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Abstract. We study two problems concerning the maximal and con-
vex layers of a point set in d dimensions. The first is the average-case
complexity of computing the first k& layers of a point set drawn from
a uniform or component-independent (CI) distribution. We show that,
for d € {2,3}, the first n!/47¢ maximal layers can be computed using
dn + o(n) scalar comparisons with high probability. For d > 4, the first
n'/24=¢ maximal layers can be computed within this bound with high

1/2d—e

probability. The first n'/%~¢ convex layers in 2D, the first n convex

layers in 3D, and the first n'/ (@*42) convex layers in d > 4 dimensions can
be computed using 2dn + o(n) scalar comparisons with high probability.
Since the expected number of maximal layers in 2D is 24/n, our result
for 2D maximal layers shows that it takes dn + o(n) scalar comparisons
to compute a 1/n-fraction of all layers in the average case. The second
problem is bounding the expected size of the kth maximal and convex
layer. We show that the kth maximal and convex layer of a point set
drawn from a continuous CI distribution in d dimensions has expected
size O(k%log?~ ! (n/k?)).
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1 Introduction

Maximal and convex layers are fundamental geometric structures with applica-
tions for example in data mining [5], pattern recognition and statistics [8,15]. A
point p dominates another point g if p is no less than ¢ in any dimension and p
is greater than ¢ in at least one dimension. The skyline (first maximal layer) of
a d-dimensional point set S is the set of all points in S not dominated by any
other point in S. A point p € S belongs to the convex hull (first convex layer) of
S if there exists a (d — 1)-dimensional hyperplane through p that has all points
of S on the same side. For k > 1, the kth mazimal or convex layer is the skyline
or convex hull of the subset of S obtained by removing the first £k — 1 maximal
or convex layers, respectively.

Computing maximal and convex layers are problems that have been studied
extensively. A classical result of Kung et al. [12] shows that the skyline of a point
set in 2D or 3D can be found in O(nlogn) time; for any constant d > 4, the cost



in d dimensions is O(nlog? % n). The convex hull of a 2D or 3D point set can also
be found in O(nlogn) time [3], while the cost of finding the convex hull in d > 4
dimensions is ©(nl%/2)) in the worst case [7]. A simple adversary argument shows
that, in the worst case, £2(nlogn) comparisons between scalars are necessary to
compute the skyline or convex hull in d dimensions for any d > 2. For component-
independent (CI) point distributions, on the other hand, expected linear-time
algorithms exist, where a point distribution is component-independent if it is
continuous and the coordinates of each point are chosen independently. The
algorithm of Bentley et al. [1] uses dn + o(n) scalar comparisons in expectation
to find the skyline of a point set in d dimensions. For the convex hull, they
presented an algorithm that uses 2dn + o(n) expected scalar comparisons for
d € {2,3}. For d > 4, they presented an algorithm that finds a superset of
the convex hull of expected size O(log? ' n) using 2dn + o(n) expected scalar
comparisons. They also proved that dn scalar comparisons is a lower bound for
computing either the skyline or convex hull.

All maximal layers of a point set can be computed in O(nlogn) time in 2D
[4] and 3D [6]. For d > 4, no optimal algorithm for computing multiple maximal
layers is known. The convex layers of a point set in 2D can be computed in
O(nlogn) time [8]. For d > 3, no optimal algorithm for computing multiple
convex layers is known. Nielsen [15] presented an output-sensitive algorithm for
finding the first k& convex or maximal layers of a 2D point set in O(nlog hy) time,
where hy, is the number of points in these layers.

One of the key ingredients of Bentley et al.’s skyline and convex hull algo-
rithms [1] is the ability to quickly identify a small subset of points that is likely
to contain all skyline or convex hull points. The skyline or convex hull can then
be computed by applying one of the algorithms above to this subset of points.
Such a small subset can exist only if the skyline or convex hull is small. Bentley
et al. [2] proved that the expected size of the skyline or the expected number
of vertices of the convex hull over an arbitrary CI distribution is O(log®~! n).
Note that the work on the expected complexity of geometric structures, includ-
ing that of Bentley et al. [2], is of independent interest. Many other problems
have also been defined and studied under similar assumptions. For instance,
Dalal [9] shows that the expected number of convex layers is ©(n?/(+1)) for
a set of n points independently chosen from a uniform distribution inside any
bounded, nonempty region in R%. We refer to Okabe et al. [16] for a review of
many problems in this area.

Our results. We extend Bentley et al.’s results [1] to multiple layers and strengthen
the algorithm analysis by proving high-probability bounds on the number of
scalar comparisons. Our first main result is a reduction that allows us to obtain
an algorithm that computes the first & maximal or convex layers using dn + o(n)
or 2dn + o(n) expected scalar comparisons, respectively, given an algorithm that
computes these layers using O(k°n'*€) scalar comparisons in the worst case. The
exact bound on k is given in the following theorem.



