child of x in ccw order in T0 can be computed in constant time,

and the number of siblings before a given child of x in ccw order can also be computed in

constant time using the algorithms of Lu and Yeh [62] (see Section 5.2.1). The children

of x in T1 corresponds to the parentheses ′[′ between the (n − x)th and the (n − x + 1)th

′)′ in S. In addition, by the construction of S, if u and v are both children of x, and u

occurs before v in π1, then u is also before v in ccw order among x’s children in T1. The

children of x in T2 have a similar property. Thus the operators supported on S allow us

to perform rank/select on x’s children in T1 and T2 in ccw order. As we can also compute

the number of each type of neighbors of x in constant time, this allows us to support

select neighbor ccw and rank neighbor ccw in O(1) time.

To compute Π1(i), we first locate the position, j, of the ith occurrence of ′(′ in S, which

is m select(i,′ (′). We then locate the position, k, of the first ′]′ after position j, which is

m first(′]′, j). After that, we locate the matching parenthesis of S[j] using m match(j) (p

denotes the result). S[p] is the parenthesis ′[′ that corresponds to the edge between vi and

its parent in T1, and by the construction algorithm of S, the rank of S[p] is the answer,

which is m rank(p,′ [′). The computation of Π−1
1 is exactly the inverse of the above process.

Π2 and Π−1
2 can be supported similarly. �

6.4.3 Vertex Labeled Planar Triangulations

We now consider a vertex labeled planar triangulation. Let n and m respectively denote

the numbers of its vertices and edges, σ denote the number of labels, and t denote the

total number of node-label pairs. Same as binary relations, we adopt the assumption that

each vertex is associated with at least one label.

In addition to unlabeled operators, we present a set of operators that allow efficient

navigation in a vertex labeled planar triangulation (these are natural extensions to navi-

gational operators on multi-labeled trees):

• lab degree(α, x), the number of neighbors of vertex x that are labeled α;

• lab select ccw(α, x, y, r), the rth vertex labeled α among neighbors of vertex x after

vertex y in ccw order, if y is a neighbor of x, and ∞ otherwise;
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• lab rank ccw(α, x, y, z), the number of neighbors of vertex x labeled α between ver-

tices y and z in ccw order if y and z are neighbors of x, and ∞ otherwise.

We define the interface of the ADT of vertex labeled planar triangulations through the

operator node label(v, r), which returns the rth label in lexicographic order associated

with vertex v (i.e. the vth vertex in canonical ordering).

Recall that Lemma 6.7 encodes the string S constructed in Section 6.4.2 to support the

computation of an arbitrary word of S0, which is the balanced parenthesis sequence of the

tree T0. In this section, we consider the DFUDS sequence of T0, as the DFUDS order traversal

visits the children of a node consecutively. We have the following lemma.

Lemma 6.9. The string S can be stored in (2 log2 6 + ε)m + o(m) bits, for any ε such that

0 < ε < 1, to support the operators listed in Section 6.3.1 in O(1) time, as well as the

computation of an arbitrary word, or Θ(lg n) bits of the balanced parenthesis sequence, and

of the DFUDS sequence of T0 in O(1) time.

Proof. We construct the same data structures as in Lemma 6.7, except when we encode

S0, we use Theorem 5.2 to represent the tree T0 (choose f(n) = 1/ε). More precisely, we

encode S0 using (2 + ε)n + o(n) bits, for any ε such that 0 < ε < 1, and this encoding

supports the computation of an arbitrary word of the balanced parenthesis sequence, and

the DFUDS sequence of T0 in constant time. As we can compute an arbitrary word of the

original sequence of S0 in constant time and all the other structures are the same as in

Lemma 6.7, we can still support the operators listed in Section 6.3.1 in constant time. �

We now construct succinct indexes for vertex labeled planar triangulations.

Theorem 6.2. Consider a multi-labeled planar triangulation T of n vertices, associated

with σ labels in t pairs (t ≥ n). Given the support of node label in f(n, σ, t) time on the

vertices of T , there is a succinct index using t · o(lg σ) bits which supports lab degree,

lab select ccw and lab rank ccw in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time.

Proof. The main idea is to combine our succinct representation of planar triangulations

with three instances of the succinct indexes for related binary relations.

We represent the combinatorial structure of T using Theorem 6.1, in which we use

Lemma 6.9 to store S. Thus we can construct the auxiliary data structures for the DFUDS
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representation of T0 using Lemma 5.26. Observe that the sequence of the vertices (for

simplicity we only consider internal vertices) referred by their numbers in three different

orders, namely the DFUDS order of the nodes of T0, π1 and π2, form three binary relations,

R0, R1 and R2, with their associated labels.

We adopt the same strategy used previously for multi-labeled trees in Section 5.6.2.

We can convert between the ranks of the vertices between π0, π1 and π2 in constant time

by Theorem 6.1. We can also convert between the preorder numbers of the nodes in T0

(note that they are in the the order of π0) and the DFUDS numbers of the nodes in T0

in constant time using node rankDFUDS and node selectDFUDS. Therefore, we can use the

operator node label to support the ADT of R0, R1 and R2. Thus, for each of the binary

relations R1, R2 and R0 we construct a succinct index of t · o(lg σ) bits using Theorem 3.3.

To compute lab degree(α, x), we first check whether x’s parents in T0, T1 and T2 are

labeled α. The DFUDS number of x’s parent in T0 can be computed in constant time. The

number in π1 (or π2) of x’s parent in T1 (or T2) can also be computed in constant time, as

shown in the proof of Theorem 6.1. Thus this can be checked by performing label access

operation on R0, R1 and R2. We now need compute the numbers of x’s children in T0,

T1 and T2 that are associated with label α. By Lemma 6.5, x’s children in T0, T1 and

T2 are listed consecutively in DFUDS order of T0, π1 and π2, respectively. Compute the

DFUDS number, s, of x’s first child in T0 in constant time. Then the DFUDS numbers of x’s

children in T0 are in the range [s + 1, s + degree(x)]. Thus we can compute the number

of x’s children in T0 that are associated with label α by performing label rank on R0.

To get the numbers in π1 of x’s children in T1, we locate the first and last occurrences

of parenthesis ′[′ inserted for the edges in T1 whose parent node is x, and compute their

ranks, f and l, among all the occurrences of parenthesis ′[′ in S. As the numbers in π2

of x’s children in T1 is in the range [f, l], we can compute the number of x’s children in

T1 that are associated with label α by performing label rank on R1. The number of x’s

children in T2 that are associated with label α can be computed similarly.

To support lab select ccw and lab rank ccw, by the local condition in Definition 6.1

and the algorithms in the above paragraph, it suffices to show that we can support the

label-based rank/select of the children of a given node in ccw order in the three trees T0,

T1 and T2, respectively. As we can compute the ranges of the DFUDS numbers in T0, the
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numbers in π1 and the numbers in π2 of x’s children in T0, T1 and T2, respectively, these

operations can be supported by performing label rank and label select operations on

R0, R1 and R2.

Finally, we observe that the space requirement of our representation is dominated by

the cost of the succinct indexes for the binary relations, each using t · o(lg σ) bits. �

To design a succinct representation of vertex labeled graphs using the above theorem,

we have the following corollary.

Corollary 6.1. A multi-labeled planar triangulation T of n vertices, associated with σ

labels in t pairs (t ≥ n) can be represented using lg
(

nσ
t

)

+t·o(lg σ) bits to support node label

in O(1) time, and lab degree, lab select ccw and lab rank ccw in O((lg lg lg σ)2 lg lg σ)

time.

