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Abstract. We study two problems concerning the maximal and con-
vex layers of a point set in d dimensions. The first is the average-case
complexity of computing the first k layers of a point set drawn from
a uniform or component-independent (CI) distribution. We show that,
for d ∈ {2, 3}, the first n1/d−ε maximal layers can be computed using
dn + o(n) scalar comparisons with high probability. For d ≥ 4, the first
n1/2d−ε maximal layers can be computed within this bound with high
probability. The first n1/d−ε convex layers in 2D, the first n1/2d−ε convex

layers in 3D, and the first n1/(d2+2) convex layers in d ≥ 4 dimensions can
be computed using 2dn+ o(n) scalar comparisons with high probability.
Since the expected number of maximal layers in 2D is 2

√
n, our result

for 2D maximal layers shows that it takes dn+ o(n) scalar comparisons
to compute a 1/nε-fraction of all layers in the average case. The second
problem is bounding the expected size of the kth maximal and convex
layer. We show that the kth maximal and convex layer of a point set
drawn from a continuous CI distribution in d dimensions has expected
size O(kd logd−1(n/kd)).
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1 Introduction

Maximal and convex layers are fundamental geometric structures with applica-
tions for example in data mining [5], pattern recognition and statistics [8,15]. A
point p dominates another point q if p is no less than q in any dimension and p
is greater than q in at least one dimension. The skyline (first maximal layer) of
a d-dimensional point set S is the set of all points in S not dominated by any
other point in S. A point p ∈ S belongs to the convex hull (first convex layer) of
S if there exists a (d− 1)-dimensional hyperplane through p that has all points
of S on the same side. For k > 1, the kth maximal or convex layer is the skyline
or convex hull of the subset of S obtained by removing the first k − 1 maximal
or convex layers, respectively.

Computing maximal and convex layers are problems that have been studied
extensively. A classical result of Kung et al. [12] shows that the skyline of a point
set in 2D or 3D can be found in O(n log n) time; for any constant d ≥ 4, the cost
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in d dimensions is O(n logd−2 n). The convex hull of a 2D or 3D point set can also
be found in O(n log n) time [3], while the cost of finding the convex hull in d ≥ 4
dimensions is Θ(nbd/2c) in the worst case [7]. A simple adversary argument shows
that, in the worst case, Ω(n log n) comparisons between scalars are necessary to
compute the skyline or convex hull in d dimensions for any d ≥ 2. For component-
independent (CI) point distributions, on the other hand, expected linear-time
algorithms exist, where a point distribution is component-independent if it is
continuous and the coordinates of each point are chosen independently. The
algorithm of Bentley et al. [1] uses dn+ o(n) scalar comparisons in expectation
to find the skyline of a point set in d dimensions. For the convex hull, they
presented an algorithm that uses 2dn + o(n) expected scalar comparisons for
d ∈ {2, 3}. For d ≥ 4, they presented an algorithm that finds a superset of
the convex hull of expected size O(logd−1 n) using 2dn + o(n) expected scalar
comparisons. They also proved that dn scalar comparisons is a lower bound for
computing either the skyline or convex hull.

All maximal layers of a point set can be computed in O(n log n) time in 2D
[4] and 3D [6]. For d ≥ 4, no optimal algorithm for computing multiple maximal
layers is known. The convex layers of a point set in 2D can be computed in
O(n log n) time [8]. For d ≥ 3, no optimal algorithm for computing multiple
convex layers is known. Nielsen [15] presented an output-sensitive algorithm for
finding the first k convex or maximal layers of a 2D point set in O(n log hk) time,
where hk is the number of points in these layers.

One of the key ingredients of Bentley et al.’s skyline and convex hull algo-
rithms [1] is the ability to quickly identify a small subset of points that is likely
to contain all skyline or convex hull points. The skyline or convex hull can then
be computed by applying one of the algorithms above to this subset of points.
Such a small subset can exist only if the skyline or convex hull is small. Bentley
et al. [2] proved that the expected size of the skyline or the expected number
of vertices of the convex hull over an arbitrary CI distribution is O(logd−1 n).
Note that the work on the expected complexity of geometric structures, includ-
ing that of Bentley et al. [2], is of independent interest. Many other problems
have also been defined and studied under similar assumptions. For instance,
Dalal [9] shows that the expected number of convex layers is Θ(n2/(d+1)) for
a set of n points independently chosen from a uniform distribution inside any
bounded, nonempty region in Rd. We refer to Okabe et al. [16] for a review of
many problems in this area.

Our results. We extend Bentley et al.’s results [1] to multiple layers and strengthen
the algorithm analysis by proving high-probability bounds on the number of
scalar comparisons. Our first main result is a reduction that allows us to obtain
an algorithm that computes the first k maximal or convex layers using dn+o(n)
or 2dn+o(n) expected scalar comparisons, respectively, given an algorithm that
computes these layers using O(kcn1+ε) scalar comparisons in the worst case. The
exact bound on k is given in the following theorem.
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Theorem 1. Let S be a set of n points drawn from an arbitrary CI distribution
in d dimensions. Suppose there is an algorithm M that can compute the first
k maximal (or convex) layers of S using O(kcn1+ε) scalar comparisons in the
worst case, where c and ε are constants with c ≥ 0 and 0 < ε < 1

(c+1)d . Then

the first κ = n
1

(c+1)d
−ε maximal (or convex) layers of S can be computed using

dn + o(n) (or 2dn + o(n)) expected scalar comparisons, and the actual number

of comparisons is within the same bounds with probability 1 − o(n−nε
′

) for any

ε′ ∈ (0, (cε+ ε2

2(ε+1) )d).

