
UNDERSTANDING THE CHALLENGES OF BUG REPORT
MANAGEMENT: A COMPREHENSIVE STUDY WITH
DUPLICATE BUG REPORT DETECTION AND BUG

LOCALIZATION

by

Sigma Jahan

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

at

Dalhousie University
Halifax, Nova Scotia

July 2023

© Copyright by Sigma Jahan, 2023

I dedicate this thesis with all my heart to my beloved father, whose

unwavering support and endless encouragement have made this

journey possible.

ii

Contents

Abstract . xii

Acknowledgements . xiii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Contribution . 5

1.4 Related Publications . 8

1.5 Outline of the report . 8

Chapter 2 Background . 10

2.1 Software bug . 10

2.2 Bug report . 10

2.3 Duplicate bug report . 11
2.3.1 Textually similar duplicate bug reports 12
2.3.2 Textually dissimilar duplicate bug reports 13

2.4 Categories of Bug . 13
2.4.1 Extrinsic bug . 13
2.4.2 Intrinsic bug . 14
2.4.3 Taxonomy of bugs in deep learning software systems 14

2.5 Information Retrieval (IR) . 16
2.5.1 BM25 . 17
2.5.2 Vector Space Model . 17

2.6 Topic Modeling . 18
2.6.1 Latent Dirichlet Allocation (LDA) 18

2.7 Embedding . 20
2.7.1 Word Embedding . 20
2.7.2 GloVe: A Pre-trained Word Embedding 20

2.8 Neural Network . 21
2.8.1 Convolutional Neural Network 21

iii

2.8.2 Siamese Convolutional Neural Network 21

Chapter 3 Duplicate Bug Report Detection 23

3.1 Introduction . 23

3.2 Study Methodology . 26
3.2.1 Construction of dataset . 28
3.2.2 Replication of existing techniques for experiments 32
3.2.3 Performance evaluation . 33

3.3 Study Finding . 35
3.3.1 Answering RQ1: Does the performance of existing techniques

differ significantly in duplicate bug report detection between
textually similar and textually dissimilar duplicate bug reports? 35

3.3.2 Answering RQ2: How do textually similar and textually dissim-
ilar duplicate bug reports differ in their semantics and structures? 41

3.3.3 Answering RQ3: Does domain-specific embedding help improve
the detection of textually dissimilar duplicate bug reports? . . 47

3.4 Threats to Validity . 49

3.5 Related Work . 50
3.5.1 Information Retrieval (IR)-based duplicate bug report detection 50
3.5.2 Topic modeling-based duplicate bug report detection 51
3.5.3 Machine learning and deep learning–based duplicate bug report

detection . 51

3.6 Summary . 52

Chapter 4 Bug Localization . 54

4.1 Introduction . 54

4.2 Study Methodology . 57
4.2.1 Construction of dataset . 59
4.2.2 Replicating of existing techniques for experiments 60
4.2.3 Performance evaluation . 62

4.3 Study Finding . 63
4.3.1 Answering RQ1: How effective are the existing IR-based ap-

proaches in localizing bugs from deep learning software systems? 63
4.3.2 Answering RQ2: How do different types of bugs in deep learning

software systems impact bug localization? 66
4.3.3 Answering RQ3: What are the implications of extrinsic bugs in

deep learning systems for bug localization? 76

iv

4.4 Threats to Validity . 81

4.5 Related Work . 81
4.5.1 Software bug . 81
4.5.2 Information Retrieval-based bug localization 82
4.5.3 Machine learning and deep learning-based bug localization . . 84

4.6 Summary . 85

Chapter 5 Conclusion and Future Work 87

5.1 Conclusion . 87

5.2 Future Work . 88
5.2.1 Duplicate bug report detection 88
5.2.2 Bug localization . 89

Bibliography . 92

Appendix A Supplementary details . 102

A.1 Replication Package . 102
A.1.1 Duplicate bug report detection 102
A.1.2 Bug localization . 102
A.1.3 Source Code and Bug Report 102

v

List of Tables

2.1 Example of textually similar duplicate bug reports from Firefox 11

2.2 Example of textually dissimilar duplicate bug reports from Mo-

bile system . 12

2.3 Example of deep learning-related and non deep-learning-related

extrinsic bugs . 15

3.1 Study dataset for duplicate bug report detection 29

3.2 Construction of textually similar and dissimilar duplicate pairs

using n-gram based similarity scores 30

3.3 Experimental results of IR and LDA-based techniques (Recall–

rate@k)% for duplicate bug report detection on whole dataset . 36

3.4 Experimental results of IR and LDA-based techniques (Recall–

rate@k)% for duplicate bug report detection for textually similar

and textually dissimilar duplicate bug reports 37

3.5 Experimental results of Siamese Convolutional Neural Network

(CNN) technique (%) for duplicate bug report detection 38

3.6 Experimental results of Siamese CNN technique with Oversam-

pling (%) for duplicate bug report detection 38

3.7 Statistical tests for the performance gap between textually sim-

ilar and dissimilar duplicates 40

3.8 Descriptive analysis of similarity scores between bug reports . . 42

3.9 Results of manual analysis for duplicate bug reports 44

vi

3.10 Impact of domain-specific embeddings (%) on duplicate bug re-

port detection . 48

4.1 Study dataset for bug localization 60

4.2 Experimental result of existing IR-based approaches (BugLoca-

tor, BLUiR, BLIA) for bug localization 64

4.3 Statistical tests for the performance gap between the deep learn-

ing software system and non-deep learning software system using

existing IR-based techniques (BugLocator, BLUiR, BLIA) . . . 65

4.4 Experimental result of existing bug localization techniques (Bu-

gLocator, BLUiR, BLIA) of each category of bugs in deep learn-

ing software systems . 67

4.5 Example of a model bug . 68

4.6 Example of a training bug . 70

4.7 Example of a tensor bug . 71

4.8 Example of an API bug . 73

4.9 Example of a GPU bug . 74

4.10 Prevalence ratio of extrinsic and intrinsic bugs in deep learning

software systems . 78

4.11 Experimental result of existing IR-based bug localization tech-

niques (BugLocator, BLUiR, BLIA) of extrinsic and intrinsic bug 79

4.12 Experimental result of existing bug localization techniques (Bu-

gLocator, BLUiR, BLIA) of the extrinsic and intrinsic bug for

deep learning related bugs and non-deep learning related bugs . 80

4.13 Summary of IR-based bug localization techniques from literature

review . 82

vii

List of Figures

2.1 Example of topic modeling using LDA from our experiment on

duplicate bug report detection 19

3.1 Schematic diagram of our conducted study on bug duplication 27

3.2 Performance of BM25 with all textually similar and dissimilar

duplicate bug reports from (a) Eclipse, (b) Firefox, and (c)

Mobile systems . 36

3.3 Performance of all the techniques for textually similar and dis-

similar duplicate bug reports (a) BM25, (b) LDA+GloVe, (c)

Siamese CNN . 39

3.4 Distribution of similarity measures for textually similar and dis-

similar duplicate bug reports from (a) Eclipse, (b) Firefox, and

(c) Mobile system . 41

3.5 t-SNE visualization of GloVe embeddings for 100 random sam-

ples from both textually similar and dissimilar duplicate bug

reports from (a) Eclipse (b) Firefox (c) Mobile system 43

4.1 Schematic diagram of our conducted study on bug localization 58

4.2 Performance comparison of existing IR-based approaches (Bu-

gLocator, BLUiR, BLIA) between deep learning software sys-

tems and non-deep learning software systems 64

4.3 Prevalence ratio of each category of bugs from deep learning

software systems . 66

viii

4.4 Performance of existing IR-based bug localization techniques

(BugLocator, BLUiR, BLIA) for each type of bug in deep learn-

ing software systems . 68

4.5 Prevalence ratio of extrinsic and intrinsic bugs in deep learn-

ing software systems (DLSW) and non-deep learning software

systems (NDLSW) . 76

4.6 Prevalence ratio of extrinsic and intrinsic bugs for each category

of bugs from deep learning software systems 78

4.7 Performance of existing IR-based approaches (BugLocator, BLUiR,

BLIA) for localizing extrinsic and intrinsic bugs 79

A.1 Code snippet of the ground truth for the model bug 103

A.2 Code snippet of the incorrect source file for the model bug re-

trieved by BugLocator . 103

A.3 Code snippet of the incorrect source file for the model bug re-

trieved by BLUiR . 104

A.4 Code snippet of the ground truth for training bug 105

A.5 Code snippet of the incorrect source file for the training bug

retrieved by BugLocator . 105

A.6 Code snippet of the ground truth for the tensor bug 106

A.7 Code snippet of the incorrect source file for the tensor bug re-

trieved by BugLocator . 106

A.8 Code snippet of the ground truth for the API bug 107

A.9 Code snippet of the incorrect source file for the API bug re-

trieved by BLUiR . 107

A.10 Code snippet of the GPU bug 108

ix

List of Abbreviations Used

AST Abstract Syntax Tree

AUC Area Under Curve

BM25 Best Match 25

CNN Convolutional Neural Network

DNN Deep Neural Network

DL Deep Learning

DLSW Deep Learning Software Systems

EB Expected Behavior

FP False Positive

FN False Negative

GloVe Global Vectors

GPU Graphics Processing Unit

IDE Integrated Development Environment

IR Information Retrieval

IRBL Information Retrieval-based Bug Localization

LDA Latent Dirichlet Allocation

LSTM Long Short Term Memory

ML Machine Learning

MAP Mean Average Precision

x

MRR Mean Reciprocal Rank

NLP Natural Language Processing

NN Neural Network

NDLSW Non-Deep Learning Software Systems

NDL Non-Deep Learning

OB Observed Behavior

OS Operating System

RNN Recurrent Neural Network

ROC Receiver Operating Characterstics

rVSM Revised Vector Space Model

S2R Steps to Reproduce

TP True Positive

TN True Negative

t-SNE t-Distributed Stochastic Neighbor Embedding

VCH Version Control History

VSM Vector Space Model

VMP Vocabulary Mismatch Problem

xi

Abstract

Software bugs cost the global economy trillions of dollars annually and claim ∼50%

of the developers’ time. In a recent survey with the major tech giants (e.g., Google,

Meta, Microsoft), software practitioners identify several challenging parts of bug re-

port management, such as duplicate bug report detection and bug localization. Over

the last 20 years, Information Retrieval (IR)-based techniques have been frequently

used to automate these tasks due to their computational efficiency and lightweight

nature. However, to date, IR-based solutions have not been mainstream in bug re-

port management despite their potential, which warrants an in-depth investigation.

We thus conduct a large-scale empirical study to better understand the challenges

and potential of IR-based techniques in two bug report management tasks, namely in

duplicate bug report detection and bug localization. First, traditional techniques for

detecting duplicate bug reports primarily target textually similar duplicates, often

overlooking textually dissimilar duplicates commonly found in bug tracking systems.

We thus collect 92,854 bug reports, construct two datasets containing textually simi-

lar and textually dissimilar duplicate bug reports, and determine the performance of

three existing techniques. By answering three research questions, our findings under-

score the limitations of existing techniques in detecting textually dissimilar duplicate

bug reports and suggest that these reports often miss crucial information (e.g., steps

to reproduce). Second, pinpointing the location of a bug within the software code is

another challenging task where IR-based techniques have been used. However, only

a little attempt has been made to detect the bugs in deep learning systems. Thus,

we collect 2,365 bugs from deep-learning applications and 2,913 bugs from traditional

systems and determine the performance of three existing IR-based techniques in lo-

calizing software bugs. We found that IR-based methods show poor performance in

localizing bugs from deep-learning applications. We also found that deep learning

bugs are connected to artifacts other than source code (e.g., GPU, training data,

external dependencies), which might explain the poor performance of IR-based tech-

niques for these bugs.

xii

Acknowledgements

First and foremost, I am thankful to the Almighty for granting me the physical and

mental capacities that empower me to pursue my endeavors with purpose and vigor.

I would like to thank my father, Md. Aminul Hoque. His constant encouragement,

unconditional love, and confidence in my abilities have been instrumental in shaping

my aspirations and goals, including embarking on this transformative journey of Ph.D.

Then, I would like to thank my supervisor, Dr. Masud Rahman, for giving me the

life-changing opportunity to pursue a Ph.D. under his guidance. My gratitude also

goes to all the members of our research lab (RAISE lab) for sharing their journey

with me and making my graduate life more enjoyable.

I am grateful to Dalhousie University and the Faculty of Computer Science for

their kind and generous financial support through scholarships, awards, and bursaries,

which have enabled me to focus on my research work. My gratitude also goes to all

the individuals that I have encountered at Dalhousie University, as they have been

there for me through thick and thin, providing unwavering support which goes beyond

academia. In particular, I want to express my sincere appreciation to Dr. Michael

McAllister, Megan Baker, and Robert Hawkey for their constant encouragement and

guidance.

Lastly, I would like to express my sincere and heartfelt gratitude to all my friends

and family. Each and every one of them has been an invaluable presence through-

out my journey, continuously supporting me, encouraging my personal growth, and

enriching my life in countless ways.

xiii

Chapter 1

Introduction

1.1 Motivation

Software bugs are human-made errors in the code that prevent it from working cor-

rectly [1]. The number of bugs in a large software system could range from hundreds

to thousands [2]. Due to software bugs and failures, the global economy loses billions

of dollars every year [3]. Developers also spend ∼50% of their programming time

dealing with software bugs and failures [4].

During software maintenance, developers perform several tasks involving software

bugs that are commonly known as bug report management [3]. In a recent survey with

tech giants (e.g., Google, Meta, Microsoft, Amazon, and Twitter), software practi-

tioners identify several challenging parts of bug report management. In particular,

∼80% of 327 participants suggest the difficulties and importance of two tasks – du-

plicate bug report detection and bug localization. Given the significant interest of

practitioners, an in-depth investigation into these tasks is warranted. In this work,

we thus investigate two tasks from bug report management, namely duplicate bug

report detection and bug localization.

First, software bugs are submitted to a bug-tracking system as bug reports. Hun-

dreds of bug reports are submitted every day in large software systems (e.g., Mozilla,

Eclipse, Firefox) [3]. Duplicate bug reports occur when multiple persons submit mul-

tiple bug reports for the same bug. Due to the asynchronous nature of the bug report

submission, traditional bug tracking systems (e.g., Bugzilla) can not prevent dupli-

cate bug reports [5]. As a result, on average, 35.8%–41.6% of bug reports remain

duplicates in the bug tracking systems, which pose a major overhead during software

maintenance [3, 6]. For example, the submission of duplicate bug reports often leads

to bug non-reproducibility [7] and delayed bug resolution [8]. The process of find-

ing the duplicates of a given bug report is called duplicate bug report detection (or

bug de-duplication) [9]. Second, once duplicate bugs are resolved, and non-duplicate

1

2

ones are triaged, the developers first need to identify the location of a bug within

a software system, which is known as bug localization [10]. According to a recent

survey [3], bug localization has been reported to be the most challenging part of bug

report management. Given the importance and challenges of these tasks from bug

report management, the research community proposed many tools and techniques to

support them.

To detect duplicate bug reports, researchers employ various methodologies, in-

cluding Natural Language Processing (NLP) [11, 12, 13], Information Retrieval (IR)

[14, 15, 16, 17], and Machine Learning (ML) [18, 19, 20, 21, 22]. However, they are far

from perfect due to the complexity and ambiguity of natural language texts in a bug

report. NLP based techniques might be limited in detecting duplicate reports when

there is a textual mismatch between the reports [23]. IR-based approaches suffer from

the vocabulary mismatch problem [24, 25], a typical phenomenon that stems from two

textual documents describing the same concept using different vocabularies. On the

other hand, ML-based approaches suffer from data imbalance problems and the lack

of generalizability and explainability [18, 23, 26].

Similarly, to localize software bugs, researchers employ various methodologies,

including IR, data mining, and ML [27]. In particular, IR methods have received

significant attention due to their low computational cost and minimal external de-

pendencies [28]. However, to date, most of these methods focus on detecting bugs

in traditional software systems (e.g., Eclipse IDE). Unlike bugs in non-deep learning

software systems (hereby traditional), deep learning-related bugs could be hidden in

the source code, training data, trained models, or even deployment scripts [29, 30, 31].

Besides, as reported earlier [32], the use of popular Deep Learning (DL) libraries (e.g.,

PyTorch, Caffe, and TensorFlow) could lead to complex bugs (e.g., incorrect model

parameter bugs). Due to simplistic assumptions (e.g., the textual similarity between

bug reports and code), IR-based techniques might not be sufficient for detecting com-

plex bugs such as deep learning bugs.

Given the importance of the above two tasks in bug report management and the

limitations of existing tools or techniques, an in-depth investigation is warranted to

better understand their challenges and opportunities.

3

1.2 Problem Statement

To automatically detect duplicate bug reports and to localize the bugs, researchers

employ various methodologies, including Natural Language Processing (NLP) [11, 12,

13], Information Retrieval (IR) [14, 15, 16, 17, 28], Machine Learning (ML), and Deep

Learning (DL) [18, 19, 20, 21, 22, 33, 34]. However, despite their strengths, these

techniques have not been widely adopted in practice to date. In this research, we

focus on two different aspects concerning software bugs and attempt to understand

the strengths and weaknesses of the existing tools and techniques supporting bug

report management.

Existing techniques might not be able to handle the textual dissimilarity

in duplicate bug reports. Duplicate bug reports can be divided into two different

categories: bug reports describing the same issue with similar texts (e.g., Table 2.1)

and bug reports describing two similar issues using different texts (e.g., Table 2.2) [11].

The second category refers to duplicate bug reports that share the same underlying

root cause but are written in different styles. There could be instances where multiple

bugs have different Observed Behavior (OB) and Steps to Reproduce (S2R), but they

share the same underlying cause (e.g., Table 2.2). We call them textually dissimilar

duplicate bug reports. According to our investigation, 19% – 23% of the duplicate

bug reports could be textually dissimilar.

Most of the existing NLP and IR-based techniques focus on detecting duplicate

bug reports that use similar texts [23, 35, 36]. Unlike NLP and IR-based techniques,

ML-based techniques can capture the non-linear, complex relationships between two

items [37, 38, 39], and thus have the potential to tackle the challenge of textual dis-

similarity in duplicate bug report detection. However, they also suffer from poor

outlier handling, class imbalance problem, and a lack of explainability [40]. Thus, au-

tomated detection of duplicate bug reports still remains a highly challenging problem

that warrants further investigation [41].

Existing techniques might not be able to handle multifaceted depen-

dencies of software bugs. Deep learning bugs have multifaceted dependencies

such as external frameworks (e.g., third-party libraries), external environments (e.g.,

OS, GPU), and non-code artifacts (e.g., training data). Existing bug localization

4

techniques, including IR-based ones, might not be equipped well to tackle these mul-

tifaceted dependencies. For example, deep learning-related bugs could be hidden in

the source code, training data, trained models, or even deployment scripts [29, 30, 31].

Retrieval-based approaches might not be effective for these bugs since they can find

bugs in the source code only. As suggested by a recent work [32], the use of popu-

lar deep learning libraries (e.g., PyTorch, Caffe, and TensorFlow) could also lead to

complex bugs in deep learning applications. Besides, software bugs can be triggered

by external entities (e.g., third-party libraries), which are called extrinsic bugs [42].