Proof. We use the approach in the proof of Theorem 3.5 to encode the binary relation

between the vertices in canonical order and the set of labels in n + t + o(n + t) + lg
(

nσ
t

)

+

o(t)+O(lg lg(nσ)) bits to support object select on it in constant time. Observe that the

above operator directly supports node label on T . We then build the succinct indexes of

t · o(lg σ) bits for T using Theorem 6.2 and the corollary directly follows. �

6.4.4 Edge Labeled Planar Triangulations

We now consider an edge labeled planar triangulation. Let n and m respectively denote

the numbers of its vertices and edges, σ denote the number of labels, and t denote the

total number of edge-label pairs. Same as binary relations, we adopt the assumption that

each edge is associated with at least one label. We define the interface of the ADT of edge

labeled planar triangulations through the operator edge label(x, y, r), which returns the

rth label associated to the edge between the vertices x and y in lexicographic order if they

are adjacent, or 0 otherwise.

We consider the following operations:

• lab adjacency(α, x, y), whether there is an edge labeled α between vertices x and

y;

• lab degree edge(α, x), the number of edges incident to vertex x that are labeled α;
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• lab select edge ccw(α, x, y, r), the rth edge labeled α among edges incident to ver-

tex x after edge (x, y) in ccw order, if y is a neighbor of x, and ∞ otherwise;

• lab rank edge ccw(α, x, y, z), the number of edges incident to vertex x labeled α

between edges (x, y) and (x, z) in ccw order if y and z are neighbors of x, and ∞
otherwise.

We construct the following succinct index for edge labeled planar triangulations.

Theorem 6.3. Consider a multi-labeled planar triangulation T of n vertices and m edges,

in which the edges are associated with σ labels in t pairs (t ≥ m). Given the sup-

port of edge label in f(n, σ, t) time on the edges of T , there is a succinct index us-

ing t · o(lg σ) bits which supports lab adjacency in O(lg lg lg σf(n, σ, t) + lg lg σ) time,

and lab degree edge, lab select edge ccw and lab rank edge ccw in O((lg lg lg σ)2 ·
(f(n, σ, t) + lg lg σ)) time.

Proof. We represent the combinatorial structure of T using Theorem 6.1, in which we

use Lemma 6.9 to store S. We also construct the auxiliary data structures for the DFUDS

representation of T0 using Lemma 5.26.

We number the edges in T0, T1 and T2 by the numbers of their child nodes in DFUDS

order of T0, π1 and π2, respectively, and denote these three orders of edges by π′
0, π′

1 and

π′
2, respectively. For example, in Figure 6.2, the 8th edge in π′

0 is the edge between v5 (i.e.

the 8th node in DFUDS order of T0) and v2. We observe that the numbers of the edges in π′
0,

π′
1 and π′

2 have numbers in [n− 1], [n− 2] and [n− 3], respectively. Thus the edges in π′
0,

π′
1 and π′

2 and the label set [σ] form three binary relations R′
0, R′

1 and R′
2, respectively. To

support object select(x, r) on R′
0, let y be the node whose DFUDS number in T0 is x. We

locate y’s parent z, and edge label(y, z, r) is the result. The support for object select

on R′
1 and R′

2 is similar. Therefore, we can use edge label to support the ADT of R′
0,

R′
1 and R′

2. For each of these three binary relations, we construct a succinct index using

t · o(lg σ) bits using Theorem 3.3.

To compute lab adjacency(α, x, y), we first use the algorithm in the proof of Theo-

rem 6.1 to check whether x and y are adjacent, and if they are, which of the three trees

(T0, T1 and T2) has the edge (x, y). If x is y’s parent in T0, we compute y’s DFUDS number

(i.e. the number of edge (x, y) in π′
0), u, in T0, and label accessR′

0
(u, α) is the answer.
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The cases when x is y’s child in T0, and when the edge (x, y) is in T1 or T2 can be handled

similarly. Thus, we can support lab adjacency in O(lg lg lg σf(n, σ, t) + lg lg σ) time.

To support the other three operations, we observe that the edges between a given node

x and its children in T0, T1 and T2 have consecutive numbers in π′
0, π′

1 and π′
2, respectively.

We also have x’s children in T0 and T1 are listed in ccw order in π′
0 and π′

1, respectively,

and x’s children in T2 are listed in cw order in π2. Thus we can use algorithms similar to

those in Theorem 6.2 to support these operations.

Finally, we observe that the space requirement of our representation is dominated by

the cost of the succinct indexes for the binary relations, each using t · o(lg σ) bits. �

To design a succinct representation of edge labeled graphs using the above theorem, we

have the following corollary.

Corollary 6.2. A multi-labeled planar triangulation T of n vertices and m edges, in which

the edges are associated with σ labels in t pairs (t ≥ m), can be represented using lg
(

mσ
t

)

+

t · o(lg σ) bits to support edge label in O(1) time, lab adjacency in O(lg lg σ) time, and

lab degree edge, lab select edge ccw and lab rank edge ccw in O((lg lg lg σ)2 lg lg σ)

time.

Proof. We represent the combinatorial structure of T using Theorem 6.1, in which we use

Lemma 6.9 to store S. Let m1, m2 and m3 denote the number of edges in T0, T1 and T2,

respectively. Let t1, t2 and t3 denote the total numbers of edge-label pairs in T0, T1 and T2,

respectively. We encode the three binary relations R′
0, R′

1 and R′
3 defined in Theorem 6.3

using Theorem 3.5. The space cost of encoding them in bits is
∑2

i=1[lg
(

miσ
ti

)

+ ti ·o(lg σ)] =
∑2

i=0[log2

(

miσ
ti

)

+ ti · o(lg σ)] < lg
(

mσ
t

)

+ t · o(lg σ), which dominates the overall space cost.

To support edge label(x, y, r), we check which of the three trees, T0, T1 and T2, con-

tains (x, y), and we compute the number of this edge in π′
0, π′

1 or π′
3. We then perform

object select on R′
0, R′

1 or R′
2 to compute the result. The other operations can be

supported using Theorem 6.3. �

6.4.5 Extensions to Planar Graphs

We now extend the techniques of Sections 6.4.2, 6.4.3 and 6.4.4 to general planar graphs.

By Fáry’s theorem [27], any planar graph admits a straight line embedding (i.e. a drawing
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of a planar graph such that all its edges are straight line segments that do not cross). Thus

it suffices to represent straight-line embedded planar graphs.

Consider a straight-line embedded planar graph G of n vertices and m edges. To use

our results on planar triangulations, we construct a planar triangulation T for G using

the following approach (this approach was used by Kirkpatrick [58] to reduce the point

location query problem on general planar subdivisions to that on triangular subdivisions).

We first surround G with a large triangle such that all the vertices and edges of G are in

the interior of this triangle. We add the three vertices of this triangle and the three edges

between them into G, and denote the resulting graph G′. Finally, we triangulate each

interior face of G′ that is a polygon with more than three vertices. The resulting graph is

the planar triangulation T .

Let n′ and m′ be the number of vertices and edges of T , respectively. Then we have

n′ = n + 3 and m′ = 3n + 3. We denote the three nodes on the exterior face of T by v0, v1

and vn. We denote the nodes of G by their numbers in the canonical ordering of T . Thus

the nodes of G are v2, v3, · · · , vn. The three orders π0, π1 and π2 on the vertices of G are

simply given by these three orders on the vertices of T . Recall that we use (T0, T1, T2) to

denote the realizer of T , and T0 to denote its canonical spanning tree.

We now extend Theorem 6.1 to represent unlabeled planar graphs.

Theorem 6.4. A straight-line embedded planar graph G of n vertices and m edges can be

represented using 3n(log2 3 + 3 + ε) + o(n) bits to support operators adjacency, degree,

select neighbor ccw, rank neighbor ccw as well as Πj(i) and Π−1
j (i) (for j ∈ {1, 2}) in

O(1) time.

