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Abstract. Given an ordinal tree T on n nodes in which each node is
assigned a color from {0, 1, . . . , C − 1}, an approximate colored path
counting query asks for an approximation of the number, occ, of dis-
tinct colors assigned to nodes in a query path. We first present data
structures that can compute a 2-approximate answer, i.e., a number in
[occ, 2occ], and achieve three different time/space trade-offs: i) an O(n)-
word structure with O(lgλ n) query time for any constant 0 < λ < 1,
ii) an O(n lg lgn)-word structure with O(lg lgn) query time and iii) an
O(n lgλ n)-word structure with O(1) query time. The first trade-off beats
the O(lgn/ lg lgn) query time of the linear-word 2-approximate struc-
ture in previous work. We then design an O(n)-word structure which
can compute in O(ε−2 lgn) time a (1 ± ε)-approximate answer, i.e, a
number in [(1 − ε)occ, (1 + ε)occ], for any ε ∈ (0, 1). Previously, when
the space cost is O(n) words, the only known solution computes a (1±ε)-
approximate answer in O(ε−4 lg2 n) time with success probability no less
than 1−δ, where δ is an arbitrary constant in (0, 1); our solution not only
has faster query time but also always returns a (1 ± ε)-approximation.
When designing (1± ε)-approximate solutions, our techniques also yield
an O(n)-word structure that can answer a colored type-2 path counting
query in O(occ) time; this query reports the number of occurrences of
each distinct color in a query path. This result improves the best previous
linear-word solution in which the query time is O(occ lg lgn).

Keywords: Path queries · Colored path counting · Colored path report-
ing · Approximate colored path counting

1 Introduction

In tree-structured data, information such as categories can be viewed as colors
assigned to tree nodes. One query which can retrieve such information is the
colored path counting query. It is defined over an ordinal tree3 T on n nodes,
each assigned a color from {0, 1, . . . , C − 1}, where C ≤ n, and it computes the
number, occ, of distinct colors assigned to the nodes in any query path in T .
? This work was supported by NSERC of Canada.
3 This query can be defined over free trees. Following [12], we assume that the input
tree is ordinal, so that we can use data structures for ordinal trees directly [13, 14].
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When the tree structure is a single path, this query becomes the well-known
1D colored range counting query, for which Nekrich [19] designed an O(n)-word
solution with O(lg occ/lg lg n + 1) query time. However, a conditional lower
bound gives evidence that the colored path counting query problem is much
harder: He and Kazi [12] showed how to multiply two

√
n ×
√
n boolean ma-

trices by answering n colored path counting queries over a tree of O(n) nodes.
This reduction means, with current knowledge, the total running time of answer-
ing n colored path counting queries, including preprocessing, cannot be faster
than nω/2, save for polylogarithmic speedups, where ω < 2.37286 denotes the
exponent of matrix multiplication [1]. Furthermore, since the best known com-
binatorial approach of multiplying two n× n Boolean matrices under the word
RAM model requires Θ(n3/polylog(n)) time [23], the total time of answering
n of these queries cannot be faster than n1.5, save for polylogarithmic speedups,
using pure combinatorial methods with current knowledge. He and Kazi designed
an O(n)-word structure with O(

√
n lg lgC) query time and O(n3/2 lg lgC) pre-

processing time under the word RAM model. More recently, Gao and He [10]
considered the batched version of this problem and showed how to answer n
queries, including preprocessing, in O(n1.40704) time.

To achieve faster queries, approximate colored path counting problems have
been studied. Two different ways of bounding approximate ratios have been
considered [12]: a c-approximate colored path counting query computes a number
in [occ, c · occ], while a (1 ± ε)-approximate query returns a number in [(1 −
ε)occ, (1 + ε)occ] for any ε ∈ (0, 1). In this paper, we study this problem and
aim at improving previous results under both approximate measures.

We also note that 1D colored range counting is sometimes called 1D colored
type-1 range counting in the literature [11, 4], while 1D colored type-2 range
counting reports the number of occurrences of each distinct color in a query
range. We can also generalize the latter to consider tree topology by defining
colored type-2 path counting over a colored tree, which reports the number of
occurrences of each distinct color in a query path. The O(n)-word data structure
of Durocher et al. [7] can be used to answer a colored type-2 path counting query
in O(occ lg lg n) time. This is slower than the O(occ + 1)-time support for 1D
colored type-1 range counting over points in rank space [11, 9]. Thus, another
goal is to close this gap.