According to our investigation, deep learning software systems contain more extrinsic

bugs than traditional software systems.

Over the years, many approaches have been designed to localize bugs in tradi-

tional software systems using IR [43, 44, 45, 46], dynamic program analysis [47, 48],

and DL [33, 34, 49]. With the increasing prevalence of deep learning systems, re-

cently Wardat et al. [34] propose to localize bugs in deep neural networks combining

dynamic and statistical analysis. However, their sole focus on model and training

bugs, low accuracy, and a strong reliance on the Keras library pose major challenges

towards industry-wide adoption. Kim et al. [50] use basic IR-based techniques, such

as rVSM and BM25, to localize bugs in deep learning applications and report poor

performance without any comprehensive analysis or explanation. In other words,

to date, the potential of existing solutions (e.g., IR-based approaches) for localizing

bugs in deep learning applications has neither been rigorously investigated nor well

understood.

In short, given the above gaps in the literature – textual dissimilarity issue in du-

plicate bug reports and multifaceted dependency issue of software bugs — a compre-

hensive investigation of duplicate bug report detection and bug localization is highly

warranted. Furthermore, the knowledge gained from the investigation can help us

to develop more effective strategies for effective bug report management, leading to

cost-effective software maintenance.

5

1.3 Contribution

We conduct two separate but complementary empirical studies to better understand

the challenges and opportunities of two important tasks from bug report manage-

ment: duplicate bug report detection and bug localization. In this section, we divide

our research contribution into two parts as follows.

In the first study, we attempt to better understand the impacts of textual dissimi-

larity on the detection of duplicate bug reports. First, we collect a total of 92,854 bug

reports from three large-scale software systems (Eclipse, Firefox, and Mobile). We di-

vided our dataset into textually similar and textually dissimilar duplicate bug reports

using N-grams and textual similarity analysis. First, we extract the N-grams from

both bug reports of duplicate reports. Then we used cosine similarity on the N-gram

representations of texts to measure the textual similarity between duplicate pairs

and apply quartile-based analysis to identify the two types of duplicate bug reports.

We found that the existing techniques (BM25 [14], LDA+GloVe [51], and Siamese

CNN [52]) perform significantly poorly in detecting textually dissimilar duplicate bug

reports.

To better understand the differences between textually similar and textually dis-

similar duplicate bug reports, we conduct three different analyses: descriptive anal-

ysis, embedding analysis, and manual analysis. We found that textually dissimilar

duplicate reports indeed have a low textual similarity between each pair. Our embed-

ding analysis using t-SNE [53] shows that textually dissimilar duplicate bug reports

tend to position themselves at lower coordinates within the embedding space (Fig.

3.5), indicating a lower pairwise similarity between them in the embedding space.

Finally, our manual analysis suggests that textually dissimilar duplicate bug reports

often miss important components (e.g., steps to reproduce) or they have components

(e.g., observed behaviors) that are written differently, which could lead to their overall

textual differences.

Given the challenges of textual dissimilarity between duplicate bug reports above,

we attempt to overcome them using domain-specific embedding [54]. Embedding

models can capture semantic relations between two documents despite their textual

differences [55, 56, 57]. We retrain a popular DL model – Siamese CNN [52] – for

detecting duplicate bug reports where embeddings were learned from 92K bug reports

6

with the Skip-gram algorithm. We found that domain-specific embedding showsmixed

results by improving the detection of textually dissimilar duplicate bug reports but

worsening the detection of textually similar duplicate bug reports.

Our research findings above offer valuable insights into the challenges and com-

plexities of detecting duplicate bug reports, especially when considering the quality

and content of bug reports. They underscore the importance of providing detailed and

comprehensive bug reports. Understanding that missing components like steps to re-

produce and observed behaviors can hinder duplicate bug report detection will inform

the stakeholders of the pain points, which could lead to improved bug reporting.

In the second study, we attempt to better understand the challenges of localizing

bugs in deep-learning software systems. Given the extensive research in localizing

bugs with IR methods and their inherent explainability, we use IR-based techniques

in our experiments. First, we used two benchmark datasets – BugGL [58] for bugs in

traditional software systems (a.k.a non-deep learning software systems) and Dench-

mark [59] for bugs in deep learning software systems. We found that the performance

of existing IR-based techniques (BugLocator [43], BLUiR [44], and BLIA [60]) is sig-

nificantly lower in localizing bugs from deep learning software systems than that of

non-deep learning software systems.

To better understand the nature of bugs in deep-learning software systems, we

conduct a manual analysis where we analyze the prevalence of different bug types in

deep-learning software systems. We found that 64.80% of the bugs from deep learning

software systems are related to deep learning algorithms (e.g., tensor bug), whereas

35.20% of the bugs are not related to deep learning (e.g., memory leak bug). We

found that the bugs connected to deep-learning algorithms (e.g., training data bugs,

GPU bugs) are more difficult to localize than other bugs in deep-learning software

systems. Our analysis also highlights the specific strengths and weaknesses of existing

IR-based techniques depending on the bug type, which could be useful for improving

bug localization in deep-learning software systems.

To further understand the poor performance of IR-based techniques, we also ana-

lyze the implication of extrinsic bugs (triggered by external entities) in deep learning

software systems [42]. We found that deep learning software systems have four times

more extrinsic bugs than traditional software systems. We also found that extrinsic

7

bugs, which are related to Graphics Processing Unit (GPU), are the most challenging

ones to locate using IR-based techniques. Our analysis also indicates a significant cor-

relation between bugs in deep learning software systems and extrinsic factors, which

could be valuable insight for designing effective bug localization solutions for deep

learning software systems.

Bug reports play a vital role in bug localization, serving as queries in IR-based

localization [61]. In order to gain a deeper understanding of their role in detecting

bugs from deep learning software systems, we conducted a manual analysis focusing

on the quality of these reports. Our analysis showed that bug reports from deep

learning applications contain a higher percentage of code snippets (83.11%) compared

to that of traditional software (33.24%). However, they do not help much in bug

localization, as code snippets alone might not be sufficient. Complex bugs (e.g.,

gradient instability during training) warrant a deeper understanding of the model

architecture and training processes, which the code snippets may not always capture.

Our research on bug localization has important implications for various stakehold-

ers, including software developers. Understanding that bugs can have an ’extrinsic’

nature—arising from external factors like data, hardware, and environments—can

help developers extend their scope of investigation. For bugs with external dependen-

cies, they can focus on understanding and addressing the external factors contributing

to the issue. Our findings suggest that IR-based techniques may not be suitable for

bugs involving multifaceted dependencies or extrinsic factors (e.g., data bugs, GPU

bugs). On the other hand, several deep learning bugs, such as model and tensor bugs,

could be detected by carefully adapting IR-based methods. Being aware of the dif-

ferent bug categories, developers can also make more informed decisions during bug

localization, which might ultimately improve the overall debugging process.

Our research offers strong empirical evidence and actionable insights regarding

the textual dissimilarity issue of duplicate bug reports and multifaceted dependencies

of deep learning software bugs, advancing bug report management, which makes our

contribution novel.

8

1.4 Related Publications

The first part of this RAD report has been accepted and published at a reputable

international conference. We provide the list of publications here. In each of these

papers, I am the primary author, and all the studies are conducted by me under the

supervision of Dr. Masud Rahman.

• Sigma Jahan and M. Masudur Rahman. Towards Understanding the Impacts

of Textual Dissimilarity on Duplicate Bug Report Detection. In Proceeding of

The 30th IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER 2023), pp. 25, Macao, China, March 2023.

Apart from the aforementioned paper, one more paper is currently ready to submit

to a journal, as listed below.

• Sigma Jahan, Mehil Shah, and M. Masudur Rahman. Towards Automated Bug

Localization in Deep Learning Software Systems. Journal of Empirical Software

Engineering (EMSE 2023) - to be submitted.

1.5 Outline of the report

The report contains five chapters in total. We conduct two separate but complemen-

tary studies to better understand the challenges of bug report management. This

section outlines the chapters as follows:

• Chapter 1 discusses the motivation, problem statements, and research contri-

butions and provides an overview of the report structure.

• Chapter 2 provides a comprehensive background, covering topics such as textu-

ally dissimilar bugs, extrinsic bugs, and the techniques which will be required

to follow the rest of the report.

• Chapter 3 discusses our first study on duplicate bug report detection, Towards

Understanding the Impacts of Textual Dissimilarity on Duplicate Bug Report

Detection.

9

• Chapter 4 discusses our second study on bug localization, Towards Automated

Bug Localization in Deep Learning Software Systems.

• Chapter 5 concludes the report with a list of directions for future works.

Chapter 2

Background

In this chapter, we introduce the necessary terminologies and concepts to follow the

remainder of the report. We introduce duplicate bug reports, textually similar and

textually dissimilar duplicate bug reports, Best Match 25 (BM25), Latent Dirichlet

Allocation (LDA), Global Vectors (GloVe), Convolutional Neural Network (CNN),

Siamese CNN, extrinsic and intrinsic bugs, the taxonomy of deep-learning bugs, In-

formation Retrieval (IR), and Vector Space Model (VSM).

2.1 Software bug

A software bug is a human-made error in a computer program that causes it to be-

have unexpectedly or produce incorrect results [5]. Once a bug is reported, it goes

through various stages, including duplicate bug detection, triaging, bug localization,

fixing, quality assurance, and finally, closure. Many of these tasks are supported by

tools and techniques and are commonly known as bug report management [3].

2.2 Bug report

A bug report is a formal document that is prepared and submitted by a software

tester, user, or any individual who encounters a software bug [43]. Ideally, a bug

report includes at least three types of information – Observed Behavior (OB) (e.g.,

symptoms of a bug), Steps to Reproduce (S2R), and Expected Behavior (EB) [5].

Bug reports serve as a means of communication between the submitter of a bug and

the development team, providing crucial information to facilitate the bug resolution.

10

11

Table 2.1: Example of textually similar duplicate bug reports from Firefox

Textually Similar Duplicate Bug Reports
Bug ID: 1337204

Title
Mozilla Firefox 51.0.1 uses a lot of memory with Kaspersky, and
seven other addons enabled

Description
EB: Mozilla Firefox must use less RAM Memory, and I believe there is a
bug in memory, and resources management of this version, and
it needs debugging and releases a new version.
S2R: I tried to clean up my RAM memory with some system tools, but this
issue returned, and I am obligated to close and open my browser again and
again without result.
OB: Mozilla Firefox version 51.0.1 uses too much RAM memory and sometimes
lags and freezes. I am using many tabs to work with my Mozilla Firefox version.
51.0.1 for the Windows 64-Bits version. After a few hours, firefoxes overload
my RAM memory for unexpected reasons. I need to have many tabs to work,
but I have 8GB RAM, and Mozilla eats at least 3-4GB of my RAM.

Bug ID: 1346556
Title

High memory usage from orphan nodes on forum websites with addon
Description

EB: Mozilla must take care of this issue and fix this bug, such the users are
obligated to downgrade to previous versions. This solution is temporary,
such as the security levels of Firefox are reducing and making the users
remain under security risks.
S2R: Hello, I have updated my Mozilla Firefox to version 50.1.0
direct to version 52 due to version 51 appearing with high RAM Memory usage.
OB: After this update, Firefox appeared again with a high RAM memory
leakage of about 5-6GB of RAM after a few hours. It seems the previous bug
from version 51 is not fixed, but it transferred to version 52.
This incident made to downgrade my version 52 back to version 50.1.0.
My OS is Windows ten Pro x64 Bits.

Keyword Overlaps: 20+
EB=Expected Behaviour, S2R=Steps to Reproduce, OB=Observed Behaviour

2.3 Duplicate bug report

Duplicated bug reports occur when multiple persons submit multiple bug reports for

the same bug. Due to the asynchronous nature of bug report submission, traditional

bug tracking systems (e.g., Bugzilla) can not prevent duplicate bug reports. Thus, on

12

Table 2.2: Example of textually dissimilar duplicate bug reports from Mobile system

Textually Dissimilar Duplicate Bug Reports
Bug ID: 1618582

Title
Dynamic toolbar should not hide when the page is not scrollable.

Description
EB: I think this just boils down to Fenix should not hide
the toolbar when a page is not scrollable
S2R: Load the test case in Fenix Nightly and scroll down
so that the dynamic toolbar disappears; observe that the
grey overlay doesn’t cover the bottom part of the Screen
OB: Elements with height: 100% don’t include the dynamic toolbar.

Bug ID: 1618579
Title

Text selection caret is misplaced with the dynamic toolbar.
Description

EB: Load a minimal example in Fenix Nightly, ensure the URL bar
is not visible, select the text, and observe text selection carets are
shifted up from where they usually should be.
S2R: Long tap to select any word in the test case. Swipe up to make
the dynamic URL bar disappear.
OB: The text in the test case is in a ‘position: fixed; bottom: 20px’
element, so this looks similar to bug 1611032. It needs to update its position.

Keyword Overlaps: 3
EB=Expected Behaviour, S2R=Steps to Reproduce, OB=Observed Behaviour

average, 35.8%–41.6% of bug reports are duplicates in the bug tracking systems [3].

Duplicate bug reports can be divided into two different categories: textually similar

duplicate bug reports (Table 2.1) and textually dissimilar duplicate bug reports (Table

2.2) [11].

2.3.1 Textually similar duplicate bug reports

Textually similar duplicate bug reports are such bug reports that describe the same

issue with similar texts. From Table 2.1, we can see a pair of textually similar

duplicate bug reports that have an overlap of 20 keywords. In both bug reports, the

title discusses topics related to memory usage in Mozilla Firefox. The description

texts also discuss issues with high memory consumption and suggest the presence

of a bug in memory and resource management. Although the wording and specific

13

details may differ, the overall content and concerns expressed in both bug reports are

textually similar, indicating a duplication of the reported problem.

2.3.2 Textually dissimilar duplicate bug reports

Textually dissimilar duplicate bug reports are such bug reports that address the

same underlying root cause but express it using different writing styles. There could

be instances where two bugs have different observable behaviors (OB) and steps to

reproduce (S2R), but they share the same underlying cause. Table 2.2 shows a pair of

bug reports that are considered duplicates by the developers, despite being textually

dissimilar. Although these bug reports share only three keywords, they both address

issues related to the dynamic toolbar in the Mobile system. The first bug report

indicates that the dynamic toolbar in a mobile application disappears when the page

cannot be scrolled. On the other hand, the second bug report suggests an issue in text

selection (e.g., incorrect positioning) when the dynamic toolbar is present. Although

the symptoms of these bugs are different, and the bug reports are textually dissimilar

as a result, the root cause was the same – an error within the dynamic toolbar. Thus,

developers have marked this pair as a duplicate.

2.4 Categories of Bug

2.4.1 Extrinsic bug

A bug caused by the factors external to a software system, such as changes to the

operating environment, requirements, or third-party libraries, is known as extrinsic

bug. Rodriguez-Perez et al. suggest three heuristics based on bug reports to identify

extrinsic bugs as follows [42].

(a) Environment: An extrinsic bug is caused by a modification to the environ-

ment in which the software system operates. The environment could be an operating

system, a physical machine, or even a cloud infrastructure.

(b) Requirement: An extrinsic bug is triggered by a change outside of the project’s

version control system. During software development, if a user requirement gets

changed after implementation, the development team might implement the new re-

quirement without discarding the old feature. The old, unexpected feature will then

14

be considered as an extrinsic bug.

(c) Third-party library: The bug found in the project’s third-party library is

considered an extrinsic bug. For example, if a software project uses a third-party

library for processing images for a mobile application, and the app crashes when

processing certain image formats due to a bug in that third-party library, that bug

will be then considered an extrinsic bug.

2.4.2 Intrinsic bug

Any external factors do not cause an intrinsic bug, rather it is caused by a bug-

introducing change (BIC) in the version control system [42]. For example, if a mes-

saging application fails to deliver messages due to a logical error in a recent code

change, that would be an intrinsic bug.

2.4.3 Taxonomy of bugs in deep learning software systems

Software bugs in deep learning applications can be divided into two categories – DL

bug and NDL bug [62].

Deep Learning (DL) bug refers to a software error that is connected to the deep

learning module embedded in the software system, causing inaccurate or unexpected

output. According to the existing literature [62], DL bugs can be divided into five

main categories: Model, Training, Tensor & Input, API, and GPU.

• Model bug is connected to the structure and properties of a deep learning

model (Table 4.5). An example of the model bug is an incorrect model initial-

ization caused by an input image size mismatch, resulting in inaccurate output

in a computer vision application.

• Training bug occurs during the training phase of a deep learning application

(Table 4.6). For instance, during the training of a deep learning model for

object detection, if the loss function is incorrectly defined, the model will learn

to detect objects with very poor accuracy, leading to incorrect output from the

system.

• Tensor & Input bug occurs due to wrong tensor input or tensor calculation

15

Table 2.3: Example of deep learning-related and non deep-learning-related extrinsic
bugs

DL+Extrinsic Bug
Bug ID: 1860 (Project: PyTorch+Fairseq)

Title:
wmt19 model cannot run on GPU except #0.
Description:
I am running the tutorial. I successfully loaded the model from
the hub and tried to run it on the second GPU (id=1).
, Which raised an exception that data and models are stored
on different GPUs. With GPU (id=0) works fine.
Code sample:
import torch
en2de = torch.hub.load(’pytorch/fairseq’,
’transformer.wmt19.en-de’
checkpoint file=’model1.pt:model2.pt:model3.pt:model4.pt’
tokenizer=’moses’,bpe=’fastbpe’).to(torch.device(’cuda:1’))
result = en2de.translate([’hello’])
Environment:
fairseq Version==0.9.0, PyTorch Version ==1.4.0,
OS: Ubuntu 18.04,vPython version: 3.6,
CUDA/cuDNN version: 10.2,
GPU models and configuration: RTX 2080 x 2

NDL+Extrinsic Bug
Bug ID: 1426 (Project: PyTorch+Ignite)

Title:
GitHub CI on Windows is broken.
Description:
Normally, we should skip distributed tests on Windows with
SKIP DISTRIB TESTS=1
CI PYTHON VERSION=”3.7”
sh tests/run cpu tests.sh,
but a distributed test was executed:
tests/ignite/contrib/engines/test common.py
::test distrib cpu ERROR [2%]
Related to beta support of distributed on Windows in Pytorch 1.7

issues (Table 4.7). For instance, if the tensor input shape is declared incorrectly,

it will lead to output errors.

• API bug occurs due to incorrect use of an API in the deep learning software

16

system (Table 4.8). For example, an API bug might occur if a developer mis-

takenly calls the wrong API function from the deep learning framework, causing

inaccurate results in the output.

• GPU bug is connected to the graphics processing unit used in the system (Ta-

ble 4.9). For example, if the model’s memory requirements exceed the available

GPU memory, or the GPU is not compatible with the DL framework, then they

could lead to errors during model training.

Non-Deep Learning (NDL) bug refers to a software error that is not related

to the deep learning module but still leads to unexpected behaviors in deep learning

applications. An example of NDL bugs could be a logical error in the code that leads

to a deadlock, making the program being stuck in an infinite loop.

