
Dynamic Range Selection in Linear Space?

Meng He1, J. Ian Munro2, and Patrick K. Nicholson2

1 Faculty of Computer Science, Dalhousie University, Canada
2 David R. Cheriton School of Computer Science, University of Waterloo, Canada,

mhe@cs.dal.ca, {imunro, p3nichol}@uwaterloo.ca

Abstract. Given a set S of n points in the plane, we consider the
problem of answering range selection queries on S: that is, given an
arbitrary x-range Q and an integer k > 0, return the k-th smallest
y-coordinate from the set of points that have x-coordinates in Q. We
present a linear space data structure that maintains a dynamic set of n
points in the plane with real coordinates, and supports range selection
queries in O((lgn/ lg lgn)2) time, as well as insertions and deletions in
O((lgn/ lg lgn)2) amortized time. The space usage of this data struc-
ture is an Θ(lgn/ lg lgn) factor improvement over the previous best re-
sult, while maintaining asymptotically matching query and update times.
We also present a succinct data structure that supports range selection
queries on a dynamic array of n values drawn from a bounded universe.

1 Introduction

The problem of finding the median value in a data set is a staple problem in
computer science, and is given a thorough treatment in modern textbooks [6]. In
this paper we study a dynamic data structure variant of this problem in which
we are given a set S of n points in the plane. The dynamic range median problem
is to construct a data structure to represent S such that we can support range
median queries: that is, given an arbitrary range Q = [x1, x2], return the median
y-coordinate from the set of points that have x-coordinates in Q. Furthermore,
the data structure must support insertions of points into, as well as deletions
from, the set S. We may also generalize our data structure to support range
selection queries: that is, given an arbitrary x-range Q = [x1, x2] and an integer
k > 0, return the k-th smallest y-coordinate from the set of points that have
x-coordinates in Q.

In addition to being a challenging theoretical problem, the range median
and selection problems have several practical applications in the areas of image
processing [9], Internet advertising, network traffic analysis, and measuring real-
estate prices in a region [10].

In previous work, the data structures designed for the above problems that
support queries and updates in polylogarithmic time require superlinear space [5].
In this paper, we focus on designing linear space dynamic range selection data

? This work was supported by NSERC and the Canada Research Chairs Program.

structures, without sacrificing query or update time. We also consider the prob-
lem of designing succinct data structures that support range selection queries
on a dynamic array of values, drawn from a bounded universe: here “succinct”
means that the space occupied by our data structure is close to the information-
theoretic lower bound of representing the array of values [13].

1.1 Previous Work

Static Case: The static range median and selection problems have been stud-
ied heavily in recent years [3, 15, 10, 18, 19, 7, 8, 4, 5, 14]. In these problems we
consider the n points to be in an array: that is, the points have x-coordinates
{1, ..., n}. We now summarize the upper and lower bounds for the static problem.
In the remainder of this paper we assume the word-RAM model of computation
with word size w = Ω(lg n) bits.

For exact range medians in constant time, there have been several iterations
of near-quadratic space data structures [15, 18, 19]. For linear space data struc-
tures, Gfeller and Sanders [8] showed that range median queries could be sup-
ported in O(lg n) time3, and Gagie et al. [7] showed that selection queries could
be supported in O(lg σ) time using a wavelet tree, where σ is the number of dis-
tinct y-coordinates in the set of points. Optimal upper bounds of O(lg n/ lg lg n)
time for range median queries have since been achieved by Brodal et al. [4, 5], and
lower bounds by Jørgensen and Larsen [14]; the latter proved a cell-probe lower
bound of Ω(lg n/ lg lg n) time for any static range selection data structure using

O(n lgO(1) n) bits of space. In the case of range selection when k is fixed for all
queries, Jørgensen and Larsen proved a cell-probe lower bound of Ω(lg k/ lg lg n)

time for any data structure using O(n lgO(1) n) space [14]. Furthermore, they pre-
sented an adaptive data structure for range selection, where k is given at query
time, that matches their lower bound, except when k = 2o(lg

2 lgn) [14]. Finally,
Bose et al. [3] studied the problem of finding approximate range medians. A c-
approximate median of range [i..j] is a value of rank between 1

c × d
j−i+1

2 e and

(2− 1
c)× d j−i+1

2 e, for c > 1.

