
Sum-of-Local-Effects Data Structures
for Separable Graphs⋆

Xing Lyu1, Travis Gagie2[0000−0003−3689−327X], Meng He2[0000−0003−0358−7102],
Yakov Nekrich3[0000−0003−3771−5088], and Norbert Zeh2[0000−0002−−0562−1629]

1 Halifax West High School, Halifax, Canada lyuxing1006@gmail.com
2 Dalhousie University, Halifax, Canada {firstname.lastname}@dal.ca

3 Michigan Technological University yakov@mtu.edu

Abstract. It is not difficult to think of applications that can be mod-
elled as graph problems in which placing some facility or commodity at a
vertex has some positive or negative effect on the values of all the vertices
out to some distance, and we want to be able to calculate quickly the
cumulative effect on any vertex’s value at any time or the list of the most
beneficial or most detrimential effects on a vertex. In this paper we show
how, given an edge-weighted graph with constant-size separators, we can
support the following operations in time polylogarithmic in the number
of vertices and the number of facilities placed on the vertices, where
distances between vertices are measured with respect to edge weights:
Add(v, f, w, d) places a facility of weight w and with effect radius d

onto vertex v.
Remove(v, f) removes a facility f previously placed on v using Add

from v.
Sum(v) or Sum(v, d) returns the total weight of all facilities affecting

v or, with a distance parameter d, the total weight of all facilities
whose effect region intersects the “circle” with radius d around v.

Top(v, k) or Top(v, k, d) returns the k facilities of greatest weight
that affect v or, with a distance parameter d, whose effect region
intersects the “circle” with radius d around v.

The weights of the facilities and the operation that Sum uses to “sum”
them must form a semigroup. For Top queries, the weights must be
drawn from a total order.

Keywords: Graph data structures · Treewidth · Branchwidth · Graph
decompositions · Tree decompositions · Sum of local effects

1 Introduction

Even people who have never heard of Baron Samuel of Wych Cross may have
heard a saying often attributed to him, that there are three things that matter in
real estate: location, location, location. This means that the value of a property
may increase or decrease depending on whether it is close to a bus stop, a good
⋆ This work is supported by NSERC.



2 X. Lyu et al.

school, a supermarket or a landfill, for example. Of course, “close” may not mean
the same thing for a bus stop as it does for a landfill, and the positive effect of
the former may not offset the negative effect of the latter. In fact, “close” may
not refer to Euclidean distance, since walking to a bus stop five minutes down
the street is preferable to walking to one five minutes away through a landfill.
To model applications in which there are such additive local effects with a non-
Euclidean definition of locality, we propose in this paper a data structure for a
graph G that supports the following operations:

Add(v, f, w, d) places a facility of weight w onto vertex v. The effect region
of f is a circle with radius d around v.

Remove(v, f) removes a facility f previously placed on v using Add from v.
Sum(v) or Sum(v, d) returns the total weight of all facilities affecting v or,

with a distance parameter d, the total weight of all facilities whose effect
region intersects the “circle” with radius d around v.

Top(v, k) or Top(v, k, d) returns the k facilities of greatest weight that af-
fect v or, with a distance parameter d, whose effect region intersects the
“circle” with radius d around v.

We assume that every edge e ∈ G has a non-negative length ℓ(e) and that
distances between vertices are measured as the minimum total length of all
edges on any path between these two vertices. A circle with radius d around
some vertex v includes all vertices and (parts of) edges at distance d from v.
More precisely, if f is a facility with effect radius d′ placed on some vertex u,
then we consider f ’s effect region to intersect a circle with radius d around some
other vertex v if and only if dist(u, v) ≤ d+ d′.

The weights of the facilities and the operation that Sum uses to “sum” them
must form a semigroup. For Top queries, the weights must be drawn from a
total order. Note that Sum(v) and Top(v, k) can be viewed as “range stabbing
queries on graphs”, whereas Sum(v, d) and Top(v, k, d) with d > 0 are “range
intersection queries on graphs,” where the ranges are the effect regions of the
facilities and a query is either an individual vertex or a region of some radius d
around some vertex.

