
Succinct Data Structures for Bounded Degree/Chromatic
Number Interval Graphs

Meng He∗, J. Ian Munro†, and Kaiyu Wu∗

∗Faculty of Computer Science †Cheriton School of Computer Science
Dalhousie University University of Waterloo
Halifax, NS, Canada Waterloo, ON, Canada

{mhe@cs.,kevin.wu@}dal.ca imunro@uwaterloo.ca

Abstract

An interval graph is the intersection graph of intervals on the real line. We consider the
problem of constructing space efficient data structures for two subclasses of interval graphs:
those with maximum degree σ1 and those with chromatic number at most σ2.

We show that both bounded degree and bounded chromatic number interval graphs have
a tight lower bound of n lg σi − o(n lg σi) bits (i = 1, 2). This improves the lower bound
of Chakraborty and Jo from 1

6n lg σi − O(n). For bounded chromatic number interval
graphs, we give the first succinct data structure occupying n lg σ2+O(n) bits that supports
navigational operations and distance queries in O(σ2 lg n) time. To match Chakraborty and
Jo’s time complexity of O(lg lg σ2), which uses (σ2−1)n+O(n) bits, we use 2n lg σ2+O(n)
bits instead.

1 Introduction

We examine space efficient representations of several subclasses of interval graphs. In
particular, a succinct data structure for a class of combinatorial objects (for example
ordinal trees on n nodes) with N members uses lgN + o(lgN) bits in the worst case
and a compact data structure uses Θ(lgN) bits in the worst case. An interval graph
is a graph where we can assign an interval [lv, rv] to each vertex v, and edges are
implicitly defined whenever the intervals of two vertices intersect. Interval graphs
are a well-known class of graphs and have applications in operations research [1]
and bioinformatics [2]. For a more in-depth treatment of interval graphs and their
applications, see the book of Golumbic [3]

There are several prior works focusing on succinct data structures for various
subclasses of graphs with nice combinatorial properties. First is the paper we are
improving upon by Chakraborty and Jo [4] which considers interval graphs with
bounded degree or chromatic number. For other classes of graphs that have been
considered in the literature, we have [5, 6] for interval graphs, proper interval graphs
and circular arc graphs. [7] for path graphs, [8] for chordal graphs, [9] deals with
graphs of bounded treewidth, [10] covers series-parallel, block-cactus and 3-leaf power
graphs, and [11] focuses on permutation graphs.

The queries supported by these graph data structures are the standard naviga-
tional operations: adjacency: given two vertices return whether they are adjacent;
degree: given a vertex, return its degree; neighbourhood: given a vertex, return
all vertices adjacent to it. Some of the data structures also support distance related

Author Lower Bound Space adjacency neighbourhood degree dista

Bounded Degree Interval Graph
[4] 1

6n lg σ1 n lg σ1 O(1) O(d) O(1) -
Thm. 5, 6 n lg σ1 n lg σ1 O(1) O(d) O(1) O(1)

Bounded Chromatic Number Interval Graph
[4] 1

6n lg σ2 (σ2 − 1)n O(lg lg σ2) O(σ2 lg lg σ2 + d) O(σ2 lg lg σ2) -
Thm. 4, 7 n lg σ2 n lg σ2 O(σ2 lg n) O(dσ2 lg n) O(σ2 lg n) O(σ2 lg n)
Thm. 8 * 2n lg σ2 O(lg lg σ2) O(σ2 lg lg σ2 + d) O(lg lg σ2) O(lg lg σ2)

aWe use - to denote that it is not supported. When it is supported, shortest path is also
supported using an additional O(1) time per vertex returned

Table 1: Comparison of our results with previous results. Here d denotes the degree of the
vertex. Lower order terms in the lower bound and the space are omitted.

operations: shortest path: given two vertices, return a shortest path between them;
and dist: given two vertices, return the length of a shortest path between them.

1.1 Our Results

Our results are summarized in Table 1.
In section 3, we improve the lower bound for bounded degree (maximum degree

bounded by σ1) and bounded chromatic number (chromatic number at most σ2)
interval graphs, from 1

6
n lg σi − O(n) (i = 1, 2) to n lg σi − o(n lg σi). Furthermore,

using our techniques, we give an alternative lower bound proof for general interval
graphs of n lg n−O(n lg lg n) bits [5, 12].