Dynamic Case: Gfeller and Sanders [8] presented an O(n lg n) space data struc-
ture for the range median problem that supports queries in O(lg2 n) time and
insertions and deletions in O(lg2 n) amortized time. Later, Brodal et al. [4, 5] pre-
sented an O(n lg n/ lg lg n) space data structure for the dynamic range selection
problem that answers range queries in O((lg n/ lg lg n)2) time and insertion and
deletions in O((lg n/ lg lg n)2) amortized time. They also show a reduction from
the marked ancestor problem [1] to the dynamic range median problem. This re-
duction shows that Ω(lg n/ lg lg n) query time is required for any data structure
with polylogarithmic update time. Thus, there is still a gap of Θ(lg n/ lg lg n)
time between the upper and lower bounds for linear and near linear space data
structures.

3 In this paper we use lgn to denote log2 n.

In the restricted case where the input is a dynamic array A of n values drawn
from a bounded universe, [1, σ], it is possible to answer range selection queries
using a dynamic wavelet tree, such as the succinct dynamic string data structure
of He and Munro [11]. This data structure uses nH0(A)+o(n lg σ)+O(w) bits4 of
space, the query time is O(lgn lg σ

lg lgn), and the update time is O(lgn
lg lgn (lg σ

lg lgn + 1)).

1.2 Our Results

In Section 2, we present a linear space data structure for the dynamic range
selection problem that answers queries in O((lg n/ lg lg n)2) time, and performs
updates in O((lg n/ lg lg n)2) amortized time. This data structure can be used
to represent point sets in which the points have real coordinates. In other words,
we only assume that the coordinates of the points can be compared in constant
time. This improves the space usage of the previous best data structure by a
factor of Θ(lg n/ lg lg n) [5], while maintaining query and update time.

In Section 3, we present a succinct data structure that supports range se-
lection queries on a dynamic array A of values drawn from a bounded uni-
verse, [1..σ]. The data structure occupies nH0(A) + o(n lg σ) + O(w) bits, and
supports queries in O(lgn

lg lgn (lg σ
lg lgn + 1)) time, and insertions and deletions in

O(lgn
lg lgn (lg σ

lg lgn + 1)) amortized time. This is a Θ(lg lg n) improvement in query
time over the dynamic wavelet tree, and thus closes the gap between the dynamic
wavelet tree solution and that of Brodal et al. [5].

2 Linear Space Data Structure

In this section we describe a linear space data structure for the dynamic range
selection problem. Our data structure follows the same general approach as the
dynamic data structure of Brodal et al. [5]. However, we make several important
changes, and use several other auxiliary data structures, in order to improve the
space by a factor of Θ(lg n/ lg lg n).

The main data structure is a weight balanced B-tree [2], T , with branching
parameter Θ(lgε1 n), for 0 < ε1 < 1/2, and leaf parameter 1. The tree T stores
the points in S at its leaves, sorted in non-decreasing order of y-coordinate5.
The height of T is h1 = Θ(lg n/ lg lg n) levels, and we assign numbers to the
levels starting with level 1 which contains the root node, down to level h1 which
contains the leaves of T . Inside each internal node v ∈ T , we store the smallest
and largest y-coordinates in T (v). Using these values we can acquire the path
from the root of T to the leaf representing an arbitrary point contained in S
in O(lg n) time; a binary search over the values stored in the children of an
arbitrary internal node requires O(lg lg n) time per level.

4 H0(A) denotes the 0th-order empirical entropy of the multiset of values stored in A.
Note that H0(A) ≤ lg σ always holds.

5 Throughout this paper, whenever we order a list based on y-coordinate, it is assumed
that we break ties using the x-coordinate, and vice versa.