As shown in Table 2.3, Bug 1860 is a deep learning-related extrinsic bug triggered

by the change in the environment. When the WMT19 model runs on multiple GPUs,

the execution fails since the same GPU cannot store both the model and data. It

is clearly related to the deep learning module. On the other hand, this bug is not

related to the Fairseq library (a.k.a., deep learning application), rather it is related

to external factors (e.g., GPU), which indicates its extrinsic nature.

In Table 2.3, Bug 1426 is another extrinsic bug connected to the Windows OS

environment. The bug triggers when the tests from the CI pipeline are distributed

over multiple Windows machines. It is clearly not related to deep learning (a.k.a.,

Non-DL bug), but the triggering factors are outside of the version control system,

which indicates an extrinsic nature.

2.5 Information Retrieval (IR)

IR is a popular technique to capture relevant information from a vast collection of

documents [63]. Once a query (i.e., information needed) is submitted, the IR executes

the query to deliver relevant information from the document collection. In this report,

several of these following IR concepts will be used frequently:

• Indexing: Indexing involves preprocessing all documents from a collection and

constructing a data structure that links terms to documents.

17

• Search Space: Search space is the set of documents that can be searched and

retrieved by executing a user’s query.

• Query: A query is a set of keywords that specifies the information needed by a

user.

• Ranking: Ranking involves sorting documents in descending order of relevance

against a user query.

2.5.1 BM25

Best Match 25 (BM25) is a widely adopted ranking function in IR where the relevant

documents are identified against a query using probabilistic retrieval models [64]. In

particular, it assumes that certain documents are more relevant to the query based

on the presence of query terms in each document [64]. BM25 incorporates various

factors such as term frequency, document length, and inverse document frequency to

compute the relevance score of a document [64]. BM25 score can be calculated as

follows:

BM25(D,Q) =
n∑

i=1

(
IDF(qi) · f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · DL(D)
avgDL

)

)
(2.1)

Here, D is a document in the collection, Q is the query, qi is a query term, n

is the total number of query terms, f(qi, D) is the frequency of query term in the

document, DL(D) is the document length, avgDL is the average document length in

the collection, IDF (qi) is the inverse document frequency of query term, k1 and b are

tuning parameters that control the impact of term frequency and document length

normalization. In our experiment, we used the default parameter values (k1=1.5,

b=0.75) for retrieving the duplicate bug reports according to the literature [14].

2.5.2 Vector Space Model

The vector space model is a popular concept in information retrieval. Using VSM,

both documents and queries can be transformed into numerical vectors in a high-

dimensional space. Then cosine similarity can be used to measure the similarity

18

between these vectors, allowing for text-based retrieval [65]. The cosine similarity

score can be calculated as follows:

Cosine Similarity =
A ·B

∥A∥ · ∥B∥
Here, A and B represent the vectors being compared, . denotes the dot product

of the vectors, ∥A∥ and ∥B∥ represent the magnitudes of the vectors. The Cosine

similarity of the two documents ranges from 0 to 1. A cosine similarity of 1 indicates

that the two vectors (a.k.a., two documents) being compared are similar, whereas 0

suggests that the vectors are completely dissimilar.

2.6 Topic Modeling

Topic modeling is a frequently used technique to automatically identify and extract

latent topics from a collection of documents. It assigns a set of topics to each docu-

ment and a set of words to each topic, capturing the underlying structure and patterns

in the text data [66].

2.6.1 Latent Dirichlet Allocation (LDA)

LDA is a probabilistic model used for topic modeling, which assumes that each doc-

ument is a mixture of topics, and each topic is a probability distribution over words

[67]. LDA aims to estimate the topic-word and document-topic distributions by it-

eratively inferring the hidden structure that best explains the observed data [67]. In

our first work on duplicate bug report detection, we apply LDA to a corpus contain-

ing master bug reports (a.k.a original bug reports), which generates document-topic

probability distributions across all master reports (Fig. 2.1). We examine the topic

distributions in each master bug report, detect the strongest topic, and then add the

document to the corresponding cluster. We then employ machine learning techniques

to identify duplicate bug reports by selecting the top N clusters with the most similar

topic distributions.

To determine the optimal number of topics for our project, we utilized the Coher-

ence score, as suggested [68]. We found that the model achieved the highest coherence

score for ten topics. Fig. 2.1 illustrates ten chosen topics on the left and highlights

19

Figure 2.1: Example of topic modeling using LDA from our experiment on duplicate
bug report detection

the top 30 most relevant terms for topic one, containing the highest number of tokens

(15.5%) from the Eclipse corpus. The generative process of LDA can be represented

by the following equation:

P (w, z, θ, ϕ|α, β) =
D∏

d=1

P (θd|α)
K∏
k=1

P (ϕk|β)
N∏

n=1

P (zd,n|θd)P (wd,n|zd,n, ϕk) (2.2)

Here, P (w, z, θ, ϕ|α, β) is the joint probability of words (w), topic assignments (z),

document-topic distributions θ, and topic-word distributions ϕ given the hyperparam-

eters α and β. α determines the diversity of topics within documents. A higher value

of α encourages documents to be composed of a mixture of more topics, resulting in

broader coverage of topics within each document. β controls the diversity of words

within topics. A higher value of β encourages topics to be composed of a wider range

of words, allowing for more diversity in the vocabulary associated with each topic.

D is the total number of documents in the corpus. K is the number of topics. N is

the number of words in each document. d is the index variable representing a specific

20

document. k is the index variable representing a specific topic. n is the index variable

representing a specific word within a document.

2.7 Embedding

In machine learning, embedding is a mechanism to represent high-dimensional data

(e.g., images, text, or categorical variables) within a lower-dimensional space [69].

The process of learning an embedding involves mapping the original data to a vector

space where the embedding values reliably capture different aspects or characteristics

of the data.

2.7.1 Word Embedding

Word embedding refers to a numerical representation of words or phrases in a contin-

uous vector space. By representing words into dense vectors in a continuous vector

space, word embeddings are able to capture the semantic and syntactic links among

words [70]. Word embeddings are typically learned through unsupervised ML tech-

niques such as Word2Vec, GloVe, or fastText [70]. These pre-trained word embeddings

come in a variety of dimensions, including 100, 200, and 300. Models can benefit from

leveraging the pre-trained word embeddings since they already have relevant linguistic

knowledge, which can be transferred to improve various NLP tasks [70].

2.7.2 GloVe: A Pre-trained Word Embedding

Pre-trained word embeddings are pre-computed vector representations of words learned

from extensive text corpora. GloVe (Global Vectors for Word Representation) is a

pre-trained word embedding technique developed by Stanford University that lever-

ages word co-occurrence statistics to learn word embeddings [71]. It can capture

semantic and syntactic information and serve as valuable resources for natural lan-

guage processing tasks [70]. It utilizes matrix factorization techniques to capture both

local and global relationships among words [71].

J =
V∑
i=1

V∑
j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2 (2.3)

21

Here, J represents the loss function to be minimized. V denotes the vocabulary

size. f(Xij) is a weighting function that assigns varying importance to co-occurrence

pairs based on observed counts, capturing meaningful relationships between words.

wi and w̃j are the word vectors for words i and j respectively. bi and b̃j are the

corresponding bias terms. Xij is the co-occurrence count or weight between words.

2.8 Neural Network

A neural network is a computational model in computer science that consists of

interconnected nodes, known as artificial neurons, organized in layers [72]. It utilizes

weighted connections, activation functions, and training algorithms to process input

data. It propagates information through the network and adjusts the weights to

optimize performance in various tasks such as pattern recognition, classification, or

regression [72].

2.8.1 Convolutional Neural Network

CNN is specifically designed for processing grid-like input data (e.g., images, se-

quences) [73]. It incorporates convolutional layers that convolve across the input

data and apply customizable filters or kernels to extract local features [73]. CNNs

typically include pooling layers (e.g., max pooling) to downsample the features and

reduce their spatial dimensions.

2.8.2 Siamese Convolutional Neural Network

Siamese CNN is a variant of the Siamese network that uses CNN layers. With two

identical networks that learn shared representations for comparing pairs of inputs,

Siamese CNN aims to bring similar inputs closer and dissimilar inputs farther apart

[74]. It is commonly used for tasks involving similarity or distance-based comparisons,

such as image similarity and text similarity. In our first work on duplicate bug report

detection, we use Siamese CNN, where the network learned shared representations

to compare pairs of bug reports and determine their similarity, helping in detecting

duplicate reports.

22

In this chapter, we provided an overview of key terminologies and background

concepts to help readers in understanding the subsequent sections of the report. We

examined the concept of duplicate bug reports, including different types that can arise.

Additionally, we explored diverse categories of bugs found in deep-learning software

systems. Furthermore, we discussed essential techniques such as information retrieval,

topic modeling, word embedding, and neural networks, which have been used in our

empirical work.

Chapter 3

Duplicate Bug Report Detection

Existing works in the duplicate bug report detection [16, 52, 75, 76] primarily focus on

textually similar duplicates without considering the intricacies of textually dissimilar

duplicates. As a result, these techniques might not be effective in identifying textually

dissimilar duplicate bug reports. However, to the best of our knowledge, there exist

no studies that investigate the challenges in detecting textually dissimilar duplicate

bug reports. In this chapter, we present our first study that investigates the impact of

textual dissimilarity on duplicate bug report detection and offers meaningful insights.

The rest of this chapter is organized as follows. Section 3.1 provides an intro-

duction to the research work. Section 3.2 presents our experimental design, datasets,

and performance metrics. Section 3.3 discusses our experimental results and discusses

our key findings. Section 3.4 discusses the threats to the validity of our work, and

Section 3.5 discusses the related work.

3.1 Introduction

Software bugs are human-made errors in the code that prevent software from work-

ing correctly. During software maintenance, software bugs are submitted to a bug-

tracking system as bug reports [4]. Hundreds of bugs are reported daily in large

software systems (e.g., Mozilla, Eclipse). Duplicated bug reports occur when multi-

ple people submit multiple bug reports for the same bug. Due to the asynchronous

nature of bug report submission, traditional bug tracking systems (e.g., Bugzilla) can

not prevent duplicate bug reports. Thus, on average, 35.8%–41.6% of bug reports are

duplicates in the bug tracking systems [3]. These duplicate bug reports pose a ma-

jor overhead during software maintenance since they often cost valuable development

time and resources [6].

Manually examining hundreds of bug reports for duplicates is neither feasible nor

practical. One of the major challenges in detecting duplicate bug reports is their

23

24

unstructured and ambiguous nature. Bug reports are written in natural language

texts and thus may contain different words describing the same issue. The probability

of two persons using the same text to explain the same issue is very low (e.g., 10%–

15%) [25]. Given all these inherent challenges, automated detection of duplicate bug

reports has become an active research topic since the last decade, which is also known

as bug deduplication [9].

To automate the process of detecting duplicate bug reports, researchers employ

various methodologies, including NLP [11, 12, 13], IR [14, 15, 16, 17], and ML

[18, 19, 20, 21, 22]. However, they are far from perfect due to the complexity and

ambiguity of natural language texts. NLP based techniques might be limited in de-

tecting duplicate reports when there is a textual mismatch between the reports [23].

IR-based approaches suffer from the vocabulary mismatch problem [24, 25], a typical

phenomenon that stems from two textual documents describing the same concept

with different vocabularies. On the other hand, ML-based approaches suffer from

data imbalance problems and a lack of generalizability and explainability [18, 23, 26].

Duplicate bug reports can be divided into two different categories: those that

describe the same issue with similar texts and those that describe two similar issues

using different texts (e.g., Fig. 2.2) [11]. The second category refers to duplicate bug

reports that have the same underlying root cause but completely different writing

styles. There could be instances where two bugs have different observable behaviors

(OB) and steps to reproduce (S2R), but they share the same underlying cause. We

call these types of duplicate bug reports textually dissimilar duplicate bug reports

in this paper. According to our investigation, 19%–23% of the duplicate bug reports

could be textually dissimilar.

Most of the existing NLP and IR-based techniques focus on detecting duplicate

bug reports that use similar texts. Unlike NLP and IR-based techniques, ML-based

techniques can capture the non-linear relationships between two items [37, 38, 39],

and thus have the potential to tackle the challenge of textually dissimilar duplicate

bug reports. However, they also suffer from poor outlier handling, class imbalance

problem, and a lack of explainability [40]. Thus, automated detection of duplicate bug

reports still remains a highly challenging problem that warrants further investigation

[41].

25

In this paper, we conduct a large-scale empirical study to better understand the

impacts of textual dissimilarity on the detection of duplicate bug reports. First, we

collect a total of 92,854 bug reports from three large-scale software systems (Eclipse,

Firefox, and Mobile) and empirically show how the existing techniques (BM25 [14],

LDA+GloVe [51], and Siamese CNN [52]) perform poorly in detecting textually dis-

similar duplicate bug reports. Second, we compare textually similar and textually

dissimilar duplicate bug reports using a combination of quantitative and qualitative

analyses. We found that the textually dissimilar duplicate bug reports differ from

textually similar duplicate bug reports in terms of their underlying semantics and

structures. For instance, textually dissimilar duplicate bug reports often have miss-

ing components (e.g., steps to reproduce) or components that are written differently

(e.g., observed behaviors), which could lead to their overall textual differences. Fi-

nally, being inspired by the previous successes of domain-specific embedding [55, 57],

we apply domain-specific embedding to counteract the impact of textual dissimilarity

in duplicate bug report detection. We thus answer three important research questions

in our study as follows.

(a) RQ1: Does the performance of existing techniques differ significantly

in duplicate bug report detection between textually similar and tex-

tually dissimilar duplicate bug reports?

We conducted experiments on our dataset using three existing techniques in

duplicate bug report detection that employ IR, Topic Modeling, and ML, re-

spectively. We found that the performance of existing techniques is lower (e.g.,

for recall rate@100, 10.02%–18.45% for BM25, 2.00%–6.49% for LDA+GloVe)

in detecting textually dissimilar duplicate bug reports than that of textually

similar duplicate bug reports. Our statistical tests (e.g., Wilcoxon-test [77],

Cliff’s delta) also report that their performance is significantly low for textually

dissimilar duplicate bug reports. Although our findings reinforce a common

belief about existing techniques, they also substantiate it with solid empirical

evidence of the performance gap between the two categories of duplicate bug

reports.

(b) RQ2: How do textually similar and textually dissimilar duplicate bug

reports differ in their semantics and structures?

26

To investigate the differences between textually similar and textually dissimilar

duplicate bug reports, we use three different analyses: descriptive analysis,

embedding analysis, and manual analysis. We found negative skewness in the

similarity scores of textually dissimilar duplicate bug reports, which indicates

a low textual similarity between each pair. We also visualize their embedding

matrices using t-SNE [53], a non-linear dimensionality reduction technique. The

visualization shows that textually dissimilar duplicate bug reports have a lower

dimensional space than that of textually similar duplicate bug reports, which

indicates a lower pairwise distance within the embedding space (Fig. 3.5).

Finally, our manual analysis suggests that textually dissimilar duplicate bug

reports often miss important components (e.g., steps to reproduce) or they have

components (e.g., observed behaviors) that are written differently, which could

lead to their overall textual differences.

(c) RQ3: Does domain-specific embedding help improve the detection of

textually dissimilar duplicate bug reports?

Our experiments in RQ1 use a pre-trained, generic embedding model, GloVE

[54], which might not have effectively overcome the challenges of textual dis-

similarity in duplicate bug report detection [78, 79, 80]. We thus retrain our

selected DL-based technique (e.g., Siamese CNN [52]) with a domain-specific

embedding model [55, 56, 57] and repeat our experiments. In particular, we an-

alyze 92,854 bug reports from Eclipse, Firefox, and Mobile systems to capture

domain-specific embedding, which is then used to retrain the DL-based tech-

nique. We have also used oversampling to deal with imbalanced data problems

during model training [81]. We found that domain-specific embedding shows

mixed results by improving the detection of textually dissimilar duplicate bug

reports but worsening the detection of textually similar duplicate bug reports.

3.2 Study Methodology

Fig. 3.1 shows the schematic diagram of our conducted study in this paper. We first

collect bug reports from three different subject systems and construct two sets of

27

Figure 3.1: Schematic diagram of our conducted study on bug duplication

28

datasets for textually similar and textually dissimilar duplicate bug reports. We con-

trast the performance of three existing techniques [14, 51, 52] for duplicate bug report

detection between textually similar and textually dissimilar duplicate bug reports.

Second, we perform three different analyses: manual analysis, descriptive analysis,

and embedding analysis to understand the nature of textually dissimilar duplicate

bug reports. Finally, we investigate the influence of domain-specific embedding with

Siamese CNN on textually dissimilar duplicate bug reports. This section discusses

the major steps of our study design as follows.

3.2.1 Construction of dataset

Dataset Collection. We collect duplicate bug reports from three large-scale, open-

source software systems – Eclipse, Firefox, and Mobile – using a popular bug track-

ing system, namely Bugzilla. Existing studies [16, 18, 20, 23] have frequently used

these systems, which makes them suitable for our research. Besides, these systems

have stemmed from diverse application domains. Eclipse is a popular open-source

Integrated Development Environment (IDE) written in Java. Firefox is a popular

open-source web browser. While the above two systems are desktop-based applica-

tions, the remaining systems are mobile-based (e.g., Firefox for iOS, Focus for iOS,

and GeckoView for Android). For the sake of brevity, we combine these three small

systems and call them Mobile in the rest of the paper. Almost all the existing stud-

ies on duplicate bug report detection used the dataset dated before 2017 [23], which

might not be an ideal representation of recent software bugs and issues [82]. In order

to maintain a contemporary approach, we choose the bug reports from the last five

years. We thus collected a total of 92,854 bug reports from three systems that were

submitted within the last five years (01-01-2017 to 01-01-2022).

For many duplicate bug reports, the master reports were created before the last

five years (Eclipse: 766, Firefox: 3514, Mobile: 214). In order to make a complete

dataset with all the duplicate bug reports along with their master bug reports, we

also retrieved them separately. Table 3.1 summarizes our study dataset. We see that

about 6.60%, 20.53%, and 10.56% of the submitted bug reports were duplicates in

Eclipse, Firefox, and Mobile systems, respectively.

Data cleaning and preprocessing. We capture four key fields from each bug

29

Table 3.1: Study dataset for duplicate bug report detection

Dataset (2017 – 2022) Eclipse Firefox Mobile

Whole Dataset 49,244 38,290 5,320

Total Duplicate 3,248 7,859 562

Duplicate Ratio 6.60 % 20.53% 10.56%

Experimental Dataset (BM25, LDA + GloVe)

Textually Similar Duplicate 679 1,414 122

Textually Dissimilar Duplicate 662 1,455 131

Experimental Dataset (Siamese CNN)

Training Set 39,395 30,632 4,256

Testing Set 9,848 7,658 1,064

Textually Similar Duplicate 504 610 117

Textually Dissimilar Duplicate 497 734 89

report for our study: (a) bug id, which is unique for each bug report, (b) duplicate

bug id, which points to the duplicate bug report, (c) title and description of the bug

report, and (d) resolution, which indicates the duplicate status of a bug report.