We call such a data structure a sum-of-local-effects (SOLE) data structure. In
Section 2, we show that when G is a tree on n vertices, then there is a SOLE data
structure for it supporting Add, Remove, and Sum operations in O(lg n lgm)
time, and Top queries in O(k lg n lgm) time, where m is the total number of
facilities currently placed on the vertices of G. In Section 3, we generalize this
result to t-separable graphs, for any constant t, which includes series-parallel
graphs (t ≤ 2), graphs of constant treewidth w (t ≤ w + 1), and graphs of
constant branchwidth b (t ≤ b). We show that when G is t-separable, there exists
a SOLE data structure for it supporting Add, Remove, and Sum operations in
O(lg n lgt m) time, and Top queries in O(k lg n lgt m) time. The costs of Add
and Remove operations are amortized in this case.

Our results can be extended to directed graphs G and our data structure
can be made to support vertex and edge deletions in G. We will investigate this
generalization in the full version of this paper.



SOLE Data Structures 3

2 A SOLE Data Structure for Trees

In this section, we prove that

Theorem 1. If G is a tree on n vertices, then there is a SOLE data structure
for it supporting Add, Remove, and Sum operations in O(lg n lgm) time, and
Top(v, k, d) operations in O(k lg n lgm) time, where m is the number of facilities
currently on the vertices of G. The size of this data structure is O(n+m lg n).

To obtain a SOLE data structure for arbitrary trees, we can transform any
tree G into a tree G′ whose nodes have degree at most 3 by replacing every high-
degree vertex u in G with a degree-3 subtree G′

u whose edges all have length 0
(see Figs. 1b,c). We choose an arbitrary vertex in G′

u as the representative of u
in G′. This ensures that the distances between vertices in G and between their
representatives in G′ are the same. Thus, we can support operations on G by
building a SOLE data structure on G′ instead. Therefore, for the rest of this
section, we assume that all vertices of G have degree at most 3.

2.1 Designing SOLE Data Structures for Trees

We choose an arbitrary vertex ρ of G and label every vertex v in G with its
distance dist(ρ, v) from ρ. A centroid edge of G is an edge (u, v) whose removal
splits G into two subtrees Gu and Gv with at most 2n/3 vertices each. Such an
edge exists because all vertices of G have degree at most 3. A centroid decom-
position of G is a binary tree T defined inductively as follows (see Fig. 1c): If G
has a single vertex v, then T has v as its only node. Otherwise, let (u, v) be an
arbitrary centroid edge of G. Then the root of T is (u, v), and the two children
of (u, v) are the roots of centroid decompositions of Gu and Gv. For each edge
e of T , let Te be the subtree of T below e, and let Ve be the set of vertices of G
corresponding to the leaves of Te. The height of T is at most log3/2 n = O(lg n).

Our SOLE data structure for G consists of a centroid decomposition T of G
where each edge e of T has an associated data structure We storing facilities in
Ve′ that may affect the vertices in Ve, where e′ is the other edge in T descending
from the same node as e. Each leaf v of T (corresponding to the vertex v of G)
also has an associated data structure Wv storing the facilities placed on v itself.
Each facility f with weight w in We or Wv has an associated radius r and is
stored as the triple (r, f, w) in We.

