
Internal Masked Prefix Sums and Its
Connection to Fully Internal Measurement

Queries

Rathish Das1, Meng He2, Eitan Kondratovsky1(B), J. Ian Munro1,
and Kaiyu Wu1

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{rathish.das,eitan.kondratovsky,imunro,k29wu}@uwaterloo.ca

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada
mhe@cs.dal.ca

https://cs.uwaterloo.ca/~imunro/, https://web.cs.dal.ca/~mhe/

Abstract. We define a generalization of the prefix sum problem in which
the vector can be masked by segments of a second (Boolean) vector. This
problem is shown to be related to several other prefix sum, set intersec-
tion and approximate string match problems, via specific algorithms,
reductions and conditional lower bounds. To our knowledge, we are the
first to consider the fully internal measurement queries and prove lower
bounds for them. We also discuss the hardness of the sparse variation
in both static and dynamic settings. Finally, we provide a parallel algo-
rithm to compute the answers to all possible queries when both vectors
are fixed.

1 Introduction

The prefix sums problem (also known as scans) is one in which one seeks to
preprocess an array of n numbers to answer prefix sum queries. This problem is
widely known and has been motivated by many fields such as parallel algorithm,
graph theory, and more [5,10]. Pătraşcu et al. [23] proved tight lower bounds for
the query time when using linear space. Later, Bille et al. [4] provided tight lower
bounds in the dynamic model where insertion, deletion, and modifications of the
array’s numbers are allowed. On the implementation side, Pibiri and Venturini
[24] give an overview of current techniques and how well they perform in practice.

The internal model has received much attention in recent years. In this set-
ting, the input is given as a sequential string and the queries are asked on different
substrings of the input. One of the first problems in this research field was the
internal pattern matching problem. In this problem, a string S is preprocessed
to answer queries of the form: “report all occurrences where a substring of S
is located in another substring of S” [15,17]. Since then, many internal query
problems were introduced. Examples include the longest common prefix of two
substrings of S, computing the periods of a substring of S, etc. We refer the
interested reader to [16], which contains an overview of the literature.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 217–232, 2022.
https://doi.org/10.1007/978-3-031-20643-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_16

218 R. Das et al.

The internal masked prefix sum problem takes as input an m-bit mask B and
an array A of n numbers, where m ≥ n, and supports the query: “report the
prefix sum of the numbers against some substring of the mask”. It is easy to
see that the subtraction of two such prefix sums supports any masked sum of a
substring of A. That is, subtracting the prefix sum until position i from the prefix
sum until position j > i, where i, j are the substring positions. A simplified case
of the problem is when A consist of binary values, i.e. A ∈ {0, 1}∗. In this case,
the masked prefix sums are the inner products of the substrings.

Clifford et al. [7] introduced the problem of dynamic data structure that sup-
ports the inner product (and other measurements) between an m-length pattern
and any m-length substring of the text, where m is fixed. Here dynamic means
that substitutions of letters in the pattern and in the text are allowed. The addi-
tional measurements that were considered are the Hamming distance and exact
matching with wildcards. It was shown that in the dynamic setting, both query
and update cannot be done in O(n

1
2−ε) time, for some ε > 0, unless the OMv

(Online Boolean Matrix-Vector Multiplication) conjecture is false.
Our contributions are the following.

1. We give a preprocess-query time trade-off that matches the lower bound of the
batched problem up to logarithmic factors. The trade-off algorithm works in
O(nm

f(n) log f(n))1 preprocessing time and O(nm
f(n)) space and answers queries

in O(f(n)) time, for any 1 ≤ f(n) ≤ n.
2. We prove a lower bound for the batched problem in which the algorithm

preprocesses the data to answer a batch of n queries, where n is the length of
the input. We show a lower bound of p(n)+nq(n) = Ω(n

3
2−ε), for any ε > 0,

where p(n) is the preprocessing time and q(n) is the query time. This lower
bound illustrates that queries that consist of substrings from both A and B
even in a static setting, have similar hardness as the dynamic setting but on
substrings with fixed length.

3. We show a (1 + ε)-approximation algorithm for the internal masked prefix
sums that works in near constant time for any ε > 0.

4. We give a parallel algorithm that computes all the internal prefix sums in
O(log n+logm) span and O(nm) work to answer all the possible queries that
are stored explicitly, or O(log n+logm) span and O(nm

log n) work for (implicit)
constant-time queries.

5. We consider the sparse internal inner product and we show conditional lower
bounds from SetDisjointness and 3SUM in the static and dynamic set-
tings, respectively.

The paper is organized as follows: In Sect. 2 we give the formal definition of
our problems and other data structures that we will be using as building blocks.
In Sect. 3 we study the internal masked prefix sum. We give the preprocess-query
trade-off data structure for the problem along with the conditional lower bound.
Furthermore, we study an approximate form of the problem and finally give a
1 We will use log to denote log2, though as our log all eventually end up in asymptotic

notation, the constant bases are irrelevant.

Internal Masked Prefix Sums 219

parallel algorithm that can be used in the preprocessing of the data structures.
In Sect. 4 we study the sparse internal inner product and give conditional lower
bounds for the problem. Finally, in Sect. 5 we discuss a related problem, of
calculating Hamming distances and how it can be reduced to the internal masked
prefix sum problem.