To achieve this result, our main strategy is to generalize the algorithms of
Bentley et al. [1] to compute more than one maximal or convex layer. While it
is not difficult to generalize the algorithms themselves, it is more challenging
to analyze their running times. To perform the analysis, our key strategy is to
further conceptually subdivide some objects defined by these algorithms into
even smaller objects, such that a layer must contain a point inside a particular
smaller object with high probability. These constructs may be of general interest,
as they may be useful to the tasks of performing some other similar analysis over
multiple layers of the given point set.

The existing algorithms discussed previously allow us to find the first k max-
imal layers using O(n1+ε) comparisons for d ∈ {2, 3} and using O(kn1+ε) com-
parisons for d ≥ 4. The first k convex layers can be computed using O(n1+ε)
comparisons in 2D and using O(kn1+ε) comparisons in 3D. Thus, we obtain the
following corollary of Theorem 1:

Corollary 1. Let S be a set of n points drawn from an arbitrary CI distribution
in d dimensions. If d ∈ {2, 3}, the first n

1
d−ε maximal layers of S can be computed

using dn + o(n) expected scalar comparisons. If d ≥ 4, the first n
1
2d−ε maximal

layers can be computed using this expected number of scalar comparisons. If
d = 2, the first n

1
d−ε convex layers of S can be computed using 2dn+o(n) expected

scalar comparisons. If d = 3, the first n
1
2d−ε convex layers can be computed

using this number of expected scalar comparisons. In all these cases, the actual
number of comparisons is within the same upper bounds on the expected number

of comparisons with probability 1− o(n−nε
′

).

Our results are the first that show that more than one maximal or con-
vex layer can be computed using the optimal number of scalar comparisons on
random point sets up to lower order terms and, in the case of convex hull, up
to a constant factor of 2. With the exception of a high-probability analysis of
an alternative skyline algorithm by Bentley et al. [1] provided by Golin [11],
only expected bounds on the number of scalar comparisons were known even for
computing only the first convex or maximal layer.

The number of maximal layers of a point set S is the length of a longest
monotonically increasing subsequence (LMIS) of the sequence of y-coordinates
of the points in S sorted by their x-coordinates. If S is drawn from a CI dis-
tribution, this sequence of y-coordinates is a uniform random permutation of
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the y-coordinates. Thus, by a result of [10], the expected length of an LMIS of
this sequence, and thus the number of maximal layers of S approaches 2

√
n as

n approaches infinity. Therefore, for d = 2, our algorithm finds a 1/nε-fraction
of all maximal layers in the average case using the optimal number of scalar
comparisons up to lower-order terms.

For d ≥ 4 dimensions, no convex hull algorithm using expected 2dn + o(n)
comparisons on random point sets was known, and we cannot satisfy the condi-
tion of Theorem 1 even for k = 1 since computing the convex hull takes Θ(nbd/2c)
time in the worst case. However, the construction that proves Theorem 1 can be
combined with the Θ(nbd/2c)-time convex hull algorithm to obtain the following
theorem:

Theorem 2. Let S be a set of n points in d ≥ 4 dimensions drawn from an
arbitrary CI distribution. For any k ≤ n1/(d

2+2), the first k convex layers of S
can be found using 2dn+o(n) scalar comparisons with probability 1−O( 1

n1/d−ε ),
for any ε > 0.

This result is the first that computes multiple convex layers in four or higher
dimension in linear time with high probability.

Our second main result bounds the size of the kth maximal or convex layer
of a d-dimensional point set. Previously, only bounds on the expected size of the
first maximal or convex layer were known.

Theorem 3. For any point set S drawn from a continuous CI distribution in d
dimensions, the kth maximal or convex layer has expected size O(kd logd−1(n/kd)).

2 Algorithm Overview

Bentley et al.’s algorithms [1] for computing the skyline or convex hull of a point
set S using expected dn+o(n) or 2dn+o(n) comparisons uses the following simple
idea: Find a rectangular inner region I that is expected to contain almost all
points in S and is likely to be completely below the skyline of S or inside the
convex hull of S. See Figure 1. In particular, with high probability, the points in
S that belong to the skyline or convex hull are all contained in the outer region
O = Rd \ I. The algorithm partitions the point set S into two subsets SI = S∩ I
and SO = S ∩O and computes the skyline or convex hull LO of SO using some
standard skyline or convex hull algorithm, which takes o(n) time in expectation
because SO is small. Finally, the algorithm checks whether certain subregions of
O (C and C1, . . . , C4, respectively, in Figure 1) each contain at least one point of
SO. If so, I is completely below or inside LO, which implies that LO is also the
skyline or convex hull of S because no point in S \ SO = SI ⊆ I can be on the
maximal layer or convex hull of S. Thus, the algorithm terminates in this case.
Otherwise, the algorithm runs a standard skyline or convex hull algorithm on
S to compute the skyline or convex hull of S. While this is costly, this happens
infrequently because I is likely to be below the skyline or inside the convex hull
of S, so the expected cost of this final step is again o(n).
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Fig. 1: The inner and outer regions used in Bentley et al.’s [1] and our algorithm
illustrated for the 2D case. I is shaded blue. O is shaded pink, including the
darker regions, which are the corners that are tested by the algorithm whether
they contain a point not on the first k maximal or convex layers. As illustrated
in red, any point in C dominates I in the case of maximal layers; in the case of
convex layers, the convex hull of any four points in C1, . . . , C4 encloses I.