Previous work. By reducing colored path counting to path counting over
weighted trees [15] using the chaining approach [11], He and Kazi [12] designed a
linear space data structure that supports 2-approximate colored path counting in
O(lg n/ lg lg n) time. For (1±ε)-approximate colored path counting queries, they
showed a sketching data structure that occupiesO(n+ n

ε2t lg n) words and answers
a query in O(ε−2t lg n) time4 with success probability no less than 1− δ, where
t is an arbitrary integer in [1, n] and δ is an arbitrary constant in (0, 1). Setting
t = dε−2 lg ne makes the space cost linear and the query time O(ε−4 lg2 n).
4 He and Kazi [12] originally stated their result for constant ε, but it is easy to gener-
alize their bounds when ε = o(1).
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Similar approximate problems can also be defined for colored 1D range count-
ing and colored 2D orthogonal range counting which generalizes the former by
preprocessing colored points in 2D to efficiently compute the number of distinct
colors assigned to points in an axis-aligned query rectangle. The same condi-
tional lower bound for colored path counting also applies to the latter [17]. In
1D, given n colored points in the rank space, El-Zein et al. [8] designed an en-
coding data structure that uses O(n)-bits of space and supports c-approximate
colored counting for any constant c > 1 in O(1) time without accessing the given
point set. In higher dimensions, Rahul [21] showed that (1± ε)-approximate col-
ored range counting can be answered by combining a colored range reporting
structure and a c-approximate colored range counting structure. With it, he de-
signed an O(n lg n)-word structure to support (1 ± ε)-approximate colored 2D
range counting in O(ε−2 lg n) time.

Regarding 1D colored type-2 range counting, Gupta et al. [11] designed an
O(n)-word structure with O(lg n+occ) query time, over a set of n colored points
on a real line. Ganguly et al. [9] stated that, by combining the approach of Gupta
et al. and some other results [18, 22], the query time can be further improved
to O(1 + occ) if all points are in rank space. This query problem can also be
generalized to point sets on the plane, and we refer to [6, 4] for recent work on
2D colored type-2 range counting. For colored trees, the linear word structures
designed by Durocher et al. [7] can answer a colored type-2 path counting query
in O(occ lg lg n) time. They did not state this result explicitly, but it is implied
by the algorithmic steps stated in the proof of Theorem 6 in their article.

Our results. Under the word RAM model, we first design 2-approximate col-
ored path counting structures with i) O(n) words of space and O(lgλ n) query
time for any constant 0 < λ < 1, ii) O(n lg lg n) words of space and O(lg lg n)
query time and iii) O(n lgλ n) words of space and O(1) query time. In all three
cases, the preprocessing time is O(n lg n). Hence the first trade-off beats the
O(lg n/ lg lg n) query time of the linear-word 2-approximate structure of He and
Kazi [12]. We then design an O(n)-word (1±ε)-approximate colored path count-
ing structure with O(ε−2 lg n) deterministic query time and O(n2 lgC lg lgC)
expected preprocessing time. Compared to the sketching structure by He and
Kazi [12] with O(n)-word space and O(ε−4 lg2 n) query time, we not only achieve
improvement for query time but also guarantee that the query algorithm always
returns a (1 ± ε)-approximation, though the cost of preprocessing is higher. In
the new (1± ε)-approximate solution, our techniques also lead to a linear-word
data structure supporting colored type-2 path counting in O(occ) time. This
result improves the solution of Durocher et al. [7] which has O(occ lg lg n) query
time. See Table 1 for a comparison of our results to all previous results.

To achieve these results, we develop new techniques. For 2-approximate col-
ored path counting, note that no further improvement can be made using the
strategy of He and Kazi for this problem, due to the lower bound on (uncolored)
2D orthogonal range counting [20] (which is a special case of path counting over
weighted trees). Instead, we adopt the strategy of Gao and He [10] for batched
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Table 1: A summary of our results on approximate colored path counting and
colored type-2 path counting, in which space costs are measured in words, ε is
an arbitrary parameter in (0, 1), λ is an arbitrary constant in (0, 1), † marks an
expected bound, and ‡ marks a solution that returns a (1 ± ε)-approximation
with probability no less than 1− δ for any constant δ ∈ (0, 1).

Space Query Preprocess Ref

2-approx

O(n) O( lgn
lg lgn

) O(n lgn
lg lgn

) [12]
O(n) O(lgλ n)

O(n lgn)
Thm 1a)

O(n lg lgn) O(lg lgn) Thm 1b)
O(n lgλ n) O(1) Thm 1c)

(1± ε)-approx O(n+ n lgn
ε2t

) O(ε−2t lgn) O(ε−2n lgn) [12]‡

O(n) O(ε−2 lgn) O(n2 lgC lg lgC)† Thm 2

Type-2 O(n)
O(occ lg lgn)

O(n lgn)
[7]

O(occ) Lemma 6

colored path counting which applies centroid decomposition to decompose the
tree into a hierarchy of components. A query is answered by locating and query-
ing the component that satisfies these two conditions: This component contains
the entire query path, and its centroid is in the path. This means, within each
component, we need only support queries for the paths that pass through a fixed
node, e.g, the selected centroid, given during the construction. This strategy
however incurs O(n lg n) words of space cost in [10]. To address this, we design
a data structure of O(n) bits that answers 2-approximate queries in constant
time, provided that a query path must contain a fixed node. To speed up the
mapping of the endpoints of a query path to nodes in a specific component in a
space-efficient manner, we borrow ideas from the solutions to the ball inheritance
problem [5] and design data structures with different time-space trade-offs.

With regard to (1± ε)-approximate colored path counting queries, we adapt
the reduction by Rahul [21] and make it work for trees. When doing so, we design
a solution to colored type-2 path counting with optimal query time.

2 Preliminaries

This section introduces the notation and the previous results used in this paper.