2 Preliminaries

Let Σ be an alphabet. A string S over Σ is a finite sequence of letters from
Σ. By S[i], for 1 ≤ i ≤ |S|, we denote the ith letter of S. The empty string is
denoted by ε. By S[i..j] we denote the string S[i] · · · S[j], called a substring of S
(if i > j, then the substring is the empty string). A substring is called a prefix if
i = 1 and a suffix if j = |S|.

In the paper, we assume that Σ consists of nonnegative numbers. The non-
negativity ensures that binary search on the partial prefix sums is well defined.

Definition 1 (MaskedPrefixSumProblem).
Input: A bit vector (mask) B and an array of numbers A of lengths m and n,
respectively. The goal is to preprocess a data structure that answers the masked
prefix sum queries of the following form.
Query: Given i and k, where 1 ≤ k ≤ |A|, 1 ≤ i ≤ |B| − k + 1. We wish to
report the sum of the first k numbers of A that corresponds to 1s in the k-length
submask of B located at position i. Formally,

k∑

j=1

A[j] · B[i + j − 1] = 〈A[1 . . . k], B[i . . . i + k − 1]〉.

Example 1. Let A = [1, 0, 2, 0, 0, 0, 4, 8] and B = 10100111001. For query k = 7
and i = 5 the answer is 6. To see this, we look at the first 7 numbers of A against
the 7-length submask starting at position 5. After masking out the elements of
A, which are against 0s, we are left with 2 and 4 which sum to 6.

Fig. 1. Highlighted cells are those used in the query.

Definition 2 (SparseMaskedPrefixInnerProduct).
Input: A bit vector (mask) B and a bit vector (numbers) A such that the sum
of the number of 1s in A and the number of 1s in B is n, i.e. the problem
can be represented by writing down the n positions of the ones. The goal is to

220 R. Das et al.

preprocess a data structure that answers the sparse internal inner product queries
of the following form.
Query: Given i and k, where 1 ≤ k ≤ |A|, 1 ≤ i ≤ |B| − k + 1. We wish to
report the inner product of the first k bits of A against the k-length submask of
B located at position i.

In the paper, we consider the RAM model with word size w = log n. We
assume that each integer fits into one log n-length RAM word. Thus the sum of
n integers is at most n2, and each prefix sum fits into constant number of RAM
words (more specifically 2). Notice that in some problems w = logU , where U
is the universe size of the problem. When the context is clear, we write a capital
U to indicate that this is the case.

In our solutions to the above MaskedPrefixSumProblem and the
SparseMaskedPrefixInnerProduct problems, we will extensively use data
structures for the predecessor/successor problem.

The predecessor problem is to preprocess a set S of N integers from a universe
of size U , to answer queries of the form: “Given an input i, return the largest
integer in S smaller than i”. The successor problem is analogous. We only state
the results for the predecessor query but all of the following data structures can
handle the successor query as well with the same complexities.

Willard’s y-fast tries [25] gives a O(N) word space solution to the problem
with O(log logU) query time. Another approach is Fredman and Willard’s fusion
trees [11], which also uses O(N) words of space and supports the predecessor
query in O(

√
logN) amortized time. Andersson [1] showed how to make the

query in worst case time O(
√
logN).

Combining these results, we obtain the following lemma. The decision on
which data structure to use follows from the values of U and N .

Lemma 1 (Predecessor Query). There is a data structure for the
predecessor problem that uses O(N) words of space and query time
O(min{log logU,

√
logN}).

We note that the data structure of Beame and Fich [3] gives a better running
time of O(min{ log log U

log log log U ,
√

log N
log log N }), at the cost of increasing the space to

O(NO(1)) words of space.

3 Data Structures for Masked Prefix Sum

In this section, we design data structures for masked prefix sum and some of
its variants. More specifically, we present a time-space trade-off for this prob-
lem (Sect. 3.1) and prove a conditional lower bound (Sect. 3.2). We also design
data structures for the dynamic version (Sect. 3.3) and the approximate ver-
sion (Sect. 3.4) of the masked prefix sum problem. Finally, we consider a related
problem of designing a parallel algorithms to compute the answers to all possible
queries over a given instance of this problem (Sect. 3.5).

Internal Masked Prefix Sums 221

3.1 Time-Space Trade-off

We now present a data structure for the masked prefix sum problem. With it, we
achieve a trade-off between space/preprocessing cost and query time. We note
that the data structure can be immediately generalized to solve other internal
measurements - such as those studied by Clifford et al. [7] by replacing the inner
product by any linear function, i.e., any function g over two strings that can be
written as

g(S, T) =
∑

i

g(S[i], T [i]).

The main result can be stated as:

Theorem 1. Given a bit vector B of length m and an array A of length n, there
is a data structure that uses mn

f(n) words of space that can answer masked prefix
sum queries in O(f(n)) time, for any function f(n) with 0 < f(n) < n. The
preprocessing time is O(mn

f(n) log f(n)).

Furthermore, for any c > 0, there is a data structure that uses mn
f(n) +

n1+c

c log n

words of space and can answer masked prefix sum queries in O(f(n)
c log n) time. The

preprocessing time is O(mn
f(n) log f(n) + n1+c

c log n).

