
Succinct Data Structures for Path Graphs and Chordal
Graphs Revisited

Meng He∗, J. Ian Munro†, and Kaiyu Wu∗

∗Faculty of Computer Science †Cheriton School of Computer Science
Dalhousie University University of Waterloo
Halifax, NS, Canada Waterloo, ON, Canada

{mhe@cs.,kevin.wu@}dal.ca imunro@uwaterloo.ca

Abstract

We enhance space efficient representations of two types of intersection graphs. We refine
the data structure for path graphs of Balakrishnan et al. to give a succinct data structure of
n log n+ o(n log n) bits that supports adjacency test, degree and neighbourhood queries in

O(logn
log logn) time (for neighbourhood queries, this is the amount of time for each neighbour

reported). To achieve O(1) query times, we give a data structure using (3 + ε)n log n +
o(n log n) bits for any constant ε > 0. Furthermore, we are able to support both the distance
and shortest path queries on unweighted path graphs using (2+ε)n log n+o(n log n) bits in
O(log n/ log log n) time (shortest path uses an additional O(1) time per vertex on the path).
This is the first compact distance oracles for path graphs. Turning to chordal graphs, we
enhance the succinct data structure of Munro and Wu to reduce all query times including
performing adjacency test in O(1) time.

1 Introduction

In this paper we examine data structures for path graphs and chordal graphs that are
both time and space efficient. The ultimate goal is to achieve representations that are
“succinct” (i.e. using within a lower order term of the information theoretic amount
of space). We include some methods that are “compact” (i.e. within a constant factor
of that space) but give better run times. Both path graphs and chordal graphs are
intersection graphs, where the edges of the graphs are encoded in the intersection
structure of a collection of sets. By restricting the types of sets, we obtain different
graph classes, and path graphs are graphs obtained when the sets are the nodes of a
simple path in a tree, and chordal graphs are graphs obtained when the sets are the
nodes of a subtree of a tree. Chordal graphs in particular has applications in compiler
construction [1] and data bases [2].

A variety of other classes of graphs that have been considered in the literature,
we have [3, 4] for interval graphs, proper interval graphs and circular arc graphs.
Chakraborty and Jo [5] deals with interval graphs with degree or chromatic number at
most σ. Farzan and Kamali [6] deals with graphs of bounded treewidth, Chakraborty
et al. [7] covers series-parallel, block-cactus and 3-leaf power graphs, and Tsakalidis
et al. [8] focuses on permutation graphs.

The queries supported by these graph data structures are the standard naviga-
tional operations: adjacency: given two vertices return whether they are adjacent;
degree: given a vertex, return its degree; neighbourhood: given a vertex, return

Type Authors Space adjacency neighbourhood degree dista

Path
Graph

[9] n log n O(log n) O(d log n) O(log2 n) -

Thm. 1 n log n O(logn
log logn) O(d logn

log logn) O(logn
log logn) -

Thm. 3 (2 + ε)n log n O(logn
log logn) O(d logn

log logn) O(logn
log logn) O(logn

ε log logn)

[9] O(n log2 n) O(1) O(d) O(1) -
Thm. 2 (3 + ε)n log nb O(1) O(d) O(1) -

Chordal
Graph

[10] n2/4 O(f(n))c O(df(n)2) O(1) O(nf(n))
Thm. 4 n2/4 O(1) O(df(n)) O(1) O(n)

aWe use - to denote that it is not supported. When it is supported, shortest path is also
supported using an additional O(1) time per vertex returned)

bTime dependence on ε is O(1ε)
cFor any f(n) ∈ ω(1).

Table 1: Comparison of our results with previous results. Here d denotes the degree of the
vertex. Lower order terms in the space are omitted.

all vertices adjacent to it. Some of the data structures also support distance related
operations: shortest path: given two vertices, return a shortest path between them;
and dist: given two vertices, return the length of a shortest path between them.

Our Results

For a comparison of our results to previous results, see Table 1. In section 3, we
give succinct and compact data structures for path graphs, improving the result of
Balakrishnan et al. [9]. In particular, our succinct data structure (using n log n +
o(n log n) bits of space) is able to answer queries in O(logn

log logn
) time, rather than

O(log n) (or O(log2 n) time for degree) time, and is much simpler. To achieve optimal
query times, our compact data structure occupies (3+ε+o(1))n log n bits rather than
O(n log2 n) bits.