For the skyline algorithm, I = (−∞, x1(p)]×(−∞, x2(p)]×· · ·×(−∞, xd(p)],
where p is an appropriate point and xi(p) denotes the ith coordinate of p, so
the partition into SI and SO can be obtained using dn scalar comparisons.
For the convex hull algorithm, I = [x1(p−), x1(p+)] × [x2(p−), x2(p+)] × · · · ×
[xd(p

−), xd(p
+)] for an appropriate pair of corner points (p−, p+), so the partition

can be performed using 2dn scalar comparisons. The corner points of I can
be found without comparisons by setting xi(p

−) = ε and xi(p) = xi(p
+) =

1 − ε for all 1 ≤ i ≤ d and some appropriate value ε > 0. At least this is
the case for points distributed uniformly at random in the unit hypercube. For
an arbitrary CI distribution, p, p−, and p+ can each be found using dn + o(n)
scalar comparisons using randomized linear-time selection. The partitioning of
S into SI and SO can be done as part of the selection process without incurring
any additional comparisons. We discuss this in more detail as part of our high-
probability analysis and extension to multiple layers (Lemmas 1 and 4). Overall,
the expected cost of the algorithm is dn + o(n) or 2dn + o(n) comparisons for
finding p or p− and p+ and computing the partition of S into SI and SO plus
o(n) expected comparisons for computing the maximal layer or convex hull.

To extend Bentley et al.’s result [1] to multiple maximal or convex layers, we
need to show that there exists a point p or a pair of points (p−, p+) that defines
inner and outer regions I and O as above such that, again, almost all points
in S are inside I and the first k layers are unlikely to intersect I. To achieve a
running time of dn + o(n) or 2dn + o(n) with high probability, we also need to
strengthen the analysis of Bentley et al. [1] to (a) show that these points can be
found using dn + o(n) or 2dn + o(n) scalar comparisons with high probability
and (b) with high probability, I does not intersect the first k layers.
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Since the proofs are slightly simpler, we present our result for maximal layers
first. Then, in Section 4, we argue that the same approach, with minor modifi-
cations, can also be used to compute convex layers.

3 Maximal Layers

Throughout this section, we use p ↗ q to indicate that q dominates p. Given
a point set S drawn from a CI distribution D and some value τ ∈ [0, 1], we
call a point p a τ -pivot of S if, for all 1 ≤ i ≤ d and any point p′ chosen
uniformly at random from S, P [xi(p

′) ≥ xi(p)] = τ ; recall that xi(p) denotes
the ith coordinate of point p. Point p is not necessarily in S. We first prove the
following lemma on locating p.

Lemma 1. Let S be a point set drawn from a CI distribution. For any value
t > 0, any value τ ∈ (0, n−t]∪ [1−n−t, 1), and any constant ε′ ∈ (0, 1), a τ -pivot
p and a partition of S into two subsets SI = S ∩ I and SO = S ∩ (Rd \ I) can be
computed using dn+ o(n) scalar comparisons in expectation and with probability

at least 1− o
(
n−n

ε′
)

, where I is the region dominated by p.

Proof. If S is drawn uniformly at random from the unit hypercube, then p =
(1 − τ, . . . , 1 − τ) is a τ -pivot and can be found without any comparisons. The
partition of S into SI and SO can be computed by deciding for each point whether
it is dominated by p (and thus belongs to SI) or not (and thus belongs to SO).
This takes d comparisons per point in S, incurring dn comparisons in total, that
is, the lemma holds in the worst case for a uniform random distribution. For
an arbitrary CI distribution, set xi(p) to be the (τn)th largest coordinate in
dimension i among the points in S. Then p is a τ -pivot. Each value xi(p) can
be found using n+ o(n) scalar comparisons in expectation and with probability

at least 1− o
(
n−n

ε′
)

using a simplified version of LazySelect [14]; we omit the

details due to page constraints. In the process, every point in S is tagged as
having ith coordinate less than or equal to, or greater than xi(p). Doing this for
all d dimensions produces p and takes dn+o(n) scalar comparisons in expectation

and with probability at least 1 − o
(
n−n

ε′
)

. The partition of S into SI and SO

is then obtained without additional scalar comparisons by collecting all points
tagged as greater than p in at least one dimension into SO, and the remaining
points into SI . ut

The following observation and lemmas are needed for our proof of Theorem 1.

Observation 4 Let p be a τ -pivot of S and consider the corresponding parti-
tion of S into subsets SI and SO as in Lemma 1. If there exist k + 1 points
p1, p2, . . . , pk+1 in SO such that p↗ pk+1 ↗ · · · ↗ p1, then the first k maximal
layers of S and SO are identical and pk+1 is not part of these layers.
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Lemma 2. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1
be constants, let τ

k+1 ≥ n(ε2−1)/d, and let h0, h1, . . . , hk+1 be k + 2 points such

that hj is a
(

j
k+1τ

)
-pivot of S for all 0 ≤ j ≤ k + 1. Then with probability at

least 1 − o
(
n−n

ε1
)
, each hyperrectangle Hj defined by points hj−1 and hj, for

1 ≤ j ≤ k+ 1, contains a point pj ∈ S. These points satisfy pk+1 ↗ pk ↗ · · · ↗
p1.