Proof. We do this by writing down the answer to the queries for each ending
position in A that is a multiple of f(n) and each offset in B, using mn

f(n) words
of space. That is, we create a table D such that

D[i, k] :=
kf(n)∑

j=1

A[j] · B[i + j − 1]

For every query length k not a multiple of f(n), we find the largest multiple of
f(n) and write k = k′f(n) + �, where k′ = �k/f(n)	. We then break the sum
into

k∑

j=1

A[j] · B[i + j − 1] =
k′f(n)∑

j=1

A[j] · B[i + j − 1] +
k∑

j=k′f(n)+1

A[j] · B[i + j − 1]

The first term is D[i, k′], and we compute the second term by computing A[j] ·
B[i + j − 1] one by one, which requires O(f(n)) time. Thus, the query time is
O(f(n)).

To slightly improve the time, we consider all bit masks of length c log n, of
which there are nc such bit masks. For each index that is a multiple of c log n in
A and each possible bit mask M of length c log n, we write down

D′[M, j] :=
c log n−1∑

k=0

A[j + k] · M [k]

and we store these values in the table D′, using n1+c

c log n space.

222 R. Das et al.

This allows us to compute the sum of c log n elements at a time. To see this,
consider the second term in the previous sum

∑k
j=k′f(n)+1 A[j]·B[i+j−1], which

we summed one term at a time. Let h1 = �k′f(n)+1
c log n 	+1 and h2 = � k

c log n	. Then
we have k′f(n) + 1 < h1c log n < (h1 + 1)c log n < · · · < h2c log n ≤ k. Create
the masks Mh1−1 = ..000B[k′f(n) + 1, h1c log n − 1], Mh1 = B[h1c log n, (h1 +
1)c log n − 1], . . . , Mh2 = B[h2c log n, k]000.., where Mh1−1 and Mh2 are padded
with 0s so that their lengths are c log n. We can then write the sum as

k∑

j=k′f(n)+1

A[j] · B[i + j − 1] =
h2∑

i=h1−1

D′[Mi, ic log n]

Thus the time to sum the remainder would be O(f(n)
c log n).

We now show how to build these data structures. Computing all D[i, k] =∑kf(n)+1
j=1 A[j] · B[i+ j − 1], where i ∈ [m − kf(n)], 1 ≤ k ≤ n

f(n) can be done in
O(mn

f(n) log f(n)) time. The computation is done in two phases. First, for every
1 ≤ k ≤ n

f(n) , we consider the subarray A[(k−1)f(n)+1 . . . kf(n)], we call it Ak

for short. In the first stage of the computation, we wish to compute the following
sum, for every 1 ≤ k ≤ n

f(n) , and for every 1 ≤ i ≤ m − f(n) + 1.

f(n)∑

j=1

Ak[j] · B[i + j − 1]

Such sum is called a convolution of Ak and B as one can think of Ak slides
over B. It is well known that performing the generalized fast Fourier transform
(see for example, [8,14]) between each Ak and B computes such convolution. For
short, we refer to such an algorithm as FFT. The FFT computes the masked
sum of each Ak against every f(n)-length submask of B. Each of these FFTs is
done in O(m log f(n)) time. Thus, O(nm

f(n) log f(n)) overall time is required. The
second stage aggregates the sums of the smaller intervals for each offset in B. Let
i be an offset in B. We know 〈B[i . . . i+f(n)−1], A1〉, 〈B[i+f(n) . . . i+2f(n)−
1], A2〉, 〈B[i+2f(n) . . . i+3f(n)−1], A3〉 . . . 〈B[i+n−f(n) . . . i+n−1], A n

f(n)−1〉.
Thus we partially sum the entries, i.e. for array of values P , we compute
Σr

q=1P [q], for each 1 ≤ r ≤ |P | in linear time. The first stage requires
O(nm

f(n) log f(n)) time and the second stage requires O(nm
f(n)) time. The prepro-

cessing times given in the first half of this theorem thus follows.
Finally, as D′ has n1+c

c log n entries and each entry can be computed in O(1)

time, D′ can be constructed in O(n1+c

c log n) time, and we obtain the preprocessing
time in the second half of this theorem. To see this, fix a particular value of j and
compute values for different masks by ascending number of 1s in the mask. Mask
pattern M would then only introduce 1 new term over a previously computed
mask pattern.
�

Finally we note that for m = O(n), we may set f(n) =
√

n log n and c = 1/2
to obtain an O(n3/2/ log n)-word data structure with O(

√
n) query time and

O(n3/2) preprocessing time.

Internal Masked Prefix Sums 223

3.2 A Conditional Lower Bound

We now give a conditional lower bound to show the hardness of this problem.

Theorem 2. Let p(n) and q(n) respectively denote the preprocessing time and
query time of a masked prefix sum data structure constructed over a bit vector
mask of length n and an array of n bits. Then Boolean matrix multiplication
over two

√
n/2 × √

n/2 matrices can be solved in p(n) + nq(n) + O(n) time.

Proof. Let X and Y be two
√

n/2 × √
n/2 Boolean matrices and Z = X × Y .