Following Brodal et al. [5], we store a ranking tree R(v) inside each internal
node v ∈ T . The purpose of the ranking tree R(v) is to allow us to efficiently
make a branching decision in the main tree T , at node v. Let T (v) denote the
subtree rooted at node v. The ranking tree R(v) represents all of the points
stored in the leaves of T (v), sorted in non-decreasing order of x-coordinate.
The fundamental difference between our ranking trees, and those of Brodal et
al. [5], is that ours are more space efficient. Specifically, in order to achieve linear
space, we must ensure that the ranking trees stored in each level of T occupy
no more than O(n lg lg n) bits in total, since there are O(lg n/ lg lg n) levels in
T . We describe the ranking trees in detail in Section 2.1, but first discuss some
auxiliary data structures we require in addition to T .

We construct a red-black tree Sx that stores the points in S at its leaves,
sorted in non-decreasing order of x-coordinate. As in [5], we augment the red-
black tree Sx to store, in each node v, the count of how many points are stored in
T (v1) and T (v2), where v1 and v2 are the two children of v. Using these counts,
Sx can be used to map any query [x1, x2] into r1, the rank of the successor of
x1 in S, and r2, the rank of the predecessor of x2 in S. These ranking queries,
as well as insertions and deletions into Sx, take O(lg n) time.

T

S

` = 1

` = 2

Y1 = 1124334132241234
Y2 = 4321431223142341

Fig. 1. The top two levels of an example tree T , and the corresponding strings Y1 and
Y2 for these levels. Each node at level 2 has exactly 4 children.

We also store a string Y (v) for each node v in T . This string consists of all of
the of the points in T (v) sorted in non-decreasing order of x-coordinate, where
each point is represented by the index of the child of node v’s subtree in which
they are contained, i.e., an integer bounded by O(lgε1 n). However, for technical
reasons, instead of storing each string with each node v ∈ T , we concatenate
all the strings Y (v) for each node v at level ` in T into a string of length n,
denoted by Y`. Each chunk of string Y` from left to right represents some node v
in level ` of T from left to right within the level. See Figure 1 for an illustration.
We represent each string Y` using the succinct dynamic string data structure of
He and Munro [12]. Depending on the context, we refer to both the string, and

also the data structure that represents the string, as Y`. Consider the following
operations on the string Y`:

– access(Y`, i), which returns the i-th integer, Y`[i], in Y`;
– rankα(Y`, i), which returns the number of occurrences of integer α in Y`[1..i];
– range count(Y`, x1, x2, y1, y2), which returns the total number of entries in
Y`[x1..x2] whose values are in the range [y1..y2];

– insertα(Y`, i), which inserts integer α between Y`[i− 1] and Y`[i];
– delete(Y`, i), which deletes Y`[i] from Y`.

Let W = d dlgne
2

lgdlgnee. The following lemma summarizes the functionality of

these data structures for succinct dynamic strings over small universe:

Lemma 1 ([12]). Under the word RAM model with word size w = Ω(lg n), a
string Y`[1..n] of values from a bounded universe [1..σ], where σ = O(lgµ n) for
any constant µ ∈ (0, 1), can be represented using nH0(Y`)+O(n lg σ lg lgn√

lgn
)+O(w)

bits to support access, rank, range count, insert and delete in O(lgn
lg lgn)

time. Furthermore, we can perform a batch of m update operations in O(m)
time on a substring Y`[i..i + m − 1] in which the j-th update operation changes
the value of Y`[i+ j − 1], provided that m > 5W

lg σ .

The data structure summarized by the previous lemma is, roughly, a B-tree
constructed over the string Y`[1..n], in which each leaf stores a superblock, which
is a substring of Y`[1..n] of length at most 2W bits. We mention this because the
ranking tree stored in each node of T will implicitly reference these superblocks
instead of storing leaves. Thus, the leaves of the dynamic string at level ` are
shared with the ranking trees stored in nodes at level `.