In section 4, we give succinct and compact data structures for bounded chromatic
number interval graphs. We give a matching upper bound occupying n lg σ2 bits of
space, supporting queries in O(σ2 lg n) time. We then give a compact data structure
occupying 2n lg σ2 bits of space, supporting queries in O(lg lg σ2) time. By applying
the theorem of He et. al. [6], we also immediately obtain the shortest path and
dist operations for bounded degree interval graphs as well.
Due to space constraints, omitted details and proofs can be found in the thesis [13].

2 Preliminaries

In this paper, we will use the standard graph theoretic notation. We will use G =
(V,E) to denote a graph with vertex set V and edge set E. We will use n = |V |
and m = |E| to denote the number of vertices and edges. All of our graphs will be
unweighted. We assume the word-RAM model with Θ(lg n)-size words. We use lg(·)
to denote log2(·).

2.1 Succinct Data Structures

A bit vector B is a length n array of bits, that supports the queries rankb(B, i): given
an index, return the number of b (b ∈ {0, 1}) bits up to index i, selectb(B, j): given
a number j, return the index of the jth b bit in the array, and access(B, i) (or just

B[i]): return the bit at index i. We may generalize this to larger alphabets as well:
rankc(B, i) returns the number of occurrences of the character c up to index i and
selectc(B, j) returns the index of the jth occurrence of the character c.

Lemma 1 ([14]). A bit vector of length n can be succinctly represented using n+o(n)
bits to support rank, select and access in O(1) time.

Lemma 2 ([15]). A string S of length n over an alphabet of size σ, can be succinctly
represented using n lg σ+o(n lg σ) bits to support rank, access in O(lg lg σ) time and
select in O(1) time.

2.2 Interval Graphs

A graph G is an interval graph if we can find an interval Iv = [lv, rv] for every vertex
v such that two vertices u, v are adjacent if and only if the corresponding intervals
intersect: Iu ∩ Iv ̸= ∅. We will say that a collection of intervals I is an intersection
model for the interval graph G. Given an intersection model for G, we may sort
the endpoints so that they lie in the range [1, 2n] and that endpoints are all distinct
while preserving the intersection structure. A maximal clique is a clique that is
maximal under inclusions. It is known that for an interval graph G, the number of
maximal cliques of G, k is at most n [16]. Furthermore, we may arrange the maximal
cliques of G linearly, so that for each vertex v, the maximal cliques of G containing
v are consecutive. By numbering the maximal cliques as 1, . . . , k, we may retrieve an
interval for a vertex v, by setting lv as the first maximal clique v appears in and rv as
the last. It is not hard to see that this is indeed an intersection model for G as two
intervals intersect ⇔ the vertices both belong to some maximal clique ⇔ the vertices
are adjacent.

Given an intersection model for an interval graph G with k maximal cliques, we
may read off the maximal cliques of G by selecting a set of integers i1 < i2 < · · · < ik
and creating maximal cliques Cj = {v; ij ∈ [lv, rv]} which are the intervals containing
each integer. To determine the values of ij, we use the following lemma:

Lemma 3. Let I be an intersection model of G, with the intervals sorted. For an
integer i, if the endpoint at position i is a right endpoint, and the endpoint at position
i− 1 is a left endpoint, then the clique C = {v; i ∈ [lv, rv]} = {v; i− 1 ∈ [lv, rv]} is a
maximal clique. Moreover, all maximal cliques are found in this way.

The subclasses of interval graphs we are interested in are those of bounded degree
(denoted by σ1) and those of bounded chromatic number (denoted by σ2). As interval
graphs are perfect graphs, the chromatic number of the graph is equal to the size of
the maximum clique. Again this is not hard to see, as interval graphs can be optimally
colored using a greedy algorithm - by scanning from left to right, and whenever a new
interval appears, colour it with the smallest currently unused colour of its current
neighbours. To construct data structures for these subclasses, we will consider the
following abstract statements of the Theorems of Acan et al. [5] and He et al. [6].

Corollary 1. Let G be an interval graph. Let D be a data structure that can
compute the right endpoint of the ith interval using g(n) bits of space and f(n)
time. Then there is a data structure occupying g(n) + 6n bits of space1 support-
ing adjacency, degree, dist in O(f(n)) time, neighbourhood in O(f(n)) time per
neighbour and shortest path in O(f(n) + d) time where d is the distance between
the two vertices.