Let xi,j , yi,j and zi,j denote the elements in row i and column j of matrices X,
Y and Z, respectively. We then construct an array A of n bits and a bit mask
B of length n as follows. A is obtained by storing the bits in X in row-major
order in its first half, i.e., A[(i − 1)

√
n/2 + j] = xi,j for any 1 ≤ i, j ≤ √

n/2,
and storing all 0s in its second half. The first n/2 bits of the mask B are also all
0s. Then we store the content of Y in B[n/2 + 1..n] in column-major order, i.e.,
B[n/2 + (j − 1)

√
n/2 + i] = yi,j for any 1 ≤ i, j ≤ √

n/2.
To compute zi,j for any 1 ≤ i, j ≤ √

n/2, observe that the ith row of X

form the content of A[(i − 1)
√

n/2 + 1..i
√

n/2] while the jth column of Y is
in B[n/2 + (j − 1)

√
n/2 + 1..n/2 + j

√
n/2]. It is then sufficient to answer the

following two masked prefix sum queries: The first query uses (i − 1)
√

n/2 and
n/2+(j−1)

√
n/2−(i−1)

√
n/2 as the mask length and offset of B, respectively,

while the second uses i
√

n/2 and n/2 + (j − 1)
√

n/2 − (i − 1)
√

n/2. Note that
by setting the offset of B to be n/2+(j −1)

√
n/2− (i−1)

√
n/2 in both queries,

we ensure that A[(i − 1)
√

n/2 + 1..i
√

n/2] (storing the ith row of X) is always
masked by B[n/2 + (j − 1)

√
n/2 + 1..n/2 + j

√
n/2] (storing the jth column of

Y). Hence the answer to the second query subtracted by that to the first will
give us the dot product of the ith row of X and the jth column of Y . Then,
zi,j = 0 if this product is 0, and zi,j = 1 otherwise. Hence, we can compute Z
by answering n masked prefix sum queries, and the theorem follows.
�

As the current best algebraic method of multiplying two n×n Boolean matri-
ces has complexity O(nω) with ω < 2.3727 [26], two

√
n/2×√

n/2 matrices can
be multiplied in O(nω/2) time. This implies that, with current knowledge, either
the preprocessing time p(n) must be Ω(nω/2) = Ω(n1.18635), or the query time
q(n) must be Ω(nω/2−1) = Ω(n0.18635). Furthermore, the running time of the
best known combinatorial approach for multiplying two n × n Boolean matrices
is only polylogarithmically faster than cubic [2,6,27]. Hence, by purely combi-
natorial methods with the current best knowledge, either the preprocessing time
p(n) must be Ω(n3/2) or the query time q(n) must be Ω(

√
n), save for polyloga-

rithmic speed-ups. On the other hand, the specific trade-off given in Theorem 1
gives a data structure with O(

√
n) query time and O(n3/2) preprocessing time,

for any m = O(n). Hence, it can be used to multiply two
√

n × √
n Boolean

matrices in O(n3/2) time, matching the time required for the best known com-
binatorial algorithm for Boolean matrix multiplication within polylogarithmic
factors.

224 R. Das et al.

3.3 Dynamic Masked Prefix Sum

In dynamic settings, we support the update to any entry of A or B by assigning
a new value to it. The following theorem presents our result.

Theorem 3. Given a bit vector B of length m and an array A of length n,
there is a data structure that uses O(mn

f(n) + m + n) words of space that can
answer masked prefix sum queries in O(f(n) + g(n)) time and support updates
in O(mn log f(n)

g(n)f(n) +g(n)) time, for any functions f(n) and g(n) with 0 < f(n) < n

and 0 < g(n) < m + n.
Alternatively, for any c > 0, there is a data structure that uses O(mn

f(n) +
n1+c

c log n + m + n) words of space and can answer masked prefix sum queries in

O(f(n)
c log n + g(n)) time and support updates in O(mn log f(n)

g(n)f(n) + n1+c

g(n) + g(n)) time.
If m = O(n), setting f(n) = n2/3 log n, g(n) = n2/3 and c = 1/3 yields an
O(n4/3/ log n)-word data structure with O(n2/3) query and update times.

For the full proof, see Appendix A.

3.4 Approximate Masked Prefix Sum

To achieve faster query time and decrease the space cost, we consider the problem
of building a data structure to answer the masked prefix sum problem approxi-
mately.

Theorem 4. Given a bit vector B of length m and an array A of length n,
there is a data structure that uses O((m log n)/ε) words of space and can answer
(1+ε)-approximate masked prefix sum queries in O(min{log log n,

√
log(log n/ε))

time for any ε ∈ (0, 1].

Proof. We first consider the approximate prefix sum solution on just the integer
vector A. Consider the n prefix sums S[j] =

∑j
k=1 A[k]. We build a mapping P

such that j ∈ P if (1+ ε)i ≤ S[j] < (1+ ε)i+1 for some i and S[j − 1] < (1+ ε)i.
That is, whenever the prefix sum reaches a power of (1 + ε), we write down the
index where the prefix sum reaches it. Furthermore, for these indices, we write
down the actual prefix sum, so that P [j] = S[j]. We may store this mapping in
linear space with a hash table. To answer the approximate query for an index �,
we find the predecessor of � in P and report the prefix sum at the predecessor.

By construction, if the predecessor of � is j and (1 + ε)i ≤ S[j] < (1 + ε)i+1,
then S[�] < (1 + ε)i+1, as otherwise there would be a predecessor of � where the
prefix sum reaches (1 + ε)i+1. Similarly, S[�] ≥ (1 + ε)i. Thus our output gives
a (1 + ε)-approximation to the actual result.