We collect title and description from each bug report since they capture pertinent

information for detecting duplicate bug reports. We clean and preprocess the title

and description from each bug report using several steps as follows.

We apply standard natural language preprocessing to the title and description

texts. First, we remove stopwords using a standard set of stopwords, which have

little to no significance in capturing semantics. Then we perform token splitting

along with the removal of punctuation marks, non-alphanumeric characters, numbers,

HTML meta tags, and URLs. We also replace any non-alphanumeric characters with

spaces and transform the text into lowercase [9]. Lastly, to transform each term into

its base form, we use lemmatization using the NLTK library in Python. As performed

by an earlier work [9], we discard any description with fewer than 50 characters since

they do not contain enough information to be meaningful. On the other hand, bug

reports might have long description text containing source code, lengthy stack traces,

and log files, which could be noisy [9]. Hence, several previous studies [9, 52] selected

bug reports containing at most 350 to 500 tokens. We experimented with 350, 500,

and 1000 tokens. Using 500 tokens, the model delivers the best performance. Thus,

30

Table 3.2: Construction of textually similar and dissimilar duplicate pairs using n-
gram based similarity scores

Unigram Bigram Trigram Duplicate BRs

Dataset Median
Lower

Quartile

Upper

Quartile

Median
Lower

Quartile

Upper

Quartile

Median
Lower

Quartile

Upper

Quartile

Textually

Similar

Textually

Dissimilar

Eclipse 0.0502 0.0361 0.0675 0.0261 0.0189 0.0368 0.0212 0.0156* 0.0297* 679 662

Firefox 0.0633 0.0483 0.0776 0.0298 0.0233 0.0355 0.0232 0.0179* 0.0274* 1414 1455

Mobile 0.0679 0.0488 0.0944 0.0451 0.0316 0.0639 0.0403 0.0283* 0.0565* 122 131

we chose 500 as our token limit for the bug reports.

Construction of triplets. After we clean and preprocess the dataset, we con-

struct triplets (b, b+, b-) where the existing techniques are supposed to detect b+.

Here, b means the query bug report (query bug can be both duplicate and non-

duplicate), b+ means duplicate bug report, and b- means non-duplicate bug reports.

We created these triplets inspired by an existing work [52]. In the existing work,

the duplicates (b,b+) were determined based on bug-tracking systems, whereas non-

duplicates (b,b-) were randomly selected from the dataset. We also follow the same

process in our ground truth construction. Then (b,b+) pairs were used as the ground

truth for evaluating the existing techniques in duplicate bug report detection.

Dataset preprocessing for ML-based approach. To design an ML-based

model (e.g., Siamese CNN) for duplicate bug report detection, pairwise bug reports

containing texts and ground truth are required. Hence, we extract (b, b+) and

(b, b-) pairs from the triplets above to generate our positive and negative samples,

respectively. As was done by the original work [52], we split the whole dataset into an

80:20 ratio with random shuffling for training and testing. The test dataset was then

further split into test and validation sets using a 50:50 ratio. We use the training set

for model training and the validation set for assessing the model performance, fine-

tuning, hyperparameter optimization, and mitigating overfitting [37]. On the other

hand, the test set evaluates our model’s performance on new and unseen data. Table

3.1 (bottom section) shows our ML models’ training and testing datasets from all

three systems.

Constructing subsets of study datasets based on textual similarity. We

31

divide our dataset into textually similar and textually dissimilar duplicate bug reports,

which are essential for answering our research questions.

First, we store all duplicate bug reports as pairs in a separate dataset. Then, we

collect N-grams (n = 1, 2, and 3) to compute the textual similarity [83] of each pair

of duplicate bug reports. We used character-level n-grams to detect textually similar

and textually dissimilar duplicate bug reports. This approach offers two primary

advantages [13] as follows.

(a) Character-level n-grams have language independence, which enhances cross-

language applicability.

(b) Character-level n-grams can capture sub-word features for noisy text analysis,

such as bug reports.

Character-level n-grams are more robust to spelling variations, typos, and tex-

tual noise. They identify resemblances through shared character sequences, even in

misspelled words. Furthermore, character-level n-grams can effectively capture dis-

tinctive writing styles and intricacies, making them particularly useful for our case

[84]. We found that texts from bug reports are often noisy, and duplicate bug re-

ports often occur due to distinct writing styles with different nuances. Thus, we

used character-level n-grams to detect the textually similar and textually dissimilar

duplicate bug reports.

We use the cosine similarity metric [11] to calculate the textual similarity between

two bug reports. After getting the similarity score between the duplicate pairs, we

analyze their descriptive statistics to determine their median similarity score, lower

quartile (25th percentile) value, and upper quartile (75th percentile) value. For du-

plicate pairs that have a similarity score less than the lower quartile value, we denote

them as textually dissimilar duplicate bug reports.

On the other hand, for duplicate pairs that have a similarity score more than the

upper quartile value, we denote them as textually similar duplicate bug reports. We

repeat all these steps using Unigram, Bigram, and Trigram to collect the common

set of textually similar and textually dissimilar duplicate bug reports across three

trials for our experiment. Table 3.2 shows similarity scores used for various N-grams

to construct our textually similar and dissimilar duplicate bug reports. Finally, we

got two subsets for textually similar and textually dissimilar duplicate bug reports,

32

respectively (Eclipse: 679 & 662, Firefox: 1414 & 1455, Mobile: 122 & 131).

3.2.2 Replication of existing techniques for experiments

To answer our first research question, we needed to replicate existing techniques on

duplicate bug report detection. We thus select suitable representatives from the

frequently used methodologies in duplicate bug report detection. In particular, we

choose baseline methods from three frequently used methodologies – IR, Topic Mod-

eling, and ML. We select BM25 [14] from IR, LDA+GloVe [51] from Topic-Modeling,

and Siamese CNN [52] from ML for our experiment. Most of the recent models are

based on these three primary approaches with incremental improvements [23, 36, 85].

We chose these baseline methods to determine the impact of textual dissimilarity

on duplicate bug report detection without the effect of compounding factors (e.g.,

severity, priority, components, products, multimedia attachments).

BM25: IR relies on keyword overlaps between any two documents. We select a

representative of IR, namely BM25, with default parameters (k1=1.5, b=0.75) for

retrieving the duplicate bug reports. BM25 is a ranking function used in IR to score

and rank documents based on their relevance to a user’s query, considering factors

like term frequency and document length [64]. It calculates a relevance score using

a probabilistic model [64]. Yang et al. [14] first use BM25 for duplicate bug report

detection.

LDA+GloVE: While BM25 is an established technique, it suffers from Vocabu-

lary Mismatch Problem (VMP) [24, 25]. Several studies [35, 51, 86] adopt topic mod-

eling in duplicate bug report detection to overcome this challenge. Latent Dirichlet

Allocation (LDA) is a topic modeling approach that has the potential to overcome

the vocabulary mismatch problem [87]. We call this approach LDA+GloVE in our

research. As done by the original work [51], we use LDA for topic-based clustering

(topic number=10), GloVe for the pre-trained word embedding (embedding dim =

100), and a unified text similarity measure (Cosine similarity and Euclidean similar-

ity) for ranking the topmost, similar bug reports against a given bug report.

Siamese CNN: Unlike the above two techniques, ML-based approaches might

be able to find non-linear relationships between dependent and independent variables

[37, 38, 39]. The Siamese-CNN network leverages CNNs’ ability to learn hierarchical

33

features and local structures from the regular texts [52]. This is crucial for identifying

duplicate bug reports, as CNN can learn distinctive patterns in the character or

word sequences that characterize the duplicates. On the other hand, the model also

leverages the Siamese network’s ability to learn shared representations to compare

pairs of bug reports and determine their similarity, helping to detect the duplicate

reports effectively. We thus implement the Siamese CNN for duplicate bug report

detection by adapting earlier research [52]. We train our Siamese CNN model using K-

fold cross-validation (e.g., K=10) and batch gradient descent, where original authors’

batch sizes (e.g., 512 for Eclipse and Firefox, 256 for Mobile), learning rate (e.g., 0.001)

and epoch number (e.g., 12) were chosen during the training phase to avoid model

overfitting. Since the Mobile system has a small number of bug reports, a smaller

batch size was chosen.

We used the authors’ replication package for the LDA+GloVe model [51]. On

the other hand, the replication packages of BM25 [14], and Siamese CNN [52] were

not publicly available, and thus those techniques were carefully re-implemented by us

based on the corresponding papers.

3.2.3 Performance evaluation

As we detected duplicate bug reports using IR, Topic Modeling, and ML techniques

in our experiments, they were evaluated using appropriate performance metrics from

these domains. In the case of BM25 and LDA+GloVe, we find all the duplicate bug

reports for a given query bug report. Then we used Recall-rate@K [12, 23, 51, 88],

one of the most popular performance metrics, to evaluate the IR and Topic Modeling

approaches. On the other hand, for the ML-based model (Siamese CNN), we used

traditional metrics such as F1 score, AUC, recall, and precision [23]. We used different

evaluation metrics based on the original works [14, 51, 52]. It should be noted that

our main goal was to contrast the performance of existing techniques between two

sets of duplicate bug reports rather than to compare the techniques.

3.2.3.1 Recall-rate@K

Recall-rate@K determines the percentage of bug reports for each of which the dupli-

cate bug report is found within the top K positions [19].

34

RecallRate@K =
Ndetected

Ntotal

(3.1)

Ndetected is the number of bug reports for which the duplicate reports have been

correctly detected, and Ntotal is the number of total bug reports. We used nine

different values of K (K = 1, 5, 10, 20, 25, 30, 50, 75, 100) to calculate the results of

our IR-based and Topic Modeling techniques – BM25 and LDA+GloVe models.

3.2.3.2 Precision

Precision determines the percentage of bug reports for which duplicate bug reports

are correctly detected. We calculate the precision of a technique as follows:

Precision(C) =
TP

TP + FP
(3.2)

Here, True Positive (TP) is the number of items correctly classified as an instance

of class C, and False Positive (FP) is the number of items wrongly identified as an

instance of class C.

3.2.3.3 Recall

Recall determines the percentage of all duplicate bug reports that are correctly de-

tected by a technique. We calculate the metrics as follows:

Recall(C) =
TP

TP + FN
(3.3)

Here, True Positive (TP) is the number of items correctly classified as an instance

of class C, and False Negative (FN) is the number of instances of class C that the

model could not identify.

3.2.3.4 F1-measure

While both precision and recall focus on a specific aspect of a technique’s effectiveness,

F1-measure is a more comprehensive and effective method for evaluation. When

aiming for high recall, where the model tries to identify all instances of a certain class,

it may also classify some instances with low confidence, resulting in more mistakes

and lower precision. To strike a balance between these conflicting requirements, the

35

F1 measure is utilized. We take the harmonic mean of precision and recall to compute

the F1 measure as follows:

F1(C) =
2 · Precision(C) ·Recall(C)

Precision(C) +Recall(C)
(3.4)

here, Precision(C) is precision and Recall(C) is recall.

3.2.3.5 Area Under Curve

The Receiver Operating Characteristics (ROC) curve is a probability curve that sepa-

rates between true positive and false positive rates [89]. Area Under the Curve (AUC)

calculates the fraction of the area that falls under the ROC [89]. The AUC score

ranges between 0 and 1, with one indicating that the model can perfectly classify ob-

servations into classes. The positive and negative samples are frequently imbalanced

in actual data, such as ours. This imbalance significantly impacts precision and recall,

whereas AUC is robust against the data imbalance.

After conducting the experiments, we evaluated our BM25 and LDA+GloVe mod-

els using Recall-rate@K, as used by existing work [14, 51]. On the other hand, we

have evaluated the Siamese CNN model, as was done by the original work [52], using

the remaining performance metrics.

3.3 Study Finding

3.3.1 Answering RQ1: Does the performance of existing techniques

differ significantly in duplicate bug report detection between

textually similar and textually dissimilar duplicate bug reports?

We first evaluate the existing techniques against our whole dataset. Tables 3.3 and

3.10 summarize their performances.

From Table 3.3, we see that the BM25 approach, on average, performs higher with

the Eclipse system than with Firefox and Mobile systems. On the other hand, the

performance of the LDA+GloVe model is approximately 38.36% lower than that of

BM25 for Recall-rate@100. LDA is limited in modeling topic correlations [90], which

could be crucial to duplicate bug report detection. Table 3.10 (top section) shows

that the performance of our ML based technique in detecting duplicate bug reports

36

Figure 3.2: Performance of BM25 with all textually similar and dissimilar duplicate
bug reports from (a) Eclipse, (b) Firefox, and (c) Mobile systems

Table 3.3: Experimental results of IR and LDA-based techniques (Recall–rate@k)%
for duplicate bug report detection on whole dataset

Dataset Method k=1 k=5 k=10 k=100

Eclipse
BM25 22.64 36.60 42.03 57.31

LDA+GloVe 0 5.5 10.5 16.0

Firefox
BM25 16.11 27.98 33.64 52.68

LDA+GloVe 0 8.5 10.5 16.5

Mobile
BM25 17.25 28.95 35.38 57.60

LDA+GloVe 0 2.5 7.0 20.0

ranges from 61.41% – 84.80% in terms of AUC. Precision, Recall, and F1-measure

are slightly higher for Eclipse than for Firefox. Firefox has a better AUC score than

Eclipse, as the AUC metric is robust to imbalanced data [81]. Precision, Recall,

F1-measure, and AUC scores are slightly higher for the Mobile dataset than for the

other two systems. Overall, the ML-based approach delivers the highest performance

in duplicate bug report detection.

While the above analysis focuses on the whole dataset, we also determine the perfor-

mance gap of existing techniques between textually similar and textually dissimilar

duplicate bug reports. Table 3.4 shows that BM25 delivers a higher Recall-rate@K

for textually similar duplicate bug reports than for dissimilar ones across all three

systems - Eclipse, Firefox, and Mobile. For instance, with K=100, the difference

between these two sets ranges from 10.20% to 18.45%. Fig. 3.2 further shows the

performance difference between these two sets of bug reports for various K values.

37

Table 3.4: Experimental results of IR and LDA-based techniques (Recall–rate@k)%
for duplicate bug report detection for textually similar and textually dissimilar du-
plicate bug reports

Dataset Method k=1 k=5 k=10 k=100

Textually Similar Duplicates

Eclipse
BM25 24.15 37.63 43.26 62.78

LDA+GloVe 0.00 10.00 13.50 20.50

Firefox
BM25 20.72 34.49 39.92 57.58

LDA+GloVe 0.00 6.00 8.50 14.49

Mobile
BM25 22.00 44.00 48.00 78.00

LDA+GloVe 0.00 4.00 7.50 20.50

Textually Dissimilar Duplicates

Eclipse
BM25 21.83 37.50 41.27 52.58

LDA+GloVe 0.00 6.50 11.50 18.50

Firefox
BM25 11.64 20.82 26.56 46.72

LDA+GloVe 0.00 2.00 5.00 8.00

Mobile
BM25 15.73 28.09 35.96 59.55

LDA+GloVe 0.00 2.50 4.50 15.00

We see that the difference is noticeably higher for Firefox and Mobile systems.

On the other hand, for the LDA+GloVe model, the performance differences be-

tween textually similar and textually dissimilar duplicate bug reports are 2.00% for

Eclipse, 6.49% for Firefox, and 5.5% for the Mobile system with K=100 (Table 3.4).

The performance gap is higher for Firefox and Mobile systems in the same manner

as BM25. One possible reason behind this could be the higher duplicate ratios in

Firefox and Mobile systems (see Table 3.1).

Table 3.10 shows the performance of our ML model - Siamese CNN - for both

sets of duplicate bug reports across three systems. Here, the performance difference

between textually similar and textually dissimilar duplicates is less apparent than

that of the traditional methods above. ML models, especially deep learning models,

can capture more contextual information beyond the syntax [91], which might explain

the phenomenon. From Table 3.10, we see that the performance difference is smaller

for Eclipse than for the other two datasets. For instance, the AUC differences between

textually similar and textually dissimilar duplicate bug reports are 9.57% for Eclipse,

9.38% for Firefox, and 2.97% for the Mobile dataset. In the case of the F1-measure,

the performance difference for the Eclipse dataset is 10.92%, whereas, for the Firefox

38

Table 3.5: Experimental results of Siamese CNN technique (%) for duplicate bug
report detection

Metric Test Dataset Textually Similar Textually Dissimilar

Eclipse

AUC 61.41 56.31 46.74

Recall 93.00 55.00 45.00

Precision 92.00 63.00 51.00

F1 92.49 58.73 47.81

Firefox

AUC 64.70 66.44 57.06

Recall 82.00 52.00 48.00

Precision 78.00 75.00 59.00

F1 79.95 61.41 52.93

Mobile

AUC 84.80 63.96 60.99

Recall 94.00 72.00 58.00

Precision 93.00 80.00 76.00

F1 93.49 75.79 65.79

Table 3.6: Experimental results of Siamese CNN technique with Oversampling (%)
for duplicate bug report detection

Metric Textually Similar Textually Dissimilar
Eclipse

AUC 56.31 46.98
Recall 55.00 47.00

Precision 63.00 53.00
F1 58.73 49.82

Firefox
AUC 66.51 57.35
Recall 52.00 49.00

Precision 75.00 60.00
F1 61.41 53.94

Mobile
AUC 63.96 60.99
Recall 72.00 58.00

Precision 80.00 76.00
F1 75.79 65.79

39

Figure 3.3: Performance of all the techniques for textually similar and dissimilar
duplicate bug reports (a) BM25, (b) LDA+GloVe, (c) Siamese CNN

dataset, it is 8.48%. For Mobile data, the performance difference is 10.00%. We also

note that the performance of our ML-based technique is lower for the two subsets

of bug reports than for the whole dataset. As shown in Table 3.1, both subsets

contain a smaller number of duplicate bugs than the whole dataset. That is, the two

experiments use the same trained model but are tested with different numbers of test

samples, which might explain the finding.

We also perform statistical tests to determine the significance of the performance

gap between textually similar and dissimilar duplicate bug reports (Table 3.7). For

each of the three systems, we first evaluate BM25 and LDA+GloVe using Recall-

rate@K measures against textually similar and dissimilar duplicate bug reports where

we consider various K values (K = 1, 5, 10, 20, 25, 30, 50, 75, 100). Then, we

performed Shapiro-Wilk normality test [92] to determine the distribution of each set.

We got two non-normal distribution pairs (LDA+GloVe for Eclipse and Firefox) out

of six sets of pairs. Then we used appropriate parametric, non-parametric tests, and

effect size tests to compare the two sets of Recall-rate@k values from textually similar

and dissimilar duplicate bug reports. For the normal distribution, we used paired t-

test as the parametric test [93], and for the non-parametric test, we used theWilcoxon

Signed-Rank test [77]. In both types of significance tests, the p-values were less than

the threshold (0.05) except for two sets (BM25 in the Eclipse system & LDA+GloVe

in the Mobile system). Thus, the null hypothesis can be rejected for all comparisons

except for the case of BM25 in Eclipse and LDA+GloVE in the Mobile system. In

other words, the performances of BM25 and LDA+GloVE techniques are significantly

different between textually similar and dissimilar duplicate bug reports.

