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Abstract. This paper presents a way to compactly represent dynamic
connected planar embeddings, which may contain self loops and multi-
edges, in 4m + o(m) bits, to support basic navigation in O(lgn) time
and edge and vertex insertion and deletion in O(lg1+ϵ n) time, where
n and m are respectively the number of vertices and edges currently
in the graph and ϵ is an arbitrary positive constant. Previous works
on dynamic succinct planar graphs either consider decremental settings
only or are restricted to triangulations where the outer face must be
a simple polygon and all inner faces must be triangles. To the best of
our knowledge, this paper presents the first representation of dynamic
compact connected planar embeddings that supports a full set of dynamic
operations without restrictions on the sizes or shapes of the faces.

Keywords: Planar embedding · Dynamic planar embedding · Dynamic
compact data structures.

1 Introduction

A particular type of graphs, planar graphs, may be used to model the famous
initial graph problem known as the seven bridges of Königsberg [21]. Aside from
this application, planar graphs are also applicable to some maps in general,
VLSI circuits [11], chemical molecules [1], and spatial partitions in geographical
information systems (GIS) [11].

A more contemporary problem concerns the dramatic growth of problem
sizes with respect to the growth in computer memory [7,16]. Although com-
puter memories are growing, and our ability to store data in secondary or even
tertiary storage is still sufficient, being able to process this data in main mem-
ory is becoming more cumbersome. Secondary to this concern is the size of the
data structure built on the data which is used to perform queries and updates.
These data structures often occupy much more space than the data itself. Hence,
Jacobson proposed to study succinct data structures [12].

This paper exists at the intersection of graph theory and compact data struc-
tures, examining a way to represent a connected planar graph embedding using
compact data structures. Much research has been conducted on static planar
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graphs where O(n) bits are used to support common navigational operations
such as adjacency testing and listing a vertex’s neighbors [3,4,5,7,12,14,19].

Static data structures offer easy access to the objects they store. However,
objects either cannot be added or deleted from the structure or doing so would
require rebuilding the entire structure itself. None of the prior works cited sup-
port the insertion or deletion of an edge or a vertex. Prior work on dynamic
succinct planar graphs is restricted to triangulations where the outer face must
be a simple polygon and all inner faces must be triangles [2] or consider the
decremental setting under which the graph is updated by edge contractions and
vertex deletions only [13]. This paper presents a way to dynamize a compact
representation of a connected planar embedding.

The operations we aim to support include the following:

– Given a vertex v, or an edge (v, u), list the edges incident to v in clockwise
or counterclockwise order, starting from (v, u) when given.

– Given an edge (v, u) and a face F that (v, u) is incident to, list the edges
incident to F in clockwise or counterclockwise order starting from (v, u).

– Given two corners of a face, insert an edge between their apexes, bisecting
these corners. Here, a corner is defined as the space between consecutive
edges incident to a vertex [10], and this vertex is the apex of the corner.

– Delete a given edge from G so long as G remains connected.
– Given a corner with apex v, insert a degree-1 vertex u in the corner as a new

neighbor of v.
– Given a degree-1 vertex v, delete v and the edge e it is incident to from G.

These operations allow for the transformation from one connected planar
embedding to another connected planar embedding.

1.1 Our Contribution

Our contribution is summarized by the following theorem:

Theorem 1. Given a connected planar embedding G, possibly containing multi-
edges and self loops, on n vertices and m edges, there is a compact representation
of G occupying 4m+ o(m) bits that can list the edges incident to a given vertex
in clockwise or counterclockwise order in O(lg n) time per edge, list the edges
incident to a face in O(lg n) time per edge, and support insertion or deletion of
an edge or a vertex in O(lg1+ϵ n) time for any constant ϵ > 0.