3 Lower Bounds

In this section, we derive lower bounds of n lg σi−o(n lg σi) (i = 1, 2) for both bounded
degree interval graphs and bounded chromatic number interval graphs. As interval
graphs are defined by the existence of an intersection model, we will construct graphs
by exhibiting those. To avoid overcounting, we will construct graphs that only have
few intersection models.

Given an sorted intersection model of G, we may obtain an ordering of maximal
cliques C1, . . . , Ck of G using Lemma 3. This ordering of maximal cliques has the
property that for any vertex v, the maximal cliques containing v are consecutive -
which we will call the consecutive clique property. We may obtain an intersection
model for G, by numbering the maximal cliques 1, . . . , k and assigning the interval
[lv, rv] to each vertex v where lv is the first maximal clique that v appears in and rv
is the last maximal clique that v appears in. 2

Given an ordering of maximal cliques of G with the consecutive clique property,
we will say that the interval for v is Iv = [lv, rv] as described. We will define the
support supp(v) as [lv, rv]. For a subset of the vertices V1 ⊆ V , we will extend the
definition of support to supp(V1) = ∪v∈V1supp(v).

For vertices u, v, we say that they overlap if Iv ∩ Iu /∈ {Iv, Iu, ∅} (note that this is
independent of the ordering of maximal cliques). That is they overlap if they intersect
but one does not contain the other. For an interval graph G, denote the overlap graph
Ov(G) on the same vertex set, but rather than using intersection of the supports as
the adjacency criterion, we use overlapping as the criterion. Thus (u, v) ∈ E(Ov(G))
if u, v overlap. As u, v overlap implies that they intersect, Ov(G) is a subgraph of
G. In particular, any connected component of Ov(G) is also connected in G. The
theorem of Köbler et al. [17] gives a condition for the number of orderings of maximal
cliques of G to be at most 2.

Theorem 1. If Ov(G) has a single component, then the number of orderings of the
maximal cliques of G satisfying the consecutive clique property is at most 2 - one
ordering and the reverse.

Ultimately, as stated, we will give a way to construct a sequence of maximal cliques
satisfying the consecutive clique property. We will show that the graph arising from
this sequence of maximal cliques will be close to having a single overlap component

1A bit of optimization can cut this down to g(n) + (5 + ε)n bits for ε > 0.
2Conversely, it is known and easy to see that a graph G is an interval graph if the maximal cliques

of G can be linearly ordered to have the consecutive clique property [16]

so that we can apply the above lemma. In doing so, we will show that we do not
construct each graph more than twice. In order to show that our graph is close to
having a single overlap component, we will first need to prove a few structural lemmas
on the properties of overlap components of an interval graph.

Lemma 4. Let V1 be a connected component of the overlap graph of an interval graph
G, then supp(V1) is a single interval [l, r].

Lemma 5. Let V1 with support [l, r] such that l ̸= r be a connected component of the
overlap graph of an interval graph. Then for any value x ∈ [l, r], there exists a vertex
v ∈ V1 such that lv ≤ x ≤ rv with lv ̸= rv. Furthermore, if x ̸= l, then we may choose
lv < x ≤ rv.

Proof. First we note that no vertex can have lv = rv, since it would not overlap
any other vertex. In the case that x = l, then as the support of V1 is [l, r], there
exists a vertex v with lv = l and rv > l. Now suppose that x ̸= l and suppose
that no such vertex can be found. Consider the two sets of vertices: {v; lv < x}
and {v; lv ≥ x} whose union is V1. Note that for the first set, any vertex must have
rv < x, otherwise we may pick that vertex. But then the support of the first set
is contained in [l, x − 1] and the second is [x, r], whose union does not contain the
interval (x− 1, x), contradicting Lemma 4.

Corollary 2. Let V1 be a connected component of the overlap graph of an interval
graph with support [l, r], with more than 1 vertex. Then we may find a sequence of
vertices v1, v2, . . . with the following properties: l = lv1 < lv2 < lv3 . . ., and for each
vertex: lvi < lvi+1

≤ rvi.