Notation. Given an ordinal tree T , we use |T | to represent the number of nodes
in T and ⊥ to represent its root. Each node of T is assigned a color encoded
by an integer in {0, 1, · · · , C − 1}, where C ≤ n. We identify each node by its
preorder rank, i.e., node x is the x-th node in a preorder traversal (x starts from
0), and c(x) denotes the color of node x. Furthermore, Px,y denotes the path
between nodes x and y, and C(Px,y) denotes the set of colors that appear in it.

Navigation in colored ordinal trees. To support navigational operations
over the input tree, we apply the succinct representations of ordinal trees [13]
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and labeled trees [14]. The operations and their complexity are summarized in
Lemma 1. As in previous work, we refer to a node (resp. ancestor) colored in α
as an α-node (resp. α-ancestor).

Lemma 1 ([13, 14]). Let T denote a labeled ordinal tree on n nodes, each of
which is assigned a color from {0, 1, . . . , C − 1}, where C ≤ n. A data structure
occupying n lgC+2n+o(n lgC) bits can be built over T in O(n) time5 to support:

– counting the number, depth(x), of ancestors of x in O(1) time,
– counting the number, depthα(x), of α-nodes in Px,⊥ in O(lg lgC) time,
– finding the lowest common ancestor, lca(x, y), of x and y in O(1) time,
– finding the parent node, parent(x), of non-root node x in O(1) time,
– finding x’s lowest proper α-ancestor, parentα(x), in O(lg lgC) time and
– finding x’s ancestor, level_anc(x, d), at depth depth(x)− d in O(1) time.

Given a query path Px,y in a tree and a color α, a colored path emptiness
query determines whether color α appears in Px,y. He and Kazi [12] showed how
to use depthα and lca to compute the number of appearances of α in Px,y in
O(lg lgC) time. Via counting the number of appearances of color α in Px,y, one
can figure out whether or not α appears in Px,y. Hence, Lemma 1 can support
colored path emptiness query in O(lg lgC) time.

Partial rank. LetA[0..n−1] be a sequence of symbols over alphabet {0, 1, . . . , σ−
1}. The partial rank operation [2], rank′(A, i), counts the number of elements
equal to A[i] in A[0..i].

Lemma 2 ([2]). Given a sequence A[0..n − 1] over alphabet {0, 1, . . . , σ − 1},
where σ ≤ n, a structure of O(n lg σ) bits can be constructed in O(n) time to
support rank′ in O(1) time.

Tree extraction [15] Given a subset, X, of nodes of an ordinal tree T , the
extracted tree, TX , can be constructed by deleting each node v /∈ X using
the following approach: If v is not the root, let u = parent(v). We remove v
and its incident edges from T and insert its children into the list of children
of u, replacing v in this list while preserving these children’s original left-to-
right order. This means that v’s left and right siblings before the deletion will
respectively become the left and right siblings of its children after the deletion.
If v is the root, then, before we apply the same procedure to delete v, we add a
dummy root to T and make it the parent of v, so that TX will remain a tree.

To map a path Px,y in T to a path in TX , we use the operation, decompose(x, y),
defined in [12]: If Px,y ∩X = ∅, it returns null. Otherwise, let x̂ and ŷ denote
the nodes in Px,y ∩X that are closest to x and y, respectively (this can be the
5 As mentioned by Gao and He [10], the string representation of Belazzougui et al. [2]
needs to be used in the framework of He et al. [14] to achieve O(n) deterministic
preprocessing time, at the cost of slowing down labeled operations from O(lg lgC

lgw
)

in [14] to O(lg lgC) in this lemma.
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node x or y itself if it is in X). Then decompose(x, y) returns the nodes x′ and
y′ in TX that correspond to (i.e., whose original copies are) nodes x̂ and ŷ in T ,
respectively.

Lemma 3 ([12, Proposition 9]). Given a tree T on n nodes and a tree ex-
traction TX , an O(n)-bit structure on top of T and TX can be constructed in
O(n) time to support decompose in O(1) time.

3 2-Approximate Colored Path Counting

For 2-approximate colored path counting, we first consider a special case in which
query paths must contain a fixed tree node specified in the preprocessing step
(Section 3.1). Then we generalize it for arbitrary paths (Sections 3.2-3.3).

3.1 Counting over a Path that Contains a Fixed Node

Fix a node v of T , and we design an O(n)-bit encoding data structure that
supports 2-approximate colored path counting over any query path containing
v. To answer a query, our encoding data structure does not need to access T
after preprocessing, provided that the preorder ranks of the endpoints of the
query path are known.

Lemma 4. Let T be a colored tree on n nodes and fix any node v in T . A data
structure of O(n) bits can be constructed in O(n) time to support 2-approximate
colored path counting over any query path containing v in O(1) time.

Proof. We associate a binary label B(u) to each node u of T as follows: If u = v,
then B(u) = 1. Otherwise, locate the node, t, in Pu,v that is adjacent to u. If
color c(u) appears in Pt,v, then set B(u) = 0. If not, set B(u) = 1. We discard
the original colors of T , treat these labels as node colors and represent T with
these labels using Lemma 1. Since there are only two possible labels, this uses
3n+ o(n) bits.