While the significance of a result indicates how probable it is that it is due to

40

Table 3.7: Statistical tests for the performance gap between textually similar and
dissimilar duplicates

Dataset Method PD
Significance

(p-value)
Effect Size

Eclipse
BM25 N 0.2865 Medium (0.52)

LDA+GloVe NN 0.0113* Large (0.80)

Firefox
BM25 N 0.0329** Large (1.10)

LDA+GloVe NN 0.0103* Medium (0.31)

Mobile
BM25 N 0.0586** Large (0.96)

LDA+GloVe N 0.1471 Medium (0.72)

PD=Probability Distribution, NN=Non-normal, N=Normal,
*=Significant, **=Strongly Significant

chance, the effect size indicates the extent of the difference [94]. Our experiments

found different effect sizes ranging from medium to large (Table 3.7). We see that

the effect size of BM25 is large for Firefox and Mobile systems and medium for

Eclipse. On the other hand, the LDA+GloVe model has a medium to large effect

size across the three systems. Thus, our results from effect size tests reinforce the

above finding from significance tests. In other words, the existing techniques perform

significantly poorly in detecting textually dissimilar duplicate bug reports. Even

though our findings above mostly match natural intuition, we performed extensive

experiments on three different systems using three different methodologies, which

resulted in robust empirical evidence. Thus, we not only reinforce the existing belief

about the existing techniques on duplicate bug detection but also substantiate it with

solid empirical evidence.

41

Figure 3.4: Distribution of similarity measures for textually similar and dissimilar
duplicate bug reports from (a) Eclipse, (b) Firefox, and (c) Mobile system

Summary of RQ1: The performances of existing techniques (e.g., BM25,

LDA+GloVe) are significantly lower in detecting textually dissimilar duplicate bug

reports than that of textually similar duplicate bug reports. Our finding also substan-

tiates a common belief about existing techniques on duplicate bug report detection

with solid empirical evidence.

3.3.2 Answering RQ2: How do textually similar and textually dissimilar

duplicate bug reports differ in their semantics and structures?

In this research question, we investigate how textually dissimilar duplicate bug reports

might be different from textually similar duplicate bug reports. We answer this

question using three different analyses – descriptive analysis, embedding analysis,

and manual analysis – as follows:

Descriptive analysis. Descriptive analysis involves examining the data that

helps describe, show, or summarize data points. It helps determine patterns or out-

liers that might emerge, which could lead to further statistical analyses. After cleaning

and preprocessing the bug reports from each subject system, we calculate the cosine

similarity score between each pair of duplicate bug reports using their TF-IDF mea-

sures from the textually similar and dissimilar subsets. Then we perform descriptive

analysis on these similarity scores and capture five different statistics: Skewness, Kur-

tosis, Mean, Median, and Standard Deviation. Fig. 3.4 and Table 3.8 summarize our

descriptive analysis for Eclipse, Firefox, and Mobile systems.

Skewness is a measure of symmetry [95]. Distribution is symmetric if it looks

the same on the left and right of the center point [95]. From Fig. 3.4, we find the

scores of textually similar duplicate bug reports to be positively skewed for Eclipse

42

Table 3.8: Descriptive analysis of similarity scores between bug reports

Dataset Skew Kurt Mean Median Std

Eclipse

Textually Similar 0.64 -0.83 0.09 0.08 0.02

Textually Dissimilar -0.70 0.03 0.02 0.02 0.01

Firefox

Textually Similar 0.89 0.37 0.09 0.09 0.01

Textually Dissimilar -0.50 -0.67 0.03 0.03 0.01

Mobile

Textually Similar -0.88 -0.53 0.16 0.17 0.03

Textually Dissimilar -0.38 -0.58 0.03 0.03 0.01

and Firefox. The positive skewness indicates that a significant number of duplicate

pairs are highly similar [95]. On the other hand, for the textually dissimilar dataset,

we found negative skewness for all three datasets, indicating that the cosine similarity

measures are very low for most of the textually dissimilar duplicate pairs [95].

Kurtosis is a measure of whether the distribution is heavy-tailed or light-tailed

relative to a normal distribution [95]. Distributions with positive kurtosis tend to

have heavy tails or outliers, whereas distributions with negative kurtosis tend to have

light tails [96]. A uniform distribution would be the extreme case. From Fig. 3.4, we

note that textually dissimilar duplicate pairs have a negative kurtosis for Firefox and

Mobile systems. The kurtosis for the Eclipse system is also close to zero. That is,

the similarity scores from textually dissimilar duplicate pairs have a lighter tail than

the normal distribution. In other words, their similarity scores are mostly centered

around the mean value, which is also low.

On the other hand, a similar conclusion can be made for the textually similar

duplicate pairs with the Eclipse and Mobile systems. However, it should be noted

that the Firefox system contains several times more bug reports than the Eclipse

and Mobile systems. The remaining two of three statistics - mean and median -

are also several times lower for textually dissimilar duplicate bug reports than their

counterparts.

Embedding analysis. Word embedding is a frequently used mechanism for

detecting duplicate bug reports, representing words as semantically relevant dense

43

Figure 3.5: t-SNE visualization of GloVe embeddings for 100 random samples from
both textually similar and dissimilar duplicate bug reports from (a) Eclipse (b) Firefox
(c) Mobile system

real-valued vectors [97]. While our descriptive analysis above focuses on text-level

similarity, we now perform embedding analysis to visualize the semantic differences

between textually similar and textually dissimilar duplicate bug reports. We employ

t-SNE to visualize high-dimensional data representing embedding vectors in lower

dimensions [53]. It illustrates high-dimensional data (e.g., bug report embeddings)

by projecting them into a two-dimensional space. The intra-cluster detail can be

observed by measuring the pairwise distances in the higher and lower dimensions

spaces [53].

First, we collect 100 random pairs of bug reports from both textually similar and

textually dissimilar datasets. Then, we apply pre-trained word embeddings (GLoVe)

to each pair of duplicate bug reports and capture their respective embeddings. We

used padding to ensure uniform vector dimensions and concatenated the embeddings

from each duplicate pair into a matrix. Then, we employ t-SNE, a dimensionality

reduction technique for visualizing intricate, high-dimensional data like bug reports

in lower dimensions [53]. t-SNE uncovers patterns, clusters, and relationships within

complex data. We apply t-SNE to the embedding matrices of each duplicate pair,

aiming to find the differences between textually similar and textually dissimilar du-

plicate bug reports within the embedding space. Using Gaussian distributions [53],

t-SNE calculated pairwise similarities of duplicate bug reports based on their em-

bedding matrices, with each data point (dots) representing such a similarity. Our

44

Table 3.9: Results of manual analysis for duplicate bug reports

Type EB OB S2R Overall

Prevalence Ratio (%)

Textually Similar

Duplicate Bug Reports
99.00 100.00 87.00 N/A

Textually Dissimilar

Duplicate Bug Reports
87.05 100.00 55.39 N/A

Similarity Ratio (%)

Textually Similar

Duplicate Bug Reports
78.00 83.00 55.00 90.00

Textually Dissimilar

Duplicate Bug Reports
56.84 38.20 31.65 21.58

EB=Expected behaviour, OB=Observed behaviour, S2R=Steps to
reproduce

t-SNE visualization revealed distinct clusters occupying different coordinates in the

lower-dimensional space across all three datasets. This observation signifies differ-

ences in the similarity patterns between textually similar and textually dissimilar

duplicate bug reports. We use the optimal perplexity and iterations (e.g., perplexity

= 40, iterations = 7000) and default similarity metric (i.e., cosine similarity) for our

visualization.

From Fig. 3.5, we see the difference in embedding visualization of textually sim-

ilar and dissimilar bug reports for all three datasets. In embedding space, textually

dissimilar duplicate pairs (orange dots) are clustered in a different dimensional area

than the textually similar pairs (blue dots). In all three systems, the embedding

positions of textually dissimilar bug reports are in lower coordinates than that of tex-

tually similar duplicate bug reports. In particular, the changes are noticeable across

the vertical dimension between textually similar and dissimilar duplicate bug reports

for Firefox and Mobile. Interestingly, for Eclipse, we see that textually dissimilar

duplicate bug reports are at different locations, even across the horizontal dimension.

All these differences above suggest that the word semantics of duplicate pairs within

the same dataset could be similar but very different from that of other datasets. In

other words, the semantics of textually dissimilar duplicate bug reports are noticeably

different from that of textually similar bug reports.

45

Manual Analysis. We chose 100 randomly selected duplicate bug report pairs

(50 textually similar + 50 textually dissimilar) from each subject system. Then, we

manually analyze 150 pairs of textually similar and 150 pairs of textually dissimilar

duplicate bug reports. Ideally, each bug report should have three components –

Expected Behaviour (EB), Observed Behaviour (OB), and Steps to Reproduce (S2R)

[98]. These components have been used by previous research to reformulate queries

during duplicate bug report detection using IR [76]. Similarly, we make use of these

components from each duplicate pair to understand how textually similar duplicate

bug reports and textually dissimilar duplicate bug reports might differ from each

other.

First, we go through the title and description of each bug report and detect the

presence of EB, OB, and S2R components in each bug report. Then we analyze

the prevalence ratios of these components in both textually similar and textually

dissimilar duplicate bug reports. We also calculate the textual similarity between the

two bug reports from each pair for each of the three components separately. As a

part of manual analysis, we also look for shared terms, keywords, technologies, and

overall literary analogies between a duplicate bug report and a master bug report.

The primary manual analysis for the paper was conducted by the first author and

documented using an Excel sheet, with a total of ≈25 hours spent on the analysis.

Table 3.9 shows the prevalence ratios of all three components from both textually

similar and textually dissimilar duplicate bug report pairs. We see that textually

dissimilar duplicate bug reports have a higher percentage of missing components.

For example, as shown in Table 3.9, 44.61% and 13% of textually dissimilar pairs

do not contain any steps to reproduce (S2R) and expected behaviors (EB) in their

bug reports. In particular, either both bug reports in those pairs do not have S2R

as a component, or only one does not. In comparison, such statistics are 13% and

1%, respectively, for the textually similar duplicate bug reports. Such higher ratios of

missing components might explain the lower textual similarity between each duplicate

pair of their bug reports.

Table 3.9 also shows the component-level similarity between two bug reports from

each duplicate pair. We see a lower component-level similarity for textually dissimilar

duplicate bug reports. For example, on average, two bug reports from each of their

46

pairs are only 38% and 57% similar when OB and EB components are considered,

whereas such statistics are 83% and 78%, respectively, for the textually similar du-

plicate pairs. Thus, even at the component level, textually dissimilar duplicate bug

reports displayed lower similarity ratios.

In other words, missing components and component-level differences might have

led to their overall textual dissimilarity. We also record several qualitative insights

during our manual analysis of textually similar and textually dissimilar duplicate bug

reports. They are outlined as follows.

(a) Shared phrases. Textually similar duplicate bug reports have more shared

phrases (e.g., Bigram, Trigram) than unique words (e.g., unigram). For example,

rather than the word ”scroll”, phrases such as ”horizontal scroll”, and ”horizontal

scroll installation” are more prevalent in these reports.

(b) Components’ prevalence. Observed Behaviors (OB) and Expected Be-

haviors (EB) are more prevalent in textually similar duplicate bug reports, which

could lead to their increased textual similarity. We found up to 90% overall similarity

between two duplicate reports from this category.

(c) Missing components. We observed a higher percentage of missing compo-

nents in textually dissimilar duplicate bug reports than in textually similar ones. Bug

reports with missing components are likely to have lower similarity scores. Although

we noticed minimal keyword overlaps, the root cause was mostly similar for both bugs

from the same duplicate pair.

(d) Unique phrases. Textually dissimilar duplicate bug reports often use com-

pletely unique phrases, which could lead to their dissimilarity. We found that although

the EB was somewhat similar, the OB and S2R components were written differently

for the two bug reports of the same duplicate pair.

Summary of RQ2: Textually similar and textually dissimilar duplicate bug re-

ports are different in terms of their descriptive statistics (e.g., skewness), underlying

semantics (e.g., t-SNE clusters), and prevalence of structural components. In par-

ticular, textually dissimilar duplicate bug reports often miss important components

such as expected behaviors (EB) or steps to reproduce (S2R), which could lead to

their textual dissimilarity within each pair.

47

3.3.3 Answering RQ3: Does domain-specific embedding help improve

the detection of textually dissimilar duplicate bug reports?

From RQ1 and RQ2, we see that textually similar and dissimilar duplicate bug reports

could be different in their lexicon, underlying semantics, and structures. Our analysis

above also shows that the performance gap between these two sets is the smallest

when the ML-based approach is used for duplicate bug report detection (RQ1). ML-

based approaches might be able to capture more contextual information than the

other approaches, which could be useful for the detection task [37, 38, 39].

In RQ1, we used pre-trained word embeddings from GloVe to train our Siamese

CNN model [52] for duplicate bug report detection. Pre-trained word embedding has

proven to be invaluable for improving the performance of various NLP tasks (e.g., text

classification [99], sentiment analysis [80]). However, GloVe has been pre-trained on

natural language texts (e.g., Wikipedia) [54], which might not be relevant to the texts

from bug reports. Thus, we use domain-specific embedding to retrain our Siamese

CNN model. We set the max token size to 20,000 and the embedding dimension to

100, which are similar to the parameters used in RQ1. We generate the embedding

matrix with Skip-gram algorithm [57], use the whole dataset of 92,854 bug reports,

and apply the same deep learning architecture to Siamese CNN, as used in RQ1 [52].

Datasets constructed from bug-tracking systems are often heavily imbalanced.

The number of duplicate bug reports is considerably smaller than that of non-duplicate

bug reports [15]. Hence, we use oversampling [81] to handle the data imbalance prob-

lem during model training [81]. To the best of our knowledge, the original work

[52] did not use sampling in their Siamese CNN model. However, for an in-depth

investigation, we replicate another variant of the original DL-based model [52] apply-

ing oversampling. Table 3.10 summarizes the experimental results of our DL-based

model for three different scenarios: pre-trained embedding only (original work [52]),

pre-trained embedding + oversampling, and domain-specific embedding + oversam-

pling. When compared between these model scenarios– pre-trained embedding +

oversampling and domain-specific embedding + oversampling, we see the noticeable

impact of domain-specific embeddings on duplicate bug report detection.

From Table 3.10, we see that in terms of F1-measure, the model’s performance

with textually dissimilar duplicate bug reports has increased by 1.18% for Eclipse,

48

Table 3.10: Impact of domain-specific embeddings (%) on duplicate bug report de-
tection

Metric Textually Similar Textually Dissimilar

Eclipse

AUC 56.31 53.54

Recall 51.00 51.00

Precision 52.00 51.00

F1 51.49 51.00

Firefox

AUC 56.03 55.16

Recall 61.00 60.00

Precision 63.00 61.00

F1 61.98 60.50

Mobile

AUC 64.98 62.25

Recall 70.00 69.00

Precision 73.00 69.00

F1 71.47 69.00

6.56% for Firefox, and 3.21% for Mobile. Furthermore, the AUC improved by 6.56%

for Eclipse and remained comparable for the other two systems. Thus, domain-specific

embeddings have a positive impact on detecting textually dissimilar duplicate bug re-

ports. However, they have mostly negative impacts, except in a few cases, on detecting

textually similar bug reports. From Table 3.10, we see that the model’s F1-measure

decreased by 7.24% for Eclipse and 4.32% for the Mobile system. Furthermore, the

AUC decreased by 10.48% for the Mozilla system. Thus, while domain-specific em-

beddings have the potential to tackle the challenge of textual dissimilarity, they have

a mixed impact on detecting duplicate bug reports.

Summary of RQ3: The use of domain-specific embeddings (e.g., trained on bug

reports) improves our model’s performance for textually dissimilar duplicate bug re-

ports (e.g., up to 6.56% in F1-measure for Firefox). However, these embeddings

have either negligible or negative impacts on detecting textually similar duplicate

bug reports.

49

3.4 Threats to Validity

We identify a few threats to the validity of our findings. In this section, we discuss

these threats and the necessary steps taken to mitigate them as follows.

Threats to internal validity relate to experimental errors and human biases

[100]. Traditional bug tracking systems (e.g., Bugzilla) have thousands of reports

whose quality cannot be guaranteed, which could be a source of threat. Bug re-

ports often contain poor, insufficient, missing, or even inaccurate information [23].

To address the issue, we apply standard natural language preprocessing and token

threshold to them and also check for missing features in each bug report. Another

potential source of threat could be the replication and reproduction of existing work.

The replication package was unavailable for the BM25 and Siamese CNN models, and

we had to re-implement them. However, we did it carefully using standard libraries

and corresponding papers, tuned the parameters, and reported their best results.

We use TF-IDF and cosine similarity to determine the textual similarity between

any two duplicate bug reports. TF-IDF and cosine similarity have been frequently

used to determine the textual similarity between two documents for the last 50 years

[101]. Besides, we also used N-gram-based similarity and quartile analysis to system-

atically separate the textually similar and textually dissimilar duplicate bug reports

(Section 3.2) and report the detailed similarity measures for replication (see Table

3.2 Thus, the threats concerning similarity calculation and construction of two bug

report groups might be mitigated. When replicating and reproducing the existing

methodologies (BM25, LDA+GloVe, Siamese CNN), we have carefully followed their

original work.

Threats to conclusion validity. The observations from our study and the con-

clusions we drew from them could be a source of threat to conclusion validity [102].

In this research, we answer three research questions using 92,854 bug reports from

three different subject systems and re-implementing three existing techniques. We

use appropriate statistical tests (e.g., Wilcoxon Signed Rank) and report the test

details (e.g., p-value, Cliff’s delta) to draw any conclusion. Thus, such threats might

also be mitigated.

Threats to construct validity relate to the use of appropriate performance met-

rics. We evaluate BM25 and LDA+GloVE techniques with Recall-rate@K and ML

50

model with AUC, precision, recall, and F1-measure, which have been used previously

[23]. Thus, such threats might also be mitigated.

3.5 Related Work

3.5.1 IR-based duplicate bug report detection

IR approaches rely on the textual overlap between query bug reports and candidate

bug reports for duplicate detection. Runeson et al. [11] first use a simple approach,

namely Bag of Words (BOW), to tally the frequency of words and then use BOW-

model to detect duplicate bug reports. They determine the similarity between two bug

reports using cosine, Jaccard, and dice similarity measures. However, the BOW-based

approach could be biased towards large documents and might not be able to capture

the semantics of a bug report precisely [103]. Wang et al. [12] later improved this

technique using TF-IDF [104] and quantify the similarity of two document vectors.

Later, they used BM25 [75] as a traditional IR-based model for duplicate bug

report detection. Aggarwal et al. [15] demonstrate that BM25F, an improvement of

BM25, is more suitable for weighting words in diverse domains. Like us, they also

use domain-specific, categorical, and textual features. Sureka and Jalote [13] use n-

gram models for textual similarity calculation during duplicate bug report detection.

In particular, they focus on character-level language models rather than word-level

ones. We also use n-gram-based similarity to separate textually similar and textually

dissimilar duplicate bug reports.