Proof. Consider an arbitrary hyperrectangle Hj . Since hj−1 is a
(
j−1
k+1τ

)
-pivot

and hj is a
(

j
k+1τ

)
-pivot, each point p ∈ S satisfies xi(hj−1) ≤ xi(p) ≤ xi(hj)

with probability τ
k+1 for each 1 ≤ i ≤ d. Since the coordinates are chosen

independently, p ∈ Hj with probability
(

τ
k+1

)d
. Thus, E(|Hj ∩ S|) =

(
τ
k+1

)d
n.

Since |Hj∩S| is the sum of independent Bernoulli random variables, the Chernoff

bound states that P (Hj ∩ S = ∅) < e−(τ/(k+1))dn/4 and the probability that
there exists an index 1 ≤ j ≤ k + 1 such that Hj ∩ S = ∅ is less than (k +

1)e−(τ/(k+1))dn/4. For τ
k+1 ≥ n(ε2−1)/d, this is bounded by (k + 1)e−n

ε2/4 ≤
n1−n

ε2/(4 lnn) = o
(
n−n

ε1
)

for any ε1 < ε2 because k + 1 ≤ n. ut

Lemma 3. Let S be a point set drawn from a CI distribution, let 0 < ε1 <
ε2 < 1 be constants, let τ ≥ nε2−1, let p be a τ -pivot of S, let SI ⊆ S be the
set of points dominated by p, and let SO = S \ SI . Then E(|SO|) ≤ dτn and
P (|SO| > 2dτn) = o

(
n−n

ε1
)
.

Proof. We can cover the outer region O with d halfspaces B1, B2, . . . , Bd, where
Bi = {p′ ∈ Rd | xi(p′) ≥ xi(p)}. Since a point p′ ∈ S satisfies xi(p

′) ≥ xi(p) with

probability τ , we have E(|Bi∩S|) = τn and E(|SO|) ≤
∑d
i=1E(|Bi∩S|) = dτn.

Since |Bi∩S| is the sum of independent Bernoulli random variables, the Chernoff
bound states that P (|Bi∩S| > 2τn) < e−τn/3 ≤ n−nε2/(3 lnn) = o

(
n−n

ε1
)
. Thus,

P (|SO| > 2dτn) ≤
∑d
i=1 P (|Bi| > 2τn) = o

(
dn−n

ε1
)

= o
(
n−n

ε1
)
. ut

Proof (Proof of Theorem 1 (Maximal Layers).). Our algorithm finds a τ -pivot p
of S, partitions S into SI and SO, computes the first k maximal layers of SO using
M , and checks whether there exists a point in SO that is not on the computed
maximal layers but dominates p. If this test succeeds, then the maximal layers of
S and SO are the same, so the algorithm reports the computed maximal layers.
Otherwise, it runs M on S to compute the first k maximal layers of S.

We prove that this algorithm uses dn + o(n) scalar comparisons with high
probability. The analysis of the expected number of comparisons is analogous.
The number of comparisons the algorithm performs is dn+o(n) if (a) computing
p and partitioning S into SI and SO takes dn + o(n) comparisons, (b) running
algorithm M on SO incurs o(n) comparisons, and (c) there exists a point in SO
that is not on the first k maximal layers and dominates p, that is, the fallback
option of running M on the entire point set S is not invoked. Thus, it suffices
to bound the probability that any of these three conditions fails.

By Lemma 1, (a) fails with probability o
(
n−n

ε′
)

, for any ε′ ∈ (0, 1), as

long as τ = n−t for some t > 0. Running algorithm M on SO incurs o(n)
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scalar comparisons if |SO| = o
(
n1/(1+ε)

)
/kc. By Lemma 3, |SO| ≤ 2dτn with

probability 1 − o
(
n−n

ε′
)

as long as τ ≥ nε2−1 for some ε2 > ε′. Therefore, (b)

fails with probability o
(
n−n

ε′
)

as long as τn = o
(
n1/(1+ε)

)
/kc and τ ≥ nε2−1.

By Observation 4 and Lemma 2, (c) fails with probability o
(
n−n

ε′
)

as long

as τ
k+1 ≥ n(ε2−1)/d for some ε2 > ε′. Thus, the probability that any of these

three conditions fails is o(n−n
ε′

), provided we can choose τ so that the above
constraints are satisfied.