Proof. We construct the planar triangulation T for G using the above approach. We

then represent T using Theorem 6.1, in which we use Lemma 6.9 to encode the string S

constructed to encode T . Thus T is encoded in m′(2 log2 6 + ε) + o(m′) = 3n(2 log2 6 +

ε) + o(n) bits. In addition, we construct the following three bit vectors to indicate which

edge in T is present in G:

• A bit vector B0[2..n], where B0[i] = 1 iff the edge between the ith node in DFUDS

order of T0 and its parent in T0 is present in G;
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• A bit vector B1[2..n], where B1[i] = 1 iff the edge between the ith node in π1 and its

parent in T1 is present in G;

• A bit vector B2[1..n− 1], where B2[i] = 1 iff the edge between the ith node in π2 and

its parent in T2 is present in G.

We encode these three bit vectors in 3n+ o(n) bits using Part (a) of Lemma 2.1. Thus the

total space cost is 3n(2 log2 6 + ε) + 3n + o(n) = 3n(log2 3 + 3 + ε) + o(n) bits.

To compute adjacency(x, y), we first check whether x and y are adjacent in T . If they

are not, we return false. If they are, the algorithm in the proof of Theorem 6.1 also tells

us which of the three trees, T0, T1 and T2, has the edge (x, y) of T . If x is y’s parent in

T0, we compute y’s DFUDS number, j, in T0. If B0[j] = 1, then the edge (x, y) is in G, so

we return true. We return false otherwise. The case when y is x’s parent in T0, and the

case when the edge (x, y) of T is in T1 or T2 can handled similarly.

To compute degree(x), we observe that the algorithm in the above paragraph can be

used to check whether x and its parents in T0, T1 and T2 are adjacent in G. Thus it suffices

to compute the number of x’s children in T0, T1 and T2 that are adjacent to x in G. To

count the number, u, of x’s children in T0 that are adjacent to x in G, we compute the

DFUDS numbers, p and q, of the first and the last child of x in T0. Then u is equal to the

number of 1s in B0[p..q], which can be computed in constant time by performing bin rank

on B0. The number of x’s children in T1 or T2 that are adjacent to x in G can be computed

similarly.

To use the algorithms in the proof of Lemma 6.1 to support select neighbor ccw and

rank neighbor ccw, it suffices to support these two operations: given a vertex x, select its

ith child in T0 (T1 or T2) that is adjacent to it in G; given a vertex x and a child, y, of it

in T0 (T1 or T2) that are adjacent to x, compute the number of y’s left siblings that are

adjacent to x. To support these two operations, we first compute the DFUDS numbers in

T0 (numbers in π1 or π2) of the first and last children of x in T0 (T1 or T2). From these, we

can locate the substring of B0 (B1 or B2) corresponding to the children of x in T0 (T1 or

T2), and perform rank/select operations on it to support these two operations in constant

time.

Finally, we observe that the algorithms in the proof of Lemma 6.1 to support Πj and

Π−1
j on planar triangulations can be used directly here. �
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We construct the following succinct indexes for vertex labeled planar graphs.

Theorem 6.5. Consider a multi-labeled, straight-line embedded planar graph G of n ver-

tices, associated with σ labels in t pairs (t ≥ n). Given the support of node label in

f(n, σ, t) time on the vertices of G, there is a succinct index using t ·o(lg σ) bits which sup-

ports lab degree, lab select ccw and lab rank ccw in O((lg lg lg σ)2(f(n, σ, t)+lg lg σ))

time.

Proof. We represent the combinatorial structure of G using Theorem 6.4. The vertices of

G in canonical order and the set of labels [σ] form a binary relation L. As node label

directly supports object select on L, we construct a succinct index of t ·o(lg σ) bits using

Theorem 3.3 for L.

In addition, we construct three binary relations, L0, L1 and L2, between the vertices

and the set of labels. In L0, the ith object corresponds to the ith vertex in DFUDS order of

T0. If this vertex and its parent in T0 are adjacent in G, we associate its labels with the

ith object. Otherwise, we do not associate any label with this object. As we can perform

constant time conversions between the canonical order of a vertex and its DFUDS number

in T0, and we can also check whether a vertex and its parent in T0 are adjacent in G, we

can use node label to support object select on L0. We construct L1 and L2 using the

same approach, except that the ith object in L1 and L2 corresponds to the ith vertex in π1

and π2, respectively. We can also use node label to support object select on them. We

construct a succinct index of t ·o(lg σ) bits using Theorem 3.3 for each of these three binary

relations. Note that although Theorem 3.3 assumes that each object is associated with at

least one label, it still applies to the more general case when an object is associated with

zero or more label, as stated in the paragraph after the proof of Theorem 3.3. Furthermore,

the result is the same if t > n, which is true here.

As we can perform conversions between the DFUDS number of T0, π0, π1 and π2, we can

perform label access on L to check whether the parent of a given vertex in T0, T1 or

T2 is associated with a given label (if this vertex and the parent are adjacent in G). We

also observe that if a vertex and one of its child in T0, T1 or T2 are not adjacent in G,

then the object in L0, L1 and L2 that corresponds to the child is not associated with any

label. Thus we can use the algorithms in the proof of Theorem 6.2 to support lab degree,

lab select ccw and lab rank ccw, and this theorem follows. �
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To design a succinct representation for a vertex labeled planar graph based on the above

theorem, we can use the approach in the proof of Corollary 6.1, and the following corollary

is immediate.

Corollary 6.3. A multi-labeled, straight-line embedded planar graph G of n vertices, as-

sociated with σ labels in t pairs (t ≥ n) can be represented using lg
(

nσ
t

)

+ t · o(lg σ) bits to

support node label in O(1) time, and lab degree, lab select ccw and lab rank ccw in

O((lg lg lg σ)2 lg lg σ) time.

We now design succinct indexes for edge labeled planar graphs.

Theorem 6.6. Consider a multi-labeled, straight-line embedded planar graph G of n ver-

tices and m edges, in which the edges are associated with σ labels in t pairs (t ≥ m).

Given the support of edge label in f(n, σ, t) time on the edges of T , there is a succinct

index using t · o(lg σ) + O(n) bits which supports lab adjacency in O(lg lg lg σf(n, σ, t) +

lg lg σ) time, and lab degree edge, lab select edge ccw and lab rank edge ccw in

O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time.

Proof. We add labels to the edges of the planar triangulation T constructed in this section

for G as follows. For each edge of T that is in G, we label it with its labels in G. For each

edge of T that is not in G, we do not associate it with any label. We also construct B0, B1

and B2. As we can check whether an edge of T is in G in constant time, we can support

edge label on T in f(n, σ, t) time using B0, B1 and B2. We use Theorem 6.3 to construct

a succinct index for the edge-labeled version of T .

To analyze the space cost, we observe that to encode the succinct indexes for the three

binary relations in the proof of Theorem 6.6, we need t ·o(lg σ)+m′ +o(m′) bits, according

to the discussions in the paragraph after the proof of Theorem 3.3. It requires O(n) bits

to encode the combinatorial structure of T . B0, B1 and B2 occupy 3n + o(n) bits. Thus

the overall space cost is t · o(lg σ) + O(n) bits.

Observe that although we add more edges when constructing T , none of them is as-

sociated with any labels. Therefore, the operations lab adjacency, lab degree edge,

lab select edge ccw and lab rank edge ccw can be used directly to support the same

operations on G, and the theorem follows. �
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To design a succinct representation for an edge labeled planar graph based on the above

theorem, we have the following corollary.

Corollary 6.4. A multi-labeled planar graph G of n vertices and m edges, in which the

edges are associated with σ labels in t pairs (t ≥ m), can be represented using lg
(

mσ
t

)

+ t ·
o(lg σ)+O(n) bits to support edge label in O(1) time, lab adjacency in O(lg lg σ) time,

and lab degree edge, lab select edge ccw and lab rank edge ccw in O((lg lg lg σ)2 ·
lg lg σ) time.

Proof. We encode the combinatorial structure of the planar triangulation T using The-

orem 6.1. We construct an edge-labeled version of T as in the proof of Theorem 6.6.