Theorem 1. Let S be a set of n points drawn from an arbitrary CI distribution
in d dimensions. Suppose there is an algorithm M that can compute the first
k mazimal (or convex) layers of S using O(k°n'*t¢) scalar comparisons in the
worst case, where ¢ and € are constants with ¢ > 0 and 0 < € < ﬁ. Then

the first Kk = R a ¢ mazimal (or convex) layers of S can be computed using
dn + o(n) (or 2dn + o(n)) expected scalar comparisons, and the actual number

of comparisons is within the same bounds with probability 1 — o(n’”e ) for any
2

€ € (0, (ce + 557y)d)-

To achieve this result, our main strategy is to generalize the algorithms of
Bentley et al. [1] to compute more than one maximal or convex layer. While it
is not difficult to generalize the algorithms themselves, it is more challenging
to analyze their running times. To perform the analysis, our key strategy is to
further conceptually subdivide some objects defined by these algorithms into
even smaller objects, such that a layer must contain a point inside a particular
smaller object with high probability. These constructs may be of general interest,
as they may be useful to the tasks of performing some other similar analysis over
multiple layers of the given point set.

The existing algorithms discussed previously allow us to find the first k£ max-
imal layers using O(n'*) comparisons for d € {2,3} and using O(kn'*¢) com-
parisons for d > 4. The first k convex layers can be computed using O(n'*¢)
comparisons in 2D and using O(kn'*¢) comparisons in 3D. Thus, we obtain the
following corollary of Theorem 1:

Corollary 1. Let S be a set of n points drawn from an arbitrary CI distribution
ind dimensions. If d € {2,3}, the ﬁrstn%*6 mazximal layers of S can be computed
using dn + o(n) expected scalar comparisons. If d > 4, the first n2a=¢ mazimal
layers can be computed using this expected mumber of scalar comparisons. If
d =2, the first nia—¢ convex layers of S can be computed using 2dn+o(n) expected
scalar comparisons. If d = 3, the first n2a—¢ convex layers can be computed
using this number of expected scalar comparisons. In all these cases, the actual

number of comparisons is within the same upper bounds on the expected number

of comparisons with probability 1 — o(n*"E ).

Our results are the first that show that more than one maximal or con-
vex layer can be computed using the optimal number of scalar comparisons on
random point sets up to lower order terms and, in the case of convex hull, up
to a constant factor of 2. With the exception of a high-probability analysis of
an alternative skyline algorithm by Bentley et al. [1] provided by Golin [11],
only expected bounds on the number of scalar comparisons were known even for
computing only the first convex or maximal layer.

The number of maximal layers of a point set S is the length of a longest
monotonically increasing subsequence (LMIS) of the sequence of y-coordinates
of the points in S sorted by their z-coordinates. If S is drawn from a CI dis-
tribution, this sequence of y-coordinates is a uniform random permutation of



the y-coordinates. Thus, by a result of [10], the expected length of an LMIS of
this sequence, and thus the number of maximal layers of S approaches 2/n as
n approaches infinity. Therefore, for d = 2, our algorithm finds a 1/n®-fraction
of all maximal layers in the average case using the optimal number of scalar
comparisons up to lower-order terms.

For d > 4 dimensions, no convex hull algorithm using expected 2dn + o(n)
comparisons on random point sets was known, and we cannot satisfy the condi-
tion of Theorem 1 even for k = 1 since computing the convex hull takes @ (nl4/2])
time in the worst case. However, the construction that proves Theorem 1 can be
combined with the ©(nl%2])-time convex hull algorithm to obtain the following
theorem:

Theorem 2. Let S be a set of n points in d > 4 dimensions drawn from an
arbitrary CI distribution. For any k < nl/(d2+2), the first k convex layers of S
can be found using 2dn+ o(n) scalar comparisons with probability 1 — O(nl/%),
for any € > 0.

This result is the first that computes multiple convex layers in four or higher
dimension in linear time with high probability.

Our second main result bounds the size of the kth maximal or convex layer
of a d-dimensional point set. Previously, only bounds on the expected size of the
first maximal or convex layer were known.

Theorem 3. For any point set S drawn from a continuous CI distribution in d
dimensions, the kth mazimal or convex layer has expected size O(k? log®™ (n/k%)).