As for their purpose, these dynamic string data structures Y` are used to
translate the ranks r1 and r2 into ranks within a restricted subset of the points
when we navigate a path from the root of T to a leaf. The space occupied by
these strings is O((n lg(lgε1 n) +w)× lg n/ lg lg n) bits, which is O(n) words. We
present the following lemma:

Lemma 2. Ignoring the ranking trees stored in each node of T , the data struc-
tures described in this section occupy O(n) words.

In the next section we discuss the technical details of our space-efficient
ranking tree. The key idea to avoid using linear space per ranking tree is to
not actually store the points in the leaves of the ranking tree, sorted in non-
decreasing order of x-coordinate. Instead, for each point p in ranking tree R(v),
we implicitly reference the the string Y (v), which stores the index of the child
of v that contains p.

2.1 Space Efficient Ranking Trees

Each ranking tree R(v) is a weight balanced B-tree with branching param-
eter lgε2 n, where 0 < ε2 < 1 − ε1, and leaf parameter Θ(W/ lgdlg ne) =

Θ((lg n/ lg lg n)2). Thus, R(v) has height Θ(lg n/ lg lg n), and each leaf of R(v)
is implicitly represented by a substring of Y (v), which is stored in one of the
dynamic strings, Y`.

Internal Nodes: Inside each internal node u in R(v), let qi denote the number
of points stored in the subtree rooted at the i-th child of u, for 1 ≤ i ≤ f2,
where f2 is the degree of u. We store a searchable partial sums structure [20]
for the sequence Q = {q1, ..., qf2}. This data structure will allow us to efficiently
navigate from the root of R(v) to the leaf containing the point of x-coordinate
rank r. The following lemma summarizes the functionality of this data structure:

Lemma 3 ([20]). Suppose the word size is Ω(lg n). A sequence Q of O(lgµ n)
nonnegative integers of O(lg n) bits each, for any constant µ ∈ (0, 1), can be
represented in O(lg1+µ n) bits and support the following operations in O(1) time:

– sum(Q, i) which returns
∑i
j=1Q[j],

– search(Q, x) which returns the smallest i such that sum(Q, i) ≥ x,
– modify(Q, i, δ) which sets Q[i] to Q[i] + δ, where |δ| ≤ lg n.

This data structure can be constructed in O(lgµ n) time, and it requires a pre-
computed universal table of size O(nµ

′
) bits for any fixed µ′ > 0.

We also store the matrix structure of Brodal et al. [5] in each internal each
node u of the ranking tree. Let f1 = Θ(lgε1 n) denote the out-degree of node
v ∈ T , and let T (v1), ..., T (vf1) denote the subtrees rooted at the children of v
from left to right. Similarly, recall that f2 = Θ(lgε2 n) denotes the out-degree
of u ∈ R(v), and let T ′(u1), ..., T ′(uf2) be the subtrees rooted at each child of
u from left to right. These matrix structures are a kind of partial sums data
structure defined as follows; we use roughly the same notation as [5]:

Definition 1 (Summarizes [5]). A matrix structure Mu is an f1×f2 matrix,
where entry Mu

p,q stores the number of points from ∪qi=1T
′(ui) that are contained

in ∪pi=1T (vi). The matrix structure Mu is stored in two ways. The first repre-
sentation is a standard table, where each entry is stored in O(lg n) bits. In the
second representation, we divide each column into sections of Θ(lgε1 n) bits —
leaving Θ(lg lg n) bits of overlap between the sections for technical reasons —
and we number the sections s1, ..., sg, where g = Θ(lg1−ε1 n). In the second rep-
resentation, for each column q, there is a packed word wuq,i, storing section si
of each entry in column q. Again, for technical reasons, the most significant bit
of each section stored in the packed word wuq,i is padded with a zero bit.

We defer the description of how the matrix structures are used to guide
queries until Section 2.2. For now, we just treat these structures as a black box
and summarize their properties with the following lemma:

Lemma 4 ([5]). The matrix structure Mu for node u in the ranking tree R(v)
occupies O(lg1+ε1+ε2 n) bits, and can be constructed in o(lg1+ε1+ε2 n) time. Fur-
thermore, consider an update path that goes through node u when we insert a
value into or delete a value from R(v). The matrix structures in each node along
an update path can be updated in O(1) amortized time per node.