To the best of our knowledge, this paper presents the first dynamic compact
connected planar embedding that supports fast insertion and deletion of an
edge or a vertex and has no restrictions on the sizes or shapes of the faces.
Additionally, we present the marker model to support navigational operations
within a given connected planar embedding. This model is similar to the finger-
update model [6] where a finger, or marker, is maintained on a given vertex and
updates to the structure are limited to the position of the finger, or marker.
The difference between the marker model and the finger-update model is that
a marker has an indicator that points to a specific corner in the given planar
embedding.
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2 Related Work

We survey previous results on succinct representations of planar embeddings
[3,4,7,14,19,20]. Succinct planar graph representations that cannot encode an
arbitrary embedding are not included; see [4] for a survey including those results.
Tutte [20] enumerated rooted planar maps and his results implied that m lg 12 =
3.58m bits are required to encode an m-edge planar embedding. Turán [19]
derived a simple succinct encoding of planar graphs that uses 4m bits. Keeler and
Westbrook [14] then showed an encoding of planar maps that achieves Tutte’s
lower space bound, but no operations are supported. Additionally, their encoding
and decoding algorithms run in linear time. Later, researchers designed succinct
data structures for planar embeddings, and the operations supported by these
structures include listing the neighbors of a given vertex in counterclockwise
or clockwise order. Barbay et al. [3] showed how to represent a simple planar
embedding in 18n+o(m) bits to support degree and adjacency queries in constant
time and the listing of neighbors in constant time per neighbor. Blelloch and
Farzan [4] developed a data structure that occupies 3.58m+o(m) bits and provide
the same support for queries. Ferres et al. [7] modified Turán’s [19] structure to
occupy o(m) additional bits and showed the following: the edges incident to
vertex v can be listed in clockwise or counterclockwise order in constant time
per edge, the edges limiting a face can be traversed in constant time per edge,
a vertex’s degree can be found in O(f(m)) time for any function f(m) ∈ ω(1)
and testing if two given vertices are neighbors in O(f(m)) time for any function
f(m) ∈ ω(lgm). This data structure is simpler than previous solutions and can
be constructed in parallel efficiently. Fuentes-Sepúlveda et al. [8] further showed
that by using half-edges and condensing Ferres et al.’s [7] data structures, a full
set of topological queries can be supported efficiently.

All the above-mentioned works concern succinct representations of planar
graphs in the static case. With respect to the dynamic case, Aleardi et al. [2]
designed a succinct representation of an n-vertex triangulated graph with fixed
genus g and a simple polygon boundary that supports standard navigation in
O(1) time, vertex addition in O(1) amortized time without supporting access
to satellite data associated with each vertex, O(lg n) amortized time with data
access, and vertex deletion or edge flip1 in O(lg2 n) amortized time. This data
structure occupies 2.17m + o(m) bits and uses an additional O(g lgm) bits for
representing triangulations on genus g surfaces. Kammer and Meintrup [13] pro-
vided a dynamic data structure, a modification of Blelloch and Farzan’s [4], that
encodes a planar graph in H(n) + o(n) bits to support an arbitrary sequence of
edge contractions and vertex deletions in O(n) time, where H(n) is the entropy
of encoding an n-vertex planar graph. It can compute the degree of a vertex
in O(1) time and list the neighbors in O(1) time per neighbor. Edge or vertex
insertions are not supported, so their solution is for the decremental setting only.

1 Edge flipping refers to removing the edge e and replacing it with the other diagonal
of Q, where Q is the union of two triangles which create a quadrilateral.
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3 Preliminaries

3.1 Notation

We assume the word-RAM model of computation. For the remainder of this
paper, let G be a given connected planar embedding on n vertices, m edges and
f faces that may contain multi-edges and self loops. All logarithms are written
as lg and are base 2, unless otherwise specified.

3.2 Dynamic Bitvectors

A dynamic bitvector B[1..n], supporting the following operations, is a key
compact data structure (b ∈ {0, 1} in the following definitions):

– access(B, i): return the bit in B[i] for any i such that 1 ≤ i ≤ n.
– rankb(B, i): return the number of occurrences of b in B[1..i] where 1 ≤ i ≤ n.
– selectb(B, j): return the index of the jth occurrence of b in B.
– insert(B, i, b): inserts bit b between B[i− 1] and B[i] where 1 ≤ i ≤ n.
– delete(B, i): deletes the bit in position B[i] where 1 ≤ i ≤ n.
– link(B, p,B′): attaches all the bits in B′ between bits B[p] and B[p + 1]

where 1 ≤ p ≤ n and |B′| is another bit vector with O(n) bits.
– cut(B, i, j): returns bitvector B′ which contains all the detached bits in B

from B[i] up to and including B[j] where 1 ≤ i < j ≤ n. B is then the
concatenation of the bit ranges [1..(i− 1)] and [(j + 1)..n].