We note that the universe of the integers for the predecessor problem is
U = n, and the number of elements in the set is at most N = log(1+ε) n. Since 0 <
ε ≤ 1, by Taylor series expansion, log(1 + ε) = Θ(ε). Hence, N = O((log n)/ε).
Thus by Lemma 1 the predecessor data structure takes O((log n)/ε)) words of
space. The query time is O(min{log log n,

√
log(log n/ε)).

Internal Masked Prefix Sums 225

We now apply this solution to solve the masked prefix sum problem approxi-
mately, by building the above data structure for each index i of B on the integer
vector Ai defined as Ai[j] = A[j] ·B[i+ j −1] (we mask the integer vector by the
length n bit vector obtained from B starting at index i). This gives a solution
of O((m log n)/ε) words of space.
�

3.5 Parallel Algorithms

We now consider a related problem which is to design a parallel algorithm to
answer all queries of an instance of the masked prefix sum problem in the PRAM
model.

Lemma 2. Let A be the array of numbers of length n and let B be the bit
vector of length m in the masked prefix sum problem. Then there is an optimal
span (parallel running time) and work parallel algorithm that stores explicitly the
answers of all mn queries in O(log n+logm) span and performs Θ(mn) work in
the PRAM model. In the implicit model, the work can be improved to be O(mn

log n).

The proof will appear in the journal version.

4 Data Structures for Sparse Internal Inner Product

In this section, we study the SparseMaskedPrefixInnerProduct problem, in
both static (Sect. 4.1) and dynamic (Sect. 4.2) settings.

4.1 Static Sparse Internal Inner Product

We first present conditional lower bounds for the sparse internal inner product
problem, SparseIIP for short, by giving a reduction from the SetDisjointness
problem, which is defined as follows.

Definition 3 (SetDisjointness Problem). Preprocess a family F of m
sets, all from universe U , with total size n =

⋃
S∈F |S| so that given two query

sets S, S′ ∈ F one can determine if S ∩ S′ = ∅.

The following conjecture addresses the hardness of this problem.

Conjecture 1 (SetDisjointness Conjecture [19]). Any data structure for the
SetDisjointness problem with constant query time must use Ω̃(n2−ε) space,
while any data structure for this same problem that uses O(n) space must have
Ω̃(n1/2−ε) query time, where ε is an arbitrary small positive constant. This
conjecture is true unless the 3SUM conjecture is false. Where Ω̃(f(n)) means
Ω(f(n)

polylog(n)).

Recently, a stronger conjecture was proposed. A matching upper bound exists
for Conjecture 2 by generalizing the ideas from [9,18].

226 R. Das et al.

Conjecture 2 (Strong SetDisjointness Conjecture [12]). Any data structure
for the SetDisjointness problem that answers the query in x time must use
S = Ω̃(n2

x2) space for any x ∈ (0, n].

We now show our reduction from SetDisjointness to SparseIIP to prove
the following conditional lower bound:

Theorem 5. Unless the SetDisjointness Conjecture is false, any data struc-
ture for the SparseMaskedPrefixInnerProduct problem with constant query
time must use Ω̃(n2−ε) space, while any data structure for this same problem
that uses O(n) space must have Ω̃(n1/2−ε) query time, where ε is an arbitrary
small positive constant. Furthermore, unless the Strong SetDisjointness Con-
jecture is false, any data structure for the SparseMaskedPrefixInnerProduct
problem with query time x must use Ω̃(n2

x2) space for any x ∈ (0, n].

Proof. Let U = {1, . . . , u} ⊆ N, where u = |U |. Let F = {S1, . . . , Sm}, such that
n =

⋃
Si∈F |Si|. Each Si ∈ F is a set represented by a sparse bit vector Bi of

size u, where Bi[j] = 1 if and only if j ∈ Si. Let A = B = B1 · B2 · · · Bm, i.e.
the concatenation of all Bi one after another. It is easy to see that A and B
have n ones. We treat them as sparse bit vectors. A and B are the inputs to the
SparseMaskedPrefixInnerProduct.

The query Si ∩ Sj for any i, j ∈ [m] with i < j is done by performing two
prefix sum queries. The first has offset (j − i) · u+1 and length (i − 1) · u, while
the second has offset (j − i) · u+1 and length (i) · u. We subtract the first query
result from the second query result and check if the result is zero or not. The
answer is zero if and only if Si ∩ Sj = ∅.

A and B are represented using the predecessor data structure. Thus, the
reduction takes time linear in the number of ones.
�

We now design a quadratic space data structure with polylogarithmic query
time. Thus it matches the conditional lower bounds proved under the Strong
SetDisjointness Conjecture within a polylogarithmic factor in query time.

Theorem 6. Let A and B be two sparse U -bit vectors, and let n represent the
sum of the number of 1s in A and the number of 1s in B. There is a data
structure that uses O(n2) words of space that can answer a
SparseMaskedPrefixInnerProduct query in O(min{log logU,

√
log n}) time for

any p ∈ [1, n].