First observe that ε2− 1 < 0. Thus, τ ≥ nε2−1 if τ
k+1 ≥ n

(ε2−1)/d, so we have

to choose a value of τ = n−t, for some t > 0, such that τ
k+1 ≥ n

(ε2−1)/d and τn =

o
(
n1/(1+ε)

)
/kc. The last two constraints imply that kc+1 = o(n−ε/(ε+1)+(1−ε2)/d)

or k = o(n
1

(c+1)d
−ε+δ) where δ = ε − ε2

(c+1)d −
ε

(ε+1)(c+1) . For any ε2 <
(
cε +

ε2

2(ε+1)

)
d, we have δ > 0, that is, we can compute up to n

1
(c+1)d

−ε maximal

layers and, since (cε + ε2

2(ε+1) ) > 0, we can choose values ε′ and ε2 such that

0 < ε′ < ε2 < (cε+ ε2

2(ε+1) )d. It remains to choose τ . We have τn = o
(
n1/(1+ε)

)
/kc

if t > ε
1+ε + c

(c+1)d − εc. To satisfy τ
k+1 ≥ n(ε2−1)/d, we need t = − logn τ ≤

− logn(k+ 1)− ε2−1
d . To compute the first n

1
(c+1)d

−ε maximal layers, we replace

k by n
1

(c+1)d
−ε in this inequality, and it holds for large enough n if t is a constant

and t < ε − 1
(c+1)d −

ε2−1
d , which is true as long as t is a constant satisfying

t < ε− 1
(c+1)d − εc−

ε2

2(1+ε) + 1
d because ε2 < (cε+ ε2

2(ε+1) )d. It is easy to verify

that ε
1+ε + c

(c+1)d − εc < ε− 1
(c+1)d − εc−

ε2

2(1+ε) + 1
d . Thus, we can choose a value

of t that satisfies both constraints and set τ = n−t. In addition, since ε < 1
(c+1)d ,

we have ε
1+ε + c

(c+1)d − εc > 0, that is, t > 0. ut

4 Convex Layers

Convex Layers in Two and Three Dimensions: To apply the framework
from Section 3 to compute convex layers, we need to extend the notion of dom-
inance to the 2d possible quadrants of a point in Rd. We identify each quadrant
using a sign vector σ ∈ {+1,−1}d. We say a point q ∈ Rd σ-dominates another
point p ∈ Rd, written as p ↗σ q if σ ◦ q dominates σ ◦ p, where p ◦ q is the
Hadamard product: p ◦ q = (x1(p), x2(p), . . . , xd(p)) ◦ (x1(q), x2(q), . . . , xd(q)) =
(x1(p)x1(q), x2(p)x2(q), . . . , xd(p)xd(q)). We call a point p a (τ, σ)-pivot of S
if, for all 1 ≤ i ≤ d and any point p′ chosen uniformly at random from S,
P (xi(σ)xi(p

′) ≥ xi(σ)xp(p)) = τ . Note that 1-dominance is the same as normal
dominance, a (τ,1)-pivot is just a τ -pivot, and a (τ,−1)-pivot is a (1− τ)-pivot,
where 1 = (1, . . . , 1) and −1 = (−1, . . . ,−1). A pair of points (p−, p+), where
0 < τ < 1/2, p−1 is a (τ,−1)-pivot, and p+ is a (τ,1)-pivot, divides Rd into
an inner region I containing all points in Rd that dominate p− and are domi-
nated by p+, and an outer region O = Rd \ I; see Figure 1. Similar to maximal
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layers, we define SI = S ∩ I and SO = S ∩ O. The corners of I are the points
{pσ | σ ∈ {+1,−1}d}, where pσ = 1

2 ((1 + σ) ◦ p+ + (1 − σ) ◦ p−). Since S is
drawn from a CI distribution, each such corner pσ is a (τ, σ)-pivot of S.

Our algorithm finds (p−, p+), partitions S into SI and SO, computes the first
k convex layers of SO using M , and checks whether, for every σ ∈ {+1,−1}d,
there exists a point in SO that is not on the computed convex layers but σ-
dominates pσ. If this test succeeds, then the convex layers of S and SO are the
same, so the algorithm reports the computed convex layers. Otherwise, it runs
M on S to compute the first k convex layers of S. To analyze this algorithm, we
first prove the following lemmas and observation.

Lemma 4. Let S be a point set drawn from a CI distribution. For any value
t > 0, any value τ ∈ (0, n−t], and any constant ε′ ∈ (0, 1), a pair of points
(p−, p+) such that p− is a (τ,−1)-pivot of S and p+ is a (τ,1)-pivot of S and
a partition of S into two subsets SI = S ∩ I and SO = S ∩ O can be computed
using 2dn+ o(n) scalar comparisons in expectation and with probability at least

1− o
(
n−n

ε′
)

.

Proof. Since p+ is a τ -pivot and p− is a (1− τ)-pivot of S, we can find these two
points using the claimed number of scalar comparisons by applying Lemma 1
twice. In the case of an arbitrary CI distribution, the selection of the coordinates
of p− and p+ also tags each point as having ith coordinate less than xi(p

−),
between xi(p

−) and xi(p
+) or greater than xi(p

+), for each 1 ≤ i ≤ d. Thus, SI
and SO can be produced without any additional scalar comparisons by placing
each point that has at least one coordinate less than p− or at least one coordinate
greater than p+ into SO and all remaining points into SI . ut

Observation 5 Let h−0 , h
−
1 , . . . , h

−
k+1 and h+0 , h

+
1 , . . . , h

+
k+1 be points such that

h−0 ↗ h−1 ↗ . . . ↗ h−k+1 ↗ h+k+1 ↗ h+k ↗ · · · ↗ h+0 and consider the regions

I and O defined by the pair of points p− = h−k+1 and p+ = h+k+1. Each pair of

points (h−j , h
+
j ) defines a hyperrectangle with corner set {hσi | σ ∈ {+1,−1}d}

similar to the corner set {pσ | σ ∈ {+1,−1}d} of I defined by (p−, p+). If, for
every sign vector σ ∈ {+1,−1}d, there exist k + 1 points pσ1 , p

σ
2 , . . . , p

σ
k+1 in SO

such that hσj ↗σ pσj ↗σ hσj−1 for all 1 ≤ j ≤ k + 1, then the first k convex
layers of S and SO are identical and pσk+1 is not part of these layers for any

σ ∈ {+1,−1}d.