We represent each data structure Wx, where x can be an edge or a leaf
of T , as two search trees Rx and Fx. Rx is a priority search tree [4] on the
triples (r, f, w) in Wx, using the radii r as x-coordinates and the weights w as y-
coordinates. Each node v of Rx is augmented with the total weight of all triples
in the subtree below v. Fx is a standard search tree over the triples (r, f, w)
in Wx, using the identifiers f of facilities as keys. The two copies of (r, f, w)
in Rx and Fx are linked using cross pointers. Thus, Wx supports the following
operations in O(lgm) time: insertion of a new triple (r, f, w), deletion of a triple
associated with facility f , and reporting of the total weight of all triples (r, f, w)



4 X. Lyu et al.

v1

v2

v3

v4

v5

v6

v7

v8v9

v10
v11

v12
5 3

1
7

2

4

25

51

8

(a)

v1

v2

v3

v4 v′4 v′′4 v5

v6

v7

v8v9

v10

v11

v12

5 3

1
7

2

425

5

1

8
0 0

(b)

Fig. 1: A tree (a), its degree-3 version (b), and the centroid decomposition (c, next
page) of the tree in (b). The shaded subtree in (b) is the degree-3 tree replacing
the high-degree vertex v4 in (a). A facility f with effect radius 8 placed on v11
has the pink effect region in (b). This region overlaps the blue query region with
radius 8 around v6. In the centroid decomposition (c), f is stored in the edge
data structures of the fat red edges and the node data structure of v11, with
the radii shown in red. A query with radius 8 around v6 queries the node data
structure of v6 an the edge data structures of the fat blue edges, with the query
radii shown in blue. In particular, f is reported as part of the query on the data
structure We associated with the highlighted child edge of (v4, v′4).



SOLE Data Structures 5

8

v2 v3 (v10, v12) v11 v′4 v9 v′′4 v8 v5 v7

v10 v12

(v10, v11)v4(v2, v3)v1 (v′4, v9) (v′′4 , v8) (v5, v7) v6

(v4, v10)(v1, v2) (v′4, v
′′
4 ) (v5, v6)

(v2, v4) (v′′4 , v5)

(v4, v
′
4)

1

2

7

2

−6

−8

1

(c)

Fig. 1 continued

with q ≤ r, for some query radius q. It also supports, in O(k lgm) time, reporting
the k triples with maximum weight among all triples (r, f, w) with q ≤ r.

To bound the size of the data structure, note that T has size O(n), each data
structure Wx, with x a leaf or edge of T , has size linear in the number of triples
it stores, and each facility placed on some vertex v is stored in Wv and in the
data structure We associated with each edge e on the path Pv = ⟨x1, . . . , xh, v⟩
from the root of T to v (which is a leaf of T ). Since this path has length O(lg n),
each facility is stored O(lg n) times. Thus, the SOLE data structure for trees has
size O(n+m lg n).

2.2 Supporting Queries over Trees

We now use our data structures to support operations.
An Add(v, f, w, d) operation traverses the path Pv. We insert the triple

(d, f, w) into Wv. Each node xi in Pv represents an edge (x, y) of G and has
two child edges ex and ey such that x ∈ Vex and y ∈ Vey . Assume w.l.o.g. that
v ∈ Vex , and let d′ = |dist(ρ, y) − dist(ρ, v)|. We insert the triple (d − d′, f, w)
into the data structure Wey associated with ey. This is illustrated in Fig. 1c.
This takes O(lgm) time per vertex in Pv, O(lg n lgm) time in total.

A Remove(v, f) operation traverses the path Pv and deletes the triple asso-
ciated with f from the data structure We of every child edge e of every node xi

in Pv, and from Wv. By a similar analysis as for Add(v, f, w, d) operations, this
takes O(lg n lgm) time.



6 X. Lyu et al.

A Sum(v, d) query traverses the path Pv. For each edge e on this path with
top endpoint xi, xi represents an edge (x, y) ∈ G such that w.l.o.g. e = ey.
We query We to report the total weight of all triples (r, f, w) in We with r ≥
|dist(ρ, y) − dist(ρ, v)| − d. We also query Wv to report the total weight of all
facilities placed on v itself. This is illustrated in Fig. 1c. We sum these weights
retrieved from Wv and from all the edge data structures We along Pv and report
the resulting total. Since we answer a Sum(v, d) query by querying O(lg n) data
structures We and Wv, the cost is O(lg n lgm). A Sum(v) query is the same as
a Sum(v, 0) query.