Navarro and Sadakane [17] present the following:

Lemma 1. ([17]). There exists a succinct dynamic bitvector structure that sup-
ports access, rank, select, insert and delete in O( lgn

lg lgn ) time and link and

cut in O(lg1+ϵ n) time, where n is the number of bits currently in the bitvector
and ϵ is an arbitrary positive constant.

3.3 Planar Graph Traversal

The traversal of a planar embedding G developed by Turán [19], which is used
by Ferres et al. [7] to generate a binary sequence A, is now described. From
here forward, we will refer to this traversal as a Turán traversal. An arbitrary
spanning tree T , which is rooted at some vertex v0 on the outer face of G, is
computed before the traversal. We note that a Turán traversal can be performed
in counterclockwise or clockwise order. Without the loss of generality, we use
counterclockwise order and design our data structures with respect to this or-
dering. We call an edge in G that is also in T a primal edge and an edge in G not
in T a dual edge. In this Turán traversal, after we visit a vertex v and traverse
or examine an edge, (v, u), incident to it, we view (v, u) as a directed edge by
orienting it from v to u, even though the graph G is undirected.

The traversal of G begins from the vertex selected as the root v0 of T and
examines one of its incident edges (v0, u) such that (v0, u) is on the boundary
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Fig. 1: Planar embedding G where the red solid edges correspond to edges in
T , the black dashed edges correspond to edges in G \ T , and blue dotted edges
correspond to edges in T ∗, the dual of G complementary to T . Each vertex of
G is labeled by its preorder rank in T , while each face is labeled alphabetically
in the order they are first visited in the Euler tour of T ∗. The violet arrow on
the vertex labeled 1 and directed at the face labeled E depicts a marker (to be
discussed in Section 4.2). Bitvector A contains a Turán traversal beginning with
edge (1, 5) and proceeding counterclockwise. The violet boldfaced 1 bit indicates
the marker as represented by the violet arrow on vertex 1 which is marker 16.

of the outer face and the outer face is to its right. The traversal is a modified
depth first search (DFS) where we visit vertices in counterclockwise order. In
a standard DFS, we examine an edge (v, u) and do not traverse from v to u if
u has already been visited, unless we are returning to a parent. In the Turán
traversal, we examine an edge (v, u), and if (v, u) is a primal edge, we traverse
from v to u and record a 1 in a bitvector A. Afterwards, we examine the next
edge incident to u after (u, v) in counterclockwise order. Otherwise, (v, u) is a
dual edge, and we do not traverse it. Instead, we remain on v, record a 0 in A
and examine the next edge in counterclockwise order. This process is repeated
recursively until we have visited all vertices and returned to the root v0 of T . All
edges in G have been traversed or examined twice and A[i] indicates whether
the ith edge examined in the Turán traversal is a primal or dual edge.

Observe that a Turán traversal of G performs an Euler tour traversal of T
and an Euler tour traversal of the spanning tree of the dual of G with respect
to T , which we refer to as T ∗. More specifically, to define T ∗, consider some
dual edge (v, u) in G not yet examined. Let fr (fl) be the face on the right
(left) side of (v, u). Examining (v, u) advances the Euler tour of T ∗ from fr to
fl, establishing fr as the parent of fl in T ∗, and we refer to edge (u, v) as the
entry edge of fl. Thus, T

∗ encodes a spanning tree on the faces of G and each
edge in G not in T is crossed by an edge in T ∗. In this way, every connected
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planar embedding can be represented as interdigitating spanning trees of the
primal and the dual [18]. As the Turán traversal in this paper is performed in
counterclockwise order, the traversal of T ∗ is performed clockwise from its root,
i.e., the outer face. Figure 1 gives an example.