2 Algorithm Overview

Bentley et al.’s algorithms [1] for computing the skyline or convex hull of a point
set S using expected dn+o(n) or 2dn+o(n) comparisons uses the following simple
idea: Find a rectangular inner region I that is expected to contain almost all
points in S and is likely to be completely below the skyline of S or inside the
convex hull of S. See Figure 1. In particular, with high probability, the points in
S that belong to the skyline or convex hull are all contained in the outer region
O = R?\ I. The algorithm partitions the point set S into two subsets Sy = SN T
and So = SN O and computes the skyline or convex hull Ly of Sp using some
standard skyline or convex hull algorithm, which takes o(n) time in expectation
because Sp is small. Finally, the algorithm checks whether certain subregions of
O (C and Cy, ..., Cy, respectively, in Figure 1) each contain at least one point of
So. If so, I is completely below or inside Lo, which implies that Lo is also the
skyline or convex hull of S because no point in S\ So = S; C I can be on the
maximal layer or convex hull of S. Thus, the algorithm terminates in this case.
Otherwise, the algorithm runs a standard skyline or convex hull algorithm on
S to compute the skyline or convex hull of S. While this is costly, this happens
infrequently because I is likely to be below the skyline or inside the convex hull
of S, so the expected cost of this final step is again o(n).
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Fig. 1: The inner and outer regions used in Bentley et al.’s [1] and our algorithm
illustrated for the 2D case. I is shaded blue. O is shaded pink, including the
darker regions, which are the corners that are tested by the algorithm whether
they contain a point not on the first & maximal or convex layers. As illustrated
in red, any point in C' dominates I in the case of maximal layers; in the case of
convex layers, the convex hull of any four points in C1,...,Cy encloses I.

For the skyline algorithm, I = (—o0, 21 (p)] x (—00, Z2(p)] X - - - X (—00, 24(p)],
where p is an appropriate point and z;(p) denotes the ith coordinate of p, so
the partition into S; and So can be obtained using dn scalar comparisons.
For the convex hull algorithm, I = [z1(p™),z1(pT)] X [x2(p™), 2(p™)] x -+ x
[x4(p™), z4(p™)] for an appropriate pair of corner points (p~,p™), so the partition
can be performed using 2dn scalar comparisons. The corner points of I can
be found without comparisons by setting z;(p~) = € and x;(p) = =z;(p™) =
1 —cforall 1 < i < d and some appropriate value ¢ > 0. At least this is
the case for points distributed uniformly at random in the unit hypercube. For
an arbitrary CI distribution, p, p~, and p™ can each be found using dn + o(n)
scalar comparisons using randomized linear-time selection. The partitioning of
S into S; and Sp can be done as part of the selection process without incurring
any additional comparisons. We discuss this in more detail as part of our high-
probability analysis and extension to multiple layers (Lemmas 1 and 4). Overall,
the expected cost of the algorithm is dn + o(n) or 2dn + o(n) comparisons for
finding p or p~ and p* and computing the partition of S into S; and So plus
o(n) expected comparisons for computing the maximal layer or convex hull.

To extend Bentley et al.’s result [1] to multiple maximal or convex layers, we
need to show that there exists a point p or a pair of points (p~,p") that defines
inner and outer regions I and O as above such that, again, almost all points
in S are inside I and the first k layers are unlikely to intersect I. To achieve a
running time of dn + o(n) or 2dn + o(n) with high probability, we also need to
strengthen the analysis of Bentley et al. [1] to (a) show that these points can be
found using dn + o(n) or 2dn 4 o(n) scalar comparisons with high probability
and (b) with high probability, I does not intersect the first k layers.



Since the proofs are slightly simpler, we present our result for maximal layers
first. Then, in Section 4, we argue that the same approach, with minor modifi-
cations, can also be used to compute convex layers.

3 Maximal Layers

Throughout this section, we use p ¢ to indicate that ¢ dominates p. Given
a point set S drawn from a CI distribution D and some value 7 € [0, 1], we
call a point p a 7-pivot of S if, for all 1 < ¢ < d and any point p’ chosen
uniformly at random from S, P[z;(p) > x;(p)] = 7; recall that z;(p) denotes
the i¢th coordinate of point p. Point p is not necessarily in S. We first prove the
following lemma on locating p.

Lemma 1. Let S be a point set drawn from a CI distribution. For any value
t >0, any value T € (0,n" U1 —n"t 1), and any constant ¢ € (0,1), a T-pivot
p and a partition of S into two subsets S; = SNI and So = SN R\ I) can be
computed using dn+o(n) scalar comparisons in expectation and with probability

at least 1 — 0(71*"6/), where I is the region dominated by p.