Lemma 5. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1
be constants, let τ

k+1 ≥ n(ε2−1)/d, and let h−0 , h
−
1 , . . . , h

−
k+1, h

+
0 , h

+
1 , . . . , h

+
k+1 be

points such that h−j is a
(

j
k+1τ,−1

)
-pivot and h+j is a

(
j

k+1τ,1
)
-pivot for all

0 ≤ j ≤ k + 1. Then with probability at least 1− o
(
n−n

ε1
)
, every hyperrectangle

Hσ
j defined by the points hσj−1 and hσj , for 1 ≤ j ≤ k + 1 and every sign vector

σ ∈ {+1,−1}d, contains a point pσj ∈ S.

Proof. Analogous to the proof of Lemma 2, P (Hσ
j ∩S = ∅) < e−(τ/(k+1))dn/4, so

the probability that there exists a pair (j, σ) such that Hσ
j ∩S = ∅ is less than (k+



10

1)2de−(τ/(k+1))dn/4. As shown in the proof of Lemma 2, (k+1)e−(τ/(k+1))dn/4 =

o
(
n−n

ε1
)
. Since d is a constant, this implies that (k + 1)2de−(τ/(k+1))dn/4 =

o
(
n−n

ε1
)
. ut

Lemma 6. Let S be a point set drawn from a CI distribution, let 0 < ε1 < ε2 < 1
be constants, let τ ≥ nε2−1, let p− be a (τ,−1)-pivot of S, let p+ be a (τ,1)-
pivot of S, let I be the hyperrectangle defined by (p−, p+), let SI = S ∩ I, and
let SO = S \ SI . Then E(|SO|) ≤ 2dτn and P (|SO| > 4dτn) = o

(
n−n

ε1
)
.

Proof. The proof is identical to the proof of Lemma 3 after observing that SO can
be covered with 2d halfspaces B−1 , B

−
2 , . . . , B

−
d , B

+
1 , B

+
2 , . . . , B

+
d , where B−i =

{p′ ∈ Rd | xi(p′) ≤ xi(p
−)} and B+

i = {p′ ∈ Rd | xi(p′) ≥ xi(p
+)} for all

1 ≤ i ≤ d. ut

With these lemmas and observation, we claim that the analysis of the al-
gorithm in Section 4 that computes the first k convex layers in two or three
dimensions is identical to the proof of Theorem 1 for maximal layers, using
Lemmas 4, 5, and 6 and Observation 5 in place of Lemmas 1, 2, and 3 and
Observation 4. This completes the proof of Theorem 1.

Convex Layers in Four or Higher Dimensions: We now consider the prob-
lem of computing the first k convex layers of a point set S drawn from an
arbitrary CI distribution in four or higher dimensions, for k ≤ n1/(d

2+2). The
framework of Theorem 1 cannot be applied directly to this problem because the
best known algorithm for computing even the convex hull in d ≥ 4 dimensions [7]
takes O(nbd/2c) comparisons.

Bentley et al. [2] showed how to use 2d skyline computations to produce a
superset Q′ of the convex hull Q of S of small expected size. Matoušek [13] later
called this structure the quadrant hull of S. We opt for orthant hull here because
an orthant is the generalization of quadrants to higher dimensions. We will show
later in this section that, with high probability, the size of Q′ is small enough so
that applying Chazelle’s convex hull algorithm to Q′ takes O(n) comparisons.
Combined with Kung et al.’s algorithm for computing the skyline in d dimensions
in O(n logd−2 n) time [12], this gives an algorithm M that computes the convex
hull of S using O(n logd−2 n) comparisons with high probability. To compute
k > 1 convex layers, M repeats this process k times: the ith iteration computes
the convex hull of the point set left after removing the first i− 1 convex layers.
With high probability, this will take O(kn logd−2 n) time because, as we show
below, the size not only of the orthant hull but in fact of the first k orthant
layers is small enough to apply Chazelle’s algorithm k times.

To prove Theorem 2, we use M in conjunction with Theorem 1 where c = 1.
Theorem 1 requires M to achieve a running time of O(kn1+ε) in the worst case.
However, it is easily verified that the proof of Theorem 1 continues to hold if M
achieves this running time with some probability p > 0, in which case Theorem 1
produces a convex hull algorithm that uses 2dn+ o(n) scalar comparisons with

probability Θ
(

min
(
p, 1− o

(
n−n

ε′
)))

. Since we prove below that M achieves a
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running time of O(n logd−2 n) with probability 1−O
(

1
n1/d−ε

)
, Theorem 2 follows

by setting ε = 1/(2d)− 1/(d2 + 2) in Theorem 1.
Let σ ∈ {+1,−1}d be a sign vector, let σ ◦ S = {σ ◦ p | p ∈ S}, and let Lσ

be the set of points p ∈ S such that σ ◦ p belongs to the skyline of σ ◦ S. We
call Lσ the σ-skyline of S. The orthant hull of S is Q′ =

⋃
σ∈{+1,−1}d L

σ, and

Bentley et al. proved that Q ⊆ Q′. To define the orthant layers of S, let Q′ be
the first orthant layer of S and, for i > 1, let the ith orthant layer of S be the
orthant hull of the subset of S obtained after removing the first i − 1 orthant
layers from S.