3.4 Dynamic Succinct Euler-Tour Trees

Gagie and Wild [9] describe how to succinctly represent a set of Euler-Tour trees
of an n-vertex forest in 2n+o(n) bits. An Euler-Tour tree contains directed edges
(u, v) and (v, u) for every undirected edge in the given forest and preserves an
encoding of the order in which edges are visited in an Euler tour. Each tree in
the forest is unrooted, and its Euler tour determines the current parent-child
relationship among its nodes; this relationship may change during updates. We
use {a, b} to refer to the corner of Euler-Tour tree T between the two edges
traversed at the ath and bth steps of the Euler tour of T . In [9], the merge and
split operations are implied, but we state them explicitly as operations 10 and
11. Throughout this paper, we refer to operations 3, 4 and 5 in the lemma below
as vertex, entry and inverse, respectively. Note that Gagie and Wild did not
state the support for entry, but their existing data structures can support it
easily. The following lemma summerizes their results:

Lemma 2. ([9]). Given a planar embedding of a forest F on n vertices, F can
be encoded in a data structure occupying 2n + o(n) bits such that operations 1
through 5 below take constant time, operations 6 and 7 take O(lg n) time, and
operations 8 through 11 take O(lg1+ϵ n) time for any constant ϵ > 0.

1. return the predecessor and successor in the Euler tour of the tree containing
the given directed edge e.

2. return the predecessor and successor in the counterclockwise order of the
edges incident to u when given directed edge (u, v).

3. return vertex v such that v is the vertex arrived at after traversing the given
directed edge e in the Euler tour of T .

4. return the directed edge e encountered in the Euler tour traversal of T such
that, after traversing e, the Euler tour arrived at the given vertex v the first
time, i.e., e links the parent of v in the Euler tour traversal to v;

5. return the edge e′ such that, given a tree T and an edge e encountered in the
Euler tour of T , edge e′ corresponds to the inverse edge of e.

6. return the edge e′ such that the distance from the given directed edge e to e′

is the given distance t in the Euler tour of the tree containing e.
7. return the Euler tour distance between the given edges e and e′ so long as

the two edges are in the same tree.
8. delete the given edge e from the tree containing it and return the represen-

tations of the two resulting trees.
9. insert an edge between T and T ′ at the given corners, bisecting those corners,

and return the representation of the resulting tree.
10. merge the adjacent vertices u and v to become one vertex and retain all other

edges adjacent to u and v.
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11. split v into two adjacent vertices, v1 and v2, where v1 is a parent of v2.
Two incident boundary edges ei and ej are also given as parameters so that
edges incident to v starting from ei to ej in counterclockwise order are to be
incident to v1, while the remaining edges are to be incident to v2.

Operation 9 supports the insertion of an edge between two arbitrary ver-
tices in two trees. This operation cannot be supported by the dynamic succinct
tree representation of Navarro and Sadakane [17] which is based on a balanced
parenthesis representation, but it is needed in our dynamic planar graph repre-
sentation. We also comment that, to support operations 1-5 in constant time,
each edge is identified by a unique internal identifier. Operations 6 and 7 can
perform mapping between this identifier and the rank of the edge in the Euler
tour in O(lg n) time. Thus, when the context is clear, we may also pass or return
the rank of an edge in the Euler tour when calling vertex, entry or inverse,
and the increase in running time does not affect the complexity of our solution.

4 Data Structure and The Marker Model

4.1 Data Structure

Our representation of connected planar embedding G on n vertices, m edges,
and f faces, contains the following components:

– A dynamic bitvector, A, which encodes a Turán traversal of G described in
Section 3.3. It is represented by Lemma 1 in 2m+ o(m) bits.

– A spanning tree, T , of G as defined in Section 3.3. It is represented by
Lemma 2 in 2n+ o(n) bits.

– A spanning tree, T ∗, of the dual of G as defined in Section 3.3. It is repre-
sented by Lemma 2, in 2f + o(f) bits.