Let Px,y be a query path containing v. Consider the nodes in the subpath
Px,v one by one in the direction from v to x. Observe that, each time we see
a node labeled by 1, we encounter a color that has not been seen previously.
Therefore, the number of 1-bits assigned to nodes in Px,v is equal to |C(Px,v)|.
Similarly, the number of 1-bits assigned to nodes in Py,v is equal to |C(Py,v)|.
Therefore, the number of 1-bits assigned to nodes in Px,y is a 2-approximation of
the precise answer. Following the discussion after Lemma 1, this number can be
computed in O(lg lgC) = O(1) time using operations lca and depth1, as C = 2.

To prove the bound on construction time, it suffices to show that these binary
labels can be assigned in O(n) time. This can be done by performing a depth-first
traversal of T using v as the starting node. During this traversal, we also update
an array A[0..C − 1], and the invariant that we maintain is that, each time we
visit a node u, A[i] stores the number of nodes in Pv,u that are assigned color i
in the original tree T . The following are the steps: We start the traversal from
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vertex v, set A[c(v)] = 1 and initialize all other entries of A to 0. During the
traversal, each time we follow an edge (x, y) with x ∈ Pv,y, there are two cases.
In the first case, we follow this edge to visit node y. Then this is the first time
we visit y. We check if A[c[y]] = 0. If it is, then the color of y does not appear
in Pv,x, so we set B(y) = 1. Afterwards, we increment A[c[y]] to maintain the
invariant. Otherwise, we set B(y) = 0 and also increment A[c[y]]. In the second
case, we follow this edge to visit x. Since x is closer to v than y is, we have
visited x before and we will not traverse any paths containing y in the future.
In this case, we decrement A[c[y]] to maintain the invariant. ut

3.2 Counting over Arbitrary Paths

To support 2-approximate colored path counting queries over arbitrary paths,
we transform the given ordinal tree T on n colored nodes into a binary tree T̃ .
Our transformation, similar to that used by Chan et al. [3], works as follows:
For each node v with degree d, where d > 2, we remove the edges between v
and its children, v1, v2, . . . , vd, to detach the subtrees rooted at these children
from T . For the convenience of the description, let v0 denote the node v. We
then create d − 2 dummy nodes, ṽ1, ṽ2, . . . , ṽd−2, each assigned the color of v0.
Next we add edges to reconnect v0 and its d children with the newly created
dummy nodes as follows: For t = 1, 2, . . . , d − 2, make vt and ṽt the left and
right children of vt−1, respectively. Afterwards, make vd−1 and vd the left and
right children of ṽd−2, respectively. The resulting tree is T̃ which has at most 2n
nodes. This transformation preserves preorder among the original nodes of T .
More importantly, any path Px,y in T and its corresponding path, P̃ , in T̃ share
the same set of colors. To see this, observe that the lowest common ancestor, z,
of nodes x and y in T is the only original node that appears in Px,y but may
not necessarily appear in P̃ . If z does not appear in P̃ , then P̃ must contain
a dummy node created for z which is also colored in c(z). On the other hand,
any original node in P̃ must also be in Px,y in T , while any dummy node that
appears in P̃ must satisfy the condition that the original node it is created for
must be in Px,y in T .

After this transformation, for each node in T , we store the preorder rank of
its corresponding node in T̃ . Then we follow the strategy in [10] to decompose T̃
recursively using centroid decomposition [16], but different data structures will
be constructed this time. Here a centroid of an m-node tree is a node whose
removal splits the tree into connected components, each containing at most m/2
nodes. It is known that a centroid can be found in O(m) time.

We now give the details of the recursion. At level 0 of the recursion, we
call tree T̃ the level-0 component. We find a centroid, u, of T̃ and construct
the data structure in Lemma 4 supporting 2-approximate queries over paths
containing u. Since T̃ is a binary tree, after removing u, we are left with at most
three connected components, and we add u back into the smallest component.
In this way, tree T̃ is partitioned into at most three pairwise-disjoint connected
components in the level-0 recursion, each of which is a tree on no more than |T̃ |/2
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nodes. We call each of these three components a level-1 component and build
the data structure recursively upon each of them. In general, at level i of the
recursion, we compute a centroid, v, of each level-i component γ. We then use
Lemma 4 to construct a data structure D(γ) supporting 2-approximate colored
path counting over paths that are entirely contained within γ and also contain
v. This component can be partitioned into up to three level-(i+ 1) components
using the approach described above. We call component γ the parent of these
up to three level-(i+ 1) components, and each of these up to three level-(i+ 1)
components is a child of γ. A component that has a single node is called a base
component and is not partitioned further. Hence, the recursion has O(lg n) levels.

Suppose that query path Px,y is contained entirely within a level-t component
γ but not in any level-(t + 1) components. This means that Px,y contains the
centroid of γ. Therefore, we can find a 2-approximate of |C(Px,y)| using the data
structure D(γ), provided that the preorder ranks of x and y in γ are known. To
locate component γ and then to compute the preorder rank of x and y in it, we
define a component tree CT . A component tree is a 3-ary tree in which each node
represents a component and the edges represent the parent-child relationship
between components. More specifically, a node v at level l of CT represents a
level-l component Cv, where l starts from 0. A node v of CT is the parent of
another node u iff component Cv is the parent of component Cu. Among the
nodes that share the same parent in CT , the relative order between them does
not matter, so we order them arbitrarily. The height of CT is bounded by O(lg n),
and each leaf in it represents a base component. Since each internal node has at
least two children, CT has O(n) nodes in total.