Proof. For each position k of B, create the vector Ak as we defined in Sect. 3.4,
with Ak[j] = A[j] · B[j + k]. Since there are at most n 1s in A and at most n
1s in B, the positions of the 1 bits in A can only form at most n2 pairs with
the positions of the 1 bits in B. Therefore, all these bit vectors, A1, A2, · · · , AU

have O(n2) 1 bits in total, where U is the length of A and B. If a bit vector Ak

does not have any 1s, we do not store it at all. Otherwise, we represent Ak using
Lemma 1 to answer predecessor queries, by viewing the position of each 1 bit as
an element of a subset of {1, 2, · · · , U}. We also augment this data structure by

Internal Masked Prefix Sums 227

storing the rank of each element present in the subset, so that, given an index i,
we can compute the number of 1s in Ak[1..i] in O(min{log logU,

√
log n}) time.

Since there are at most n2 1s in all Ak’s, these data structures use O(n2) space
in total. We further build a perfect hash table T of O(n2) space to record which
of these bit vectors have at least a 1, and for each such bit vector, a pointer to
its predecessor data structure.

With these data structures, we can answer a query as follows: Suppose we
need to compute the inner product of the first j bits of A against the j-length sub-
mask of B starting at position k. Then we check whether Ak has at least a 1 bit
using T . If it does not, we return 0. Otherwise, we find the predecessor of j in Ak

and return its rank as the answer, which requires O(min{log logU,
√
log n}) time.

Thus, we have an O(n2)-space data structure with O(min{log logU,
√
log n})

query time.
�

4.2 Dynamic Sparse Internal Inner Product

In this section, we assume that the sparse bit vectors support updates. That is,
we support the operation update(V, i, x) which sets the vector V (which is either
A or B) at position 1 ≤ i ≤ |V | to value x ∈ {0, 1}. We prove conditional lower
bounds and show tight upper bounds up to polylogarithmic factors.

Definition 4 (3SUM [22]). Let A, B, and C three sets of numbers in
[−n3, n3], where |A| + |B| + |C| = n. The goal is to determine whether there
is a triple a ∈ A, b ∈ B, c ∈ C such that a + b = c.

The 3SUM conjecture claims that it is not possible to solve the 3SUM
problem in O(n2−ε) time, for any ε > 0. It is believed that even when relaxing
the range to be [−n2, n2] the problem has the same lower bound. It was shown
that even if one can preprocess A or B (but not both [13,20]) the lower bound
holds [21]. It follows that the lower bound that we will prove holds for the case
in which updates are allowed in only one of the bit vectors.

Lemma 3. Unless the 3SUM conjecture is false, the SparseIIP problem in the
dynamic setting must have at least query or update in Ω(n1−ε) time, for ε > 0.

Proof. We initialize two empty bit vectors A′ and C ′ of length N = 2n3 + 1
corresponding to the range [−n3, n3]. In order to handle negative number, we
begin by setting bits in A′ to 1s at positions a+n3+1, for any a ∈ A. Similarly,
we set C[c + n3 + 1] to 1 for any c ∈ C. For each b ∈ B, we perform an internal
query in the following way. We ask for b as the offset and N − b as the length
of the inner product. If the inner product is not zero then we have a 3SUM
triple. Finding such a triple a + b = c is done by a binary search on the staring
and ending positions of the interval until one triple is left. Note that b is known,
thus, we only need to find the corresponding a and c. Overall the reduction
uses |A| + |C| = O(n) updates with |B| = O(n log n) queries. From the 3SUM
conjecture we have that either query or update uses O(n1−ε) time, for any ε > 0.

�

228 R. Das et al.

Lemma 4. The lower bounds of the dynamic SparseIIP are tight up to poly-
logarithmic factors.

The proof will appear in the journal version.

5 The Connections Between the Problems
and the Internal Measurements

It follows directly from the definition, solving the internal prefix sums also solves
the internal inner product problem. Thus, all the lower bound on the SparseIIP
apply on the sparse internal prefix sum. Moreover, all upper bound algorithms for
the internal prefix sums problem apply on the internal inner product problem. In
this section, we emphasize the connection of these two problems to the internal
measurements. The considered measurements are Hamming distance and Exact
Matching with wildcards.

Definition 5 (InternalHammingDistanceand InternalEMWW).
Let S, T be two strings of lengths n and m, respectively. The problem of Inter-
nalHammingDistance is to preprocess S and T to answer Hamming distance
queries between any equal-length substrings of S and T , where Hamming distance
counts the number of mismatches between the two substrings.

Similarly, the problem of InternalEMWW is to preprocess S and T to
answer exact matching with wildcards queries between any equal-length substrings
of S and T , where the query counts the number of mismatches between the two
substrings. However, mismatches with wildcards are not counted.

Lemma 5. Assume a constant-size alphabet Σ. Then, there is a linear-time
reductions from the InternalHammingDistance to the internal inner prod-
uct problem, and vice versa. Moreover, there is a linear-time reductions from
the InternalEMWW problem to the internal inner product problem, and vice
versa.

For the full proof, see Appendix B.