Observe that T and T ∗ represent succinct Euler-Tour trees on the vertices
and faces of G, respectively. By Euler’s formula [15], the total space cost of our
data structure is 2m+ o(m) + 2n+ o(n) + 2(m− n+ 2) = 4m+ o(m) bits.

4.2 The Marker Model

The marker model provides a way to map an index in A to specific vertices
in T and T ∗. A marker, or a marker’s value, is denoted by an index i in A,
where 1 ≤ i ≤ 2m. Recall that a Turán traversal of G induces an Euler tour
traversal on T and T ∗. Thus, we say that a marker stands on the vertex most
recently visited in the Euler tour of T and points to the face most recently
visited in the Euler tour of T ∗. The number of 1’s (0’s) in A corresponds to the
primal (dual) Euler-Tour tree edges just traversed in an Euler tour of T (T ∗).
Therefore, a marker with value i stands on the vertex of G that corresponds to
node vertex(T, rank1(A, i)) in T , and the face it points to corresponds to node
vertex(T ∗, rank0(A, i)) in T ∗. Figure 1 shows marker 16 as an example.

The following lemma shows how the face that a marker i points to relates to
the edge A[i] represents. Its proof is omitted due to space constraints.
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Lemma 3. Let (v, u) be the directed edge represented by A[i]. If (v, u) is a primal
edge, then the marker i is standing on u and pointing to the face on the right side
of (v, u). If (v, u) is a dual edge, then the marker is standing on v and pointing
to the face on the left side of (v, u).

Because we do not require G to be bi-connected, a vertex can be incident to
multiple corners of the same face. This means multiple markers can stand on the
same vertex and point to the same face, but each marker points to a different
corner of the face. Therefore, we define the orientation of a marker as the vertex
it stands on and the corner it points to. More formally, let marker i refer to
directed edge (v, u). By Lemma 3, if (v, u) is primal, then marker i stands on u
and points to the corner that has u as its apex and is on the right of directed
edge (v, u). If (v, u) is a dual edge, then marker i stands on v and points to the
corner that has v as its apex and is to the left of directed edge (v, u).

If more than one marker is maintained at a given time, then, after an update,
all markers must be updated to preserve orientation. The index a marker refers
to can be updated in O(1) time via a constant number of comparisons and
arithmetic operations due to the way we support updates. Thus, the time to
update all markers is linear in the number of markers maintained.

4.3 Navigation

Now we define two rotation operations and a traverse operation. Either rotate
operation changes the corner the marker is pointing to and the traverse operation
changes the vertex the marker is standing on. These operations are necessary to
move the marker to support queries and updates on our representation of G. For
the operations described below, let v be the vertex marker i currently stands on
and corner C of face F be the corner marker i currently points to; they will also
be referred to when we discuss how to support these operations later.

– rotate ccw(i): Compute a new orientation of the marker such that the
marker is still standing on v but is pointing to the corner next to C when
listing all the corners incident to v in counterclockwise order.

– rotate cw(i): Compute a new orientation of the marker such that the marker
is still standing on v but is pointing to the corner next to C when listing all
the corners incident to v in clockwise order.

– traverse(i): Let the edge (v, w) be the (i+1)st edge examined in the Turán
traversal. Compute a new orientation of the marker such that the marker is
now standing on w but still pointing to F .

To support rotate ccw(i), first consider the ith edge examined in a Turán
traversal. One of its endpoints is v, let u be the other endpoint, and let (v, w) be
the next edge after (v, u) in counterclockwise order. If the ith edge is a primal
edge, then, by Lemma 3, it is oriented from u to v. Furthermore, corner C is to
the right of (u, v) and is thus to the left of (v, u). If this edge is a dual edge,
then by Lemma 3, it is oriented from v to u, and corner C is again to the left of
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(v, u). In either case, since (v, w) is the edge next to (v, u) in counterclockwise
order, C is to the right of (v, w). Therefore, our goal is to compute a marker still
standing on v but pointing to the corner, C ′, to the left of (v, w); C ′ is next to
C when listing all the corners incident to v in counterclockwise order.