Proof. We repeatedly apply Lemma 5. Stab [l, r] with the value r to obtain the last
vertex in the chain vp. Stab [l, r] with the value lvp to obtain vp−1 with the property
that lvi−1

< lvi ≤ rvi−1
, and repeat.

These lemmas state that we may find a sequence of overlapping intervals to cover
the support of overlap component. Next we show how two overlap connected com-
ponents interact. This matches our intuition that two components must either be
completely disjoint or one is contained in the other. We cannot have the components
overlap each other (as that would mean they would merge into one component).

Lemma 6. Let V1, V2 be two connected components of Ov(G) where G is an interval
graph. Let supp(V1) = [l1, r1] and supp(V2) = [l2, r2]. Then either:
- [l1, r1] does not intersect [l2, r2];
- [l1, r1] ⊆ [l2, r2] and there exists a vertex u ∈ V2 such that [l1, r1] ⊆ [lu, ru]. (or the
symmetric case)

With all of our structural lemmas complete we now give our class of interval graphs
by defining our maximal cliques. Fix Σ and we will label our vertices by the integers
1 to n. Let C1 = {1, . . . ,Σ}, C2 = {2, . . . ,Σ + 1}, CΣ = {Σ, . . . , 2Σ − 1} and finally
CΣ+1 = {Σ + 1, . . . , 2Σ}. In this “start-up” region, we simply remove the smallest
vertex from the maximal clique, then add the next vertex to obtain the next maximal

C2 C3 C4 C5 C6 C7C1

Figure 1: Construction of our class of interval graphs, with Σ = 5.

clique. For CΣ+2 to Cn−Σ+1 (the rest of the cliques) we apply the following operation
to get Ci+1 from Ci: choose an arbitrary element of Ci that is in the smaller half
of values and remove it, then add the next vertex (i.e. i + Σ). For example, to go
from CΣ+1 to CΣ+2 we delete one of the elements in the smaller half, that is one of
{Σ + 1, . . . , ⌈(3/2)Σ⌉}, and add the next vertex, which is 2Σ + 1. It is not hard to
see that Ci are indeed the maximal cliques of the graph using Lemma 3.

We will now show that there are at most 2 ways to order the maximal cliques so
that it satisfies the consecutive clique property.

Theorem 2. Let G be an interval graph obtained in the algorithm above. Then there
are at most two orderings of the maximal cliques which satisfy the consecutive clique
property.

Proof. First we note that there are exactly two vertices with the same left and right
endpoints: supp(v1) = [1, 1] and supp(vn) = [n − Σ + 1, n − Σ + 1]. Furthermore,
if we remove them and try to re-add them, to maintain the same graph, v1 must go
in the first clique and vn must go in the last clique. Thus if we show the rest of the
graph is overlap connected, then by Theorem 1 there are at most two ways to order
the cliques and satisfy the consecutive clique property.

Consider any component V1 with support [l, r]. We note that l ̸= r, since no
vertex has the same left and right endpoints any more. We claim that l = 1 and
r = n − σ + 1. Suppose for a contradiction that r ̸= n − Σ + 1, then consider the
vertex vr+Σ−1 which is added in Cr. Since we do not remove it this clique, rvr+Σ−1

> r.
Furthermore, since supp(V1) = [l, r], there exists a vertex v ∈ V1 with lv < rv = r.
These two vertices overlap so vr+Σ+1 ∈ V1 and supp(V1) ̸= [l, r]. To show that l = 1
is similar by considering the vertex that ends in Cl, which must overlap the vertex
v ∈ V1 that has l = lv < rv.

Now suppose that G \ {v1, vn} were not overlap connected, and let V1, V2 be two
overlap connected components. By above, we must have supp(V1) = supp(V2) =
[1, n − σ + 1]. By Lemma 6, there exists a vertex u ∈ V2 such that [1, n − σ + 1] ⊆
supp(u). However, by construction, no vertex that starts in C1 can end in Cn−Σ+1, a
contradiction.

Therefore G \ {v1, vn} is overlap connected and we are done.

With this, we are able to show lower bounds for many classes of interval graphs.
We will count the number of graphs we are able to construct using the above con-
struction, subject to certain restrictions (for instance, the size of the maximal cliques
σ). The way we will do this is to notice that we make a decision at every clique:
which vertex in the smaller half to remove. Every decision will generate a different
graph depending on the vertex removed. By counting the number of outcomes over
all the decision, we obtain the number of different graphs created.