Proof. If S is drawn uniformly at random from the unit hypercube, then p =
(1—7,...,1—17)is a 7-pivot and can be found without any comparisons. The
partition of S into St and S can be computed by deciding for each point whether
it is dominated by p (and thus belongs to Sy) or not (and thus belongs to Sp).
This takes d comparisons per point in S, incurring dn comparisons in total, that
is, the lemma holds in the worst case for a uniform random distribution. For
an arbitrary CI distribution, set z;(p) to be the (7n)th largest coordinate in
dimension i among the points in S. Then p is a 7-pivot. Each value z;(p) can
be found using n 4 o(n) scalar comparisons in expectation and with probability

at least 1 — 0(n’”€/> using a simplified version of LazySelect [14]; we omit the

details due to page constraints. In the process, every point in S is tagged as
having ith coordinate less than or equal to, or greater than z;(p). Doing this for
all d dimensions produces p and takes dn—+o(n) scalar comparisons in expectation

and with probability at least 1 — o(n_"e ) The partition of S into Sy and So
is then obtained without additional scalar comparisons by collecting all points

tagged as greater than p in at least one dimension into Sp, and the remaining
points into Sy. O

The following observation and lemmas are needed for our proof of Theorem 1.

Observation 4 Let p be a T-pivot of S and consider the corresponding parti-
tion of S into subsets St and So as in Lemma 1. If there exist k + 1 points

P1,D2, -, Pht1 0 So such thatp /pry1 -+ /" p1, then the first k maximal
layers of S and So are identical and pr41 s not part of these layers.



Lemma 2. Let S be a point set drawn from a CI distribution, let 0 < €1 < €2 < 1

be constants, let ;17 > nle=D/4 and let ho,hy,. .., hie1 be k + 2 points such
that hj is a (k?HT) -pivot of S for all 0 < j < k+ 1. Then with probability at

least 1 — o(n_"el), each hyperrectangle H; defined by points hj_1 and h;, for
1< j <k+1, contains a point p; € S. These points satisfy pxy1 o /-
b1

Proof. Consider an arbitrary hyperrectangle H;. Since h;_1 is a (%T)—pivot

and h; is a (k%_lT)—pivot, each point p € S satisfies x;(hj_1) < z;(p) < x;(h; )
with probability kLJrl for each 1 < ¢ < d. Since the coordinates are chosen

independently, p € H; with probability (k%‘_l)d. Thus, E(|H; N S|) = (k%_l)dn.
Since |H;NS| is the sum of independent Bernoulli random variables, the Chernoff
bound states that P(H; NS = ) < e~ (/1) /4 and the probability that
there exists an index 1 < j < k + 1 such that H; NS = 0 is less than (k +
1)6_(7/(’”‘1))%/4. For 75 > n(e2=1/d this is bounded by (k + 1)e™"?/* <
nl—n%/(4lnn) _ o(n‘"q) for any €; < €3 because k + 1 < n. O

Lemma 3. Let S be a point set drawn from a CI distribution, let 0 < ¢ <
€a < 1 be constants, let 7 > n~1, let p be a T-pivot of S, let S; C S be the
set of points dominated by p, and let So = S\ S;. Then E(|So|) < drn and
P(|So| > 2drn) = o(n™"").

Proof. We can cover the outer region O with d halfspaces By, B, ..., By, where
B; = {p' € R?| z;(p’) > x;(p)}. Since a point p’ € S satisfies z;(p’) > z;(p) with
probability 7, we have E(|B;NS|) = ™n and E(|So]) < Z?Zl E(|B;NS|) =drn.
Since | B;NS| is the sum of independent Bernoulli random variables, the Chernoff
bound states that P(|B;NS| > 2rn) < e~™/3 < n=n?/BInn) = 4(p=n"™") Thus,

P(|So| > 2dmn) < Z?zl P(|B;| > 2mn) = O(dn_"el) =o(n™""). O

Proof (Proof of Theorem 1 (Maxzimal Layers).). Our algorithm finds a 7-pivot p
of S, partitions S into S; and Sp, computes the first £ maximal layers of Sp using
M, and checks whether there exists a point in Sp that is not on the computed
maximal layers but dominates p. If this test succeeds, then the maximal layers of
S and Sp are the same, so the algorithm reports the computed maximal layers.
Otherwise, it runs M on S to compute the first £ maximal layers of S.

We prove that this algorithm uses dn + o(n) scalar comparisons with high
probability. The analysis of the expected number of comparisons is analogous.
The number of comparisons the algorithm performs is dn+o(n) if (a) computing
p and partitioning S into Sy and S takes dn 4 o(n) comparisons, (b) running
algorithm M on So incurs o(n) comparisons, and (c) there exists a point in So
that is not on the first £ maximal layers and dominates p, that is, the fallback
option of running M on the entire point set S is not invoked. Thus, it suffices
to bound the probability that any of these three conditions fails.