Shared Leaves: Now that we have described the internal nodes of the ranking
tree, we describe the how the leaves are shared between R(v) and the dynamic
string over Y`. To reiterate, we do not actually store the leaves of R(v): they
are only conceptual. We present the following lemma that will be crucial to
performing queries on the ranking trees:

Lemma 5. Let u be a leaf in R(v) and S be the substring of Y (v) that u rep-
resents, where each value in S is in the range [1..σ], and σ = Θ(lgε1 n). Using
a universal table of size O(

√
n× polylog(n)) bits, for any z ∈ [1..|S|], an array

Cz = {c1, ..., cσ} can be computed in O(lg n/ lg lg n) time, where ci = ranki(S, z),
for 1 ≤ i ≤ σ.

We end our discussion of ranking trees by presenting the following lemma
regarding their space and construction time:

Lemma 6. Each ranking tree R(v) occupies O
(
m(lg lgn)2

lg1−ε1 n
+ w

)
bits of space if

|T (v)| = m, and requires O(m) time to construct, assuming that we have access
to the string Y (v).

Remark 1. Note that the discussion in this section implies that we need not
store ranking trees for nodes v ∈ T , where |T (v)| = O(lg n/ lg lg n)2. Instead, we
can directly query the dynamic string Y` using Lemma 5 in O(lg n/ lg lg n) time
to make a branching decision in T . This will be important in Section 3, since it
significantly reduces the number of pointers we need.

2.2 Answering Queries

In this section, we explain how to use our space efficient ranking tree in order
to guide a range selection query in T . We are given a query [x1, x2] as well as
a rank k, and our goal is to return the k-th smallest y-coordinate in the query
range. We begin our search at the root node v of the tree T . In order to guide the
search to the correct child of v, we determine the canonical set of nodes in R(v)
that represent the query [x1, x2]. Before we query R(v), we search for x1 and x2
in Sx. Let r1 and r2 denote the ranks of the successor of x1 and predecessor of
x2 in S, respectively. We query R(v) using [r1, r2], and use the searchable partial
sum data structures stored in each node of R(v), to identify the canonical set of
nodes in R(v) that represent the interval [r1, r2]. At this point we outline how
to use the matrix structures in order to decide how to branch in T .

Matrix Structures: We discuss a straightforward, slow method of computing the
branch of the child of v to follow. The full details of how to use the matrix
structures to speed up the query can be found in the original paper [5].

In order to determine the child of v that contains the k-th smallest y-
coordinate in the query range, recall that T is sorted by y-coordinate. Let f1
denote the degree of v, and q′i denote the number of points that are contained
in the range [x1, x2] in the subtree rooted at the i-th child of v, for 1 ≤ i ≤ d.

Determining the child that contains the k-th smallest y-coordinate in [x1, x2] is

equivalent to computing the value τ such that
∑τ−1
i=1 q

′
i < k and

∑τ
i=1 q

′
i ≥ k. In

order to compute τ , we examine the set of canonical nodes of R(v) that represent
[x1, x2], denoted C. The set C contains O(lg n/ lg lg n) internal nodes, as well as
at most two leaf nodes.

Consider any internal node u ∈ C, and without loss of generality, suppose u
was on the search path for r1, but not the search path for r2, and that u has
degree f2. If the search path for r1 goes through child cq in u, then consider the
difference between columns f2 and q in the first representation of matrix Mu. We
denote this difference as M ′u, where M ′ui = Mu