The first lower bound we will show using the above construction is an alternative
lower bound proof for interval graphs of Acan et al. and Gavoille and Paul [5, 12] by
setting Σ = n/ lg n.

Theorem 3. Representing interval graphs needs n lg n−O(n lg lg n) bits.

Proof. The number of graphs that can be created using the above algorithm is the
following. We make choices at n− 2Σ cliques - to determine which vertex should end
at that clique. Each of these choices is between Σ/2 elements. Thus the number of

graphs we obtain is (Σ/2)(n−2Σ). 3 Hence the information theoretic lower bound is:

lg (Σ/2)(n−2Σ) = (n− 2Σ) lg(Σ/2). Setting Σ = n/ lg n completes the proof.

Next we will apply this construction to improve the lower bound results of [4] on
bounded degree and bounded chromatic number interval graphs.

Theorem 4. Representing interval graphs with bounded chromatic number σ needs
n lg σ2 −O(σ2 lg σ2 + n) bits. (or equal to n lg n− o(n lg n) when σ2 ≥ n/ lg n)

Proof. As interval graphs are perfect graphs, the chromatic number is equal to the
size of the maximum clique. By construction, all graphs G have maximum clique
size Σ, so we set σ2 = Σ. Thus the lower bound is simply (n − 2σ2) lg(σ2/2) =
n lg σ2 −O(σ2 lg σ2 + n).

Finally we note that this only applies when σ2 = O(n/ lg n), as larger σ2 (especially
when σ = Θ(n)) would cause the lower order term to cancel out with the leading term.
But as we have shown that the lower bound is already n lg n−o(n lg n) for σ2 = n/ lg n,
any larger σ2 would also inherit this lower bound.

Theorem 5. Representing interval graphs with bounded degree σ1 needs n lg σ1 −
o(n lg σ1) bits.

Proof. To limit the degree of our vertices, we need to make sure that the clique that
any vertex ends on is not too far from the clique that the vertex begins. For a vertex
v with supp(v) = [lv, rv], we have deg(v) = (Σ − 1) + (rv − lv). The first term says
that it is adjacent to Σ − 1 vertices of the clique that it begins at, and the second
term says that for each additional clique, it gains one more neighbour.

To limit the size of rv − lv, rather than selecting an arbitrary vertex to remove,
every ∆ cliques, we always remove the smallest vertex. Consider the rank of any
vertex v in the cliques that contain it (that is, how many vertices are smaller than

3We over count by at most a factor of 2, but this is a constant term after taking the lg.

it in the clique?). By construction, in the clique that it begins at, it is rank Σ - the
largest numbered vertex (except those in C1, where their ranks at at most Σ). Since
we always remove a vertex in the smaller half, the next Σ/2 cliques will decrease its
rank by 1. Since we remove the smallest vertex in the clique every ∆ cliques, we are
guaranteed to decrease the rank of v every ∆ cliques and thus remove it after at most
∆·Σ/2 cliques. Thus rv−lv ≤ Σ/2+∆Σ/2 and deg(v) ≤ Σ+Σ/2+∆Σ/2 = Σ

2
(3+∆).

And thus we set σ1 =
Σ
2
(3 + ∆).

The number of graphs we obtain is also changed. Rather than making (n − 2Σ)
choices, we make ∆−1

∆
(n − 2Σ) choices since we always remove the smallest vertex

every ∆ cliques. Thus the lower bound is instead: ∆−1
∆

(n− 2Σ) lg(Σ/2).
By setting Σ = 2σ1/ lg σ1 and ∆ = lg(σ1) − 3, the lower bound we obtain is

n lg σ1 −O(n lg lg σ1).

4 Data Structure for Restricted Interval Graphs

In this section we will consider data structures for bounded degree and bounded
chromatic number interval graphs, primarily using the abstract formulation of the
theorems of Acan et al. and He et al. [5, 6] stated in Corollary 1

Chakraborty and Jo [4] gave a straightforward and immediate adaptation of Acan
et al.’s [5] data structure to apply to bounded degree interval graphs, using n lg σ1

bits. A brief description is as follows. It can be shown that for an interval graph
whose degree is bounded by σ1, then for any interval, the length is O(σ1). Thus by
storing the difference rv − lv, we have g(n) = n lg σ1 +O(n) and f(n) = O(1).