Compute the realizer (T0, T1, T2) of T . Let m′
1, m′

2 and m′
3 denote the numbers of edges of

T in T0, T1 and T2, respectively. Let m1, m2 and m3 denote the numbers of edges of G in

T0, T1 and T2, respectively. Let t1, t2 and t3 denote the total numbers of edge-label pairs

in T0, T1 and T2, respectively. We use the notion of the three orders, π′
0, π′

1 and π′
2 defined

on the edges of T as in the proof of Theorem 6.6. We construct the three bit vectors B0,

B1 and B2 as in the proof of Theorem 6.4.

Consider the edges of G that are in T0. Observe that each of them corresponds to a

1 in B0. These edges in the order of π′
0 and the set of labels form a binary relation and

we use E ′
0 to denote it. We use the approach in the proof of Theorem 3.5 to encode E ′

0

in m1 + t1 + o(m1 + t1) + lg
(

m1σ
t1

)

+ O(lg lg(nσ)) bits to support object select on it in

constant time. Similarly, we define two binary relations E ′
1 and E ′

2 between the edges of G

in T1 and T2 in the orders of π′
1 and π′

2, respectively, and the set of labels. We use the same

approach to encode them. Thus the total space used to encode these three binary relations

is
∑2

i=0(mi+ti+o(mi+ti)+lg
(

miσ
ti

)

+O(lg lg(nσ)) ≤ m+t+o(m+t)+lg
(

mσ
t

)

+O(lg lg(nσ)).

To use Theorem 6.6 to prove this corollary, it suffices to support edge label(x, y, r)

on G. As the case when x and y are not adjacent in G is trivial, we only consider the

case when they are adjacent. We first consider the case when the edge (x, y) is in T0.

Assume, without the loss of generality, that x is y’s parent in T0. Let j be y’s DFUDS

number in T0. In this case, the edge (x, y) is numbered j in π′
0, which corresponds to the

(k = bin rankB0(1, j))
th edge in E ′

0. Thus object selectE′

0
(k, r) is the result. The case

when the edge (x, y) is in T1 or T2 can be handled similarly.
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The overall space is t · o(lg σ) + O(n) + m + t + o(m + t) + lg
(

mσ
t

)

+ O(lg lg(nσ)) =

lg
(

mσ
t

)

+ t · o(lg σ) + O(n) bits. �

6.5 k-Page Graphs

6.5.1 Multiple Parentheses

To present our result on multiple parentheses, we first consider the following operation on

strings: string rank′S(α, i), which returns the number of characters α in S[1..i] if S[i] = α.

We have the following lemma.

Lemma 6.10. A string S of length n over alphabet [σ] can be represented using n(H0(S)+

o(lg σ)) bits to support string access and string rank for any literal α ∈ [σ] ∪ [σ̄] in

O(lg lg σ) time, and string rank′ and string select for any character α ∈ [σ] in O(1)

time. Given a character α ∈ [σ], this representation also supports in O(1) time the com-

putation of the number of characters of S that are lexicographically smaller than α.

Alternatively, S can be represented using n(H0(S) + ε lg σ + o(lg σ)) bits for any ε such

that 0 < ε < 1 to support string access in O(1) time, while providing the same support

for all the other operations above.

Proof. To prove the result in the first paragraph of this lemma, we use Lemma 4.11 to

encode string S in n(H0(S) + o(lg σ)) bits. Thus we only need show how to support

string rank′(α, i), and how to compute the number of characters of S that are lexico-

graphically smaller than a given character α. We use the bit vector E[α] defined in the

proof of Lemma 4.11. It is shown in the same proof how to support bin rank′ on E[α] in

constant time. As string rank′(α, i) = bin rank′E[α](1, i), we can support string rank′

in constant time. To compute the number of characters of S that are lexicographically

smaller than α, recall that in Lemma 4.11, we treat S as a conceptual table E. Thus we

only need compute the number of 1s in the first α − 1 rows of E. This can be computed

by performing rank/select operations on the bit vector B (see the proof of Theorem 3.2

for the definition of B), as it is exactly the number of 1s in B before the (n(σ− 1)/σ)th 0.

To achieve the second result, observe that the proof of Lemma 4.11 uses the succinct

indexes for strings as in Theorem 3.2. If we increase the size of the auxiliary data structures
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for the permutations defined in the proof of Theorem 3.2 to εn lg σ, then we can support

string access on S in constant time when we apply the result of Lemma 4.11 to our

problem. �

We now consider the succinct representations of multiple parenthesis sequences of p

types of parentheses, where p is not a constant. We consider the following operation

on a multiple parenthesis sequence S[1..2n] in addition to those defined in Section 6.3.1:

m rank′S(i), the rank of the parenthesis at position i among parentheses of the same type

in S. We have the following theorem.

Theorem 6.7. A multiple parenthesis sequence of 2n parentheses of p types, in which the

parentheses of any given type are balanced, can be represented using 2n lg p + n · o(lg p)

bits to support m access, m rank′, m findopen and m findclose in O(lg lg p) time, and

m select in O(1) time. Alternatively, (2+ ε)n lg p+n · o(lg p) bits are sufficient to support

these operations in O(1) time, for any constant ε such that 0 < ε < 1.

Proof. We store the sequence as a string P over alphabet {′(1
′, ′)1

′, ′(2
′, ′)2

′, ..., ′(p
′, ′)p

′} using

the result in the first paragraph of Lemma 6.10. P occupies at most 2n(lg p+ o(lg p)) bits.

For each integer i such that 1 ≤ i ≤ p, we construct a balanced parenthesis sequence

Bi, where Bi[j] is an opening (closing) parenthesis iff the jth parenthesis of type i in P is

an opening (closing) parenthesis. We denote the number of parentheses of type i by ni.

Thus the length of Bi is ni. We store each Bi using part (a) of Lemma 2.1. Thus the total

space cost of these bit vectors is
∑p

i=1(ni + o(ni)) = 2n + o(n) bits. To store all these bit

vectors, we concatenate them to get a bit vector B. In order to locate Bi in B, it suffices

to compute the numbers of characters in P that are lexicographically smaller than ′(i
′ and

′(i+1
′, which is supported in constant time by Lemma 6.10.

The operation m access can be supported by calling string access on P once, so it can

be supported in O(lg lg p) time. To support m rank′(i), we first compute the parenthesis,

α, at position i using m access in O(lg lg p) time. Then m rank′(i) = string rank′(α, i).

We also have m select(α, i) = string select(α, i). Finally, to support m match(i), we

first find out which parenthesis is at position i using m access. Assume, without loss

of generality, it is an closing parenthesis, and let ′)j
′ be this parenthesis. Then we have

m match(i) = m select(′(j
′, find closeBj

(string rank′(′(p
′, i))).
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To support all these operations in constant time, it suffices to support string access

on P in constant time. This can be achieved by using the result in the second paragraph

of Lemma 6.10. The total space is thus increased by εn lg p bits. �

6.5.2 k-Page Graphs for large k

On unlabeled k-page graphs, we consider the operators adjacency and degree defined in

Section 6.4.2, and the operator neighbors(x), returning the neighbors of x.

As shown in Section 6.2, previous results on succinctly representing k-page graphs [70,

71, 35] support adjacency in O(k) time. The lower-order term in the space cost of the

result of Gavoille and Hanusse [35] is o(km), which is dominant when k is large. Thus

previous results mainly deal with the case when k is small. We consider large k.

In this section, we denote each vertex of a k-page graph by its rank along the spine of

the book (i.e. vertex x is the xth vertex along the spine). We define the span of an edge

between vertices x and y to be |y− x|. An edge between vertices x and y is a left edge (or

right edge) of x if y > x (or y < x). We show the following result.