By Lemma 1, (a) fails with probability o(n’”E/), for any ¢ € (0,1), as

long as 7 = n~! for some t > 0. Running algorithm M on So incurs o(n)



scalar comparisons if [So| = o(n?/(1+9))/k¢. By Lemma 3, [So| < 2drn with
probability 1 — 0(71_"6,) as long as 7 > n 2! for some e, > €. Therefore, (b)
fails with probability o(n_”ﬁl) as long as ™n = o(nl/(l*‘e))/kc and 7 > n2L,
By Observation 4 and Lemma 2, (c¢) fails with probability o(n_"EI) as long
as g = n(e2=1/4 for some e > €. Thus, the probability that any of these

three conditions fails is o(n~"" ), provided we can choose 7 so that the above
constraints are satisfied.
First observe that e —1 < 0. Thus, 7 > n®~! if T > n(”_l)/d so we have

to choose a value of 7 = n~¢, for some ¢t > 0, such that + > nle2=/d and 7n =
o(n 1/(”6))/16C The last two constraints imply that k¢t = o(n—¢/(c+D)+{1—e2)/d)

or k = o(n<L+1>d o)

where § = € — For any € < (ce +

€ €
(c+21)d T (efD)(e+1)
2(e+1))d we have § > 0, that is, we can compute up to nT 04 ¢ maximal

layers and, since (ce + > 0, we can choose values ¢ and e; such that

2(e+1))
50T T) )d. It remains to choose 7. We have 7n = o(n!/(1+9)) /k¢

— ec. To satisfy kL-i-l > n(€2_1)/d, we need t = —log, 7 <

0<¢ <€2<(C€+(
ift> v+ o5a
_logn(k+1)_€2 !

k by n @07 € in this inequality, and it holds for large enough n if ¢ is a constant

and t < € — ﬁ — %, which is true as long as t is a constant satisfying

— €C —

- .
=tDd ¢ maximal layers, we replace

t<e— R L because e < (ce+ 5Te +1))cl It is easy to verify

1
(c +1)d (1+e
that 1+6 + (c+1)d —ec < e— m —ec— m + E' Thus, we can choose a value
of ¢ that satisfies both constraints and set 7 = n~!. In addition, since € < m,
wehaveﬁ+m760>0,thatis,t>0. a

4 Convex Layers

Convex Layers in Two and Three Dimensions: To apply the framework
from Section 3 to compute convex layers, we need to extend the notion of dom-
inance to the 2¢ possible quadrants of a point in R?. We identify each quadrant
using a sign vector o € {+1, —1}4. We say a point ¢ € R? o-dominates another
point p € R, written as p 7 ¢ if ¢ o ¢ dominates ¢ o p, where p o g is the
Hadamard product: po g = (z1(p), 22(p), - .., za(p)) © (x1(q), #2(q), - - -, wa(q)) =
(z1(p)z1(q), 22(P)22(q); - - -, za(P)za(q)). We call a point p a (7,0)-pivot of S
if, for all 1 < ¢ < d and any point p’ chosen uniformly at random from S,
P(z;(0)z;(p') > xi(0)xp(p)) = 7. Note that 1-dominance is the same as normal
dominance, a (7, 1)-pivot is just a 7-pivot, and a (7, —1)-pivot is a (1 — 7)-pivot,
where 1 = (1,...,1) and =1 = (—1,...,—1). A pair of points (p~,p*"), where
0 <7 <1/2 ptisa (r,—1)-pivot, and p* is a (7, 1)-pivot, divides R? into
an inner region I containing all points in R? that dominate p~ and are domi-
nated by pT, and an outer region O = R%\ I; see Figure 1. Similar to maximal



layers, we define Sy = SN I and So = SN O. The corners of I are the points
{p° | 0 € {+1,-1}%}, where p° = 3((1 +0)op™ + (1 —0)op~). Since S is
drawn from a CI distribution, each such corner p° is a (7, 0)-pivot of S.

Our algorithm finds (p~,p™), partitions S into S; and So, computes the first
k convex layers of Sp using M, and checks whether, for every o € {+1, -1},
there exists a point in Sp that is not on the computed convex layers but o-
dominates p?. If this test succeeds, then the convex layers of S and Sp are the
same, so the algorithm reports the computed convex layers. Otherwise, it runs
M on S to compute the first k convex layers of S. To analyze this algorithm, we
first prove the following lemmas and observation.

Lemma 4. Let S be a point set drawn from a CI distribution. For any value
t > 0, any value 7 € (0,n7Y], and any constant € € (0,1), a pair of points
(p~,pT) such that p~ is a (1,—1)-pivot of S and p* is a (7,1)-pivot of S and
a partition of S into two subsets Sy = S NI and So = SN O can be computed
using 2dn + o(n) scalar comparisons in expectation and with probability at least

1-— o(n_”E,) .