At each internal node v of CT , we build an array SP(v) of length |Cv|, in which
SP(v)[i] is set to be d if the i-th node (in preorder) in Cv is stored in the d-th
child component of v in the next level. Then we represent SP(v) using Lemma 2
to support rank′. Since v can have at most 3 children, the alphabet size of SP(v)
is constant. Therefore, SP(v) is represented in O(|SP(v)|) bits. With these data
structures, we can support queries over arbitrary paths and achieve Lemma 5.

Lemma 5. Let T be an ordinal tree on n nodes in which each node is assigned
a color. A data structure of O(n) words can be constructed in O(n lg n) time to
support 2-approximate colored path counting over T in O(lg n) time.

Proof. Given a node i ∈ T̃ , let π denote the path from the root of CT to the leaf
of CT representing the base component that contains i, and let πl denote the
node in π whose depth is l. First, we show how to locate πl and to compute the
preorder rank of i in component Cπl for l = 0, 1, 2, . . .. The procedure proceeds
as follows: We start at the root π0 of CT . The preorder rank of i in Cπ0

is i,
and π1 is the SP(π0)[i]-th child of π0, following the definition of array SP(π0).
In general, given that the preorder rank of i in Cπl is j, one can find node πl+1,
which is the SP(πl)[j]-th child of πl. Since tree extraction preserves preorder,
the preorder rank of i in Cπl+1

is rank′(SP(πl), j) − 1. Each rank′ query takes
constant time, so this procedure uses constant time per level of CT .

Since each node of T stores the preorder rank of its corresponding node in T̃ ,
to answer a query, it is sufficient to compute a 2-approximation of |C(Px,y)| for



On Approximate Colored Path Counting 9

a query path Px,y in T̃ . This can be done by performing the top-down traversals
of CT described in the previous paragraph for x and for y simultaneously until
we reach the lowest level, l, of CT such that x and y are contained in the same
level-l component γ. This process also gives us the preorder ranks of x and y in
γ, which allows us to query D(γ) to find a 2-approximate answer. Since CT has
O(lg n) levels, the query algorithm uses O(lg n) time.

To analyze the space cost, observe that the total number of nodes in the
components at the same level is at most the number of nodes of T̃ , which is 2n.
The component tree contains O(lg n) levels, and all D(γ)’s and SP(v)’s at the
same level use O(n) bits, for a total of O(n lg n) bits, or O(n) words. The O(n)-
node component tree CT itself occupies another O(n) words of space. Therefore,
the total space cost is O(n) words. The data structure at each level can be
constructed in linear time, so the overall construction time is O(n lg n). ut

3.3 Speeding up the Query

To further improve the query efficiency in Lemma 5, observe that two procedures
introduced before require O(lg n) time for a query Px,y in T̃ : The first locates
the lowest component γ in CT that contains both nodes x and y, and the second
computes the preorder ranks of x and y in γ. Previously, both procedures proceed
in the same top-down traversal of CT . Now, we perform them separately. For
the first procedure, observe that the node representing component γ in CT must
be the lowest common ancestor of the two leaves of CT representing the base
components that contain nodes x and y, respectively. To locate γ in constant
time, we can represent CT using Lemma 1 to support lca in O(1) time and store
with each node x of T̃ a pointer to the base component that contains x. This
incurs O(n) words of space and O(n) preprocessing time. To improve the second
procedure, we model it by defining an operation, locate(v, x); given a node v of
CT and a tree node x of T̃ that appears in component Cv, locate(v, x) returns
the preorder rank of node x in Cv.

To support locate(v, x), we borrow ideas from the solution to the ball inher-
itance problem [5] and achieve various trade-offs. Let π denote the path between
the root of CT and the leaf representing the base component that contains x,
and let πl denote the node in π whose depth is l. Then each component Cπl
contains a copy of node x. Array SP’s in Section 3.2 work as pointers between
these copies in components at consecutive levels. The algorithm in the proof of
Lemma 5 follows these pointers one by one till we locate x in Cv, which requires
O(lg n) time. To speed it up, we construct skipping pointers which allow us to
jump over many levels at one time: Suppose that we have computed the preorder
rank, i, of node x in component Cπl , and we need to locate x in Cπl+∆ for some
positive integer ∆. What we can do is to build an array SP∆(πl) with length
|Cπl |, in which SP∆(πl)[k] is set to d if the k-th node in preorder in Cπl appears
in the component represented by the d-th descendant of πl at depth l+∆ of CT .
If this node is not stored in any level-(l +∆) descendant component of πl (this
may happen when CT is not a complete tree), then SP∆(πl)[k] = −1. Since πl
has up to 3∆ descendants at level l+∆, we can represent SP∆(πl) in O(|Cπl |∆)
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Level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1: An example of the first traversal strategy. In this example, the component
tree CT has 16 levels, and B = 4. The arrows represent the skipping pointer. By
following 6 skipping pointers, one can reach level-15 from the root level.

bits by Lemma 2 to support rank′. Then rank′(SP∆(πl), i) − 1 is the preorder
rank of node x in Cπl+∆ and can be computed in O(1) time. We regard SP∆(πl)
as an array of skipping pointers that connect the nodes in component Cπl to the
nodes in level-(l +∆) descendant components of πl.