i,f2
−Mu

i,q, for 1 ≤ i ≤ f1. For each
internal node u ∈ C we add each M ′u to a running total, and denote the overall
sum as M ′. Next, for each of the — at most — two leaves on the search path,
we query the superblocks of Y` to get the relevant portions of the sums, and add
them to M ′. At this point, M ′i = q′i, and it is a simple matter to scan each entry
in M ′ to determine the value of τ . Since each matrix structure has f1 entries in
its columns, and by Lemma 5, this overall process takes O(f1 × lg n/ lg lg n) =
O(lg1+ε1 n/ lg lg n) time, since there are O(lg n/ lg lg n) levels in R(v). Since there
are O(lg n/ lg lg n) levels in T , this costs O((lg n/ lg lg n)2×lgε1 n) time. This time
bound can be reduced by a factor of f1 = O(lgε1 n), using word-level parallelism
and the second representation of the matrix structures [5].

Recursively Searching in T : Let vτ denote the τ -th child of v. The final detail to
discuss is how we translate the ranks [r1, r2] into ranks in the tree R(vτ). To do
this, we query the string Y (v) before recursing to vτ . We use two cases to describe
how to find Y (v) within Y`. In the first case, if v is the root of T , then Y` = Y (v).
Otherwise, suppose the range in Y`−1 that stores the parent vp of node v begins
at position z, and v is the i-th child of vp. Let cj = range count(Y (v), z, z +
|Y (v)|, 1, j) for 1 ≤ j ≤ f1. Then, the range in Y` that stores Y (v) is [z+ci−1, z+
ci]. We then query Y (v), and set r1 = rankτ (Y (v), r1), r2 = rankτ (Y (v), r2),
k = k − q′τ−1, and recurse to vτ . We present the following lemma, summarizing
the arguments presented thus far:

Lemma 7. The data structures described in this section allow us to answer
range selection queries in O((lg n/ lg lg n)2) time.

2.3 Handling Updates

In this section, we sketch the algorithm for updating the data structures. We
start by describing how insertions are performed. First, we insert p into Sx and
look up the rank, rx, of p’s x-coordinate in Sx. Next, we use the values stored in
each internal node in T to find p’s predecessor by y-coordinate, p′. We update
the path from p′ to the root of T . If a node v on this path splits, we must rebuild
the ranking tree in the parent node vp at level `, and the dynamic string Y`.

Next, we update T in a top-down manner; starting from the root of T and
following the path to the leaf storing p. Suppose that at some arbitrary node
v in this path, the path branches to the j-th child of v, which we denote vj .

We insert the symbol j into its appropriate position in Y`. After updating Y`
— its leaves in particular — we insert the symbol j into the ranking tree R(v),
at position rx, where rx is the rank of the x-coordinate of p among the points
in T (v). As in T , each time a node splits in R(v), we must rebuild the data
structures in the parent node. We then update the nodes along the update path
in R(v) in a top-down manner: each update in R(v) must be processed by all of
the auxiliary data structures in each node along the update path. Thus, in each
internal node, we must update the searchable partial sums data structures, as
well as the matrix structures.

After updating the structures at level `, we use Y` to map rx to its appropriate
rank by x-coordinate in T (vj). At this point, we can recurse to vj . In the case of
deletions, we follow the convention of Brodal et al. [5] and use node marking, and
rebuild the entire data structure after Θ(n) updates. We present the following
theorem; the technical details will be deferred to the full version of this paper.

Theorem 1. Given a set S of points in the plane, there is a linear space dy-
namic data structure representing S that supports range selection queries for any
range [x1, x2] in O((lg n/ lg lg n)2) time, and supports insertions and deletions
in O((lg n/ lg lg n)2) amortized time.

3 Dynamic Arrays

In this section, we adapt Theorem 1 for problem of maintaining a dynamic array
A of values drawn from a bounded universe [1..σ]. A query consists of a range in
the array, [i..j], along with an integer k > 0, and the output is the k-th smallest
value in the subarray A[i..j]. Inserting a value into position i shifts the position
of the values in positions A[i..n] to A[i+ 1..n+ 1], and deletions are analogous.
We present the following theorem; the omitted proof uses standard techniques
to reduce the number of word-sized pointers that are required to a constant:

Theorem 2. Given an array A[1..n] of values drawn from a bounded universe
[1..σ], there is an nH0(A) + o(n lg σ) +O(w) bit data structure that can support
range selection queries on A in O(lgn

lg lgn (lg σ
lg lgn + 1)) time, and insertions into,

and deletions from, A in O(lgn
lg lgn (lg σ

lg lgn + 1)) amortized time. Thus, when σ =

O(polylog(n)) this is O(lgn
lg lgn) time for queries, and O(lgn

lg lgn) amortized time
for insertions and deletions.