Theorem 6.8. A k-page graph G of n vertices and m edges can be represented using

n + 2m lg k + m · o(lg k) bits to support adjacency in O(lg k lg lg k) time, degree in O(1)

time, and neighbors(x) in O(d(x) lg lg k) time where d(x) is the degree of x. Alternatively,

it can be represented in n + (2 + ε)m lg k + m · o(lg k) bits to support adjacency in O(lg k)

time, degree in O(1) time, and neighbors(x) in O(d(x)) time, for any constant ε such

that 0 < ε < 1.

Proof. We construct a bit vector B of n + m bits to encode the degree of each node in

unary as in [55], in which vertex x corresponds to the xth 1 followed by d(x) 0s. We encode

B in n+m+ o(n+m) bits using part (a) of Lemma 2.1 to support rank/select operations.

We construct a multiple parenthesis sequence S of 2m parentheses of k types as follows.

For each node x ∈ {1, 2, · · · , n} and for each page i ∈ {1, 2, · · · , k}:

1. If there are j left edges of x on page i where j > 0, we write down j− 1 copies of the

symbol ′)i
′.
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2. Assume that the left edges of x are on pages p1, p2, ..., pl. We sort the sequence
′)p1

′, ′)p2
′, ..., ′)pl

′ by the maximum span of the left edges of x on these pages and

write down the sorted sequence, i.e. in the sorted sequence, ′)pu

′ appears before ′)pv

′

if the maximum span of the left edges of x on page pu is less than the maximum span

of the left edges of x on page pv.

3. Similarly, we assume that the right edges of x are on pages q1, q2, ..., qr. We sort

the sequence ′(q1
′, ′(q2

′, ..., ′(pl

′ by the maximum span of the right edges of x on these

pages and write down the sorted sequence in descending order.

4. If there are j′ right edges of x on page i where j′ > 0, we write down j′− 1 copies of
′(i

′.

Although the sequence, S, appears to be similar to the sequence in Theorem 2 of [35],

it differs in the order we store the parentheses corresponding to the edges of a given

vertex. It also has 2m parentheses of k types, and we encode it using Theorem 6.7 in

2m lg k + m · o(lg k) bits. Finally we construct a bit vector B′ of 2m bits in which B[i] = 1

iff S[i] is a closing parentheses, and encoding it in 2m + o(m) using part (a) of Lemma 2.1

bits to support rank/select operations. Thus the total space cost is n+2m lg k +m ·o(lg k)

bits.

With the above definitions and structures, the algorithm [35] which checks whether

there is an edge between vertices x and y on page p can be described as follows (assume,

without loss of generality, that x < y). Let w be the index of the parenthesis in S that corre-

sponds to the right edge of x with the largest span on page p. Observe that this occurrence is

the first occurrence of the character (p in S after position bin rankB(0, bin selectB(1, x)).

Assume that w is given (to use this to support adjacency, it suffices to assume that w is

given, as shown in the next paragraph). We retrieve the index, t, of the closing parenthesis

that matches B[w] in O(lg lg k) time, and if it corresponds to a left edge of y (this is true

iff bin rankB(1, t) = y), then there is an edge between x and y. Similarly, we retrieve the

parenthesis in S that corresponds to the left edge of y with the largest span on page p

(again, we assume that the index of the occurrence of the parenthesis corresponding to it

is given), and if its matching opening parenthesis corresponds to a right edge of x, then x

and y are adjacent. If the above process cannot find an edge between x and y, then x and
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y are not adjacent on page p. All these steps take O(lg lg k) time.

To compute adjacency(x, y) (assume, without loss of generality, that x < y), we first

observe that by Step 2 of the construction algorithm of S, the opening parentheses that

correspond to the right edges of x with the largest spans among the right edges of x on the

same pages form a substring of S. We can compute the starting position of this substring

using B and B′ in constant time. Because these parentheses are sorted by the spans of

the edges they correspond to, we can perform a doubling searching to check whether one

of these edges connects x and y. In each step of the doubling search, we perform the

algorithm in the last paragraph in O(lg lg k) time. There are at most k such parentheses,

so we perform the algorithm O(lg k) times. Similarly, we perform doubling search on the

left edges of y with the largest spans among the left edges of y on the same pages. Thus

we can test the adjacency between two vertices in O(lg k lg lg k) time.

The degree of any vertex can be easily computed in constant time using B. We can also

perform the algorithms in previous work [35] to compute neighbors(x). More precisely,

for each opening (or closing) parenthesis corresponding to a right (or left) edge incident to

x, we find its matching parenthesis to locate the other vertex that it is incident to. This

takes O(d(x) lg lg k) time on our data structures.

Finally, to improve the time efficiency, we can store S using (2 + ε)m lg k + m · o(lg k)

bits using Theorem 6.7 to achieve the other tradeoff. �

6.5.3 Edge Labeled k-Page Graphs

On edge labeled k-page graphs, we consider lab adjacency and lab degree edge defined

in Section 6.4.4, as well as the following operation: lab edges(α, x), the edges incident to

vertex x that are labeled α. We define the interface of the ADT of labeled k-page graphs

through the operator edge label, as defined in Section 6.4.4.

We first design a succinct index for an edge labeled graph with one page.

Lemma 6.11. Consider a multi-labeled outerplanar graph G of n vertices and m edges,

in which the edges are associated with σ labels in t pairs (t ≥ m). Given the sup-

port of edge label in f(n, σ, t) time on the edges of G, there is a succinct index using

t · o(lg σ) + n + o(n) bits which supports lab adjacency in O(lg lg lg σf(n, σ, t) + lg lg σ)
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1               2               3               4               5               6               7               8

a

a

a b
b

c
a

b c

B: 1000        1000          10              10          1000000       100         100         100

P:    (((            )((              )               (              ) ) ) ( ( (       )(             ))             )) 

a

R:    aaa            bb                              a                  cab              c
L:                    a                 b                             aba                 b              ca            ca

Figure 6.5: An example of the succinct representation of a labeled graph with one

page. For simplicity, each edge is associated with exact one label in this example.

time, lab degree edge in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time, and lab edges(α, x) in

O(d(lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time, where d = lab degree edge(α, x).

Proof. We construct a bit vector B of n + m bits to encode the degree of each node in

unary as in the proof of Theorem 6.8, and use part (a) of Lemma 2.1 to encode it. We

construct a balanced parenthesis sequence P as follows. List the vertices from left to right

along the spine, and each node is represented by zero or more closing parentheses followed

by zero or more opening parentheses, where the number of closing (or opening) parentheses

is equal to the number of its left (or right) edges. The edges sorted by the positions of

the corresponding opening parentheses and the set of labels form a binary relation R.

Similarly, the edges sorted by the positions of the corresponding closing parentheses and

the set of labels form a binary relation L. See Figure 6.5 for an example.

To compute object selectR(x, r), we first find the two vertices y and z (y < z)

that the edge corresponding to the xth opening parenthesis in P is incident to. As this

parenthesis corresponds to the ith 0 in B, where i = bin selectB(0, x), we have y =

bin rankB(1, i). We find the closing parenthesis that matches this opening parenthesis

in P using find close, and z can be computed similarly. As object selectR(x, r) =

edge label(y, z, r), we can support object select on R in f(n, σ, t) time. The support

for object select on L is similar. We then build a succinct index of t · o(lg σ) bits for

either of L and R using Theorem 3.5. These data structures occupy t · o(lg σ) + n + o(n)

bits in total as t ≥ m.

To compute lab adjacency(α, x, y), we first use the algorithm by Jacobson [55] to
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check whether x and y are adjacent. If they are, we retrieve the position of the opening

parenthesis in P that corresponds to the edge between x and y, compute its rank, v,

among opening parenthesis, and we return the result of label access(v, α) on R. This

takes O(lg lg lg σf(n, σ, t) + lg lg σ) time.