Thus they obtained the theorem:

Theorem 6. Let G be an interval graph with bounded degree σ. Then G can be repre-
sented using n lg σ+O(n) bits to support the operations adjacency, degree, dist in
O(1) time, and neighbourhood and shortest path in O(1) time per vertex returned
(as a neighbour or on the path) 4.

As we have shown in the previous section by giving a tight lower bound, this
is indeed succinct. We will now focus our attention to bounded chromatic number
interval graphs. Chakraborty and Jo [4] gave a data structure using (σ2 − 1)n bits of
space and O(lg lg σ2) query times. We will first show that our lower bound of n lg σ2

is tight by giving a succinct data structure, with somewhat bad query times. We will
then give a compact data structure matching their O(lg lg σ2) query times. We will
assume that σ2 is non-constant so that the auxiliary space needed is a lower order
term.

4.1 Succinct Data Structure

As in Corollary 1, we will construct the data structure D to compute the right end
points, using n lg σ2 bits of space. The idea is given the left endpoint of some inter-
val, we scan the indices corresponding to the right endpoints, and find the one that

4Chakraborty and Jo did not include the dist query in their result, but as He et al. stated in
their paper, the augmentation is fairly universal to all subclasses of interval graphs.

corresponds with our interval. As the maximal cliques are of size at most σ2, the
number of unclosed intervals at any moment is at most σ2 (all such unclosed intervals
are adjacent to each other and must have different colours), thus we may store which
unclosed interval (in sorted order by left endpoints, i.e. if we store “5-th” interval,
then this end point matches unclosed interval with the 5th smallest left end point.)
matches each index that closes an interval in lg σ bits. Thus the total space required
is n lg σ2 +O(n) bits.

To support the navigational operations we will need to be able to find the index
of the right endpoint of the interval given the left endpoint of an interval. To do this
we use the following algorithm which keeps track of the rank of lv among the left
endpoints of unclosed intervals. Let B be a bit-vector where B[i] = 0 if the endpoint
at index i is a left endpoint, and B[i] = 1 if it is a right endpoint. We note that B
is one of the components of the data structure of Corollary 1 so we do not need to
store it again. By our definition the rank of the vertex v is the excess (the number of
unclosed intervals, found by rank0(B, lv)− rank1(B, lv)) at the index of lv. For each
following index that corresponds to the end (right endpoint) of an interval there are
3 cases:
- It closes an interval with rank larger than the current rank: we do nothing.
- It closes an interval with rank equal to the current rank: this is our right endpoint.
- It closes an interval with rank less than the current rank: we decrement our rank.

In this way, we are able to compute index of the right endpoint of the interval in
O(n) time. To optimize this, at right endpoint r of some of the intervals, we store
the set of vertices whose left endpoints are currently unclosed. We will call these sets
shortcuts and we store them at every σ2 lg n right endpoints. The idea is rather than
start the algorithm at the left endpoint of the interval, we start it at the last shortcut
set containing our left endpoint - so we are guaranteed to find the matching right
endpoint before the next shortcut set - that is after at most σ2 lg n iterations.

We binary search the shortcut sets to find the last shortcut set containing the
left endpoint of our interval. By storing each shortcut set using perfect hashing we
may find this set in O(σ lg n) time, while using O(n) extra bits. Thus we have the
following theorem:

Theorem 7. Let G be an interval graph with chromatic number σ2. Then G may
be represented using n lg σ2 + O(n) bits of space and support adjacency, degree,
neighbourhood, dist in O(σ2 lg n) time (or per neighbour) and shortest path(u, v)
in O(σ2 lg n+ dist(u, v)) time.

For our compact data structure, we colour the graph using σ2 colours. We consider
a string S where S[i] = c is the colour of the vertex v where i = lv or rv. Thus to
compute rv from lv, we simply find the colour c of v using S[lv], then rv must be the
index of the next occurrence of c in S, which we compute using select in O(lg lg σ2)
time. Details omitted. Thus we have:

Theorem 8. Let G be an interval graph with chromatic number σ2. Then G can be
represented using 2n lg σ2 + o(n lg σ2) bits of space and support adjacency, degree,
dist in O(lg lg σ2) time, neighbourhood(v) in O(min(degree(v) lg lg σ2, σ2 lg lg σ2+
degree(v)) time and shortest path(u, v) in O(lg lg σ2 + dist(u, v)) time.