A Details Omitted from Sect. 3

Proof of Theorem 3. Given a bit vector B of length m and an array A of length
n, there is a data structure that uses O(mn

f(n) + m + n) words of space that can
answer masked prefix sum queries in O(f(n) + g(n)) time and support updates
in O(mn log f(n)

g(n)f(n) +g(n)) time, for any functions f(n) and g(n) with 0 < f(n) < n

and 0 < g(n) < m + n.
Alternatively, for any c > 0, there is a data structure that uses O(mn

f(n) +
n1+c

c log n + m + n) words of space and can answer masked prefix sum queries in

O(f(n)
c log n + g(n)) time and support updates in O(mn log f(n)

g(n)f(n) + n1+c

g(n) + g(n)) time.
If m = O(n), setting f(n) = n2/3 log n, g(n) = n2/3 and c = 1/3 yields an
O(n4/3/ log n)-word data structure with O(n2/3) query and update times.

Internal Masked Prefix Sums 229

Proof. We first present a data structure with amortized bounds on update oper-
ations. The main idea is to rebuild the data structures from Theorem 1 every
g(n) updates. Since Theorem 1 presents multiple trade-offs, in the rest of the
proof, we use s(m,n), p(m,n) and q(n) to represent the space cost, preprocessing
time and query time of the data structures in that theorem. Before a rebuilding
is triggered, we maintain two copies of the array and the bit mask: A and B
store the current content of this array and the bit mask, respectively, while A′

and B′ store their content when the previous rebuilding happened. Thus, the
data structure, D, constructed in the previous rebuilding, can be used to answer
masked prefix sum queries over A′ and B′. For the updates arrived after the pre-
vious rebuilding, we maintain two lists: a list LA that stores a sorted list of the
indexes of the entries of A that have been updated since the previous rebuilding,
and a list LB that stores a sorted list of the indexes of the entries of B that have
been updated since the previous rebuilding. Since the length of either list is at
most g(n) < m + n, all the data structures occupy O(s(m,n) + m + n) words.

We then answer a masked prefix sum query as follows. Let k and i be the
parameters of the query, i.e., we aim at computing

∑k
j=1 A[j] · B[i + j − 1]. We

first perform such a query using D in q(n) time and get what the answer would
be if there had been no updates since the last rebuilding. Since both LA and LB

are sorted, we can walk through them to compute the indexes of the elements
of A that have either been updated since the last rebuilding, or it is mapped by
the query to a bit in B that has been updated since the last rebuilding. This
uses O(g(n)) time. Then, for each such index d, we consult A, A′, B and B′

to compute how much the update, to either A[d] or B[d + i − 1], affects the
answer to the query compared to the answer given by D. This again requires
O(g(n)) time over all these indexes. This entire process then answers a query in
O(q(n) + g(n)) time.

For each update, it requires O(1) time to keep A and B up-to-date. It also
requires an update to the sorted list LA or LB , which can be done in O(g(n))
time. Finally, since the rebuilding requires O(p(m,n)) time and it is done every
g(n) updates, the amortized cost of each update is then O(p(m,n)/g(n)+g(n)).

The bounds in this theorem thus follows from the specific bounds on s(m,n),
p(m,n) and q(n) in Theorem 1.

Finally, to deamortize using the global rebuilding approach, instead of
rebuilding this data structure entirely during the update operation that trig-
gers the rebuilding, we rebuild it over the next g(n) updates. This requires us to
create two additional lists L′

A and L′
B : Each time a rebuilding starts, we rename

LA and LB to L′
A and L′

B , and create new empty lists LA and LB to maintain
indexes of the updates that arrive after the rebuilding starts. To answer a query,
we cannot use the data structure that is currently being rebuilt since it is not
complete, but we use the previous version of it and consult LA, LB , L′

A and
L′

B to compute the answer using ideas similar to those described in previous
paragraphs.
�

230 R. Das et al.

B Details Omitted from Sect. 5

Proof of Lemma 5. Assume a constant-size alphabet Σ. Then, there is a linear-
time reductions from the InternalHammingDistance to the internal inner
product problem, and vice versa. Moreover, there is a linear-time reductions
from the InternalEMWW problem to the internal inner product problem,
and vice versa.

Proof. The reduction from the InternalHammingDistance to the
internal inner product. For each letter σ ∈ Σ, we change S and T to be bit
vectors: σ in T become 1 and Σ \ {σ} become 0, while in S, σ become 0 and
Σ\{σ} become 1. That is, the Hamming distance query sums a constant number
of internal inner products in order to answer the query.
The reduction from the internal inner product problem to the Inter-
nalHammingDistance. Assume we have two bit vectors A and B. Every 1
in A is transferred to 001, and 0 to 010, while in B, each 1 is transferred to 001,
and 0 to 100. Let S and T be the transformed strings from A and B, respec-
tively. It is easy to see that only 1 against 1 in A against B causes 0 mismatches
between the corresponding substrings of S and T and any of the other 3 com-
binations results in 2 mismatches. Where corresponding substrings means that
the starting and ending positions of the substrings are chosen to fit the origi-
nal query, i.e. by multiplying the query indices by 3. Note that this reduction
transfers the internal inner product to the InternalEMWW, as well.
The reduction from the InternalEMWW problem to the internal
inner product. In a similar way, the inner product solves the exact matching
with wildcards problem. We repeat the same process as described previously for
Hamming distance but this time, wildcards are always transferred to 0 in both
S and T . It is easy to see that when the sum over all the inner products is 0,
there is an exact match with wildcards.