A Top(v, k, d) query traverses Pv. For each edge e on this path with top
endpoint xi, xi represents an edge (x, y) ∈ G such that w.l.o.g. e = ey. We query
We to retrieve the k triples with maximum weight among all triples (r, f, w) in
We such that r ≥ |dist(ρ, y) − dist(ρ, v)| − d. This takes O(k lg n lgm) time for
all edges on Pv. We also retrieve the k facilities with maximum weight from Wv,
which takes O(k lgm) time. The k maximum-weight facilities affecting vertices
at distance at most d from v are among the O(k lg n) facilities retrieved by these
queries and can be found in O(k lg n) time using linear-time selection [2]. Thus,
a Top(v, k, d) query takes O(k lg n lgm) time. A Top(v, k) query is the same as
a Top(v, k, 0) query.

To prove the correctness of Sum(v, d) and Top(v, k, d) queries, note that
both queries query the same data structures We, with the same query regions.
A Sum query reports the total weight of all facilities in these query regions. A
Top query reports the k maximum weight queries in these regions. Both queries
are correct if we can argue that if either query were to report all facilities in
these query regions instead of summing their weights or picking the k facilities
with maximum weight, then any facility placed on some vertex u is reported if
and only if its effect radius d′ satisfies d + d′ ≥ dist(u, v), and any such facility
is reported exactly once.

So consider a facility f with effect radius d′ placed on some vertex u ∈ G,
and let v be another vertex v ∈ G. If v = u, then f must be reported because
it affects v no matter the query radius d. The facility f does not belong to any
data structure We on the path Pu = Pv. Thus, if f is to be reported, it must be
reported by the query Wv. Since placing f on u adds f to Wu = Wv, a Sum(v, d)
query reports the total weight of all facilities in Wv, and a Top(v, k, d) query
reports the k facilities with maximum weight in Wv, the corresponding reporting
query would report all facilities in Wv, including f .

If v ̸= u, then let xi be the highest vertex on the path from u to v in T .
This vertex represents an edge (x, y) such that w.l.o.g. u ∈ Vex and v ∈ Vey . In
this case, f is not stored in Wv, and ey is the only edge on the path Pv that
is a pendant edge of Pu. Thus, Wey is the only data structure considered by a
Sum(v, d) or Top(v, k, d) query that stores f . In Wey , f is stored with radius
r = d′−|dist(ρ, y)−dist(ρ, u)| = d′−dist(u, y). The path from u to v in G passes
through y, so dist(u, v) = dist(u, y) + dist(y, v). Therefore, dist(u, v) ≤ d+ d′ if
and only if q = |dist(ρ, v)− dist(ρ, y)| − d = dist(v, y)− d ≤ d′ − dist(u, y) = r.



SOLE Data Structures 7

The reporting version of a Sum(v, d) or Top(v, k, d) query reports all triples
(r, f, w) in Wey with r ≥ q. Thus, f is reported if and only if d+ d′ ≥ dist(u, v).

This finishes the proof of Theorem 1.

3 A SOLE Data Structures for Separable Graphs

We call a graph G t-separable, for some constant t, if it has a t-separator decom-
position C of the following structure (see Figs. 2a,b):

– C is an unrooted tree with O(n) nodes, all of which have degree at most 3.
– Each edge e of C has an associated subset Se ⊆ V of vertices of G of size

|Se| ≤ t. We call Se the (edge) bag associated with e.
– Every vertex of G belongs to at least one bag of C.
– Let C1 and C2 be the subtrees of C obtained by removing any edge e from C,

and let Vi, i ∈ {1, 2}, be the union of the bags of all edges in Ci. Then any
path from a vertex in V1 to a vertex in V2 includes at least one vertex in Se.
In other words, Se separates the vertices in V1 from the vertices in V2.