There are now two cases, depending on whether the (i + 1)st edge, (v, w),
enumerated in a Turán traversal, is a dual or primal edge, i.e. whether A[i+1] is
0 or 1. If A[i+1] = 0, then by Lemma 3 and the definition of marker orientation,
marker i+1 continues to stand on v but points to C ′. Therefore, we return i+1
as the answer. Otherwise, A[i+1] = 1 and the answer is computed as the index
in A when the Turán traversal returns to v from edge (w, v). This is computed by
j =select1(A,inverse(T,rank1(A, i + 1))). This follows from Lemma 3; since
(w, v) is a primal edge, the marker j is standing on v and pointing to the corner
to the right of (w, v). As the right side of (w, v) is the left side of (v, w), the
marker computed is also pointing to C ′ in this case.

The details of how to support rotate cw and traverse operations are omit-
ted due to space constraints. In the worst case, at most two dynamic bitvector
operations and one succinct Euler-Tour tree operation are performed to support
each navigational operation. Combining this with Lemmas 1 and 2, we have

Lemma 4. The structures in this section can support rotate ccw, rotate cw,
and traverse in O(lg n) time.

These rotation and traverse operations imply the support for listing the edges
incident to a vertex or a face of G. For example, to list the edges incident to a
vertex v in counterclockwise order, we start from a marker standing on v and
call rotate ccw repeatedly. Details are omitted due to space limitations. Thus,
we have proved the support of navigational operations stated in Theorem 1.

5 Dynamization

We now prove the support of updates stated in Theorem 1. As the support for
edge insertions and deletions (especially edge deletions) is more interesting, we
discuss them here. Descriptions of how to insert or delete vertices are omitted
due to space limitations.

5.1 Inserting an Edge

To minimize the changes to the Turán traversal, a new edge is always inserted
as a dual edge. To insert an edge, we need two markers, i and j, pointing to two
corners of the same face F . Let v be the vertex marker i stands on and let u be
the vertex marker j stands on. These vertices, v and u, are the endpoints of the
edge to be inserted. We assume, without the loss of generality, that i < j.

The rank0 query on A, with parameters i and j, computes the Euler tour
edges in T ∗ just processed at the ith and jth step in the Turán traversal. We
denote these Euler tour edges as i′ and j′. Recall that v is one endpoint of the
ith edge examined in a Turán traversal of G, and let w be the other endpoint.
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By Lemma 3, and similar to the reasoning from Section 4.3, no matter if this
edge is a dual edge or a primal edge, the corner, C, that marker i points to
is to the left of (v, w). If we rotate counterclockwise from (v, w), with v as the
pivot, C is the first corner encountered and is encountered before any other
edge incident to v. Therefore, when inserting an edge bisecting C, the new edge,
(v, u), is the next edge examined in a Turán traversal. This means that (v, u)
will be inserted as the dual edge examined in the (i + 1)st step of the Turán
traversal. Thus, we perform insert(A, i + 1, 0). Due to the insertion of a new
bit, we also increment j, so that marker j corresponds to the same edge after
insertion. Then, by similar reasoning, we additionally perform insert(A, j+1, 0)
to indicate that (u, v) is the dual edge examined in the (j+1)st step. To update
T ∗, we observe that drawing an edge across F splits the face. Therefore, we
perform split(vertex(T ∗, i′), i′, j′). As inserting a dual edge only affects the
faces and not the vertices, T is unaffected. Lastly, we increment m by 1. An
example depicting this is omitted due to space constraints. Thus, we have the
following lemma:

Lemma 5. Given two corners of the same face, an edge connecting their apexes
and bisecting these corners can be inserted into G in O(lg1+ϵ n) time.

5.2 Deleting an Edge

We perform an edge deletion only if, after removing the edge, G remains con-
nected. Deleting dual edges does not disconnect G, as the primal edges form the
spanning tree T , connecting all vertices of G. However, G could become discon-
nected when deleting primal edges. Therefore, we allow primal edge deletions
only if the deletion of that primal edge does not disconnect G. As the steps for
dual edge deletion are symmetric to those for edge insertion, their descriptions
are omitted while focusing on primal edge deletion in this section.