If an array of skipping pointers map nodes in a level-l component to nodes in
level-(l+∆) descendants of this component, then we say that the length of each of
these skipping pointers is ∆. Furthermore, based on previous discussions, storing
a skipping pointer of length ∆ incurs a space cost of O(∆) bits. To achieve good
time/space trade-offs, we design two strategies to decide what skipping pointers
to construct for each level. Henceforth, let h = O(lg n) denote the height of CT .
Let B ∈ [2, h] be an integer parameter to be chosen later, and let τ = logB h;
for simplicity, assume that τ is an integer.

In the first strategy, consider level l of the component tree CT . For each
integer i ∈ [0, τ −1] such that l is a multiple of Bi but l+Bi is not a multiple of
Bi+1, we build an array of length Bi skipping pointers for each level-l component.
See Figure 1 for an example. Since at most h

Bi levels of CT have skipping pointers
of length Bi, the total space cost of all the skipping pointers in this strategy is∑τ−1
i=0 (

h
Bi ) ·O(nBi) = O(n lg n logB lg n) bits, which is O(n logB lg n) words.

To use these skipping pointers to compute locate(v, x), let bτ−1bτ−2 · · · b0
denote the base-B expression of the depth6, lv, of node v in CT . That is, each bi
is in [0, B−1] and lv =

∑τ−1
i=0 biB

i. We then compute locate(v, x) in τ phases. In
phase-1, we start from the root of CT and follow length Bτ−1 skipping pointers
bτ−1 times. Each time after we follow a skipping pointer to reach a level of CT ,
we use level_anc to locate the ancestor, u, of v at that level. We then follow
the skipping pointers in SPBτ−1(u) to continue this phase. At the end of phase-
1, we have located the ancestor of v at level bτ−1Bτ−1 of CT and computed
the preorder rank of node x in the component that this ancestor represents. In
phase-2, we start from this ancestor and follow length Bτ−2 skipping pointers
bτ−2 times, and so on. In general, in phase-p, we follow length Bτ−p skipping
pointers bτ−p times, reach the ancestor of v at level

∑p
j=1 bτ−pB

τ−p of CT and
compute the preorder rank of node x in the component represented by this
ancestor. Thus, we reach v and compute the answer after τ phases. Since we
follow at most B − 1 skipping pointers in each phase, the total running time is

6 Note that a component tree has O(lgn) depths and the base-B expression of any
depth can be encoded in O(logB × logB lgn) = O(lgn) bits. Storing the base-B
expressions of all O(lgn) depths uses O(lgn) words of space overall.
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O(Bτ) = O(B logB lg n). Setting B = lgλ n for an arbitrary constant λ ∈ (0, 1)
yields a solution with O(n) space and O(lgλ n)-time support for locate.

The second strategy improves the running time of the above process by con-
structing a different set of skipping pointers so that each phase can be completed
by following exactly one skipping pointer. Let l be an arbitrary level of CT . For
each integer i ∈ [0, τ − 1] such that l is a multiple of Bi, we construct for level-l
clusters of skipping pointers of length Bi−1, 2Bi−1, . . . , (B−1)Bi−1. With these
skipping pointers, in phase-p, for each p ∈ [τ ], of the above process, we only need
one hop by following a skipping pointer of length bτ−pBτ−p, decreasing the total
query time to O(τ) = O(logB lg n). The total space cost of these skipping point-
ers is then at most

∑τ−1
i=0

h
Bi · (B − 1)O(nBi) = O(nB lg n logB lg n) bits, which

is O(nB logB lg n) words. Setting B = 2 bounds the space cost by O(n lg lg n)
and query time by O(lg lgn), while setting B = lgλ n bounds the space cost by
O(n lgλ n) and query time by O(λ−1) = O(1) for any constant 0 < λ < 1.

With these three trade-offs for locate, we have the following theorem:

Theorem 1. Let T be an ordinal tree on n nodes in which each node is assigned
a color. A data structure of s(n) words can be constructed in O(n lg n) time
to support 2-approximate colored path counting over T in q(n) time, where a)
s(n) = O(n) and q(n) = O(lgλ n); b) s(n) = O(n lg lg n) and q(n) = O(lg lgn);
or c) s(n) = O(n lgλ n) and q(n) = O(1) for any constant 0 < λ < 1.

4 (1 ± ε)-Approximate Colored Path Counting

We first present in Section 4.1 a data structure for optimal colored type-2 path
counting, which implies the support for colored path reporting. This data struc-
ture is further used in our solution to (1±ε)-approximate colored path counting.
In Section 4.2, we perform random sampling of node colors and construct an
extracted tree accordingly. We also determine a condition under which this ex-
tracted tree can be used to compute a (1 ± ε)-approximate answer with high
probability. Then, in Section 4.3, we show how to combine the techniques in the
previous two subsections to design a solution for the case in which the number
of distinct colors in a query path is in [κ/2, 2κ], where κ is an integer parameter
specified in the preprocessing stage. Finally, in Section 4.4, we construct a set of
data structures from Section 4.3, each for a different parameter κ. We then use
2-approximate colored path counting to determine a range that the exact answer
to the query must be in, so that we can use an appropriate building block to
compute a (1± ε)-approximate answer.