To compute lab degree edge(α, x), we need compute the number, l, of the left edges

of x that are labeled α, and the number, r, of the right edges of x that are labeled

α. To compute l, we first compute the positions l1 and l2 such that each parenthesis

in the substring P [l1..l2] is a closing parentheses that corresponds to a left edge of x,

using rank/select operations on B and P in constant time. We then use label rank and

label select on L to compute the number of objects associated with α between and

including objects l1 and l2 in O((lg lg lg σ)2(f(n, σ, t) + lg lg σ)) time. Similarly we can

compute r by performing rank/select operations on B, P and R, and the sum of l and r is

the answer. To further list all the edges of x that is labeled α, we need perform label succ

on L and R to retrieve the positions of the corresponding parentheses in P , and perform

rank/select operations on B to retrieve the vertices that these edges are incident to. �

We now use the above lemma to design a succinct representation of edge labeled out-

erplanar graph.

Lemma 6.12. An outerplanar graph of n vertices and m edges in which the edges are

associated with σ labels in t pairs (t ≥ m) can be represented using n + o(n) + lg
(

mσ
t

)

+ t ·
o(lg σ) bits to support:

• edge label in O(1) time;

• lab adjacency in O(lg lg σ) time;

• lab degree edge in O((lg lg lg σ)2 lg lg σ) time;

• lab edges(α, x) in O(d(lg lg lg σ)2 lg lg σ) time, where d = lab degree edge(α, x).

Proof. We construct B and P as in the proof of Lemma 6.11. We use Theorem 3.5 to

represent the binary relation R defined in the proof of Lemma 6.11. This costs lg
(

mσ
t

)

+

t · o(lg σ) bits. Given two adjacent vertices x and y, we can locate the opening parenthesis

corresponding to the edge between x and y using P and B in constant time. Thus we
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can use object select on R to directly support edge label, which in turn supports

object select on L. Hence we can construct a succinct index of t · lg σ bits for the binary

relation L defined in the proof of Lemma 6.11, and this lemma immediately follows. �

To represent an edge labeled k-page graph, we can use Lemma 6.12 to represent each

page and combine all the pages represented in this way to support operations. Alter-

natively, we can use Theorem 6.8 and an approach similar to Lemma 6.12 to achieve a

different tradeoff to improve the time efficiency for large k. As we consider general k,

the auxiliary data structures may occupy more space than the labels themselves. Thus

we choose to directly show our succinct representations instead of presenting a succinct

index first. Note that for sufficiently small k, this approach can still be used to construct

a succinct index.

Theorem 6.9. A k-page graph G of n vertices and m edges, in which the edges are associ-

ated with σ labels in t pairs (t ≥ m), can be represented using k(n+o(n))+lg
(

mσ
t

)

+t·o(lg σ)

bits to support:

• edge label in O(k) time;

• lab adjacency in O(lg lg σ + k) time;

• lab degree edge in O(k(lg lg lg σ)2 lg lg σ) time;

• lab edges(α, x) in O(d(lg lg lg σ)2 lg lg σ+k) time, where d = lab degree edge(α, x).

Alternatively, it can be represented using n+o(n)+2m(lg k+o(lg k))+lg
(

mσ
t

)

+m·o(lg σ)

bits to support:

• edge label in O(1) time;

• lab adjacency in O(lg lg σ + lg k) time;

• lab degree edge in O((lg lg lg σ)2 lg lg σ) time;

• lab edges(α, x) in O(d(lg lg lg σ)2 lg lg σ) time, where d = lab degree edge(α, x).
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Proof. To prove the first result, we use Lemma 6.12 to represent each page. Assume that mi

pages are embedded in the ith page, and that there are ti edge-label pairs between them and

the alphabet set. The total space cost in bits is k(n+ o(n))+
∑k

i=1(lg
(

miσ
ti

)

+ ti · o(lg σ)) ≤
k(n+ o(n)) + lg

(

mσ
t

)

+ t · o(lg σ). To support the above operations on G, we perform them

on each page. Note that to perform lab adjacency on a page, it only takes constant time

if the edge between these two vertices is not embedded in this page. It is then easy to show

the above running time of each operation is correct.

To prove the second result, we use the second result of Theorem 6.8 to encode the

combinatorial structure of G. Recall that in its proof, we construct a multiple parenthesis

sequence S, and two bit vectors B and B′. To encode the labels, we use an approach similar

to that used in the proof of Lemma 6.12. We observe that the edges of G sorted by the

positions of the corresponding opening parentheses (of any type) in S and the set of labels

form a binary relation, and we denote this relation by R′. Similarly, the edges of G sorted

by the positions of the corresponding closing parentheses (of any type) in S and the set of

labels form a binary relation L′. We use Theorem 3.5 to represent the binary relation R′

in lg
(

mσ
t

)

+ t · o(lg σ) bits. Observe that for the ith closing parenthesis in S, we can locate

the position of the matching opening parenthesis using m match, and compute the number

of opening parentheses preceding it in S using B′. This can be performed in constant

time. Thus we can use object select on R′ to directly support object select on L′.

We construct a succinct index of t · lg σ bits using Theorem 3.3 for the binary relation L′.

All these data structures occupy n+o(n)+(2m+ε) lg k+m ·o(lg k)+lg
(

mσ
t

)

+m ·o(lg σ) =

n + o(n) + 2m(lg k + o(lg k)) + lg
(

mσ
t

)

+ m · o(lg σ) bits, as k ≤ m2.

With the above data structures, the algorithms in the proof of Lemma 6.11 can be

easily modified to support the operations on G, and the theorem follows. �

As a planar graph can be embedded in at most 4 pages [86], we have the following

corollary.

Corollary 6.5. An edge-labeled planar graph of n vertices and m edges, in which the edges

are associated with σ labels in t pairs (t ≥ m), can be represented using n+o(n)+lg
(

mσ
t

)

+

t · o(lg σ) bits to support:

• edge label in O(1) time;
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• lab adjacency in O(lg lg σ) time;

• lab degree edge in O((lg lg lg σ)2 lg lg σ) time;

• lab edges(α, x) in O(d(lg lg lg σ)2 lg lg σ) time, where d = lab degree edge(α, x).

Proof. When we prove the second result in Theorem 6.9, we use the second result in

Theorem 6.7 to encode the multiple parenthesis sequence S. Theorem 6.7 applies to the

case when the number of types of parentheses is non-constant. To prove this theorem, as

a planar graph can be embedded in at most 4 pages, the number of type of parentheses in

S is 4. Thus we can use Lemma 6.1 to represent S and the corollary directly follows. �

An alternative approach to achieve a similar result is to compute a straight-line embed-

ding of the planar graph first, and then use Corollary 6.4 to represent it. The space cost is

increased to O(n) + lg
(

mσ
t

)

+ t · o(lg σ) bits. Thus Corollary 6.4 is more suitable when we

need to use label-based rank/select operations in ccw order on edge labeled planar graphs

that are already straight-line embedded in the plane.

6.6 Discussion

In this chapter, we present a framework for succinct representation of properties of graphs

in the form of labels. Our main results are the succinct representations of labeled and multi-

labeled graphs (we consider vertex/edge labeled planar triangulations, vertex/edge labeled

planar graphs, as well as edge labeled k-page graphs) to support various label queries effi-

ciently. The additional space cost to store the labels is essentially the information-theoretic

minimum. As far as we know, our representations are the first succinct representations of

labeled graphs. We also present two preliminary results on unlabeled graphs to achieve

the main results. First, we design a succinct representation of unlabeled planar triangu-

lations and straight-line embedded planar graphs to support the rank/select of edges in

ccw (counter clockwise) order in addition to the other operations supported in previous

work [18, 19, 17, 15, 16]. Second, we design a succinct representation for a k-page graph

when k is large to support various navigational operations more efficiently. In particular,
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we can test the adjacency of two vertices in O(lg k lg lg k) time, while previous work uses

O(k) time [70, 71, 35].

We expect that our approach can be extended to support some of the other types of

graphs, which is an open research topic. Another open problem is to represent vertex

labeled k-page graphs succinctly.