This definition of a t-separator decomposition is similar to both a tree decom-
position [5] and a branch decomposition [5], but the properties of a t-separator
decomposition are weaker than those of both a tree-decomposition and a branch
decomposition. In particular, a branch decomposition of width b and degree 3
is easily seen to be a b-separator decomposition, and a nice tree decomposi-
tion C [3] of width w gives rise to a (w+1)-separator decomposition by defining
the (edge) bag associated with each edge (v, w) ∈ C to be the union of the (node)
bags associated with v and w. However, a t-separator decomposition does not
require a bijection between the edges of G and the leaves of C, as required by a
branch decomposition. A tree decomposition requires that for every edge (v, w)
of G, there exists a (node) bag that contains both v and w, a condition not
imposed by a t-separator decomposition. Thus, every graph of branchwidth b
has a t-separator decomposition with t ≤ b, every graph of treewidth w has a
t-separator decomposition with t ≤ w+1, but there may exist graphs for which
these inequalities are strict.

In this section, we prove that

Theorem 2. If G is a t-separable graph on n vertices, for some constant t,
then there is a SOLE data structure for it supporting Add, Remove, and Sum
operations in O(lg n lgt m) time, and Top(v, k, d) operations in O(k lg n lgt m)
time. The size of this data structure is O(tn lg n+m lgt−1 m lg n). The costs of
Add and Remove operations are amortized.

3.1 Designing SOLE Data Structures for Separable Graphs

To design our SOLE structure, let C be a t-separator decomposition for G. Since
C is an unrooted tree whose nodes have degree at most 3, we can once again
construct its centroid decomposition T (see Fig. 2c). Each leaf of T corresponds



8 X. Lyu et al.

v1

v2

v3

v4

v5

v6

v7 v8

2

2

5

2

3

1

1

1

1

1

(a)

(v1, v7) (v5, v7)

(v5, v6)

(v1, v8)

(v6, v8)

(v1, v2)

(v4, v5)

(v2, v4)

(v2, v3) (v3, v4)

e1 : {v1, v7} e2 : {v5,v7}

e3 : {v1, v5}

e4 : {v1, v5}

e5 : {v5, v6}

e6 : {v1,v6}

e7 : {v1,v8}

e8 : {v6, v8}e9 : {v1, v5}

e10 : {v1, v2}

e11 : {v2, v5}

e12 : {v4, v5}e13 : {v2,v4}

e14 : {v2, v4}

e15 : {v2, v4}

e16 : {v2,v3} e17 : {v3, v4}

(b)

Fig. 2: Caption on next page.



SOLE Data Structures 9

e17 e8 e2

e16 e14 e12 e10 e5 e7 e1

e15 e11 e6 e3

e13 e4

e9

(2, 5) (2, 5)

(2, 4)

(2, 4)

(2, 4)

(2, 5)

(1, 0)

(c)

Fig. 2 continued: A series-parallel graph G (a), a branch decomposition C of G
of width 2 (b), which is also a 2-separator decomposition of G, and the centroid
decomposition T of C (c). Each edge in (a) is labelled with its length. Each edge
in (b) is labelled with its name and its corresponding bag Se. A facility with
effect radius 5 placed on vertex v6 affects vertex v4, since the path shown in red
in (a) has length 5. If we assume that ev6 = e6 and ev4

= e13, as indicated by
the bold vertices in (b), then f is stored in the node data structure of e6 and in
the edge data structures of the red edges in (c), with the pairs of radii shown in
red. A Sum(v4) or Top(v4, k) query queries the vertex data structure of e13 and
the edge data structure of the blue edge in (c), with the pairs of radii shown in
blue. The facility f is added to the query result because 2 ≤ 2 and 4 ≤ 4. One
of these two conditions would have sufficed.

to a node of C, and each internal node of T corresponds to an edge e of C.
Since C has size O(n), the height of T is O(lg n). Since a vertex v of G may be
contained in more than one bag of C, we choose an arbitrary bag Se of C that
contains v and refer to e as ev, as indicated by the bold vertex labels in Fig. 2b.