Chaparro et al. [76] use three strategies to reformulate a query bug report and use

IR to detect duplicate bug reports. Later, Cooper et al. [105] propose a duplicate bug

report detection for video-based bug reports where they make use of text retrieval

and computer vision methods. Since we focus on textual bug reports, their work

might not be a great fit. In our research, we thus use BM25, a popular IR baseline,

to investigate the impacts of textual dissimilarity on duplicate bug report detection.

51

3.5.2 Topic modeling-based duplicate bug report detection

IR-based approaches might suffer from Vocabulary Mismatch Problems [25]. Topic

Modeling has the potential to tackle such problems concerning textual similarity cal-

culation [66]. Alipour et al. [16] employ the Latent Dirichlet allocation (LDA) model

to capture contextual information from history (e.g., prior knowledge on software

quality) and leverage the information in duplicate bug report detection. Aggarwal

et al. [15] capture domain-specific contextual information to improve duplicate bug

report detection.

Nguyen et al. [35] combine IR and topic-based features to improve duplicate bug

report detection. Recently Akilan et al. [51] propose a hybrid model that combines

the Topic Modeling (e.g., LDA) with pre-trained word embedding (e.g., GloVe) for

duplicate bug report detection. We replicate their technique carefully for our experi-

ments, and detailed results can be found in Table 3.3.

In another research, Budhiraja and Shrivastava [106] combines Latent Dirich-

let Allocation (LDA) and domain-specific word embeddings. Similarly, we leverage

domain-specific embedding to counteract the impact of textual dissimilarity in dupli-

cate bug report detection (RQ3).

3.5.3 Machine learning and deep learning–based duplicate bug report

detection

Unlike the above two methodologies, ML can detect non-linear relationships between

any two bug reports for duplicate detection [37, 38, 39]. Sun et al. [19] first used a

Support Vector Machine (SVM) to design a discriminative model for detecting du-

plicate bug reports. However, their approach lacks rigorous validation. Klein et al.

[20] design several models using K-NN, Linear SVM, RBF, Decision Tree, Random

Forest, and Naive Bayes to classify duplicate bug reports. Although clustering can

be a useful technique in some contexts, it is not a suitable method for duplicate bug

report detection due to its lack of interpretability, limited ability to handle complex

and multi-dimensional data with multiple features (e.g., summary, description), and

sensitivity to imbalanced dataset [107].

Deshmukh et al. [52] used the Siamese variations of CNN and RNN to design a

52

deep-learning model for duplicate bug report detection. We replicate their work for

our experiments. Rocha and Carvalho [108] incorporate the attention mechanism into

the Siamese network for semantic and context-based embedding. Xie et al. [109] pro-

pose an architecture, namely DBR-CNN, where CNN is used to encode the textual

data and logistic regression to classify each pair of bug reports as either duplicate or

non-duplicate.

To summarize, we replicate three existing techniques on duplicate bug report

detection from IR, Topic-Modeling, and Deep Learning. Then we conduct experi-

ments using a total of 92,854 bug reports to better understand the impacts of textual

dissimilarity on duplicate bug report detection. To our best knowledge, this is the

first attempt to comprehensively understand the impacts of textual dissimilarity on

duplicate bug detection, which makes our work novel.

3.6 Summary

To summarize, automated detection of duplicate bug reports has been an active re-

search topic for over a decade. However, existing approaches might not be sufficient

to detect textually dissimilar but duplicate bug reports. In this paper, we thus per-

form a large-scale empirical study using 92,854 bug reports from three open-source

systems to better understand the challenges of textual dissimilarity in duplicate bug

report detection. First, we empirically demonstrate that existing techniques perform

poorly in detecting textually dissimilar duplicate bug reports. Second, we found that

textually dissimilar duplicates often miss important components (e.g., steps to repro-

duce), which could lead to their textual dissimilarity within the same pair. Finally,

inspired by the earlier findings, we applied domain-specific embedding to duplicate

bug report detection, which provided mixed results. All these findings above warrant

further investigation and more effective solutions for detecting textually dissimilar

duplicate bug reports.

Approximately 80% of the 327 software practitioners from tech giants (e.g., Google,

Meta, Microsoft, Amazon, and Twitter) emphasized on the significance and challenges

of two tasks from bug report management: duplicate bug report detection and bug

localization [3]. Considering the high level of interest from practitioners, a compre-

hensive investigation into these tasks is warranted. Therefore, while this chapter

53

focuses on duplicate bug report detection, in Chapter 4, we conduct our second study

targeting bug localization.

Chapter 4

Bug Localization

The first study in Chapter 3 investigates the challenges in detecting textually dis-

similar duplicate bug reports, which could be 19%–23% of all duplicate pairs. Our

analysis reveals the limitations of three existing approaches when dealing with textu-

ally dissimilar duplicates. While detecting duplicate bug reports remains a challenge

for the developers, they also need to identify the location of a software bug as a part

of bug report management [43]. Duplicate bug report detection and bug localization

are interconnected within the bug report management. Once the duplicate bug report

detection process effectively filters out redundant reports, the developers can concen-

trate on only unique and reduced sets of bugs, which could lead to cost-effective bug

report management. In recent years, Information Retrieval (IR) methods have been

frequently used to detect bugs due to their low cost, but they might not be sufficient

for deep learning systems. Bugs in deep learning software systems are different from

the typical bugs due to their multifaceted dependencies and extrinsic nature. In this

chapter, we present our second study, where we investigate the challenges of detecting

bugs in deep-learning software systems using IR methods.

The rest of this chapter is organized as follows. Section 4.1 provides an intro-

duction to the research work. Section 4.2 presents our experimental design, datasets,

and performance metrics. Section 4.3 discusses our experimental results and discusses

our key findings. Section 4.4 discusses the threats to the validity of our work, and

Section 4.5 discusses the related work.

4.1 Introduction

Software bugs are human-made errors in the code that prevent it from working cor-

rectly [1]. They are often prevalent in modern software systems and could range from

hundreds to thousands in a single system.[2]. Due to the bugs in software systems, the

global economy loses billions of dollars every year [4]. Developers also spend about

54

55

50% of their programming time dealing with software bugs and failures [4]. To fix any

bug, the developers first need to identify the location of a bug within a software sys-

tem, which is known as bug localization [10]. According to a recent survey, 49.20% of

327 software practitioners from several major tech giants (e.g., Google, Meta, Ama-

zon, and Microsoft) consider bug localization as one of the most challenging tasks

during software maintenance [3].

While localizing bugs in traditional software applications (a.k.a, non-deep learning

software systems) remains a challenge, it could even be more challenging in deep learn-

ing applications. Unlike bugs in non-deep learning software systems, deep learning-

related bugs could be hidden in the source code, training data, trained models, or even

deployment scripts [29, 30, 31]. Besides, the use of popular deep learning libraries

(e.g., PyTorch, Caffe, and TensorFlow) could lead to complex bugs [32].

Given the prevalence and costs of software bugs, any automated support to localize

the bugs can greatly benefit software practitioners. Over the years, many approaches

have been designed to localize bugs in traditional software systems using information

retrieval [43, 44, 45, 46], dynamic program analysis [47, 48], and deep learning [33, 34,

49]. However, due to the significant differences between traditional and deep learning

bugs, these existing solutions might not be adequate for localizing the bugs in deep

learning applications.

To date, there exist only a few techniques for detecting bugs in deep learning sys-

tems. Wardat et al. [34] propose to localize bugs in the Deep Neural Network (DNN)

using dynamic and statistical analysis. However, the solution focuses on model and

training bugs only, strongly depends on the Keras library, and achieves a low accu-

racy, which presents significant challenges for widespread adoption in the industry.

Similarly, Kim et al. [50] use basic IR-based techniques, such as rVSM and BM25, to

localize bugs in deep-learning applications but report poor performance without any

comprehensive analysis or explanation. Interestingly, at least 30 techniques adopt IR

to locate bugs in traditional software systems due to their computational efficiency

and lightweight nature [43, 44, 45, 46, 50, 60]. They were also reported to perform

comparably to the complex models (e.g., LDA) [110]. Unlike deep learning-based

techniques, they rely on the textual similarity between bug reports and source code

as a proxy of suspiciousness, which is simple and explainable. Thus, the potential of

56

existing solutions, especially IR-based techniques, for localizing bugs in deep learning

applications is not well understood to date.

In this research, we conduct a large-scale empirical study to better understand the

challenges of locating bugs in deep learning applications. First, we collect a total of

2,365 bugs from deep-learning applications and 2,913 bugs from traditional software

applications, and empirically show how existing techniques (BugLocator [43], BLUiR

[44], BLIA [60]) perform in locating bugs from deep learning applications. Second, we

categorize our collected bugs based on an existing bug taxonomy [62] and found that

certain bugs from deep learning applications (e.g., GPU bugs) are more difficult than

others to locate using IR-based techniques. Finally, we found that deep learning bugs

are connected to artifacts other than source code (e.g., GPU, training data, external

dependencies) and are prone to be extrinsic in nature, which might explain the poor

performance of IR-based techniques for these bugs.

(a) RQ1: How effective are the existing IR-based approaches in localizing

bugs from deep learning software systems?

We evaluated the performance of three existing IR-based approaches (BugLo-

cator [43], BLUiR [44], and BLIA [60]) using two datasets – Denchmark [59]

and BugGL [58]. We found that the performance measures of existing IR-

based techniques are poorer (e.g., 14.50% less MAP for BugLocator, 12.80%

for BLUiR, and 18.40% for BLIA) in localizing bugs from deep learning soft-

ware systems than that of non-deep learning software systems. Our statistical

tests (e.g., t-test [111], Cohen’s D [112]) also report that their performance is

significantly lower. Although our findings reinforce the existing understanding

and belief about the challenges of the bugs in deep learning software systems,

we also substantiate them with solid empirical evidence and demonstrate the

performance gap of existing solutions in localizing the two categories of bugs.

(b) RQ2: How do different types of bugs in deep learning software sys-

tems impact bug localization?

We use an existing taxonomy [62] to classify the bugs in deep learning systems

and evaluated the performance of three existing techniques for each type of

bug. We found that 64.80% of the bugs from deep learning software systems

are related to deep learning (e.g., model, training), whereas 35.20% of the bugs

57

are not related to deep learning. We also found BugLocator and BLUiR to

be promising for detecting model and tensor bugs, respectively, but all three

IR-based techniques experienced difficulty localizing GPU bugs. Our analysis

also showed that bug reports from deep learning applications contain more code

snippets (83.11%) than traditional software (33.24%). Unfortunately, that does

not help much in bug localization, as code snippets alone might not be suffi-

cient to capture the intricacies of the model architecture and training processes.

Thus, our analysis offers valuable insights regarding the nature of different bugs

in deep learning software systems and highlights the specific strengths and weak-

nesses of existing IR-based techniques, which could be useful for improving bug

localization in deep learning software systems.

(c) RQ3: What are the implications of extrinsic bugs in deep learning

systems for bug localization?

Bugs triggered by external entities (e.g., third-party libraries, GPU) are called

extrinsic bugs [42]. Given the frequent use of deep learning libraries and their

external dependencies, the bugs in deep learning applications could be extrinsic

[32]. Since the existing techniques, including IR-based ones, mostly focus on

intrinsic bugs, we investigate how they deal with the bugs from DL systems.

We found deep learning software systems have 40.00% extrinsic bugs, which

is almost four times higher than non-deep learning software systems. We also

found that the performance of bug localization for extrinsic bugs degrades sig-

nificantly (e.g., 7.18% less MAP for BLIA) compared to intrinsic bugs (Table

4.11). We also found a significant correlation between the bugs in deep learning

software systems and the extrinsic factors, which could be valuable insight for

designing effective bug localization solutions for deep learning software systems.

4.2 Study Methodology

Fig. 4.1 shows the schematic diagram of our conducted study. First, we collect bug

reports from two benchmark datasets for two different software systems: deep learning

software systems [59] and traditional software systems [58]. Then, we contrast the

performance of three existing IR-based techniques [43, 44, 60] in locating bugs between

58

Figure 4.1: Schematic diagram of our conducted study on bug localization

59

deep learning software systems [59] and traditional software systems [58]. Second, we

perform an in-depth analysis to understand the challenges of localizing different types

of deep-learning bugs. Finally, we investigate the influence of extrinsic factors on deep

learning bugs and their impact on bug localization. This section discusses the major

steps of our study design as follows.

4.2.1 Construction of dataset

Dataset collection. In our study, we use two benchmark datasets – BugGL and

Denchmark – that have been previously used by the literature [50, 58]. BugGL con-

tains only Python-based traditional software bugs (a.k.a non-deep learning software

systems), whereas Denchmark focuses on deep learning-based software bugs. BugGL

contains a total of 2,913 bug reports from 12 Python projects [58]. On the other

hand, the Denchmark dataset contains a total of 2,365 bug reports from 136 deep

learning software projects (Python based) [59].

Our study focuses on Deep Learning Software Systems (DLSW). Here, we mean

software systems that incorporate deep learning modules, which go beyond deep learn-

ing libraries. Our DLSW dataset includes deep learning frameworks (e.g., Apache

MXNet), engines (e.g., Microsoft ONNX Runtime), libraries (e.g., OpenCV), tools

(e.g., Fairseq), applications (e.g., PhotoPrism), and platforms (e.g., Kubeflow) [59].

DLSW differs significantly from traditional software systems (a.k.a NDLSW) due

to the complexity of model integration, intricate interactions between deep-learning

libraries, and multifaceted dependencies.

Data cleaning and pre-processing. After collecting the data from two bench-

marks, we cleaned and preprocessed them using a set of steps.

Corpus creation. We begin by downloading the latest version of the code reposi-

tories, ensuring that we have the most up-to-date code for analysis. Next, we extract

Git tags, which serve as reference points for identifying specific versions of the code.

To create a robust search space for bug localization, we detect the project version

from each bug report and capture the corresponding version of code from the repos-

itories. We used heuristics from Kim et al. [50] to capture the buggy versions of a

project.

Query construction. In IR-based bug localization, bug reports are treated as

60

Table 4.1: Study dataset for bug localization

Dataset Projects Bug Reports
Source Files Buggy Files

Mean Max Mean Max

Denchmark 136 1795 441.60 3,559 2.60 227

BugGL 12 1795 420.50 3,306 2.35 198

queries that are executed to detect the relevant source documents from the corpus.

We construct a repository of bug reports by parsing the original datasets (e.g., Dench-

mark & BugGL) and extracting important information such as bug IDs, descriptions,

and timestamps. We use timestamps to divide the bug reports by relevant project

versions. We construct the query by extracting tokens from the title and description

of bug reports, removing stop words, stemming each word, and splitting the tokens.

Meta data extraction. We also capture the historical context of the bugs by ex-

tracting commit history information for the repositories, including commit messages,

authors, timestamps, and code changes history, using a set of heuristics provided by

Youm et al. [60]. This information provides valuable insights into the evolution of the

codebase and the bugs over time.

Ground truth construction. To evaluate the performance of the bug localization

approaches, we collect ground truth files that contain the correct locations of bugs in

the code from both of the original datasets.

To ensure a fair performance comparison of the bug localization techniques be-

tween Denchmark and BugGL, we have selected an equal amount of data from both

datasets using probability sampling (1793 bug reports from each dataset), which have

∼95% confidence interval and 5% error margin [113]. We use the principle of ran-

domization for selecting the subsets [114] to avoid any bias. We also took measures

to prevent any overlap of bugs or projects between the two datasets.

4.2.2 Replicating of existing techniques for experiments

At least 30 approaches adopt IR methods for localizing software bugs due to their

computational efficiency and lightweight nature [17]. Unlike Deep Learning (DL)-

based techniques, they rely on the textual similarity between bug reports and source

code as a proxy of suspiciousness, which is explainable. Our primary objective was to

61

better understand the challenges of localizing bugs in DL applications. Given their

popularity and explainability, we thus used IR-based techniques in our experiments.

To determine the potential of IR-based methods for detecting deep learning bugs,

we used three baseline techniques: BugLocator [43], BLUiR [44], and BLIA [60].

IR-based localization can be adapted to different granularity levels (e.g., method,

file). We chose file-level granularity since each of the selected baselines frequently

used this granularity. Most of the recent IR-based models are based on these three

primary approaches, with incremental improvements [43, 44, 60]. Thus, they can

be considered as a representative sample of existing IR-based approaches for bug

localization. IR-based approaches assume an explainable relationship between bug

reports and source documents (e.g., lexical similarity) during bug localization. In our

research, we thus deliberately selected IR-based methods to better understand the

characteristics and challenges of deep learning bugs while mitigating any effect of the

compounding factors.

BugLocator [43] uses rVSM, which is a logarithmic variant of term frequency, to

detect relevant source code files against a bug report. It also calculates the SimiScore

(a measure of similarity between a newly reported bug and previously fixed bugs based

on their bug reports) and combines with rVSM to calculate the final relevancy score.

The relevant source code files are then ranked based on their combined scores, and

the top-K documents are marked as buggy. Many all subsequent IR-based techniques

adopted this method due to its simplicity and explainability. Hence, we chose this

method as our first baseline.

BLUiR [44] uses Abstract Syntax Tree (AST) parsing to extract class, method,

variable, and comment fields from a source code document. It also captures two

fields from each of the bug reports (summary & description). A total of eight sepa-

rate searches are performed ((summary, description) x (class, method, variable, com-

ment)). The document scores are summed for the final score to rank buggy files.

BLUiR technique leverages structured elements from source code and bug reports to

localize bugs using IR. We thus choose this as another baseline technique for our

study.

BLIA [60] integrates several items such as textual similarity between bug re-

ports and source documents [43], code structures [44], version control history [46],

62

stack trace analysis [115], and code change analysis in the IR-based bug localization.

While bug reports and source code are useful, code change history can also assist in

bug localization by identifying the changes likely to induce a bug. BLIA has out-

performed several previous techniques: BugLocator [43], BLUiR [44], Amalgam [46],

BRTracer [115], which makes it suitable as the third baseline technique for our study.

Since the original authors’ replication package for these techniques was unavail-

able, we used the publicly available replication package of BugLocator and BLUiR

from Lee et al. [116]. We carefully adapted the BLIA according to the technique

from the original replication package [60] to our datasets.

4.2.3 Performance evaluation

We use three performance metrics for our study — Top-K accuracy (Top@K), Mean

Average Precision (MAP), and Mean Reciprocal Rank (MRR). These metrics have

been frequently used by the relevant literature [43, 44, 46, 49, 60, 115].

4.2.3.1 Top@K

Top-K accuracy (Top@K) measures the percentage of bug reports for each of which

at least one of the buggy files were present in the top-k retrieved files. We have used

K= 1, 5, 10 for this research.

4.2.3.2 Mean Average Precision

Precision@K measures precision at each individual buggy source document’s position

in a ranked list. Average Precision@K (AP) computes the average precision for all

buggy documents in a search query list. Mean Average Precision (MAP) is the aver-

age AP@K value across all queries in a system.