Proof. Since p* is a 7-pivot and p~ is a (1 —7)-pivot of S, we can find these two
points using the claimed number of scalar comparisons by applying Lemma 1
twice. In the case of an arbitrary CI distribution, the selection of the coordinates
of p~ and p* also tags each point as having ith coordinate less than z;(p~),
between z;(p~) and x;(p™) or greater than z;(p™*), for each 1 <i < d. Thus, Sy
and Sp can be produced without any additional scalar comparisons by placing
each point that has at least one coordinate less than p~ or at least one coordinate
greater than p™ into Sp and all remaining points into Sy. a

Observation 5 Let hg,hy,...,h and h& hf, R hZ_H be points such that
hg S hy 2o Sy S hzﬂ N h;r S JhG and consider the regions
I and O defined by the pair of points p~ = h;_ , and pt = hzﬂ. Each pair of
points (h;, h;‘) defines a hyperrectangle with corner set {h¢ | o € {+1,—1}4}
similar to the corner set {p° | o € {+1,—1}} of I defined by (p~,p*). If, for
every sign vector o € {41, —1}d, there exist k + 1 points p7,p3,..., P51 i So
such that hg /7 p7 /7 hi_y for all 1 < j < k+ 1, then the first k convex
layers of S and So are identical and p7_ , is not part of these layers for any

o€ {+1,-1}%

Lemma 5. Let S be a point set drawn from a CI distribution, let 0 < €1 < €5 < 1

be constants, let k%rl > n(€2f1)/d, and let hy ,hi,..., hgﬂ,har,hf, .. .,hzﬂ be
points such that h; is a (k%HT,—l)—pivot and h;‘ s a (k%HT, 1) -pivot for all

0 <j <k+1. Then with probability at least 1 — o(n_"el), every hyperrectangle
HY defined by the points hj_y and hi, for 1 <j < k+1 and every sign vector
o € {+1, -1}, contains a point p] €S.

Proof. Analogous to the proof of Lemma 2, P(H{ NS = ) < e~ (/1) /4 g4
the probability that there exists a pair (j, o) such that H7NS = () is less than (k+
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1)2de=(/(k+1)"n/4  Ag shown in the proof of Lemma 2, (k+1)e~(7/(k+1D)*n/4 —
o(n™""). Since d is a constant, this implies that (k + 1)2de(7/(k+1)n/a
o(n_”q). O

Lemma 6. Let S be a point set drawn from a CI distribution, let 0 < €1 < €5 < 1
be constants, let T > n2~1 let p~ be a (1,—1)-pivot of S, let p* be a (7,1)-
pivot of S, let I be the hyperrectangle defined by (p~,p™%), let Sy = SN I, and
let So =S\ Si. Then E(|So|) < 2drn and P(|So| > 4drn) = o(n™"").

Proof. The proof is identical to the proof of Lemma 3 after observing that So can
be covered with 2d halfspaces By, B, ,... ,Bd_,Bf,B;', . ,B;, where B; =
{p) € R | 2;(p') < xi(p7)} and B = {p € R | z;(p/) > x;(pT)} for all
1<i<d. a

With these lemmas and observation, we claim that the analysis of the al-

gorithm in Section 4 that computes the first & convex layers in two or three
dimensions is identical to the proof of Theorem 1 for maximal layers, using
Lemmas 4, 5, and 6 and Observation 5 in place of Lemmas 1, 2, and 3 and
Observation 4. This completes the proof of Theorem 1.
Convex Layers in Four or Higher Dimensions: We now consider the prob-
lem of computing the first k convex layers of a point set S drawn from an
arbitrary CI distribution in four or higher dimensions, for k& < n'/ (@*+2) The
framework of Theorem 1 cannot be applied directly to this problem because the
best known algorithm for computing even the convex hull in d > 4 dimensions [7]
takes O(nl%/2)) comparisons.

Bentley et al. [2] showed how to use 2¢ skyline computations to produce a
superset @’ of the convex hull @ of S of small expected size. Matousek [13] later
called this structure the quadrant hull of S. We opt for orthant hull here because
an orthant is the generalization of quadrants to higher dimensions. We will show
later in this section that, with high probability, the size of @’ is small enough so
that applying Chazelle’s convex hull algorithm to @’ takes O(n) comparisons.
Combined with Kung et al.’s algorithm for computing the skyline in d dimensions
in O(nlog??n) time [12], this gives an algorithm M that computes the convex
hull of S using O(nlog? % n) comparisons with high probability. To compute
k > 1 convex layers, M repeats this process k times: the ¢th iteration computes
the convex hull of the point set left after removing the first ¢ — 1 convex layers.
With high probability, this will take O(kn log?—2 n) time because, as we show
below, the size not only of the orthant hull but in fact of the first k orthant
layers is small enough to apply Chazelle’s algorithm k& times.