We obtain a SOLE data structure for G by augmenting each internal node
e of T with two data structures We and De and augmenting each edge a of T
with a data structure Wa. We refer to We as a node data structure and to Wa

as an edge data structure. Each data structure Wx, with x a node or an edge
of T , stores a number of facilities f as tuples (r1, . . . , rt′ , f, w). If x = e is a
node of T or x = a is an edge of T with top endpoint e, then t′ = |Se| ≤ t.
Again, Wx consists of two trees Rx and Fx over the set of tuples stored in Wx.
Fx stores these tuples as a binary search tree with the facility f as the key for
each tuple (r1, . . . , rt′ , f, w) in Wx. Rx is a “t′-dimensional range sum priority



10 X. Lyu et al.

search tree” over the points defined by the coordinates (r1, . . . , rt′). This is a
t′-dimensional range tree [1, 6] augmented to support t′-dimensional range sum
queries in O

(
lgt

′
m
)

time and t′-dimensional range top-k queries in O
(
k lgt

′
m
)

time.
The structure De associated with each internal node e of T stores the distance

from every vertex v such that ev is a descendant of e in T to all vertices in Se.
A t′-dimensional range sum priority search tree supports insertions and dele-

tions in O
(
lgt

′
m
)

amortized time. Thus, each data structure Wx supports in-
sertion of a new tuple (r1, . . . , rt′ , f, w) and the deletion of the tuple associated
with a facility f in O

(
lgt

′
m
)
= O(lgt m) amortized time.

We now bound the size of the SOLE data structure. Once again, the tree
T has size O(n) and height O(lg n). For every vertex v ∈ G, the distance data
structure De of every ancestor node e of ev in T stores the distances from v
to all t′ ≤ t vertices in Se. Thus, each vertex v contributes at most t to the
size of each of O(lg n) distance data structures. The total size of the distance
data structures is thus O(tn lg n). Each facility f placed on some vertex u is
stored in the node data structures of the O(lg n) nodes along the path Pu and
in one or two edge data structures of child edges of these nodes. Thus, every
facility is stored in O(lg n) data structures Wx. Each such data structure is a
t′-dimensional range sum priority search tree, where t′ ≤ t. Thus, if it stores
s facilities, it has size O(s lgt−1 s). The total size of all node and edge data
structures is thus O(m lgt−1 m lg n).

3.2 Sum and Top-k Over Wx with an Uncommon Query Range

To support Sum and Top, we need to support range sum queries and range
top-k queries on Wx, but with an uncommon query range. A query point q =
(q1, . . . , qt′) defines a query range Rt′\((−∞, q1)×(−∞, q2)×· · ·×(−∞, qt′)), i.e.,
the complement of t′-sided range query. We need to support range sum queries
and range top-k queries for any such complement of a t′-sided range query.

An easy solution is to decompose it into t′ “normal” range queries, with query
ranges [q1,∞) × (−∞,∞) × · · · × (−∞,∞), (−∞, q1) × [q2,∞) × (−∞,∞) ×
· · · × (−∞,∞), (−∞, q1)× (−∞, q2)× [q3,∞)× (−∞,∞)× · · · × (−∞,∞), · · ·,
(−∞, q1)×(−∞, q2)×· · ·×(−∞, qt′−1)×[qt′ ,∞). This allows us to support range
sum and range top-k queries in O

(
t′ lgt

′
m
)

and O
(
t′k lgt

′
m
)

time, respectively,
which is O

(
lgt

′
m
)

and O
(
k lgt

′
m
)

time because t′ ≤ t and t is a constant.
A better way to support range queries with query ranges of the form Rt′ \

((−∞, q1) × (−∞, q2) × · · · × (−∞, qt′)) without the factor t′ overhead is to
implement them directly on the t′-dimensional range sum priority search tree.
To answer a range sum query with such a query range, we answer a 1-dimensional
range sum query with query range [q1,∞) on the level-1 tree of Rx. This query
traverses the path corresponding to q1 in the level-1 tree of Rx. For the root
of each subtree to the left of this path, we answer a (t′ − 1)-dimensional range
sum query with query range Rt′−1 \ ((−∞, q2)× (−∞, q3)× · · · × (−∞, qt′)) on
the (t′−1)-dimensional range sum priority search tree associated with this root.