Our final comment is that because Theorem 6.2, Theorem 6.3, Theorem 6.5 and Theo-

rem 6.6 provide succinct indexes for vertex/edge labeled planar triangulations and planar

graphs, we can in fact store the labels in compressed form as we have done in Theorem 3.4

to compress strings, while still providing the same support for operations. This also applies

to Theorem 6.9, where we apply succinct indexes for binary relations to encode the labels.



Chapter 7

Conclusion

In this thesis, we define succinct indexes for the design of data structures. We show their

advantages by presenting succinct indexes for strings, binary relations, multi-labeled trees

and multi-labeled graphs, and by applying them to various applications.

Using our techniques, we design a succinct encoding that represents a string of length

n over an alphabet of size σ using nHk + lg σ · o(n) + n · o(lg σ) bits to support ac-

cess/rank/select operations in O((lg lg σ)1+ε) time, for any fixed constant ε > 0. We also

design a succinct text index using n(Hk + o(lg σ)) bits that supports pattern matching

queries in O(m lg lg σ + occ lg1+ε n lg lg σ) time, for a given pattern of length m. Previ-

ous results on these two problems either have a lg σ factor instead of lg lg σ in terms of

running time [44], or are not easily compressible [41]. We also design a succinct encoding

that represents a binary relation formed by t pairs between n objects and σ labels using

lg
(

nσ
t

)

+ t · o(lg σ) bits to support various types of rank/select operations efficiently. This

space cost is close to the information-theoretic minimum. Our succinct representation

of multi-labeled trees supports label-based ancestor, child and descendant queries at the

same time, while previous results do not [36, 37, 29, 5]. We also design the first succinct

representations of multi-labeled graphs.

The concept of succinct indexes is of both theoretical and practical importance to the

design of data structures. In theory, the separation of the ADT and the index enables

researchers to design an encoding of the given data to achieve desired results or tradeoffs

more easily, as the encoding only need support the ADT. In addition, to support new
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operations, researchers merely need design additional succinct indexes without redesigning

the whole structure. In practice, this concept allows developers to engineer the implemen-

tation of ADTs and succinct indexes separately. The fact that multiple succinct indexes

for the same ADT can be easily combined to provide one succinct index makes it possible

to further divide the implementation of succinct indexes into several (possibly concurrent)

steps. This is good software engineering practice, to allow separate testing and concurrent

development, and to facilitate the design of expandable software libraries. Furthermore,

succinct indexes provide a way to support efficient operations on implicit data, which is

common in both theory and practice. We thus expect that the concept of succinct indexes

will influence the design of succinct data structures.

Other contributions of the thesis include various preliminary results that we obtain in

order to design succinct indexes. We present a theorem that characterizes a permutation

as a suffix array, based on which we design succinct text indexes. We design a succinct

representation of ordinal trees that supports all the navigational operations supported by

various succinct tree representations while requiring only 2n + o(n) bits. In addition,

this representation also supports two other encodings schemes, the balanced parenthesis

sequence [70, 71] and the DFUDS sequence [10, 9], of ordinal trees as abstract data types.

To design succinct indexes for multi-labeled graphs, we design a succinct representation of

unlabeled planar triangulations and straight-line embedded planar graphs to support the

rank/select of edges in ccw (counter clockwise) order in addition to the other operations

supported in previous work [18, 19, 17, 15, 16]. We also design a succinct representation for

a k-page graph when k is large to support various navigational operations more efficiently.

In particular, we can test the adjacency of two vertices in O(lg k lg lg k) time, while previous

work uses O(k) time [70, 71, 35].

In addition to the specific open problems mentioned in the discussion part of each

chapter, there are several general directions for future work. The work in this thesis

concentrates on static data structures; we aim at designing succinct representations of

static data structures that allow data to be retrieved efficiently. However, various large

applications require data to be updated frequently. For example, general-purpose XML

databases usually need provide support for update operations. Previous results on succinct

dynamic data structures primarily focus on designing succinct integrated encodings [73,
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76, 63, 47]. How to design succinct indexes for dynamic data structures is thus an open

research field.

The results in this thesis are for data structures in internal memory. Another approach

of handling large data sets is to design IO-efficient algorithms and data structures. It

remains open to extend our work to handle data in external memory. Finally, proving the

lower bounds of the sizes of various succinct indexes is another open research field. The

issue of lower bounds is addressed in [40], though several related problems still remain

open.



Appendix A

Glossary of Definitions

α-predecessor/α-successor (binary relations) Consider a binary relation formed by

t pairs from an object set [n] and a label set [σ], a literal α ∈ [σ] ∪ [σ̄] and an object

x ∈ [n]. The α-predecessor of object x, denoted by label pred(α, x), is the last

object matching α before (and not including) object x, if it exists. Similarly, the

α-successor of object x, denoted by label succ(α, x), is the first object matching α

after (and not including) object x, if it exists.

α-predecessor/α-successor (strings) Consider a string S ∈ [σ]n, a literal α ∈ [σ] ∪
[σ̄] and a position x ∈ [n] in S. The α-predecessor of position x, denoted by

string pred(α, x), is the last position matching α before (and not including) position

x, if it exists. Similarly, the α-successor of position x, denoted by string succ(α, x),

is the first position matching α after (and not including) position x, if it exists.

τ ∗-name Given a node x whose τ -name is τ(x) =< τ1(x), τ2(x), τ3(x) >, its τ ∗-name is

τ ∗(x) =< τ1(x), τ2(x), τ ∗
3 (x) >, if x is the τ ∗

3 (x)th node of its micro-tree in DFUDS order.

ascending run Given a segment [i, j] (1 < i ≤ j ≤ n) of a permutation M [1..n], we call

it an ascending run iff for any k, l where 1 ≤ k, l < n, if i ≤ M−1[k] < M−1[l] ≤ j,

then M−1[k + 1] < M−1[l + 1].

ascending-to-max Given a permutation M [1..n] of [n], we call it ascending-to-max iff for

any integer i where 1 ≤ i ≤ n− 2, we have:
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(i) if M−1[i] < M−1[n] and M−1[i + 1] < M−1[n], then M−1[i] < M−1[i + 1], and

(ii) if M−1[i] > M−1[n] and M−1[i + 1] > M−1[n], then M−1[i] > M−1[i + 1].

DFUDS changer List the nodes in DFUDS order, numbered 1, 2, ..., n. The ith node in

DFUDS order is a tier-1 (or tier-2) DFUDS changer if i = 1, or if the ith and (i−1)th nodes

in DFUDS order are in different mini-trees (or micro-trees).

kth order empirical entropy Consider a string S of length n over alphabet [σ]. Given

another string w ∈ [σ]k, we define the string wS to be a concatenation of all the

single characters immediately following one of the occurrences of w in S. Then the

kth order empirical entropy of S is

Hk(T ) =
1

|S|
∑

w∈[σ]k

|wS|H0(wS).

level successor graph The tier-1 (or tier-2) level successor graph G = {V,E} is a undi-

rected graph in which the ith vertex, vi, corresponds to the ith tier-1 (or tier-2)

preorder segment, and the edge (vi, vj) ∈ E iff there exist nodes x and y in the ith

and jth tier-1 (or tier-2) preorder segments, respectively, such that either x is y’s level

successor, or y is x’s level successor.

literal (binary relations) Consider a binary relation formed by t pairs from an object

set [n] and a label set [σ]. An object x ∈ [n] matches literal α ∈ [σ] if x is associated

with α. An object x ∈ [n] matches literal ᾱ if x is not associated with α. For

simplicity, we define [σ̄] to be the set {1, . . . , σ}.

literal (strings) Consider a string S[1 . . . n] over the alphabet [σ]. A position x ∈ [n]

matches literal α ∈ [σ] if S[x] = α. A position x ∈ [n] matches literal ᾱ if S[x] 6= α.