4.1 A New Solution to Colored Type-2 Path Counting

Let Px,x′ denote a query path such that x′ is an ancestor of x. Consider colored
type-2 path counting for Px,x′ . Our strategy can be described as follows: For
each color c ∈ C(Px,x′), we locate the lowest node, `c, in Px,x′ whose color is
c, as well as the highest node, hc, in Px,x′ colored in c. Then the frequency of
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color c in Px,x′ is depthc(`c) − depthc(hc) + 1. If we precompute the value of
depthc(v)(v) for each node v, then, after locating `c and hc, we can compute the
frequency of color c in Px,x′ immediately. The details of finding hc’s and `c’s and
extending this method to general query paths are deferred to the full version of
this paper. The result is summarized as Lemma 6.

Lemma 6. Let T be an ordinal tree on n nodes with each node assigned a color
from {0, 1, . . . , C − 1}, where C ≤ n. An O(n)-word data structure can be con-
structed over T in O(n lg n) time to support colored type-2 path counting in
O(occ) time, where occ denotes the number of distinct colors in a query path.

4.2 Random Sampling

We now perform random sampling of node colors and apply tree extraction
accordingly. Set θ = 6(c1+3) lgn

ε2 lg e , where e denotes Euler’s number and c1 ≥ 1

is an arbitrary positive constant. Let κ ∈ (θ, n] be an integer parameter to be
chosen later, and define M = θ/κ. We create a random color set C ′ by choosing
each color that appears in T independently at random with probability M. Then
we construct a tree extraction T ′ from T by removing nodes whose colors are not
in C ′ using the approach described in Section 2. All the nodes in T ′ are assigned
their original color in T except for the dummy root; if a dummy root is added, it
is uncolored. For each color c ∈ {0, · · · , C − 1}, let Xc denote a random variable
indicating whether color c is sampled: Xc is set to 1 if c has been sampled and
0 otherwise. Thus, Pr[Xc = 1] = M. Furthermore, for an arbitrary path Px,y
in T , we define a random variable Xx,y =

∑
c∈C(Px,y)

Xc. Lemma 7 states the
conditions under which Xx,y/M is a (1± ε)-approximation of |C(Px,y)| with high
probability; the proof is deferred to the full version of this paper.

Lemma 7. Consider an arbitrary path Px,y in T . If occ ≥ κ/2, where occ

denotes |C(Px,y)|, then Pr[(1− ε)occ ≤ Xx,y
M
≤ (1 + ε)occ] > 1− 2

nc1+3 .

4.3 Approximate Colored Path Counting over Canonical Paths

To use Lemma 7 and also due to other considerations, we call a path in T
canonical if the number of colors that appear in the path is in [κ/2, 2κ], for an
integer dθe ≤ κ ≤ C/2 to be decided later. We first solve the (1±ε)-approximate
problem for canonical paths:

Lemma 8. Let T be an ordinal tree on n nodes represented by Lemma 1. With
success probability more than 1 − 1

nc1+1 , one can construct a data structure in
O(n lg n) worst-case time to answer (1 ± ε)-approximate colored path counting
queries over canonical paths in O( 1

ε2 lg n) worst-case time. The space cost is
O(n · M+n/ lg n) words in the expected case (and O(n) words in the worst case).

Proof. First, we present the data structures. As described in Section 4.2, we
choose a random color set and construct a tree extraction T ′ consisting of nodes
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whose colors are sampled. Tree T ′ has O(n · M) expected number of nodes but
O(n) nodes in the worst case. We represent T ′ by Lemma 1 in O(|T ′| lgC) bits
to support fast navigation. We also construct the data structure of Lemma 3
over T and T ′ to support decompose in constant time. The data structure uses
O(n) bits which is O(n/ lg n) words. Finally, we construct in O(n lg n) time in
the worst case the linear space data structure for colored path reporting queries
over T ′ by applying Lemma 6. The overall space cost is O(n · M+ n/ lg n) words
in the expected case, and O(n) words in the worst case. The construction time
is bounded by O(n lg n).