To prove Theorem 2, we use M in conjunction with Theorem 1 where ¢ = 1.
Theorem 1 requires M to achieve a running time of O(kn!'™¢) in the worst case.
However, it is easily verified that the proof of Theorem 1 continues to hold if M
achieves this running time with some probability p > 0, in which case Theorem 1
produces a convex hull algorithm that uses 2dn + o(n) scalar comparisons with

probability © (min (p, 1-— 0(71’"5/))). Since we prove below that M achieves a
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running time of O(n log?~? n) with probability 1—O (nl/%) , Theorem 2 follows

by setting € = 1/(2d) — 1/(d* + 2) in Theorem 1.

Let 0 € {+1,—1}¢ be a sign vector, let 608 = {cop |p € S}, and let L
be the set of points p € S such that o o p belongs to the skyline of o 0 .S. We
call L° the o-skyline of S. The orthant hull of S is Q' = UU€{+17_1}d L7, and
Bentley et al. proved that Q C @Q’. To define the orthant layers of S, let Q" be
the first orthant layer of S and, for ¢ > 1, let the ith orthant layer of S be the
orthant hull of the subset of S obtained after removing the first ¢ — 1 orthant
layers from S. '

Let Q1,Q2,...,Qk be the first k convex layers of S, let S; = S\ U;;ll Qs
and let @) be the orthant hull of S; for all 1 < ¢ < k. Since Q; is the convex
hull of S;, Bentley et al.’s result shows that Q; C @} and it is not hard to
see that Ule Q% is a subset of the points on the first k orthant layers® of S.
Computing @/ in the ith iteration takes O(2%nlog??n) = O(nlog? % n) time
by applying Kung et al.’s algorithm once for each sign vector . Summing over
all k iterations, we get an upper bound O(kn logd_2 n). To compute Q;, we
apply Chazelle’s algorithm to @/, which takes O(|Q}|l9/?]) time. Summing over
all k layers, we obtain that computing the first £ convex layers using M takes
O(knlog?2n + 8 |Q)|1%2) = O(knlog®?n + k|Q"|l%/2)) time, where Q"
is the set of points on the first k£ orthant layers of S. As we show in Section 5.2,
E(kYYQ")) = O(k¥kelog? n) = O(n'/?log? ' n) because k < n!/(@*+2)
Thus, by Markov’s inequality, P(k*/¢|Q"| > n?/?) < n=1/d+< that is, M takes
O(knlog? % n) time with probability at least 1 — n~1/4+¢  as claimed.

5 Expected Size of the First k Layers

Bentley et al. [2] proved that the expected size of the skyline of a point set
drawn from a CI distribution in d dimensions is O(logd*1 n). They also used
this result to give a bound of O(logd71 n) on the expected number of vertices on
the convex hull. It seems difficult to extend their technique to subsequent layers.
In Section 5.1, we show that, for continuous CI distributions, the kth maximal
layer has expected size O(k%log® ! (n/k?)). The proof is based on a proof sketch
for 2D suggested by an anonymous reviewer of an earlier draft of this paper. In
Section 5.2, we show how to extend the argument to obtain the same bound (up
to a factor of 4¢) for convex and orthant layers. This proves Theorem 3.

5.1 Maximal Layers

First consider a point set S drawn uniformly at random from the unit hypercube.
To simplify the discussion, we bound the size of the kth minimal layer of S, which
is equivalent to the kth maximal layer via the transformation (z1,zs,...,z4) —
(1—21,1 —22,...,1 — z4). For every point p € R%, let D, be the set of points

! Note that Ule Q) is not a subset of the first k o-skyline of S. A counterexample
will be given in the full version of this paper.
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Ly

0 1

Fig. 2: Bound on the probability that a point in L; belongs to the first £ minimal
layers in 2D. Here, k = 2 and n = 160. The region Lo is shaded. Each of the
grey grid cells contains two points of S in expectation. Any point in such a grid
cell (red) is dominated by p and all points in grid cells to its top right. Thus,
unless more than two of these grid cells are empty, p does not belong to the first
two minimal layers.

dominated by p, and let |D,| be the volume of D,. For every integer ¢t > 0,
let B; be the set of all points p € [0,1]¢ with |D,| = @kT)dt, that is, a point
(x1,2,...,24) belongs to B if and only if x5+ 24 = (QkT)dt and 0 < z; <1
for all 1 < ¢ < d. B, splits the unit hypercube into two regions: L, includes
(0,...,0) and L includes (1,...,1). For t > 0, let L, = L;” N L, be the region
between by B, and B;ii. See Figure 2 for an example. The volume of L; is
bounded by

! ! ! 2k) %t d(2k)%
[ g
(2k)dt/n J(2k)4t/n (2k)dt/n ML1T2 * " Td—1 n

0 (kdtlogdl(n/kd)> .

n

d d— d
Since L; C L, this implies that |L;| = O(M). Next consider a

point p € L; and divide D, into a uniform grid with (2k)? cells by dividing
each side of D, into 2k equal intervals. Each cell of this grid has volume at least
t/n and thus contains at least ¢ points in expectation. Thus, using the Chernoff
bound, any of these grid cells is empty with probability less than e~*/4. For p to
be on one of the first k¥ minimal layers, at least k of the 2k cells on the diagonal
of the grid must be empty, which happens with probability less than 2e~*/4, by
Markov’s inequality. Thus, any point in S belongs to L; and to one of the first
k layers with probability O(w). The expected number of points in

net/4
d d—1 d
S that belong to L; and to one of the first k layers is thus O(k“ogtiﬂ(n/k)).
e
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Since Y2, ﬁ = O(1), the expected number of points on the first ¥ minimal
layers is thus O(k%log? ! (n/k%)).