To achieve these results, we will first use simpler path intersection criteria and
furthermore leverage the folklore result on solving the 2-dimensional 3-sided range
reporting queries in linear bits of space, when the coordinates of the points are easily
calculated. The simpler intersection criteria also allows our data structures to be
much simpler as well. This simplicity allows us to adapt the succinct data structure
to achieve O(1) query times using only around thrice the optimal space.

In section 4, we show that we can augment the succinct path graph data structure
using an extra (1+ε)n log n bits to support the dist query in O(log n/ log log n) time.
This is the first compact distance oracle for path graphs.

Finally in section 5, we improve the run times of the two foundational operations:
adjacency, decode, used by Munro and Wu [10] in their succinct chordal graph data
structure. We reduce the running time from O(f(n)) for any f ∈ ω(1) (any non-
constant increasing function) to constant O(1). As all the operations are built upon
these, consequently, we obtain speedups in the graph operations.

Due to space constraints, omitted details and proofs can be found in [11].

2 Preliminaries

In this paper, we will use standard graph theoretic notation. We will use G = (V,E)
to denote a graph with vertex set V and edge set E. We will use n = |V | and m = |E|
to denote the number of vertices and edges. All of our graphs will be unweighted. As
we will be discussing both trees and graphs in general, we will use vertices to denote
the vertices of a graph which may or may not be a tree, and nodes to denote the
vertices of a tree. We assume the word-RAM model with Θ(log n)-size words. We
use log(·) to denote log2(·).

Intersection Graphs

Let U be a set and X be a collection of subsets of U . We may define a graph G with
V = X (one vertex vs for each s ∈ X) with edges defined by (vs, vt) ∈ E exactly
when s ∩ t ̸= ∅. In this way, we say that X is an intersection model for G. Erdös et
al. [12] showed that all graphs can be represented in this way, with |U | ≤ n2/4, and
thus, we restrict both U and X to generate interesting subsets of graphs.

Following this, a chordal graph can be defined as a graph where we take U to be
the nodes of a tree T , and insist that any s ∈ X must be a subtree of T [13]. A path
graph is a graph where again we take U to be the nodes of a tree, but now we insist
that any s ∈ X must be a (simple) path in T [14, 9] 1. An interval graph is a graph
where we now insist that U is a path itself [15], though typically it is defined using
intervals on the real line. It is easy to see that these definitions are the same. By
these definitions it is clear that interval graphs ⊆ path graphs ⊆ chordal graphs.

A maximal clique is a clique that is maximal under inclusions. It is known that for
a chordal graph G, the number of maximal cliques of G is at most n [16], and thus this
holds true for both path graphs and interval graphs. Furthermore, for chordal graphs,
we may arrange the maximal cliques as the nodes of a tree T so that for every vertex
v, the nodes corresponding to maximal cliques which contain v form a (connected)
subtree of T [17]. Similarly, for a path graph, we may arrange the maximal cliques
as the nodes of a tree T so that for every vertex v, the nodes containing v form a
(simple) path in T [14]. We will denote a tree obtained in this way, which has at
most n nodes as a clique tree of the graph. In both of these cases, a clique tree of the
graph is an intersection model for G.

Succinct Data Structures

A bit vector is a length n array of bits, that supports the queries rank(i): given an
index, return the number of 1s up to index i, select(j): given a number j, return
the index of the jth one in the array, and access(i): return the bit at index i.

Lemma 1 ([18]). A bit vector of length n can be succinctly represented using n+o(n)
bits to support rank, select and access in O(1) time.

We will be working with trees and will be using various tree operations.

1Path graphs are also commonly used to refer to paths themselves, but as in the previous works,
we will use it to refer to this class of intersection graphs.

Lemma 2 ([4]). An ordinal tree on n nodes can be represented succinctly using 2n+
o(n) bits and can support a variety of operations in O(1) time.2 These operations
include level-anc(v, i): return the ancestor of v at depth i, LCA(u, v): return the
lowest common ancestor of u and v, and last child(v): return the last (rightmost)
child of v.

Permutations: Let P be a permutation of [1 . . . n]. The two operations we are
interested in are computing both P [i] and P−1[i].