4 Concluding Remarks

In the same manner as Brodal et al. [5], the data structure we presented can
also support orthogonal range counting queries in the same time bound as range
selection queries. We note that the cell-probe lower bounds for the static range
median and static orthogonal range counting match [17, 14], and — very re-
cently — dynamic weighted orthogonal range counting was shown to have a
cell-probe lower bound of Ω((lg n/ lg lg n)2) query time for any data structure

with polylogarithmic update time [16]. In light of these bounds, it is likely that
O((lg n/ lg lg n)2) time for range median queries is optimal for linear space data
structures with polylogarithmic update time. However, it may be possible to do
better in the case of dynamic range selection, when k = o(nε) for any constant
ε > 0, using an adaptive data structure as in the static case [14].

References

1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th An-
nual Symposium on Foundations of Computer Science. pp. 534–543. IEEE (1998)

2. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM J.
Comput. 32(6), 1488–1508 (2003)

3. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range
median queries. In: Proc. STACS. LNCS, vol. 3404, pp. 377–388. Springer (2005)

4. Brodal, G., Jørgensen, A.: Data structures for range median queries. In: Proc.
ISAAC. LNCS, vol. 5878, pp. 822–831. Springer (2009)

5. Brodal, G., Gfeller, B., Jorgensen, A., Sanders, P.: Towards optimal range medians.
Theoretical Computer Science (2010)

6. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edn. (2001)

7. Gagie, T., Puglisi, S., Turpin, A.: Range quantile queries: Another virtue of wavelet
trees. In: Proc. SPIRE. pp. 1–6. Springer (2009)

8. Gfeller, B., Sanders, P.: Towards optimal range medians. In: Proc. ICALP. LNCS,
vol. 5555, pp. 475–486. Springer (2009)

9. Gil, J., Werman, M.: Computing 2-d min, median, and max filters. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 15(5), 504–507 (1993)

10. Har-Peled, S., Muthukrishnan, S.: Range medians. In: Proc. of the European Sym-
posium on Algorithms. LNCS, vol. 5193, pp. 503–514. Springer (2008)

11. He, M., Munro, J.I.: Succinct representations of dynamic strings. In: String Pro-
cessing and Information Retrieval. pp. 334–346. LNCS 6393, Springer (2010)

12. He, M., Munro, J.I.: Space Efficient Data Structures for Dynamic Orthogonal
Range Counting. In: Proc. WADS. pp. 500–511. LNCS 6844, Springer (2011)

13. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. SFCS. pp. 549–554
(1989)

14. Jørgensen, A., Larsen, K.: Range selection and median: Tight cell probe lower
bounds and adaptive data structures. In: Proc. SODA (2011)

15. Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries on lists
and trees. Nordic Journal of Computing 12, 1–17 (2005)

16. Larsen, K.: The cell probe complexity of dynamic range counting. Arxiv preprint
arXiv:1105.5933 (2011)

17. Pǎtraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th ACM
Symposium on Theory of Computing (STOC). pp. 40–46 (2007)

18. Petersen, H.: Improved bounds for range mode and range median queries. In: Proc.
SOFSEM. LNCS, vol. 4910, pp. 418–423. Springer (2008)

19. Petersen, H., Grabowski, S.: Range mode and range median queries in constant
timeand sub-quadratic space. Inf. Process. Lett. 109, 225–228 (2009)

20. Raman, R., Raman, V., Rao, S.: Succinct dynamic data structures. In: Proc.
WADS. pp. 426–437 (2001)