To describe the query algorithm, let Px,y be a canonical query path. Since
|C(Px,y)| ≥ κ/2, Xx,y/M is a (1 ± ε)-approximate of |C(Px,y)| with probability
greater than 1 − 2

nc1+3 by Lemma 7. Since M is given in preprocessing, we need
only compute Xx,y. Let x′ and y′ be the nodes of T ′ returned by decompose(x, y)
in O(1) time. If x′ and y′ are null, no color in Px,y has been sampled, so we set
Xx,y to be 0. Otherwise, Xx,y is either |C(Px′,y′)| or |C(Px′,y′)| − 1, and we can
determine which case it is by performing these steps: If the color of z = lca(x, y)
in T is sampled, then its corresponding node, z′, in T ′ belongs to Px′,y′ . In this
case, there is a one-to-one correspondence between the nodes in Px′,y′ and the
nodes in Px,y whose colors are sampled, so Xx,y = |C(Px′,y′)|. If the color of
z is not sampled, then the node z′′ = lca(x′, y′) in T ′ does not correspond
to z, but all other nodes in Px′,y′ correspond to nodes with sampled colors in
the query path. Then there are two sub-cases to be considered, depending on
whether the color of z′′ also happens to appear in Px′,y′ \ {z′′}. If it does, then
we have Xx,y = |C(Px′,y′)|, and otherwise, Xx,y = |C(Px′,y′)| − 1. Navigational
operations such as lca can be performed over T and T ′ in constant time, and
whether c(z′′) appears in Px′,y′ \ {z′′} can be tested by two path emptiness
queries in O(lg lgC) time. Therefore, if we know the value of |C(Px′,y′)|, we can
compute Xx,y in O(lg lgC) extra time.

It remains to show how to compute |C(Px′,y′)|. To do it, observe that ifXx,y/M
is a (1±ε)-approximation, then Xx,y ≤ (1+ε) ·M · |C(Px,y)| ≤ (1+ε) ·M ·2κ. Since
Xx,y is at least |C(Px′,y′)|−1, we have |C(Px′,y′)| ≤ (1+ ε) ·M ·2κ+1. With this,
we can apply Lemma 6 to report the distinct colors in C(P ′x′,y′), and instead of
reporting all these colors, we stop when the number of reported colors reaches
(1+ ε) ·M ·2κ+2. If this happens, we terminate our query algorithm with failure.
Otherwise, the number of colors reported is |C(Px′,y′)|. Since (1+ ε) ·M ·2κ+2 =
O(ε−2 lg n), this process uses O(ε−2 lg n) time.

By Lemma 7, for an arbitrary query path, our data structure fails to return a
(1±ε)-approximation with probability Pr[|X

M
−occ| > ε·occ] < 2

nc1+3 . Since there
are

(
n
2

)
different query paths, the probability of constructing a data structure

that answers all queries correctly is more than 1−
(
n
2

)
· 2
nc1+3 > 1− 1

nc1+1 . ut

Next, we keep resampling colors and building the structure of Lemma 8 for
the sample, until we find a data structure that occupies O(n · M+ n

lgn ) words in
the worst case and can always return (1±ε)-approximations for canonical paths.
This process requires O(n2 lg lgC) expected preprocessing time (the analysis is
deferred to the full version of this paper). Therefore, we achieve:
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Lemma 9. Let T be an ordinal tree on n nodes represented by Lemma 1. A
data structure occupying O(n · M+ n/ lg n) extra words in the worst case can be
constructed in O(n2 lg lgC) expected time to support (1± ε)-approximate colored
path counting over canonical paths in O(ε−2 lg n) worst-case time.

4.4 Approximate Colored Path Counting over Arbitrary Paths

To solve queries over arbitrary paths, we first represent T by Lemma 1 to support
navigational operations. We also construct the data structures of part a) of
Theorem 1 to support 2-approximate colored path counting over T . In addition,
we build the data structures of Lemma 6 to support colored path reporting.
These data structures use O(n) words and can be built in O(n lg n) time.

Then, for each i ∈ [dlg θe, dlgCe), let κi be 2i. We refer to a query path as
a tier-i canonical path if the number of distinct colors that appear in it is in
[κi/2, 2κi]. For each possible value of i, we apply Lemma 9 to construct a data
structure DSi to support (1 ± ε)-approximate colored path counting over tier-i
canonical paths. Data structure DSi uses O(nθ/κi+n/ lg n) = O(nθ/2i+n/ lg n)
words in the worst case and can be constructed in O(n2 lg lgC) expected time.
Summing up over all i ∈ [dlg θe, dlgCe), the overall space cost of these data
structures is O(n) words in the worst case, and they can be constructed in
O(n2 lgC lg lgC) expected time. Theorem 2 summarizes our final result.

Theorem 2. Let T be an ordinal tree on n nodes with each node assigned a
color from {0, 1, . . . , C − 1}, where C ≤ n. A data structure of O(n) words of
space in the worst case can be constructed in O(n2 lgC lg lgC) expected time to
support (1±ε)-approximate colored path counting in O(ε−2 lg n) worst-case time.

Proof. It remains to show the query algorithm. Let Px,y denote the query path.
We first use the colored path reporting structure to report up to θ distinct colors
in C(Px,y). If less than θ colors are reported, then we return the exact number of
colors, taking O(ε−2 lg n) time. Otherwise, occ > θ. In this case, we compute a
2-approximate result, occa, in O(lgλ n) time. Then, occ ≤ occa ≤ 2occ. Observe
that, for any i ∈ [dlg θe, dlgCe), if κi ≤ occa ≤ 2κi, then κi/2 ≤ occ ≤ 2κi.
This allows us to perform a binary search in O(lg lg n) time to find the value of
i such that Px,y is a tier-i canonical path. Finally, by querying DSi, we can find
a (1± ε)-approximation of occ in O(ε−2 lg n) worst-case time. ut
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