Lemma 3 ([19]). Let P be a permutation. Then P may be represented using (1 +
1/f(n))n log n+ o(n log n) bits to support the computation of P and P−1 in O(f(n))
time (1 ≤ f(n) ≤ n). In particular, if we set f(n) = 1

ε
for constant ε > 0, then the

space is (1 + ε)n log n+ o(n log n) bits and the time is O(1).

Orthogonal Range Queries: In these data structures, we store n d-dimensional
points. The queries we wish to answer are: given a d-dimensional axis aligned rect-
angle [p1, p2] × [p3, p4] . . . [p2d−1, p2d], emptiness : does the rectangle contain a point?
count : how many points does the rectangle contain? reporting : return each point
contained in the rectangle. We say that the rectangle is k-sided if there are at most k
coordinates that are finite. The following data structures sort the points and stores
stores them as indices in that sorted order, and thus we will define the operations
rsrank and rsdecode to convert between the actual coordinates of points and their
indices in the sorted order (typically referred to as rank-space). In the case of 2-
dimensional 3-sided reporting queries, the following is a folklore result using range
minimum queries:

Lemma 4. Given n 2-dimensional points, and let f be the time cost of rsrank, g be
the time cost of rsdecode. 3-sided reporting queries (of the form [x1, x2]× [−∞, y],
to support the symmetric cases, we duplicate the structure) can be supported in time
O(f + k · g) where k is the number of points reported. The space cost is 2n + o(n)
plus the space needed to support the rsrank and rsdecode operations.

We will also use the result of Bose et al. [20] for 4-sided queries.

Lemma 5 ([20]). Let Q be a set of points from the universe M = [1..n] × [1..n],
where n = |Q|. Q can be represented using n log n + o(n log n) bits to support or-
thogonal range count in O(log n/ log log n) time, and orthogonal range reporting in
O(k log n/ log log n) time, where k is the size of the output.

Path-Sum Query: We are given a tree T , where each vertex v has a non-negative
integer weight wv of at most σ.3 Given a simple path in T consisting of the vertices
v1, . . . vk, we want to compute the sum

∑
wvi mod σ. Chan et al. [21] gave a solution:

Lemma 6. Let T be an ordinal tree on n nodes, each having a weight of at most σ.
Then T can be stored using n log σ+ 2n+ o(n log σ) bits of space and O(n) construc-
tion time to support path sum queries in O(α(n)) time, where α(n) is the inverse
Ackermann function.

2For the full list see Table 1 of their paper.
3The problem is defined over general semi-groups, which abstract the addition operation.

This can be easily modified to give a time-space trade-off (proof omitted):

Lemma 7. Let T be an ordinal tree on n nodes, each having a weight of at most σ.
Fix ∆. Then T can be stored using (n log σ)/∆+3n+ o((n log σ)/∆) bits of space to
support path sum (modulo σ) queries in O(α(n)) time plus O(∆) accesses to weights
of the tree, where α(n) is the inverse Ackermann function.

3 Path Graph Data Structure

In this section, we will give two path graph data structures for supporting adjacency,
degree and neighbourhood, though much of the details for the compact data struc-
ture will be omitted. The information-theoretic lower bound for path graphs is
n log n−o(n log n) bits, as path graphs are a superclass of interval graphs, the interval
graph lower bound [3] applies. A matching upper bound is given by [9].

Tree Structure: We will begin with the clique tree T of G - an arrangement of
the maximal cliques as the nodes of a tree so that for every vertex v of G, the nodes
of the tree containing v form a simple path Pv. We will make several modifications
to T while preserving the path intersections. This will allow our data structures to
be simpler. First we root the tree arbitrarily. Let w be an endpoint of a path Pv.
Create a child of w and extend the path to the child. We note that since Pv is the
only path through the child, no additional intersections are created. By doing so, we
add 2n nodes to T and guarantee that all endpoints of paths are unique.

Next for each internal node w, add a child node cw as its last child. Consider the
preorder numbers of the nodes in the subtree rooted at w. The smallest number is
w and the largest is cw. This also has the nice property that, if we are given a node
c and are told that it is the largest preorder numbered node of some subtree (that is
not the subtree rooted at c in the case that c is a leaf), we know that this subtree
must be the one rooted at the parent of c. This at most adds another n nodes to T .

Finally, for each internal node a, such that a is the lowest depth node of some
path (which we denote as the apex of the path), consider all paths with a as its apex.
Each path passes through two children of a, and we “mark” the child of a that the
left branch of the path passes through. Reorder the children of a such that marked
children come before unmarked children (in a stable manner, the order of any two
marked children should not be changed - thus for any path, the left branch remains
to the left of the right branch) 4.