SOLE Data Structures 11

The final result is the sum of the totals produced by these queries, including
the 1-dimensional range sum query on the level-1 tree of Rx. Thus, a range sum
query with the complement of a t′-sided range query as the query range has the
same cost as a “normal” orthogonal range sum query, O

(
lgt

′
m
)
.

Similarly, to support a t′-dimensional range top-k query with query range
Q = Rt′ \ ((−∞, q1) × (−∞, q2) × · · · × (−∞, qt′)), we answer a 1-dimensional
range top-k query on the level-1 tree of Rx, with query range [q1,∞). This query
traverses the path corresponding to q1 in the level-1 tree of Rx. For the root of
each subtree to the left of this path, we answer a (t′−1)-dimensional range top-k
query with query range Rt′−1 \ ((−∞, q2) × (−∞, q3) × · · · × (−∞, qt′)) on the
(t′−1)-dimensional range sum priority search tree associated with this root. The
top k tuples in the query range Q are easily seen to be among the O(k log n)
elements reported by these (t′ − 1)-dimensional range top-k queries and by the
1-dimensional range top-k query on the level-1 tree. The top k tuples can now
be found in O(k lg n) time using linear-time selection [2]. Thus, a range top-k
query with the complement of a t′-sided range query as the query range takes
O
(
k lgt

′
m
)

time, just as a “normal” orthogonal range top-k query does.

3.3 Supporting Queries over Separable Graphs

We are ready to discuss how to support Sum and Top queries for t-separable
graphs; the support for Add and Remove will be described in the full version
of this paper.

A Sum(v, d) query traverses the path Pv = ⟨e1, . . . , eh = ev⟩. For each node
ei in Pv, let Sei = {v1, . . . , vt′}, and let Q = Rt′ \ ((−∞, q1)× (−∞, q2)× · · · ×
(−∞, qt′)), where qj = dist(v, vi) − d, for all 1 ≤ j ≤ t′. If 1 ≤ i < h, then we
answer a range sum query with query range Q on the edge data structure Wa,
where a = (ei, ei+1) is the child edge of ei that belongs to Pv. If i = h, then
we answer a range sum query with query range Q on Wei . This is illustrated in
Fig. 2c. The result of the Sum(v, d) query is the sum of the results reported by
all these range sum queries. Since a range sum query on each data structure Wx

can be answered in O
(
lgt

′
m
)
= O(lgt m) time, the cost of a Sum(v, d) query is

thus O(lg n lgt m). A Sum(v) query is the same as a Sum(v, 0) query.
A Top(v, k, d) query traverses the path Pv = ⟨e1, . . . , eh = ev⟩. For each

node ei in Pv, let Sei = {v1, . . . , vt′}, and let Q = Rt′ \ ((−∞, q1)× (−∞, q2)×
· · · × (−∞, qt′)), where qj = dist(v, vi) − d, for all 1 ≤ j ≤ t′. If 1 ≤ i < h,
then we ask a range top-k query with query range Q on the edge data struc-
ture Wa, where a = (ei, ei+1) is the child edge of ei that belongs to Pv. If i = h,
then we answer a range top-k query with query range Q on Wei . The result of
the Top(v, k, d) query is the list of the k maximum-weight facilities among the
O(k lg n) facilities reported by all these range top-k queries. These k facilities
can be found in O(k lg n) time using linear-time selection [2]. Each query on a
data structure Wx takes O(k lgt m) time. Thus, the total cost of a Top(v, k, d)
query is O(k lg n lgt m). A Top(v, k) query is the same as a Top(v, k, 0) query.