Let Q1, Q2, . . . , Qk be the first k convex layers of S, let Si = S \
⋃i−1
j=1Qj ,

and let Q′i be the orthant hull of Si for all 1 ≤ i ≤ k. Since Qi is the convex
hull of Si, Bentley et al.’s result shows that Qi ⊆ Q′i and it is not hard to

see that
⋃k
i=1Q

′
i is a subset of the points on the first k orthant layers1 of S.

Computing Q′i in the ith iteration takes O(2dn logd−2 n) = O(n logd−2 n) time
by applying Kung et al.’s algorithm once for each sign vector σ. Summing over
all k iterations, we get an upper bound O(kn logd−2 n). To compute Qi, we
apply Chazelle’s algorithm to Q′i, which takes O(|Q′i|bd/2c) time. Summing over
all k layers, we obtain that computing the first k convex layers using M takes
O(kn logd−2 n +

∑k
i=1 |Q′i|bd/2c) = O(kn logd−2 n + k|Q′′|bd/2c) time, where Q′′

is the set of points on the first k orthant layers of S. As we show in Section 5.2,
E(k2/d|Q′′|) = O(k2/dkd logd−1 n) = O(n1/d logd−1 n) because k ≤ n1/(d

2+2).
Thus, by Markov’s inequality, P (k2/d|Q′′| > n2/d) ≤ n−1/d+ε, that is, M takes
O(kn logd−2 n) time with probability at least 1− n−1/d+ε, as claimed.

5 Expected Size of the First k Layers

Bentley et al. [2] proved that the expected size of the skyline of a point set
drawn from a CI distribution in d dimensions is O(logd−1 n). They also used
this result to give a bound of O(logd−1 n) on the expected number of vertices on
the convex hull. It seems difficult to extend their technique to subsequent layers.
In Section 5.1, we show that, for continuous CI distributions, the kth maximal
layer has expected size O(kd logd−1(n/kd)). The proof is based on a proof sketch
for 2D suggested by an anonymous reviewer of an earlier draft of this paper. In
Section 5.2, we show how to extend the argument to obtain the same bound (up
to a factor of 4d) for convex and orthant layers. This proves Theorem 3.

5.1 Maximal Layers

First consider a point set S drawn uniformly at random from the unit hypercube.
To simplify the discussion, we bound the size of the kth minimal layer of S, which
is equivalent to the kth maximal layer via the transformation (x1, x2, . . . , xd) 7→
(1 − x1, 1 − x2, . . . , 1 − xd). For every point p ∈ Rd, let Dp be the set of points

1 Note that
⋃k
i=1Q

′
i is not a subset of the first k σ-skyline of S. A counterexample

will be given in the full version of this paper.
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0

1

1

B2

B3

L2

p

Fig. 2: Bound on the probability that a point in Lt belongs to the first k minimal
layers in 2D. Here, k = 2 and n = 160. The region L2 is shaded. Each of the
grey grid cells contains two points of S in expectation. Any point in such a grid
cell (red) is dominated by p and all points in grid cells to its top right. Thus,
unless more than two of these grid cells are empty, p does not belong to the first
two minimal layers.

dominated by p, and let |Dp| be the volume of Dp. For every integer t ≥ 0,

let Bt be the set of all points p ∈ [0, 1]d with |Dp| = (2k)dt
n , that is, a point

(x1, x2, . . . , xd) belongs to Bt if and only if x1x2 · · ·xd = (2k)dt
n and 0 ≤ xi ≤ 1

for all 1 ≤ i ≤ d. Bt splits the unit hypercube into two regions: L−t includes
(0, . . . , 0) and L+

t includes (1, . . . , 1). For t ≥ 0, let Lt = L+
t ∩L−t+1 be the region

between by Bt and Bt+1. See Figure 2 for an example. The volume of L−t is
bounded by

∫ 1

(2k)dt/n

∫ 1

(2k)dt/n

· · ·
∫ 1

(2k)dt/n

(2k)dt

nx1x2 · · ·xd−1
dx1dx2 · · · dxd−1 +

d(2k)dt

n
=

O

(
kdt logd−1(n/kd)

n

)
.

Since Lt ⊆ L−t+1, this implies that |Lt| = O
(
kdt logd−1(n/kd)

n

)
. Next consider a

point p ∈ Lt and divide Dp into a uniform grid with (2k)d cells by dividing
each side of Dp into 2k equal intervals. Each cell of this grid has volume at least
t/n and thus contains at least t points in expectation. Thus, using the Chernoff
bound, any of these grid cells is empty with probability less than e−t/4. For p to
be on one of the first k minimal layers, at least k of the 2k cells on the diagonal
of the grid must be empty, which happens with probability less than 2e−t/4, by
Markov’s inequality. Thus, any point in S belongs to Lt and to one of the first

k layers with probability O(k
dt logd−1(n/kd)

net/4
). The expected number of points in

S that belong to Lt and to one of the first k layers is thus O(k
dt logd−1(n/kd)

et/4
).
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Since
∑∞
t=0

t
et/4

= O(1), the expected number of points on the first k minimal

layers is thus O(kd logd−1(n/kd)).
For an arbitrary continuous CI distribution D, let Pi be the cumulative dis-

tribution function of the probability distribution of the ith coordinate. Then,
for any point set S drawn from D, the mapping φ : (x1, x2, . . . , xd) 7→ (P1(x1),
P2(x2), . . . , Pd(xd)) produces a point set S′ drawn uniformly at random from
the unit hypercube and p ∈ S dominates q ∈ S if and only if φ(p) dominates
φ(q). Thus, the total expected size of the first k maximal layers, and thus the
expected size of the kth maximal layer, of S is O(kd logd−1(n/kd)).