For simplicity, we define [σ̄] to be the set {1, . . . , σ}.

maximal ascending run Given an ascending run [i, j] of a permutation M [1..n], it is a

maximal ascending run iff for any segment [s, t] of M , if [s, t] ⊃ [i, j], then [s, t] is not

an ascending run.
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non-nesting Given a permutation M [1..n] of [n], we call it non-nesting iff for any two

integers i, j, where 1 ≤ i, j ≤ n− 1 and M−1[i] < M−1[j], we have:

(i) if M−1[i] < M−1[i+1] and M−1[j] < M−1[j +1], then M−1[i+1] < M−1[j +1],

and

(ii) if M−1[i] > M−1[i+1] and M−1[j] > M−1[j +1], then M−1[i+1] < M−1[j +1].

permuted binary relation Given a permutation π on [n] and a binary relation R ⊂
[n]× [σ], the permuted binary relation π(R) is the relation such that (x, α) ∈ π(R) if

and only if (π−1(x), α) ∈ R.

preorder changer Node x is a tier-1 (or tier-2) preorder changer if x = 1, or if nodes x

and (x− 1) are in different mini-trees (or micro-trees).

preorder segment A tier-1 (or tier-2) preorder segment is a sequence of nodes x, (x +

1), · · · , (x + i) that satisfies:

• Node x is a tier-1 (or tier-2) preorder changer;

• Node (x + i + 1) is a tier-1 (or tier-2) preorder changer if x + i + 1 ≤ n;

• None of the nodes (x + 1), (x + 2), · · · , (x + i) is a tier-1 (or tier-2) preorder

changer.

pseudo leaf Each leaf of a mini-tree (or micro-tree) is a pseudo leaf of the original tree T .

A pseudo leaf that is also a leaf of T is a real leaf. Given a mini-tree (or micro-tree),

we mark the leftmost real leaf of the mini-tree (or micro-tree), and the first real leaf

in preorder after each subtree of T rooted at a node that is not in the mini-tree (or

micro-tree), but is a child of a node in it. These nodes are called tier-1 (or tier-2)

marked leaves.

realizer A realizer of a planar triangulation T is a partition of the set of the internal edges

into three sets T0, T1 and T2 of directed edges, such that for each internal vertex v

the following conditions hold:

• v has exactly one outgoing edge in each of the three sets T0, T1 and T2;
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• local condition: the edges incident to v in counterclockwise (ccw) order are: one

outgoing edge in T0, zero or more incoming edges in T2, one outgoing edge in

T1, zero or more incoming edges in T0, one outgoing edge in T2, and finally zero

or more incoming edges in T1.

recursivity The recursivity ρα of a label α in a multi-labeled tree is the maximum number

of occurrences of α on any rooted path of the tree. The average recursivity ρ of a

multi-labeled tree is the average recursivity of the labels weighted by the number of

nodes associated with each label α (denoted by tα): ρ = 1
t

∑

α∈[σ](tαρα).

reverse pair A reverse pair on two given permutations π1 and π2 is a pair of integers

(i, j), where 1 ≤ i, j ≤ n, such that π−1
1 [i] < π−1

1 [j] but π−1
2 [i] > π−1

2 [j], i.e. the

relative positions of i and j in π1 and π2 are different.

three traversal orders on a planar triangulation The zeroth order, π0, is defined on

all the vertices of T and is simply given by the preorder traversal of T0 starting at

v0 in counter clockwise order (ccw order).

The first order, π1, is defined on the vertices of T \v0 and corresponds to a traversal of

the edges of T1 as follows. Perform a preorder traversal of the contour of T0 in a ccw

manner. During this traversal, when visiting a vertex v, we enumerate consecutively

its incident edges (v, u1), . . . , (v, ui) in T1, where v appears before ui in π0. The

traversal of the edges of T1 naturally induces an order on the nodes of T1: each node

(different from v1) is uniquely associated with its parent edge in T1.

The second order, π2, is defined on the vertices of T \ {v0, v1} and can be computed

in a similar manner by performing a preorder traversal of T0 in clockwise order (cw

order). When visiting in cw order the contour of T0, the edges in T2 incident to a

node v are listed consecutively to induce an order on the vertices of T2.

weak visibility representation A weak visibility representation of a graph G is a map-

ping of its vertices into non-overlapping horizontal segments called vertex segments

and of its edges into vertical segments called edge segments. Under this mapping, the

edge between any two given vertices x and y is mapped to an edge segment whose
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end points are on the vertex segments of x and y, and this edge segment does not

cross any other vertex segment.

zeroth order empirical entropy The zeroth order empirical entropy of a string S of

length n over alphabet [σ] is

H0(S) =
σ

∑

α=1

(pα log2

1

pα

) = −
σ

∑

α=1

(pα log2 pα),

where pα is the frequency of the occurrence of character α, and 0 log2 0 is interpreted

as 0.
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[3] Jérémy Barbay. Adaptive search algorithm for patterns, in succinctly encoded XML.

Technical Report CS-2006-11, University of Waterloo, Ontario, Canada, 2006.
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[63] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and full-

text indexes. In Proceedings of the 17th Annual Symposium on Combinatorial Pattern

Matching, pages 306–317, 2006.



BIBLIOGRAPHY 175
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rank open, 79

select close, 79
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balanced parenthesis sequence, 70

binary relation, 10

label access, 10

label nb, 11

label pred, 22
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object rank, 11
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bit vector, 6–7

bin rank, 6

bin rank′, 7

bin select, 7

book embedding, 122

book thickness, 123
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Burrows-Wheeler transform, 33–34
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canonical ordering, 126

canonical spanning tree, 126

cardinal tree, 66

cardinality query, 30

compression boosting, 35
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DFUDS order, 67
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edge labeled planar triangulation, 141

edge label, 141

lab adjacency, 141

lab degree edge, 141

lab rank edge ccw, 142

lab select edge ccw, 142

entropy, 7–8

kth order empirical entropy, 8

zeroth order empirical entropy, 8

existential query, 30

extended micro-tree, 75

original node, 75

promoted node, 75

type 1 extended micro-tree, 76

type 2 extended micro-tree, 76
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information-theoretic lower bound, 7

inverted file, 31

k-page embedding, 123

k-page graph, 151
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left page, 151

right edge, 151

span, 151
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labeled tree, 68

α-ancestor, 68

α-child, 68

α-descendant, 68

level, 97

level order unary degree sequence, 70

level predecessor, 68

level successor, 68

level successor graph, 103

level-order traversal, 70

listing query, 30

LOUDS, see level order unary degree sequence

marked opening parentheses, 108
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micro-tree, 74

mini-tree, 74
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m match, 124

m rank, 124

m rank′, 150

m select, 124

type-i closing parenthesis, 124

type-i opening parenthesis, 124

ordinal tree, 66
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level anc, 67

level leftmost, 68

level pred, 68
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node rank, 68
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node select, 68

orthogonal range searching, 33

pagenumber, 123
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preorder boundary node, 75
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RAM, see random-access machine

random-access machine, 5

range maximum query, 77

range minimum query, 77

realizer, 125

local condition, 125

recursivity, 115

average recursivity, 115

straight line embedding, 143

stratified tree, 12

string, 9

string access, 9

string rank, 9
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string pred, 14

string succ, 14

string select, 9

α-predecessor, see string pred

α-successor, see string succ

literal, 14

succinct data structure, 1

succinct index, 2

succinct integrated encoding, 1

succinctness, 7

suffix array, 31

suffix tree, 31

TC, see tree covering

text index, 30

full text index, 31

word-level index, 31

the first order, 126

the second order, 126

the zeroth order, 126

tree covering, 71

vertex labeled planar triangulation, 138

lab degree, 138

lab rank ccw, 139

lab select ccw, 138

node label, 139

vertex separator, 123

visibility representation

weak visibility representation, 78

edge segment, 78

vertex segment, 78

wavelet tree, 10

word random-access machine, 6

xbw transform, 72

y-fast trie, 12
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