To discuss primal edge deletion, let edge (v, u) correspond to the edge enu-
merated at the ith step in a Turán traversal of G and be the primal edge we
wish to delete. When deleting a primal edge from our representation of G, there
are four items to consider. The first item to consider is how to determine if G
would be disconnected after deleting (v, u). Second, if G remains connected af-
ter deleting (v, u), how do we choose a dual edge to promote to primal? The
third item is, how are T and T ∗ affected by primal edge deletion? Lastly, recall
from Section 3.3 that a Turán traversal follows primal edges, and thus, primal
edge deletion changes the Turán traversal of G. We must then determine how
we update A to reflect a valid Turán traversal after deleting (v, u).

To determine if G would be disconnected after deleting (v, u), we inspect the
faces on either side of (v, u). If the faces are the same, then (v, u) cannot be
deleted as it is the only edge linking two connected components of G \ {(v, u)}.
If the faces are different, then (v, u) can be deleted while G remains connected.

Assuming the faces adjacent to (v, u) are different, we now discuss how to se-
lect a dual edge to promote to primal. Recall that the ith step in a Turán traversal
corresponds to traversing (v, u) and let the jth step be the step traversing the
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same edge in the reverse direction, i.e. from u to v. We assume, without the loss
of generality, that i < j. Observe that deleting a primal edge in G corresponds
to deleting an edge in T and therefore disconnecting T into two trees. Our goal
is to select a dual edge to promote to primal that reconnects these two trees.
The following lemma will be useful when we select such an edge; when proving
it, we define the interval of A corresponding to an edge of G (henceforth the
interval of this edge for short) to be [a, b] if this edge is examined in steps a and
b of the Turán traversal with a < b, e.g., the interval of (v, u) is [i, j].

Lemma 6. Between the two faces incident to (v, u), at least one of them has
the property that the interval of its entry edge does not enclose [i, j].

Proof. Let F1 and F2 be the two faces incident to (v, u). Let g1 and g2 be the
indices in A corresponding to the entry edges of F1 and F2, respectively, and let
k1 and k2 be the indices of the reverse of the edges corresponding to A[g1] and
A[g2], respectively. We assume, without the loss of generality, that g1 < g2.

Assume to the contrary that both [g1, k1] and [g2, k2] enclose [i, j]. Then
[g1, k1] and [g2, k2] must intersect. Furthermore, the endpoints of the interval of
the entry edge of a face correspond to the first and the last time we visit the
node of T ∗ representing this face in an Euler tour traversal of T ∗. Therefore, if
the entry edge intervals of two faces intersect, one must enclose the other. Since
g1 < g2, we have [g2, k2] ⊂ [g1, k1], and the node, f2, of T

∗ representing F2 is
a descendant of the node, f1, of T

∗ representing F1. This means that between
steps g2 and k2 of the Turán traversal, the induced Euler tour of T ∗ only visits
nodes that are descendants of f2 in T ∗, including f2 itself. Since f1 is the parent
of f2, no marker between g2 and k2 can point to face F1. However, either marker
i or marker j points to F1, and [i, j] ⊂ [g2, k2], which is a contradiction.

Let F be a face incident to (v, u) such that the interval, [g, k], of its entry
edge, (w, x), does not enclose [i, j]; if both faces incident to (v, u) satisfy this
condition, we choose F arbitrarily between them. Then marker g stands on w
while marker k stands on x. We promote dual edge (w, x) to primal because:

Lemma 7. (T \ {(v, u)}) ∪ {(w, x)} is a spanning tree of G.

Proof. All the markers that point to F are in [g, k]. Since either marker i or
marker j points to F , i or j must be strictly between g and k. Therefore, [i, j]
and [g, k] must intersect, and [g, k] ̸⊆ [i, j]. As F is the face whose entry edge
interval, [g, k], does not enclose [i, j], we observe the following two cases:

1 ≤ g < i < k < j ≤ 2m (1)

1 ≤ i < g < j < k ≤ 2m (2)

To prove our lemma in either case, observe that the removal of edge (v, u)
disconnects T into two connected components. One of these two components
is Tu, the subtree rooted at vertex u. By the definition of a Turán traversal, a
marker stands on a vertex in Tu if and only if this marker is in [i, j − 1]. The
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inequalities for these two cases then guarantee that the vertex that g stands on
(which is vertex w) and the vertex that k stands on (which is vertex x) are in
different components of T \ {(u, v)}, and the lemma follows.