�

References

1. Andersson, A.: Faster deterministic sorting and searching in linear space. In 37th
Annual Symposium on Foundations of Computer Science, FOCS 1996, Burlington,
Vermont, USA, 14–16 October 1996, pp. 135–141. IEEE Computer Society (1996)

2. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory
Comput. 8(1), 69–94 (2012)

3. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci. 65(1), 38–72 (2002)

4. Bille, P., et al.: Dynamic relative compression, dynamic partial sums, and substring
concatenation. Algorithmica 80(11), 3207–3224 (2017). https://doi.org/10.1007/
s00453-017-0380-7

5. Blelloch Guy, E.: Prefix sums and their applications. In: Synthesis of Parallel Algo-
rithms, vol. 1, pp. 35–60. M. Kaufmann (1993)

6. Chan, T.M.: Speeding up the four Russians algorithm by about one more logarith-
mic factor. In: SODA, pp. 212–217 (2015)

https://doi.org/10.1007/s00453-017-0380-7
https://doi.org/10.1007/s00453-017-0380-7

Internal Masked Prefix Sums 231

7. Clifford, R., Grønlund, A., Larsen, K.G., Starikovskaya, T.: Upper and lower
bounds for dynamic data structures on strings. In: Niedermeier, R., Vallée, B.
(eds.) 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
28 February–3 March 2018, Caen, France, vol. 96, pp. 22:1–22:14. LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2018)

8. Clifford, R., Iliopoulos, C.S.: Approximate string matching for music analysis. Soft.
Comput. 8(9), 597–603 (2004). https://doi.org/10.1007/s00500-004-0384-5

9. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theor.
Comput. Sci. 411(40–42), 3795–3800 (2010)

10. Dhulipala, L., Blelloch, G.E., Shun, J.: Theoretically efficient parallel graph algo-
rithms can be fast and scalable. ACM Trans. Parallel Comput. 8(1), 1–70 (2021)

11. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

12. Goldstein, I., Lewenstein, M., Porat, E.: On the hardness of set disjointness and set
intersection with bounded universe. In: Lu, P., Zhang, G. (eds.) 30th International
Symposium on Algorithms and Computation (ISAAC 2019), 8–11 December 2019,
Shanghai University of Finance and Economics, Shanghai, China, vol. 149, pp.
7:1–7:22. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

13. Golovnev, A., Guo, S., Horel, T., Park, S., Vaikuntanathan, V.: Data structures
meet cryptography: 3SUM with preprocessing. In: Makarychev, K., Makarychev,
Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL,
USA, 22–26 June 2020, pp. 294–307. ACM (2020)

14. Kalai, A.: Efficient pattern-matching with don’t cares. In: Eppstein, D. (ed.) Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 6–8 January 2002, San Francisco, CA, USA, pp. 655–656. ACM/SIAM
(2002)

15. Keller, O., Kopelowitz, T., Feibish, S.L., Lewenstein, M.: Generalized substring
compression. Theor. Comput. Sci. 525, 42–54 (2014)

16. Kociumaka, T.: Efficient data structures for internal queries in texts. PhD Thesis.
University of Warsaw (2019)

17. Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Internal pattern matching
queries in a text and applications. In: Indyk, P. (ed.) Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, 4–6 January 2015, pp. 532–551. SIAM (2015)

18. Kopelowitz, T., Pettie, S., Porat, E.: Dynamic set intersection. In: Dehne, F., Sack,
J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 470–481. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21840-3_39

19. Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3SUM conjec-
ture. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, 10–12
January 2016, pp. 1272–1287. SIAM (2016)

20. Kopelowitz, T., Porat, E.: The strong 3SUM-INDEXING conjecture is false. arXiv
preprint arXiv:1907.11206 (2019)

21. Green Larsen, K.: Personal communication
22. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Schul-

man, L.J. (ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 603–610. ACM
(2010)

https://doi.org/10.1007/s00500-004-0384-5
https://doi.org/10.1007/978-3-319-21840-3_39
http://arxiv.org/abs/1907.11206

232 R. Das et al.

23. Patrascu, M., Demaine, E.D.: Tight bounds for the partial-sums problem. In: Ian
Munro, J. (ed.) Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, 11–14 January
2004, pp. 20–29. SIAM (2004)

24. Pibiri, G.E., Venturini, R.: Practical trade-offs for the prefix-sum problem. Softw.
Pract. Exp. 51(5), 921–949 (2021)

25. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(N).
Inf. Process. Lett. 17(2), 81–84 (1983)

26. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
STOC, pp. 887–898 (2012)

27. Huacheng, Yu.: An improved combinatorial algorithm for Boolean matrix multi-
plication. Inf. Comput. 261, 240–247 (2018)

	Internal Masked Prefix Sums and Its Connection to Fully Internal Measurement Queries
	1 Introduction
	2 Preliminaries
	3 Data Structures for Masked Prefix Sum
	3.1 Time-Space Trade-off
	3.2 A Conditional Lower Bound
	3.3 Dynamic Masked Prefix Sum
	3.4 Approximate Masked Prefix Sum
	3.5 Parallel Algorithms

	4 Data Structures for Sparse Internal Inner Product
	4.1 Static Sparse Internal Inner Product
	4.2 Dynamic Sparse Internal Inner Product

	5 The Connections Between the Problems and the Internal Measurements
	A Details Omitted from Sect.3
	B Details Omitted from Sect.5
	References