For an arbitrary continuous CI distribution D, let P; be the cumulative dis-
tribution function of the probability distribution of the ith coordinate. Then,
for any point set S drawn from D, the mapping ¢ : (z1,za,...,zq) — (P1(z1),
Py(x2),...,P4s(xq)) produces a point set S’ drawn uniformly at random from
the unit hypercube and p € S dominates ¢ € S if and only if ¢(p) dominates
¢(q). Thus, the total expected size of the first k¥ maximal layers, and thus the
expected size of the kth maximal layer, of S is O(k%log?~!(n/k?)).

5.2 Convex Layers

By the argument in the previous paragraph, it suffices to prove that the first
k convex layers of a point set S drawn uniformly at random from the unit
hypercube have expected size O(k%log? ' (n/k?)). Let o be the center point
of the unit hypercube. Point o splits the unit hypercube into 2¢ orthants O
with side length 1/2 for ¢ € {+1,—1}4. More precisely, O is the set of all
points in the unit hypercube that o-dominate o. We prove that the expected
number of points in each orthant O that belong to the first £ convex layers
is O((2k)*1og?*(n/k%)). Summing over all 2¢ orthants, we obtain a bound of
O((4k)*log®  (n/k%)) = O(k%log? ' (n/k?)) on the expected size of the first
k convex layers of S. W.lo.g. consider the orthant @~1; the argument for any
other orthant Q7 is analogous after negating the point coordinates of .S in all
dimensions where o and —1 differ.

We define sets Lq, Ls, ... as in Section 5.1. The key of our proof is to show
that any point in L; N O~ belongs to one of the first k& convex layers with
probability at most 2¢t1e~*/4 Since L, N O~ C L,, the exact same calculation

as in Section 5.1 then shows that the expected number of points in L, N O~!
(2k)%t1log? " (n/k?)

ot/4
>ico e,% = O(1), the expected number of points in O~ that belong to the first
k convex layers is O((2k)? log®! (n/k%)), as claimed.

So consider a point p € L;NO~L. Let Dy be the part of the unit hypercube o-
dominated by p. We divide each hyperrectangle Dy into a uniform grid with (2k)4
cells by dividing each side of Dy into 2k equal intervals. Consider the diagonal
of DJ connecting p with the opposite corner of DJ and let HY, HS,..., Hg}
be the grid cells intersected by this diagonal, ordered by increasing distance
from p. The argument in Section 5.1 shows that P(S N H}! = () < e~*/* for all
1 <i < 2k, since D), = D}. Since p € O™, we have |H7| > |H}| for all i and
all 0. Thus, P(SN HY =) < P(SN H}) < e */4. Now, if there exist k indices
1<iy <iy <--- <ip <2k such that, forall 1 < j <k and all 0 € {—1,+1}¢,
Hg NS # (), then p is not on the kth convex layer. Thus, for p to be on the kth
convex layer, there have to be at least k indices 1 <4} <4 < --- < i) <2k and
sign vectors 01,0, ..., 0% such that SN H;’ = for all 1 < j < k. For any fixed

that belong to the first k convex layers is O( ) and again, since

J
index 1 < ¢ < 2k, the probability that there exists a sign vector ¢; such that



14

SN H? =0 is less than 2%~/ since P(S N HY = §) < e~¥/* for any fixed i
and o. Thus, the expected number of indices ¢ such that S N H* = () for some
sign vector o; is less than 24t1ke~t/4. By Markov’s inequality, the probability
that there are at least k such indices is thus less than 2¢+1e=t/4, Since this is an
upper bound on the probability that p belongs to the first k convex layers, this
finishes the proof of Theorem 3 for convex layers.

To obtain the same bound for the expected size of the first k orthant layers,
observe that point p does not belong to the first k orthant layers if there exist
k indices 1 < i1 < ip < --- < i < 2k such that, for all 1 < j < k and all
o€ {-1,+1}4 HY NS # (. Since this is the same condition we used to bound
the size of the first k convex layers, the above argument also shows that the first
k orthant layers of S have expected size O(k%log? ! (n/k?)).
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