We will refer to the nodes of T by their preorder numbers. Each vertex v is
associated with a path Pv = (lv, rv) in T , where lv < rv are the two endpoints of
the path. We will name the paths based on the values of the left endpoints, so that
vertex v ∈ [1, n] has the v-th smallest (as endpoints are unique, we do not have ties)
left endpoint. We will abuse notation and use v to refer to the vertex in G, and the
path Pv as well.

For a path v = (lv, rv), the apex av is the node LCA(lv, rv) in T . We note that
since we extended the paths to “dummy” vertices, av ̸= lv, rv. Given the apex of the

4It is worth noting that the last child node cw added previously remains the last node, since it
does not have any path through it and thus is unmarked.

path, denote the last node (by preorder numbers, and by construction this is the last
child) in the subtree rooted at av by zv.

Succinct Data Structure

We first define the internal operation apexlist(a) which returns a list of all paths u
with au = a. Our data structure will consist of the following pieces:
- We will store 4 bitvectors, L,R,A, Z where X[i] = 1 if the i-th node in preorder
is the left endpoint/right endpoint/apex/zv for some vertex v for X = L,R,A, Z
respectively.
- Since we do not know which left endpoint matches which right endpoint, we will
consider the permutation P [i] = j where the i-th path is li = select(L, i), ri =
select(R, j). We will store this permutation P in a 2D range search data structure
RS (for range search), with the points (i, P [i]) using n log n + o(n log n) bits using
Lemma 5. Given a rectangle using preorder numbers as its coordinates, we will need
to convert it into rank space that is stored. For example, the range [x1, x2] will need to
be converted to [r1, r2] where r1 = rank(L, x1 − 1) + 1 (rank of the first left endpoint
in the range) and r2 = rank(L, x2) (rank of the last left endpoint in the range).
To convert back, given a rank r the corresponding preorder number is select(L, r).
To compute P [v], we report the single point in the rectangle [v, v] × [−∞,∞] using
O(log n/ log log n) time, similarly for P−1[j].
- For every node a of the tree that is an apex, we store the point (a, z) (z being the
last node in the subtree rooted at a) in a 2D 3-sided range reporting data structure
RSoA (for range search on apex) using Lemma 4. As we will need to support 2
different types of 3-sided queries, will need to store 2 such data structures.
- We wish to store the number of paths with a given apex, i.e. |apexlist(a)|. To do
so, we store the bit-vector AL = 10k110k2 . . ., where ki = |apexlist(select(A, i))|,
the number of paths with the i-th apex in pre-order. We note that since every path
has exactly 1 apex,

∑
ki = n, and thus AL has length at most 2n.

- We will store the tree T succinctly, using 8n+ o(n) bits 5.
- We will store a semi-group path sum data structure using Lemma 7, with ∆ =
logn

log logn
. The tree is the modified clique tree T , and the weight of each node is the

number of paths with that node as apex: |apexlist(a)|. Since the total sum of the
weights is n, we may use the semi-group integers modulo n under addition.

Therefore, the space required for all the data structures is n log n+o(n log n) bits.
We now consider some internal operations for our data structure. First are the fea-

tures of a path. Given a vertex v, we may compute its features as: lv = select(L, v),
rv = select(R,P [v]), av = LCA(lv, rv) and zv = last child(av). Therefore it takes
O(1) time to compute lv, but O(log n/ log log n) time to compute rv, av or zv.
Implementing apexlist: Given an apex a, let w1, . . . , wk be the children of a and
let z1, . . . , zk denote the last node in the subtree rooted at w1, . . . , wk. A path with
apex a has its two branches in different children of a. Thus we will capture this by the
rectangles [wi, zi] × [wi+1, zk] in the range search data structure RS, which captures
the fact that the left endpoint of the path is a descendant of wi and the right endpoint

5This and the other linear terms can be optimized further, see the thesis [11]

is a descendant of one of wi+1, . . . , wk. We stop once one of the rectangles is empty. By
construction, as we have ordered the children of each apex, the non-empty rectangles
will be at the start. This allows us to get each path in O(log n/ log log n) time.
Implementing |apexlist|: Given a node a, we first check that a is an apex by check-
ing that A[a] = 1. If a is not an apex, then |apexlist(a)| = 0. Otherwise, we may find
its rank among apex by rank(A, a). To find the number of paths with a as its apex,
we find the indices in AL of a and the next apex in preorder - select(AL, rank(A, a))
and select(AL, rank(A, a) + 1) respectively, and find the number of 0s bits between
them. This takes O(1) time.