5 References

[1] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber,
“A unified approach to approximating resource allocation and scheduling,” J. ACM,
vol. 48, no. 5, pp. 1069–1090, 2001.

[2] Peisen Zhang, Eric A. Schon, Stuart G. Fischer, Eftihia Cayanis, Janie Weiss, Susan
Kistler, and Philip E. Bourne, “An algorithm based on graph theory for the assembly
of contigs in physical mapping of DNA,” Comput. Appl. Biosci., vol. 10, no. 3, pp.
309–317, 1994.

[3] Martin Charles Golumbic, Algorithmic graph theory and perfect graphs, Elsevier, 2004.
[4] Sankardeep Chakraborty and Seungbum Jo, “Compact representation of interval

graphs of bounded degree and chromatic number,” in Data Compression Conference,
DCC 2022, Snowbird, UT, USA, March 22-25, 2022. 2022, pp. 103–112, IEEE.

[5] Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti, “Suc-
cinct encodings for families of interval graphs,” Algorithmica, vol. 83, no. 3, pp. 776–
794, 2021.

[6] Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu, “Distance
oracles for interval graphs via breadth-first rank/select in succinct trees,” in 31st
International Symposium on Algorithms and Computation, ISAAC 2020,. 2020, vol.
181 of LIPIcs, pp. 25:1–25:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[7] Girish Balakrishnan, N. S. Narayanaswamy, Sankardeep Chakraborty, and Kunihiko
Sadakane, “Succinct data structure for path graphs,” in Data Compression Conference,
DCC 2022, Snowbird, UT, USA, March 22-25, 2022. 2022, pp. 262–271, IEEE, Full
version: https://arxiv.org/abs/2111.04332.

[8] J. Ian Munro and Kaiyu Wu, “Succinct data structures for chordal graphs,” in 29th
International Symposium on Algorithms and Computation, ISAAC 2018. 2018, vol.
123 of LIPIcs, pp. 67:1–67:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[9] Arash Farzan and Shahin Kamali, “Compact navigation and distance oracles for graphs
with small treewidth,” Algorithmica, vol. 69, no. 1, pp. 92–116, 2014.

[10] Sankardeep Chakraborty, Seungbum Jo, Kunihiko Sadakane, and Srinivasa Rao Satti,
“Succinct data structures for series-parallel, block-cactus and 3-leaf power graphs,”
in Combinatorial Optimization and Applications, COCOA 2021. 2021, vol. 13135 of
Lecture Notes in Computer Science, pp. 416–430, Springer.

[11] Konstantinos Tsakalidis, SebastianWild, and Viktor Zamaraev, “Succinct permutation
graphs,” CoRR, vol. abs/2010.04108, 2020.

[12] Cyril Gavoille and Christophe Paul, “Optimal distance labeling for interval graphs
and related graph families,” SIAM Journal on Discrete Mathematics, vol. 22, no. 3,
pp. 1239–1258, Jan. 2008.

[13] Kaiyu Wu, Succinct and Compact Data Structures for Intersection Graphs, Ph.D.
thesis, University of Waterloo, 2023.

[14] J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao, “Space efficient suffix trees,”
J. Algorithms, vol. 39, no. 2, pp. 205–222, 2001.

[15] Alexander Golynski, J. Ian Munro, and Srinivasa Rao Satti, “Rank/select operations
on large alphabets: a tool for text indexing,” 01 2006, pp. 368–373.

[16] Delbert Ray Fulkerson and Oliver Alfred Gross, “Incidence matrices and interval
graphs,” Pacific Journal of Mathematics, vol. 15, pp. 835–855, 1965.

[17] Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky, “Interval
graphs: Canonical representation in logspace,” in Automata, Languages and Program-
ming, Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der
Heide, and Paul G. Spirakis, Eds., Berlin, Heidelberg, 2010, pp. 384–395, Springer
Berlin Heidelberg.