AP =
1

D

D∑
k=1

Pk × buggy(k) (4.1)

MAP =
1

|Q|
∑
q∈Q

AP(q) (4.2)

Here, AP represents the Average Precision, and D refers to the number of total

results for a query. k represents the position in the ranked list, Pk denotes the precision

63

calculated at the k-th position, buggy(k) determines whether the k-th result in the

ranked list is buggy or not.

4.2.3.3 Mean Reciprocal Rank

Mean reciprocal rank (MRR) calculates the average of the reciprocal ranks for a set

of queries.

MRR(Q) =
1

|Q|
∑
q∈Q

1

firstRank(q)
(4.3)

where MRR(Q) represents the Mean Reciprocal Rank for a set of queries Q, |Q|
represents the total number of queries in the set Q, q ∈ Q represents each query

in the set Q, firstRank(q) represents the rank of the first correctly retrieved buggy

document for the query q.

4.3 Study Finding

4.3.1 Answering RQ1: How effective are the existing IR-based

approaches in localizing bugs from deep learning software

systems?

Table 4.2 compares the performance of three IR-based approaches in bug localization

between Deep Learning Software Systems (Deep Learning Software Systems (DLSW))

and Non-Deep Learning Software Systems (Non-Deep Learning Software Systems

(NDLSW)). We used three different evaluation metrics – Top@k, MRR, and MAP,

for our comparative analysis. We see notable differences in performance between the

two types of systems when evaluating BugLocator, BLUiR, and BLIA methods. In

particular, for BugLocator, the difference in Top@1 is relatively small – 4.60%, while

the differences in MAP and MRR are 14.50% and 15.50%, respectively. On the other

hand, for BLUiR, the difference in Top@1 is more apparent (e.g., 11.00%), and the

differences in MAP and MRR are also substantial, 12.80% and 9.70%, respectively.

Finally, for BLIA, the difference in Top@1 is 8.90%, while the differences in MAP and

MRR are 18.40% and 19.90%, respectively. Fig. 4.2 visualizes the MAP measures

using bar plots, and the differences are clearly visible. Overall, the results show that

all three IR-based approaches for bug localization perform lower when localizing bugs

in deep learning software systems, and the trend is consistent across all three metrics.

64

Figure 4.2: Performance comparison of existing IR-based approaches (BugLocator,
BLUiR, BLIA) between deep learning software systems and non-deep learning soft-
ware systems

Table 4.2: Experimental result of existing IR-based approaches (BugLocator, BLUiR,
BLIA) for bug localization

Method Top@1 Top@5 Top@10 MRR MAP

DLSW

BugLocator 0.344 0.647 0.745 0.371 0.314

BLUiR 0.201 0.472 0.585 0.356 0.257

BLIA 0.411 0.690 0.790 0.423 0.355

NDLSW

BugLocator 0.390 0.671 0.794 0.526 0.459

BLUiR 0.311 0.575 0.680 0.453 0.385

BLIA 0.500 0.768 0.855 0.622 0.539

DLSW= Deep Learning Software Systems, NDLSW=Non-Deep
Learning Software System

We also perform statistical tests to determine the significance of the performance

gap between the two types of systems (DLSW and NDLSW) (Table 4.3). We took

the results of MRR and MAP for each of the three approaches. Then, we performed

Shapiro-Wilk normality test [92], which reported normal distribution for those met-

rics. Then we used appropriate parametric and effect size tests to compare the result

values from the two types of systems. For the normal distribution, we used paired

t-test as the parametric test [111]. In all significance tests, the p-values were less

than the threshold (0.05) for each of the three approaches. Thus, the null hypothesis

65

Table 4.3: Statistical tests for the performance gap between the deep learning software
system and non-deep learning software system using existing IR-based techniques
(BugLocator, BLUiR, BLIA)

Method Metric Significance (p-value) Effect Size (Cohen’s D)

BugLocator
MRR 0.00009063** Medium (0.3954)

MAP 0.000035** Medium (0.4182)

BLUiR
MRR 0.0395* Medium (0.2722)

MAP 0.0298* Medium (0.3357)

BLIA
MRR 0.00000505*** Medium (0.4625)

MAP 0.00000576*** Medium (0.4597)

can be rejected for all comparisons. In other words, the performances of all three

IR-based techniques significantly differ between the two types of systems.

While the significance of a result indicates how probable it is that it is due to

chance, the effect size indicates the extent of the difference [117]. Hence, we performed

the Cohen’s D effect size test [112], and our experiments found amedium effect size for

all cases (Table 4.3). Thus, our results from effect size tests reinforce the above finding

from significance tests. In other words, the existing techniques perform significantly

poorly in localizing bugs from deep-learning software systems. Even though our

findings above match natural intuition, we performed extensive experiments using

three different baselines, which resulted in strong empirical evidence. Thus, our

findings reinforce the existing understanding and belief about the challenges of the

bugs in deep learning software systems but we also substantiate it with solid empirical

evidence and demonstrate the performance gap of existing solutions in localizing the

two categories of bugs.

Summary of RQ1: We compare the performance of three IR-based bug localization

approaches between deep learning software systems and non-deep learning software

systems using three evaluation metrics. Our findings show that all three approaches

perform significantly lower (e.g., 18.40% less MAP for BLIA) when localizing bugs

from deep learning software systems.

66

Figure 4.3: Prevalence ratio of each category of bugs from deep learning software
systems

4.3.2 Answering RQ2: How do different types of bugs in deep learning

software systems impact bug localization?

In this research question, we investigate the characteristics of bugs in deep learn-

ing software systems through manual analysis. First, we employ stratified random

sampling to construct a random sample that accurately represents the original data

distribution with a balanced presence of instances from each class [118]. We select

385 bugs from both of our datasets that have ∼95% confidence interval and 5% error

margin.

We performed our first manual analysis using 385 bug reports from Denchmark.

We manually labeled them as deep learning-related (DL) bugs and non-deep learning-

related (NDL) bugs. Then we labeled the deep learning-related bugs into five cat-

egories: Model, Training, Tensor, API, and GPU, based on the existing taxonomy

of Humbatova et al. [62]. We also analyzed the bug reports, associated develop-

ers’ discussions, and bug-fix code changes as a part of the labeling. Two authors of

this work labeled the sample dataset separately and achieved a Cohen’s kappa [119]

of 0.80, which indicates a substantial agreement between the authors. Our manual

analysis above was documented using an Excel sheet, with a total of ≈55 hours spent

by each author.

Prevalence ratio of deep learning-related bugs: We found that 64.80% of

the bugs from deep learning software systems are related to deep learning algorithms

(DL bugs). In particular, we found 27.30% training bugs, 13.30% model bugs, 5.50%

tensor bugs, 14.30% API bugs, and 4.40% GPU bugs (Fig. 4.3). This distribution

67

Table 4.4: Experimental result of existing bug localization techniques (BugLocator,
BLUiR, BLIA) of each category of bugs in deep learning software systems

Method NDL Bug Model Training Tensor API GPU

MAP

BugLocator 0.362 0.368 0.312 0.235 0.446 0.183

BLUiR 0.292 0.293 0.359 0.601 0.258 0.266

BLIA 0.437 0.357 0.345 0.448 0.395 0.290

MRR

BugLocator 0.417 0.532 0.386 0.358 0.478 0.223

BLUiR 0.334 0.387 0.427 0.682 0.289 0.411

BLIA 0.381 0.472 0.419 0.553 0.447 0.457

MAP= Mean Average Precision, MRR=Mean Reciprocal Ranking

informs us where the debugging efforts should be concentrated. Our findings also

indicate that the majority of DL bugs are related to model training. Training is a

crucial step in deep learning that involves large amounts of data, complex learning

algorithms, and optimization techniques, making it more susceptible to bugs.

Prevalence ratio of non-deep learning-related bugs: We found that 35.20%

of the bugs from deep learning software systems are not related to deep learning al-

gorithms (NDL bugs). Non-deep learning-related bugs do not directly affect the

functionality of the deep learning model, but they still lead to unexpected, erroneous

behaviors in a software system. Bug 1426 in Table 2.3 illustrates an example of an

NDL bug, which occurs when the tests from the CI pipeline are spread across multiple

Windows machines. Although it is not directly connected to the deep learning mod-

ule, it originated from the PyTorch-Ignite project, which is indeed a deep learning

software system.

Localization of bugs in deep learning software systems: To gain a deeper

understanding of the challenges in localizing deep learning bugs, we further analyze

our results from RQ1 for each category. To do this, we used stratified random sampling

to select 100 samples from each category of bugs and analyze the performance of

our baselines. To ensure the robustness of our findings, we repeated this process

three times and used different sample data each time. We then averaged the results

obtained from the three evaluations and presented them in Table 4.4. We conducted

an in-depth analysis of each type of DL bug to understand their inherent challenges

and gain a deeper understanding of the factors impacting the overall performance of

68

Figure 4.4: Performance of existing IR-based bug localization techniques (BugLoca-
tor, BLUiR, BLIA) for each type of bug in deep learning software systems

Table 4.5: Example of a model bug

Model Bug (Bug ID: 313)
Title

A bug in GPT2Tokenizer
Description

GPT2Tokenizer fails to recover a sentence
\”BART is a seq2seq model.\”
with encoded ids of it.
The output sentence is \”BART is a seqseq model.\”.
It should be related to numbers’ processing.
A script to show the bug is here:
https://github.com/tanyuqian/texar-pytorch
/blob/master/examples/bart/gpt2 tokenizer bug.py

IR-based techniques. The analysis with examples is discussed as follows.

• Model bugs: From Table 4.4, we see that BugLocator performs the highest

for model bugs, outperforming BLUiR and BLIA. This could be attributed

to BugLocator’s ability to capture syntactic and semantic information from the

bug reports, source code, and similar fixed bugs. Model bugs are often connected

to a model’s type, properties, and layers. According to our observation, the texts

used to describe the issues in bug reports have significant vocabulary overlap

with that of the model.

Table 4.5 shows an example bug report that discusses a model bug from the

CASL.ai project. Fig. A.1 shows a code snippet responsible for the bug. The

bug in the GPT2Tokenizer lies in the bpe method, causing faulty tokenization

69

and impacting the functionality of the GPT2 language model, thus being con-

sidered a model bug. The incorrect character merging during byte pair encoding

leads to faulty tokenization.

BugLocator incorrectly retrieves ”SentencePieceTokenizer.py” (Fig. A.2) as the

Top@1 result. It uses lexical overlap between bug reports and source code to

identify buggy files. We found four main keywords from the bug report (Table

4.5) — GPT2Tokenizer, recover, seq2seq, and model— overlapping with an

incorrect file (i.e., SentencePieceTokenizer.py). This lexical similarity could

have led to an incorrect localization. Interestingly, the ground truth file was

retrieved at the top 8th position (Fig. A.1) by BugLocator. According to our

analysis, the bug report contains a specific keyword (e.g., GPT2Tokenizer) that

matched the actual bug’s characteristics and class. BLIA retrieves the same

ground truth file at the 17th position, which is less than ideal.

On the other hand, the BLUiR approach retrieves ground truth code at a very

low position (Top@131). Leveraging the similarity between bug reports and

source code elements might not be effective for locating model bugs. In this

example of a model bug (Table 4.5), the tokenizer bug is illustrated using an

example sentence to tokenize – ’BART is a seq2seq model.’ in the bug report.

BLUiR incorrectly retrieved the source code file with the ’Seq2Seq’ class at

the Top@1 position (Fig. A.3). One possible explanation might be because

some of the important keywords (e.g., ’seq2seq’, ’encode’, and ’model’) from

the bug report aligned with incorrect code elements (e.g., ’seq2seq’ class) that

were not relevant to the actual bug. The misalignment occurs due to BLUiR’s

heavy reliance on structural elements (e.g., class, method, variable) and less

consideration of the semantic similarity with the bug report.

• Training bugs: All three IR-based approaches perform poorly in localizing

training bugs. As shown in Table 4.4, BLUiR performs slightly better than Bu-

gLocator and BLIA. Table 4.6 exemplifies a training bug in the fast.ai project

where the combined usage of Gradient Accumulation and the MixedPrecision

Callback leads to improperly scaled and artificially high training loss values.

To understand why BLUiR performed slightly better than other techniques in

70

Table 4.6: Example of a training bug

Training Bug (Bug ID: 3048)
Title

Gradient Accumulation + Mixed Precision
shows artificially high training loss

Description
OB: The bug occurs when Gradient Accumulation
and the MixedPrecision Callback are both used.
Gradient Accumulation runs before Mixed Precision
and causes the after backwards to not be run,
meaning that the loss is not unscaled before it is logged.
This means that very large losses, such as 6000000+, are to be logged.
S2R: seed=random.randint(0,2**32-1)
with no random(seed):
db=synth dbunch(bs=8,n train=1,n valid=1,cuda=True)
learn = synth learner(data=db)
learn.fit(1, lr=0.01)
#start without gradient overflow
max loss scale=2048.0
with no random(seed):
db=synth dbunch(bs=1,n train=8,n valid=8,cuda=True)
learn = synth learner(data=db,cbs=[GradientAccumulation(n acc=8)])
learn.to fp16(max loss scale=max loss scale)
learn.fit(1, lr=0.01)
The training loss will be very high, 5000+ for fp16.
fp32 will be reasonable
EB: Similar training loss
between the fp32 and fp16 versions. <2 difference in loss.
EB=Expected Behaviour, S2R=Steps to Reproduce, OB=Observed Behaviour

locating training bugs, we selected an instance where BLUiR successfully re-

trieved the ground truth file (Fig. A.4) at the Top@2 ranking. The finding can

be explained since BLUiR can leverage structured elements from source code

and bug reports. In the given bug report (Table 4.6), the bug causes artifi-

cial high training loss when both Gradient Accumulation and MixedPrecision

Callback are used. BLUiR was able to locate this training bug from the use

of structured IR, which effectively captured the hierarchical structure of code,

including classes, methods, and variables. This allowed for the identification of

similarities between the code structure and the bug report.

71

Table 4.7: Example of a tensor bug

Tensor Bug (Bug ID: 13760)
Title

nd.slice does not return empty tensor when begin=end
Description

OB: For mxnet.ndarray.slice(data, begin, end),
if begin=end, it does not return an empty tensor.
Instead, it returns a tensor with the same shape as the data.
Environment info:
......
......
......
S2R: import mxnet.ndarray as nd
a = nd.normal(shape=(4, 3))
nd.slice(a, begin=0, end=0)
nd.slice(a, begin=2, end=2)
Detailed BR: https://github.com/apache/mxnet/issues/13760
BR=Bug Report, S2R=Steps to Reproduce, OB=Observed Behaviour

On the other hand, BugLocator has the lowest performance in localizing training

bugs, suggesting that similarity analysis between bug reports and source code

might not be sufficient for identifying these bugs. For the same bug example (Ta-

ble 4.6), BugLocator ranked the ground truth file at Top@23 while incorrectly

selecting a different file (Fig. A.5) as the Top@1 buggy file. In this case, the

bug report and the incorrectly retrieved file by BugLocator share more than 10

important keywords (e.g., ”GradientAccumulation”, ”loss”, ”after-backward”),

which contributes to a high similarity score with the incorrect file than the

ground truth file.

• Tensor bugs: BLUiR outperforms BugLocator and BLIA in localizing tensor

bugs, which may be attributed to its ability to analyze source code information.

Tensor bugs are more likely to be connected with code structures (e.g., incorrect

or invalid tensor shape) [62]. BLUiR’s ability to leverage structural information

from the code might have led to its higher performance.

BLUiR successfully retrieved the buggy file in the Top@1 position for the tensor

bug in Table 4.7. The bug report clearly described the issue with the ”nd.slice”

function in MXNet, where it should return an empty tensor when the ”begin”

72

and ”end” parameters are equal. Instead, it returns a tensor with the same

shape as the data. By parsing the code’s AST, BLUiR identified the relevant

code snippet in the testslice() function and found similarity with the bug report,

which led to the accurate localization of the bug.

BLIA retrieved the ground truth file at Top@12. However, our analysis revealed

that incorporating the stack trace information negatively impacted bug local-

ization performance. Stack trace information might be less effective for tensor

bugs because they are typically related to data manipulation and computations

rather than code execution flow or call stack. By excluding the stack trace from

the BLIA approach, the ranking improved to Top@9 from Top@12.

BugLocator’s difficulty in accurately locating tensor bugs is demonstrated by its

retrieval of the ground truth file at Top@47 (Fig. A.6) and the incorrect file at

Top@1 (Fig. A.7). It can be attributed to its reliance on textual similarity. We

found that BugLocator’s emphasis on semantic similarity from the overlapping

of trivial words (e.g., environment, system, and hardware) with the incorrect

file (Fig. A.7) led to the incorrect ranking.

• API bugs: From Fig. 4.4, we observe that BugLocator and BLIA achieve

relatively high performance in localizing API bugs with MAP values of 44.60%

and 39.50%, respectively. In contrast, BLUiR performs poorly, with a MAP

value of 25.82%. One possible explanation is that BLUiR relies heavily on

the structural information of the source code, which may not be effective in

identifying bugs related to APIs (e.g., incorrect API calls). These bugs may

not involve changes in the code structure in the source code but instead involve

issues in API usage or interaction. BugLocator and BLIA, on the other hand,

may capture the textual similarity between bug reports and source code more

effectively, enabling them to localize API bugs better. In the example involving

an API bug in MXNET 1.4.0 (Table 3.10, BugLocator successfully ranked the

buggy code at the 4th position, while BLIA ranked it at the 5th position (Fig.

A.8. However, when stack trace information was included and commit history

was omitted, BLIA improved its performance and ranked the bug in the 2nd

position. This demonstrates that stack trace information is helpful in locating

73

Table 4.8: Example of an API bug

API Bug (Bug ID: 13862)
Title

[1.4.0] unravel index no longer works with
magic ’-1’ in shape parameter as in 1.3.1

Description
OB: The unravel index op seems to no longer correctly
work with ’magic’ shape values, such as ’-1’s.
The following example still works with mxnet 1.3.1,
but does not on the latest master
(it returns all zeros in the result
without throwing an error) or 1.4.0.
We have a use case for this in Sockeye.
Environment info (Required):
. . .
S2R: Input data taken from Sockeye unit tests.
x = mx.nd.array([335, 620, 593, 219, 36], dtype=’int32’)
mx.nd.unravel index(x, shape=(-1, 200))
With mxnet==1.5.0b20190111, the result is incorrect:
With mxnet==1.3.1, the result is correct:
However, if the shape parameter is fully specified
(shape=(5,200)), mxnet==1.5.0b20190111
returns the correct values.
Detailed BR: https://github.com/apache/mxnet/issues/13862
BR=Bug Report, S2R=Steps to Reproduce, OB=Observed Behaviour

API bugs by tracing the execution flow and highlighting function calls and

interactions within the API. In contrast, commit history provides a high-level

overview of code changes but lacks the specific details needed for pinpointing

the exact cause of an API bug.

On the other hand, BLUiR performed poorly, as it ranked the buggy file in the

top 38. In this example (Fig. A.9), BLUiR retrieved a file containing the class

”NDArray” due to parsing the code through the AST, even though the bug

was related to the MXNet API. Utilizing the code structure is not particularly

advantageous when it comes to identifying bugs in API usage.