Now we implement the navigational queries:
Implementing adjacency Query: Given vertices u, v, we obtain lu, ru, lv, rv, au, zu,
av, zv, taking O(log n/ log log n) time. To check adjacency, we have 3 cases:
Case 1: If au, av have no ancestor/descendant relationship, then u, v are not adjacent.
Case 2: If au = av, then they are adjacent.
Case 3: If au is an ancestor of av. Then u, v are adjacent iff exactly one of lu and ru
is a descendant of av.

These can be checked in O(1) time since a node w is a descendant of an apex au
exactly when au ≤ w ≤ zu.
Implementing neighbourhood Query: Given a vertex v, we consider the vertices
u which fall into cases 2 and 3 above. For case 2, the vertices u with au = av can be
listed using apexlist(av). For case 3, we distinguish between the two cases: whether
au is an ancestor of av.

If au is an ancestor of av: we need to list out all paths u such that exactly one of
lu, ru is a descendant of av. In RS on the points (lu, ru), such paths u are exactly those
with points lying in either of the rectangles (−∞, av)× (av, zv) and (av, zv)× (zv,∞).

If au is a descendant of av: we need list out all paths u such that exactly one of lv, rv
is a descendant of au. In RSoA on the points (au, zu), such paths u are exactly those
with points lying in either of the rectangles (−∞, lv)× (lv, rv) and (lv, rv)× (rv,∞).
Since this returns a set of apexes, for each returned apex a, we list the paths with
apexlist(a).

Implementing degree Query: Given a vertex v, there are two types of neigh-
bours: u with au an ancestor of av and those that are av or descendants. In the first
case, we use range count. In the second, it is not hard to see that au is on the path
Pv, and thus the number of paths can be found using our path-sum data structure.

Theorem 1. Let G be a path graph. G can be represented using n log n + o(n log n)
bits to support adjacency, degree in O(log n/ log log n) time and neighbourhood

using O(log n/ log log n) time per neighbour.

To achieve O(1) query times, we replace RS with several structures. We store
P using Lemma 3, 3-sided queries using Lemma 4, its role in apexlist using an
array storing the paths and degree using an array storing all the degrees. Details are
omitted.

Theorem 2. Let G be a path graph. G can be represented using (3 + ε)n log n +
o(n log n) bits to support adjacency, degree in O(1) time and neighbourhood using
O(1) time per neighbour.

4 Path Graph Distances

As path graphs are a subclass of chordal graphs, we will use the same technique as
Munro and Wu [10]. We begin with a clique tree T of G. For a vertex v, we define the
apex av of v to be the node with the smallest depth on the subtree corresponding to
v. We create a distance tree TD as follows: for each vertex v, define the parent of v in
TD as the vertex adjacent to v with the highest (smallest depth) apex - breaking ties
arbitrarily. To be consistent, for all vertices with the apex at the root of T , choose one
and set it as the parent of the other paths that have the root as their apex. Thus TD

has n nodes, one for each vertex. The distance or shortest path calculation presented
by Munro and Wu [10] can be summarized as the following lemma:

Lemma 8. Let G be a chordal graph, and T be a clique tree, and TD be the distance
tree. Let u, v be two vertices, and let au, av be apexes of u, v respectively. In the case
that one of au, av is not the ancestor of the other, 6 let h = LCA(au, av). Let u

′ be the
ancestor of u (in TD) of smallest depth such that au′ is a descendant of h, similarly
for v′. Then the distance between u and v is: dist(u, v) = dist(u, u′)+dist(v, v′)+
2 + 1(C). Where C is the condition: there does not exist any vertex w such that the
subtree corresponding to w contains both the nodes au′ and av′.

7

In the path graph case, our vertices are associated with paths and not arbitrary
subtrees. Thus the condition for a path w containing both au′ and av′ (with au′ < av′)
is that lw is a descendant of au′ and rw is a descendant of av′ . Such a w would satisfy
the rectangle [au′ , zu′]× [av′ , zv′] on the points (lw, rw) (i.e. the data structure RS).