To establish the correctness of Sum(v, d) and Top(v, k, d) queries, observe
that, similar to Section 2, both queries query the same node and edge data



12 X. Lyu et al.

structures, with the same query ranges. Thus, it suffices to prove that if either
query reported all facilities in these query ranges, it would report any facility
with effect radius d′ placed on some vertex u if and only if d + d′ ≥ dist(u, v),
and each such facility is reported exactly once.

So let f be a facility with effect radius d′ placed on some vertex u ∈ G, and
let v by any other vertex v ∈ G. Let e be the lowest common ancestor (LCA) of
eu and ev in T , and let Se = {v1, . . . , vt′} We distinguish two cases:

If ev is a proper descendant of e, then f is not stored in Wev and the only
edge data structure in Pv that stores f is the data structure Wa corresponding
to the child edge a of e on the path from e to ev. Thus, f is reported at most once
by the reporting version of a Sum(v, d) or Top(v, k, d) query. This query queries
Wa with query region Q = Rt′\((−∞, q1)×· · · (−∞, qt′)), where qj = dist(vj)−d
for all 1 ≤ j ≤ t′. Since e is the LCA of eu and ev in T , any path from u to v in G
must include at least one vertex in Se. Assume w.l.o.g. that v1 is one such vertex.
Then dist(u, v) = dist(v, v1)+dist(u, v1) and dist(u, v) ≤ dist(v, vj)+dist(u, vj)
for all 1 < j ≤ t′. The facility f is stored in Wa as the tuple (r1, . . . , rt′ , f, w)
with rj = d′ − dist(u, vj) for all 1 ≤ j ≤ t′. Thus, (r1, . . . , rt′) ∈ Q if and only if
there exists an index 1 ≤ j ≤ t′ such that d′ − dist(u, vj) ≥ dist(v, vj)− d, that
is, d+d′ ≥ dist(u, vj)+dist(v, vj). Since dist(u, v1)+dist(v, v1) = dist(u, v) and
dist(u, vj) + dist(v, vj) ≥ dist(u, v) for all 1 ≤ j ≤ t′, this is true if and only if
d+ d′ ≥ dist(u, v). Thus, f is reported if and only if d+ d′ ≥ dist(u, v).

If ev is not a proper descendant of e, then ev = e and Pv ⊆ Pu. Thus, f is not
stored in any edge data structure along Pv, but it is stored in We = Wev , as the
tuple (r1, . . . , rt′ , f, w) with rj = d′ − dist(u, vj) for all 1 ≤ j ≤ t′. Thus, f is re-
ported at most once by the reporting version of a Sum(v, d) or Top(v, k, d) query.
This query queries Wev with query region Q = Rt′ \ ((−∞, q1)× · · · (−∞, qt′)),
where qj = dist(vj) − d for all 1 ≤ j ≤ t′. Since v ∈ Sev , we can assume
w.l.o.g. that v = v1. Then dist(u, v) = dist(v, v1) + dist(u, v1) and dist(u, v) ≤
dist(v, vj) + dist(u, vj) for all 1 < j ≤ t′. The same analysis as in the pre-
vious case now shows that f is reported by the query on Wev if and only if
d+ d′ ≥ dist(u, v). This finishes the proof of Theorem 2.

References

1. Bentley, J.L.: Decomposable searching problems. Information Processing Letters
8(5), 244–251 (1979)

2. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. Journal of Computer and System Sciences 7(4), 448–461 (1973)

3. Bodlaender, H.L., Kloks, T.: Efficient and Constructive Algorithms for the Path-
width and Treewidth of Graphs. Journal of Algorithms 21(2), 358–402 (1996)

4. McCreight, E.M.: Priority Search Trees. SIAM Journal on Computing 14(2), 257–
276 (1985)

5. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B 52(2), 153–190 (1991)

6. Willard, D.E., Lueker, G.S.: Adding range restriction capability to dynamic data
structures. Journal of the ACM 32(3), 597–617 (1985)