5.2 Convex Layers

By the argument in the previous paragraph, it suffices to prove that the first
k convex layers of a point set S drawn uniformly at random from the unit
hypercube have expected size O(kd logd−1(n/kd)). Let o be the center point
of the unit hypercube. Point o splits the unit hypercube into 2d orthants Oσ
with side length 1/2 for σ ∈ {+1,−1}d. More precisely, Oσ is the set of all
points in the unit hypercube that σ-dominate o. We prove that the expected
number of points in each orthant Oσ that belong to the first k convex layers
is O((2k)d logd−1(n/kd)). Summing over all 2d orthants, we obtain a bound of
O((4k)d logd−1(n/kd)) = O(kd logd−1(n/kd)) on the expected size of the first
k convex layers of S. W.l.o.g. consider the orthant O−1; the argument for any
other orthant Oσ is analogous after negating the point coordinates of S in all
dimensions where σ and −1 differ.

We define sets L1, L2, . . . as in Section 5.1. The key of our proof is to show
that any point in Lt ∩ O−1 belongs to one of the first k convex layers with
probability at most 2d+1e−t/4. Since Lt ∩O−1 ⊆ Lt, the exact same calculation
as in Section 5.1 then shows that the expected number of points in Lt ∩ O−1

that belong to the first k convex layers is O
(

(2k)dt logd−1(n/kd)
et/4

)
and again, since∑∞

t=0
t

et/4
= O(1), the expected number of points in O−1 that belong to the first

k convex layers is O((2k)d logd−1(n/kd)), as claimed.
So consider a point p ∈ Lt∩O−1. Let Dσ

p be the part of the unit hypercube σ-

dominated by p. We divide each hyperrectangleDσ
p into a uniform grid with (2k)d

cells by dividing each side of Dσ
p into 2k equal intervals. Consider the diagonal

of Dσ
p connecting p with the opposite corner of Dσ

p and let Hσ
1 , H

σ
2 , . . . ,H

σ
2k

be the grid cells intersected by this diagonal, ordered by increasing distance
from p. The argument in Section 5.1 shows that P (S ∩H1

i = ∅) < e−t/4 for all
1 ≤ i ≤ 2k, since Dp = D1

p . Since p ∈ O−1, we have |Hσ
i | ≥ |H1

i | for all i and

all σ. Thus, P (S ∩Hσ
i = ∅) ≤ P (S ∩H1

i ) < e−t/4. Now, if there exist k indices
1 ≤ i1 < i2 < · · · < ik ≤ 2k such that, for all 1 ≤ j ≤ k and all σ ∈ {−1,+1}d,
Hσ
ij
∩ S 6= ∅, then p is not on the kth convex layer. Thus, for p to be on the kth

convex layer, there have to be at least k indices 1 ≤ i′1 < i′2 < · · · < i′k ≤ 2k and
sign vectors σ1, σ2, . . . , σk such that S ∩Hσj

i′j
= ∅ for all 1 ≤ j ≤ k. For any fixed

index 1 ≤ i ≤ 2k, the probability that there exists a sign vector σi such that
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S ∩Hσi
i = ∅ is less than 2de−t/4, since P (S ∩Hσ

i = ∅) < e−t/4 for any fixed i
and σ. Thus, the expected number of indices i such that S ∩Hσi

i = ∅ for some
sign vector σi is less than 2d+1ke−t/4. By Markov’s inequality, the probability
that there are at least k such indices is thus less than 2d+1e−t/4. Since this is an
upper bound on the probability that p belongs to the first k convex layers, this
finishes the proof of Theorem 3 for convex layers.

To obtain the same bound for the expected size of the first k orthant layers,
observe that point p does not belong to the first k orthant layers if there exist
k indices 1 ≤ i1 < i2 < · · · < ik ≤ 2k such that, for all 1 ≤ j ≤ k and all
σ ∈ {−1,+1}d, Hσ

ij
∩ S 6= ∅. Since this is the same condition we used to bound

the size of the first k convex layers, the above argument also shows that the first
k orthant layers of S have expected size O(kd logd−1(n/kd)).
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13. J. Matoušek and P. Plecháč. On functional separately convex hulls. Discrete &

Computational Geometry, 19(1):105–130, Jan 1998.
14. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, New York, NY, USA, 1995.
15. F. Nielsen. Output-sensitive peeling of convex and maximal layers. Information

Processing Letters, 59(5):255–259, 1996.
16. A. Okabe, B. Boots, K. Sugihara, S. Chiu, and D. G. Kendall. Spatial Tessellations:

Concepts and Applications of Voronoi Diagrams, 2nd Edition. John Wiley & Sons,
Inc., 2008.