As this is a four sided query, we will use our succinct data structure to support
this.

Theorem 3 (Corollary to Theorem 1). In addition to theorem 1, we can answer the
dist query in O(logn

log logn
) time and the shortest path query in O(logn

log logn
+ dist)

time, where dist is the distance between the two vertices. The extra space required
for these two queries is (1 + ε)n log n+O(n) bits.

Proof. The extra space comes from storing TD and a mapping between TD and the
vertices of the graph. To compute dist and shortest path we need to decide C,
which we can using the above rectangle.

5 Chordal Graphs

Munro and Wu [10] modified the clique tree T (rooted arbitrarily) of a chordal graph
G so that it contained exactly n nodes. For each vertex v, they associated it with the
highest node (smallest depth) Tv of the subtree corresponding to v. Their modification

6The case that they are is equivalent to distances in interval graphs and is much easier
7u′, v′ can be found using level-anc on TD and dist(u, u′) can be calculated as depthTD

(u)−
depthTD

(u′), similarly for dist(v, v′). A shortest path can be found by taking the paths u → u′,
v → v′ in TD joined by either u′ → w → v′ if w exists or u′ → parent(TD, u′) → parent(TD, v′) → v′

if not.

ensured that for any two vertices u, v, Tu ̸= Tv, so v is also used refer to the node Tv

for tree operations. For each vertex v, the set Sv is the set of vertices whose subtrees
pass through v. By definition v ∈ Sv, and if u ∈ Sv then the node Tv is a descendant
of Tu. Again by definition, we obtain that Sv ⊆ Sparent(T,v) ∪ {v} as any subtree
passing through v (except v) must also pass through parent(T, v). We number the
vertices v by the preorder number of Tv so that any u ∈ Sv has u ≤ v. Munro and Wu
considered the following two operations: adjacency(x, v): Given x ∈ [n] and v ∈ T ,
is x ∈ Sv? decode(v, i): Given i ∈ [n] and v ∈ T , what is the i-th smallest element
in Sv?

The first is aptly named adjacency because u < v are adjacent iff u ∈ Sv. The
second operation allows us to return the elements of Sv one at a time, which is needed
in neighbourhood. Ultimately, Munro and Wu reduced all the queries to those two
operations summarized by the following corollary:

Corollary 1. Let G be a chordal graph. Let D be a data structure answering adjacency
and decode in O(f(n)) time, which occupies n2/4 + o(n2) bits of space. Then we
may support adjacency in O(f(n)) time, degree in O(1) time, neighbourhood in
O(f(n)g(n)) time per neighbour for any function g(n) ∈ ω(1), and dist, shortest path

in O(nf(n)) time. The space is succinct: n2/4 + o(n2) bits.

Munro and Wu [10] in their paper gave a way to construct D to support the
queries with f(n) ∈ ω(1), and for simplicity, set f = g. In this section, we show how
to construct D to support the queries with f(n) = O(1).

Theorem 4. Let G be a chordal graph. There is a succinct data structure occupying
n2/4 + o(n2) bits of space which supports adjacency in O(1) time, degree in O(1)
time, neighbourhood in O(g(n)) time per neighbour for any function g(n) ∈ ω(1),
and dist, shortest path in O(n) time.

Proof. (Sketch, full proof in [11]) For a vertex v, we say that v is enlarging if Sv =
Sparent(T,v) ∪ {v}. We select O(

√
n) shortcut nodes in T so that any path to the root

has a shortcut node after at most
√
n steps. For an enlarging node v, we store a

pointer to its nearest non-enlarging ancestor v′. For a non-enlarging node v, we store
a pointer to its nearest shortcut ancestor v′. By definition of enlarging, if v1, . . . vk
are the nodes between v and v′, then Sv = Sv′ ∪ {v1, . . . vk, v} if v is enlarging. If v is
not, then Sv ⊆ Sv′ ∪{v1, . . . , vk, v}. Since there are

√
n shortcut nodes, we may store

the set at each explicitly. For non-enlarging nodes, we store the subset explicitly. For
enlarging nodes, we store nothing. In either case, we can reduce the query to Sv′ if
the queried element is not among {v1, . . . , vk, v}. And Sv′ is either a shortcut node
or is non-enlarging which then reduces to a shortcut node. An analysis of the space
used similar to [10] gives n2/4 + o(n2) bits.