We are now ready to describe our algorithm for primal edge deletion. To
delete the primal edge (v, u) enumerated at the ith step of a Turán traversal of
G, we first compute the step j where the Turán traversal traverses (v, u) in the
reverse direction, i.e., from u to v. By Lemma 3, marker i points to the face on one
side of (v, u) and marker j points to the face on the other side of (v, u). Hence,
we perform v1 = vertex(T ∗, rank0(A, i)) and v2 = vertex(T ∗, rank0(A, j))
to compute the nodes of T ∗ that respectively represent the faces adjacent to
(v, u). If these faces are the same, then deleting (v, u) would disconnect G, so we
do not remove (v, u) and immediately return. Otherwise, the intervals of these
faces are [select0(A, entry(T ∗, v1)), select0(A, inverse(T ∗, entry(T ∗, v1)))]
and [select0(A, entry(T ∗, v2)), select0(A, inverse(T ∗, entry(T ∗, v2)))]. We
compare these intervals to [i, j] to determine which of these two faces should be
chosen to be F so that F is a face incident to (v, u) whose entry edge’s interval,
[g, k], does not enclose [i, j]. Let F ′ be the other face incident to (v, u).

Next we update T and T ∗ to reflect the deletion of (v, u) and the promo-
tion of (w, x). Deleting a primal edge from G corresponds to deleting an edge
from T , thereby disconnecting T . By Lemma 7, after deleting (v, u) and pro-
moting (w, x), T remains a spanning a tree of G. Let Tv be the tree containing
v and Tu be the tree containing u, after the deletion of (v, u). By promoting
(w, x), we are connecting Tv and Tu at corners {rank1(A, g), rank1(A, g) + 1}
and {rank1(A, k), rank1(A, k) + 1}. As for T ∗, promoting (w, x) to primal cor-
responds to deleting the edge connecting the faces on either side of (w, x), so
we delete the Euler tour edge in T ∗ corresponding to rank0(A, g). This creates
two subtrees in T ∗, T ∗

F and T ∗
F ′ , where one subtree contains F and the other

contains F ′. Deleting (v, u) corresponds to merging faces F and F ′ and thereby
reconnecting T ∗. To merge these faces in T ∗ we first add an edge to connect the
two subtrees, T ∗

F and T ∗
F ′ , at the corners {rank0(A, i), rank0(A, i) + 1} and

{rank0(A, j), rank0(A, j) + 1} and temporarily store a reference to this newly
added edge, ℓ, and its inverse, ℓ′. Then, we merge F and F ′ by performing
merge(T ∗, vertex(T ∗, ℓ), vertex(T ∗, ℓ′)). By Lemma 2, merging vertices and
deleting edges in a succinct Euler-Tour tree takes at most O(lg1+ϵ n) time.

Finally, we show how to update A. There are two cases. In the first case,
inequality 1 holds. In this case, we update A to A[1, g− 1].1.A[k+1, j− 1].A[i+
1, k−1].1.A[g+1, i−1].A[j+1, 2m], where “.” is the concatenation operator for
bitvectors. This can be done using a constant number of insert, delete, cut,
and link operations over A in O(lg1+ϵ n) time. The correctness can be shown by
analyzing how the Turán traversal works after edge deletion; details are omitted
due to space constraints. With respect to the second case, inequality 2 holds, and
we update A to A[1, i−1].A[j+1, k−1].1.A[g+1, j−1].A[i+1, g−1].1.A[k+1, 2m].
This bitvector is obtained by similar reasoning as the first case above.

Lemma 8. An edge can be deleted from G in O(lg1+ϵ n) time, so long as G
remains connected.
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