6 References

[1] Fernando Magno Quintão Pereira and Jens Palsberg, “Register allocation via coloring
of chordal graphs,” in Programming Languages and Systems, Kwangkeun Yi, Ed.,
Berlin, Heidelberg, 2005, pp. 315–329, Springer Berlin Heidelberg.

[2] Ronald Fagin, “Degrees of acyclicity for hypergraphs and relational database schemes,”
J. ACM, vol. 30, no. 3, pp. 514–550, jul 1983.

[3] Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti, “Suc-
cinct encodings for families of interval graphs,” Algorithmica, vol. 83, no. 3, pp. 776–
794, 2021.

[4] Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu, “Distance
oracles for interval graphs via breadth-first rank/select in succinct trees,” in 31st
International Symposium on Algorithms and Computation, ISAAC 2020,. 2020, vol.
181 of LIPIcs, pp. 25:1–25:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[5] Sankardeep Chakraborty and Seungbum Jo, “Compact representation of interval
graphs of bounded degree and chromatic number,” in Data Compression Conference,
DCC 2022, Snowbird, UT, USA, March 22-25, 2022. 2022, pp. 103–112, IEEE.

[6] Arash Farzan and Shahin Kamali, “Compact navigation and distance oracles for graphs
with small treewidth,” Algorithmica, vol. 69, no. 1, pp. 92–116, 2014.

[7] Sankardeep Chakraborty, Seungbum Jo, Kunihiko Sadakane, and Srinivasa Rao Satti,
“Succinct data structures for series-parallel, block-cactus and 3-leaf power graphs,”
in Combinatorial Optimization and Applications, COCOA 2021. 2021, vol. 13135 of
Lecture Notes in Computer Science, pp. 416–430, Springer.

[8] Konstantinos Tsakalidis, SebastianWild, and Viktor Zamaraev, “Succinct permutation
graphs,” Algorithmica, vol. 85, no. 2, pp. 509–543, 2023.

[9] Girish Balakrishnan, Sankardeep Chakraborty, N.S. Narayanaswamy, and Kunihiko
Sadakane, “Succinct data structure for path graphs,” Information and Computation,
vol. 296, pp. 105124, 2024.

[10] J. Ian Munro and Kaiyu Wu, “Succinct data structures for chordal graphs,” in 29th
International Symposium on Algorithms and Computation, ISAAC 2018. 2018, vol.
123 of LIPIcs, pp. 67:1–67:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[11] Kaiyu Wu, Succinct and Compact Data Structures for Intersection Graphs, Ph.D.
thesis, University of Waterloo, 2023.

[12] Paul Erdös, A. W. Goodman, and Louis Pósa, “The representation of a graph by set
intersections,” Canadian Journal of Mathematics, vol. 18, pp. 106–112, 1966.

[13] James R. Walter, “Representations of chordal graphs as subtrees of a tree,” Journal
of Graph Theory, vol. 2, no. 3, pp. 265–267, 1978.

[14] Fănică Gavril, “A recognition algorithm for the intersection graphs of paths in trees,”
Discrete Mathematics, vol. 23, no. 3, pp. 211–227, 1978.

[15] C Lekkeikerker and Johan Boland, “Representation of a finite graph by a set of intervals
on the real line,” Fundamenta Mathematicae, vol. 51, pp. 45–64, 1962.

[16] Delbert Ray Fulkerson and Oliver Alfred Gross, “Incidence matrices and interval
graphs,” Pacific Journal of Mathematics, vol. 15, pp. 835–855, 1965.

[17] Fǎnicǎ Gavril, “The intersection graphs of subtrees in trees are exactly the chordal
graphs,” Journal of Combinatorial Theory, Series B, vol. 16, no. 1, pp. 47–56, 1974.

[18] Clark, David, Compact PAT trees, Ph.D. thesis, University of Waterloo, 1997.

[19] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and Srinivasa Rao S., “Succinct
representations of permutations and functions,” Theoretical Computer Science, vol.
438, pp. 74–88, 2012.

[20] Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin, “Succinct orthogonal
range search structures on a grid with applications to text indexing,” in WADS, 2009.

[21] Timothy M. Chan, Meng He, J. Ian Munro, and Gelin Zhou, “Succinct indices for path
minimum, with applications,” Algorithmica, vol. 78, no. 2, pp. 453–491, jun 2017.