• GPU bugs: Our investigation into the deep learning bugs reveals that GPU

bugs which are related to the usage of GPU devices while working with DL, are

the most difficult to localize for all three existing IR-based approaches. One

74

Table 4.9: Example of a GPU bug

GPU Bug (Bug ID: 1238)
Title

How to use multiple GPUs?
Description

I want to use a single machine with multiple
GPUs for training, but it has no actual effect.
OB: Only one single GPU is doing all the computations,
the other three remain idle. When following @FontTian
and inserting distribution strategy=strat into the
initialization of the image classifier, the same
error RuntimeError: Too many failed attempts
to build the model occurs. The same happens
when adding tuner=’random’ to ak.ImageClassifier.
As suggested by @haifeng-jin, I ran a basic
KerasTuner example on 4 GPUs which
worked just fine. Furthermore, in #440 (comment),
I read that the clear session() before every
run might wipe out the GPU configuration.
Removing this line from the code did not change
anything with respect to the errors/problems stated above.
I am specifying 4 GPUs (out of 8) to train
the current model in a distributed fashion,
using tf.distribute.MirroredStrategy() since
tf.keras.utils.multi gpu model() is
deprecated and removed since April 2020.
S2R: def make model(ckpt path, max try = 1):
......
run search(checkpoint, max try = 3)
Detailed BR: https://github.com/keras-team/
autokeras/issues/1238
BR=Bug Report, S2R=Steps to Reproduce, OB=Observed Behaviour

possible explanation could be the complex nature of GPU bugs, as they can be

triggered by a variety of factors, such as hardware and software compatibility

issues, and might not even be located in the source code (a.k.a extrinsic GPU

bug) [62]. We found 17.65% of the GPU bugs that can be found in the source

code (a.k.a intrinsic GPU bug) (Table 4.10), i.e., the wrong reference to a GPU

device, failed parallelism, incorrect state sharing between subprocesses, and

faulty transfer of data to a GPU device.

75

We demonstrated an example of a GPU bug (Table 4.9) that can be found

within the codebase (a.k.a intrinsic). The bug is connected to the use of multiple

GPUs during training. However, due to the bug in the distribution strategy,

only one GPU is active while others remain idle. All three IR-based techniques

performed poorly in locating the actual buggy code for this GPU bug. BLUiR

ranked the ground truth in the top 50, BugLocator at 65, and BLIA at 47.

We observed that there is almost no keyword overlapping and no structural

similarity between the bug report (Table 4.9) and the actual buggy code A.10.

This suggests that these techniques struggled due to the lack of both textual

and code-wise similarity between the bug report and source code, making it

difficult to identify the buggy code for the GPU bug.

• NDL bugs: We found that 35.20% of bugs in deep learning applications are

not directly related to deep learning, but they impact system behavior (e.g.,

failed CI build due to GPU compatibility issues). These bugs are known as

NDL bugs in deep learning software systems. From Table 4.2 and Table 4.4, we

find that NDL bugs in deep learning applications are still more difficult than

traditional bugs to locate using IR-based bug localization techniques. BLUiR

faces significant challenges in locating NDL bugs (MAP: 0.292 and MRR: 0.334).

According to our observation, they are less complex than the deep-learning

counterparts, but they are more prone to be extrinsic than the traditional bugs

(48.15% from Table 4.10). Since existing baseline techniques focus on code-level

artifacts only, they might fall short in detecting these bugs from deep learning

systems.

Overall, there exists a significant variation in the performance of existing IR-based

approaches when localizing various types of deep-learning bugs. Model and API bugs

are the easiest, and GPU bugs are the most difficult to localize using IR-based tech-

niques.

Bug report quality for bugs in deep learning software systems: Our

analysis showed that bug reports from deep learning applications contain more code

snippets (83.11%) than traditional software systems (33.24%). Unfortunately, that

76

Figure 4.5: Prevalence ratio of extrinsic and intrinsic bugs in deep learning software
systems (DLSW) and non-deep learning software systems (NDLSW)

does not help much in bug localization, as code snippets alone might not be sufficient.

Deep learning bugs often involve intricate dependencies that extend beyond specific

code components (e.g., training data bugs and GPU bugs). Complex bugs (e.g.,

gradient instability during training) warrant a deeper understanding of the model

architecture, its dynamic behavior, and training processes, which the code snippets

may not always capture.

Summary of RQ2: We found that 64.80% bugs in deep learning software systems

are related to deep learning algorithms, whereas the remaining bugs are not related

to deep learning. Our analysis shows that model bugs and API bugs are easier to

localize than training and tensor bugs. However, GPU bugs are the most difficult to

localize for each of the three IR-based approaches. Thus, our results not only inform

the distribution of DL bugs but also highlight their challenges through extensive

experiments.

4.3.3 Answering RQ3: What are the implications of extrinsic bugs in

deep learning systems for bug localization?

Most of the IR-based bug localization techniques rely on the similarity between bug

reports and source code. However, if a bug is of extrinsic nature (e.g., originates from

the operating system), simply relying on source code may not be effective for its local-

ization. To investigate the impact of extrinsic bugs in deep learning software systems,

77

we performed a second manual analysis using the same sample datasets from RQ2

(385 bugs from DLSW and 385 bugs from NDLSW). We manually labeled them as

extrinsic and intrinsic bugs based on the heuristics of Rodriguezperez et al. [42]. Two

authors of study analyze the bug reports and associated discussions carefully, consult

the heuristics, and then have labeled the sample dataset separately. It achieved a

Cohen’s kappa [119] of 0.87, which indicates a substantial agreement between the au-

thors. This manual analysis was documented using an Excel sheet, and each author

spent a total of ≈20 hours on the analysis.

Prevalence ratio of extrinsic & intrinsic bugs: We found 40.00% extrinsic

bugs within a total of 385 bug reports from deep learning software systems (Dench-

mark dataset). The notion of extrinsic bugs is relatively new, especially in the case

of bugs from deep learning applications. For a better comparison, we also manually

inspected 385 bugs from non-deep learning software systems (BugGL dataset) and

determined the prevalence ratio of extrinsic and intrinsic bugs. We found only 10.65%

extrinsic bugs in non-deep learning software systems. Thus, deep learning software

systems contain almost four times more extrinsic bugs (Fig. 4.5).

Prevalence ratio of extrinsic & intrinsic bugs from deep learning soft-

ware systems: We randomly select 100 samples for each type of bug from deep

learning software systems (same as RQ2) and determined the prevalence ratio of ex-

trinsic and intrinsic bugs for each type. Table 4.10 shows the results of our manual

analysis for different bug categories in deep learning software systems in terms of

extrinsic and intrinsic bugs. In particular, from Fig. 4.6, we see that the prevalence

ratio of deep learning-related, where extrinsic bugs range from 21.90% to 82.35%,

whereas for non-deep learning-related bugs, the prevalence ratio is 48.15%. This sug-

gests that the deep learning components of a software system might be more likely

to trigger extrinsic bugs than non-deep learning components.

Localization of extrinsic & intrinsic bugs from both benchmarks: To

further analyze the impact of extrinsic bugs on bug localization, we experimented

with our baselines from RQ1 on extrinsic and intrinsic bugs separately. We chose

100 random bugs from each category, repeated the evaluation three times using three

different random subsets, and then calculated the average result for a fair comparison.

From Table 4.11, we notice that bug localization performance from all three ap-

78

Figure 4.6: Prevalence ratio of extrinsic and intrinsic bugs for each category of bugs
from deep learning software systems

Table 4.10: Prevalence ratio of extrinsic and intrinsic bugs in deep learning software
systems

Type Extrinsic (%) Intrinsic (%)

NDL 48.15 51.85

DL

Model 35.29 64.71
Training 21.90 78.10
Tensor 38.10 61.90
API 38.19 61.81
GPU 82.35 17.65

proaches declines for the extrinsic bugs. In particular, BugLocator’s performance for

extrinsic bugs is lower than that when localizing intrinsic bugs, with a MAP value

of 6.30%. On the other hand, BLUiR’s and BLIA’s performance is lower, with a

MAP value of 4.30% and 7.10%, respectively. We also found that BLUiR shows less

performance difference between extrinsic and intrinsic bugs. BLUiR extracts different

structured items, such as API method names and API class names, from the source

code. Thus, even if they reside outside of the current codebase and are invoked from

an external library, they can be matched with relevant keywords from a bug report.

On the other hand, BugLocator might not be able to do that due to its naive ap-

proach, i.e., considering code as regular texts.

Localization of extrinsic & intrinsic bugs from deep learning software

systems: We extended our analysis of extrinsic and intrinsic bugs to both DL bugs

and NDL bugs in deep learning software systems. We randomly selected 100 sample

bugs from each type (DL+Extrinsic, NDL+Extrinsic, DL+Intrinsic, NDL+Intrinsic)

79

Figure 4.7: Performance of existing IR-based approaches (BugLocator, BLUiR, BLIA)
for localizing extrinsic and intrinsic bugs

Table 4.11: Experimental result of existing IR-based bug localization techniques (Bu-
gLocator, BLUiR, BLIA) of extrinsic and intrinsic bug

Method
Extrinsic Intrinsic

MRR MAP MRR MAP

BugLocator 0.366 0.310 0.487 0.373
BLUiR 0.379 0.296 0.402 0.339
BLIA 0.424 0.346 0.497 0.417

to evaluate the performance of all three techniques in bug localization. Table 4.12

also shows that all techniques perform better for intrinsic bugs compared to extrinsic

bugs for both DL and NDL bugs.

From Table 4.12, in the case of extrinsic bugs, we notice that using BugLocator the

performance for DL+Extrinsic bugs is lower than for NDL+Extrinsic bugs. On the

other hand, when using BLUiR, the difference in performance between the two is rela-

tively small, with only a MAP value difference of 2.4%. However, BLIA’s performance

degrades with a MAP value of 6.61% for NDL+Extrinsic bugs than DL+Extrinsic

bugs. Overall, these results suggest that extrinsic bugs are hard to localize whether

they are related to deep learning or not. However, deep learning bugs with extrinsic

nature are being the most difficult to localize.

On the other hand, from Fig. 4.7, we note that the performance of all three

approaches for NDL+Intrinsic bugs is higher compared to that of DL+Intrinsic bugs,

which supports the fact that bugs related to deep learning algorithms (a.k.a DL bugs)

from deep learning applications are more challenging to localize.

Correlation of extrinsic & deep learning-related bugs: To determine the

80

Table 4.12: Experimental result of existing bug localization techniques (BugLocator,
BLUiR, BLIA) of the extrinsic and intrinsic bug for deep learning related bugs and
non-deep learning related bugs

Method DL+Extrinsic DL+Intrinsic NDL+Extrinsic NDL+Intrinsic

MAP

BugLocator 0.287 0.359 0.375 0.405

BLUiR 0.277 0.369 0.301 0.309

BLIA 0.321 0.429 0.382 0.407

MRR

BugLocator 0.371 0.489 0.409 0.476

BLUiR 0.309 0.445 0.296 0.364

BLIA 0.431 0.528 0.404 0.495

MAP= Mean Average Precision, MRR=Mean Reciprocal Ranking

potential correlation between the extrinsic bugs and the bugs in deep-learning soft-

ware systems, we performed a Chi-Square test to determine any significant association

[120]. We conducted three iterations with different sample data to validate the Chi-

Square test, averaging the results. We got a p-value of ≈1.79e-14, which indicates a

strong statistical dependence between the extrinsic bugs and the bugs in deep-learning

software systems. Our manual analysis also supports the hypothesis, showing a higher

prevalence of extrinsic bugs in deep learning software systems compared to traditional

software systems (Fig. 4.5). The prevalence ratio of extrinsic bugs varies from 21.90%

to 82.35% across different deep-learning bug types, confirming a strong correlation

between extrinsic factors and bugs from deep-learning software systems. Our exper-

iments also suggest that extrinsic bugs might have an underlying connection with

deep-learning bugs, which contributes to poor performance in IR-based bug localiza-

tion.

Summary of RQ3: We found that deep learning software systems contain almost

four times more extrinsic bugs than non-deep learning software systems. The perfor-

mance of IR-based bug localization techniques for extrinsic bugs is lower (e.g., 7.18%

less MAP for BLIA) compared to that of intrinsic bugs. Our research also shows a

strong connection between extrinsic bugs and bugs in deep learning applications.

81

4.4 Threats to Validity

We identify a few threats to the validity of our findings. In this section, we discuss

these threats and the necessary steps taken to mitigate them as follows.

Threats to internal validity relate to experimental errors and human biases

[100]. Traditional bug tracking systems (e.g., Bugzilla, GitHub, Jira) contain thou-

sands of bug reports, and their quality cannot be guaranteed. This could be a source

of threat as the bug reports are used as queries in IR-based approaches to locate

the buggy files. Bug reports often contain poor, insufficient, missing, or even inac-

curate information [23]. To address the issue, we apply standard natural language

preprocessing to bug reports.

Another potential source of threat could be the replication of existing work. The

original replication package was unavailable; hence we used the publicly available

version of BugLocator and BLUiR [116]. For BLIA, we reused the author’s replication

package [60]. We validated our implementation of the existing methods using their

original dataset and achieved comparable results (e.g., with differences ≈ 2.00%–

3.00% using MAP).

Threats to conclusion validity. The observations from our study and the

conclusions we drew from them could be a source of threat to conclusion validity

[102]. In this research, we answer three research questions using two different datasets

and re-implement three existing techniques. We use appropriate statistical tests (e.g.,

t-test) and report the test details (e.g., p-value, Cohen’s D) to conclude. Thus, such

threats might also be mitigated.

Threats to construct validity relate to the use of appropriate performance

metrics. We evaluate all the methodologies using MRR, MAP, and Top@K, which

have been used widely by the related work [33, 43, 44, 46, 49, 115, 121]. Thus, such

threats might also be mitigated.

4.5 Related Work

4.5.1 Software bug

Understanding the nature and characteristics of bugs is essential for effective de-

bugging and testing. They can be different across different programming languages

82

Table 4.13: Summary of IR-based bug localization techniques from literature review

Method BR SF BRH VCH HH BRS ST CH MAP

BugLocator 1 1 1 0.30

BLUiR 1 1 1 0.32

Amalgam 1 1 1 1 0.35

Locus 1 1 1 1 0.36

Blizzard 1 1 1 1 0.47

BRTracer 1 1 1 1 1 1 0.33

BLIA 1 1 1 1 1 1 1 0.51

1=Present, BR=Bug Report, SF=Source Code File, BRH=Bug Report History,
VCH=Version Control History, HH=Hunk History, BRS=Bug Report Structure, ST=Stack

Trace History, CH=Commit History, MAP=Mean Average Precision

and development frameworks [122]. Over the last 50 years, hundreds of studies were

conducted to tackle bugs in traditional software systems. Recently, bugs from deep

learning systems have garnered much attention due to their great interest and sig-

nificance. Humbatova et al. [62] proposed a taxonomy of bugs from deep learning

software systems with five main categories - model, training, tensor & input, API,

and GPU. Chen et al. [29] focused on the unique obstacles for deep learning-based

software deployment. According to Islam et al. [123], data bugs and logic bugs are the

most severe in deep-learning software systems. Another study by Islam et al. [124]

showed that deep learning models’ bug and repair patterns significantly differ from

traditional software systems. As a result, research concentrating on deep learning-

based software bug benchmarks is necessary for creating or developing automatic

debugging strategies for deep learning-based software systems.

4.5.2 Information Retrieval-based bug localization

One of the crucial steps toward fixing a software bug is to detect its location within

the software code. Many existing approaches [43, 44, 45, 46, 60] use IR to locate bugs

by matching keywords between a query and the source code.

Zhou et al. [43] introduce BugLocator, which leverages textual similarity between

bug reports and source code using rVSM for bug localization. Although it has im-

proved the bug localization process, the performance of BugLocator is still low. Saha

et al. [44] propose BLUiR, which determines the textual similarity between source

83

code and bug reports using the Okapi-BM25 algorithm [64]. BLUiR also leverages

structural items from both bug reports and source code, which boosts localization

performance. Later, Wang and Lo [46] propose AmaLgam, which incorporates the

textual similarity from BugLocator, structured items from BLUiR, and version con-

trol history into IR-based bug localization.

The quality of bug reports makes traditional IR-based bug localization challenging.

As a result, Rahman and Roy [45] propose BLIZZARD, which leverages the quality

aspect of bug reports and introduces context-aware query reformulation into bug

localization. Wong et al. [115] proposed BRTracer, which improves upon BugLocator

by combining source document segmentation and stack-trace analysis.

Another technique, namely Locus [121], uses the software change information

from commit logs and change histories to improve bug localization. Youm et al. [60]

proposed BLIA, which integrates bug reports, structured information of source files,

and source code change history. It localizes bugs in two granularity levels - file level

and method level – and outperforms prior approaches.

All these IR-based approaches have been designed with a focus on traditional soft-

ware bugs. Bugs in deep learning applications pose unique challenges, as follows – (a)

non-deterministic behavior due to factors like random initialization and stochastic op-

timization [125], (b) complex relationships between high-dimensional data and model

behavior and the influence of data-specific issues without direct code-level manifes-

tations [123], (c) strong external dependencies on hardware (e.g., PyTorch leverages

GPU) [32]. Although IR-based bug localization techniques have shown promising re-

sults in traditional software projects, their performance might decline while localizing

bugs in deep learning applications. Our experiments also show relevant evidence to

support this observation.

Recently, Kim et al. [50] used basic IR-based techniques (e.g., VSM, rVSM, BM25)

for locating bugs in deep learning software systems but reported poor performance

without any comprehensive analysis or explanation. Thus, the potential of existing

IR-based solutions for bugs in deep-learning applications is not well understood yet.

Unlike Kim et al. [50], our study extends beyond bug localization from deep learning

systems. We not only assess the effectiveness of IR-based bug localization techniques

but also categorize deep-learning bugs and analyze their prevalence and localization

84

difficulty. We also examine the strengths and weaknesses of existing IR-based bug

localization techniques for each type of deep-learning bug. Furthermore, deep learning

bugs often involve complex external dependencies [32] and may even manifest as

extrinsic bugs that are not apparent in the source code [42]. Hence, we attempt

to better understand these challenges through extensive manual analysis and deliver

actionable insights.

4.5.3 Machine learning and deep learning-based bug localization

Ye et al. [126] use API descriptions and train their model parameters using previ-

ously fixed bug reports. Through a ranking model, they capture domain-dependent

relationships between bug reports and source code files. Lam et al. [49] propose

DNNLOC, which combines IR and deep learning for bug localization.

Xiao et al. [33] propose DeepLocator, where they use the CNN and AST to extract

features from bug reports and source files, respectively. To learn unified features from

natural language and source code during bug localization, Huo et al. [127] propose NP-

CNN, which integrates both lexical and program structure information. Liang et al.

[128] propose CAST, combining a tree-based CNN (TB-CNN) with customized AST

to locate buggy files. However, these deep learning-based techniques are developed

and evaluated using the source code from traditional software systems (e.g., JDT,

SWT, Tomcat, AspectJ). These software systems do not represent deep learning

applications, and thus designed techniques above might not be sufficient to tackle

all the challenges of deep learning-related bugs.

Wardat et al. [34] propose an approach to locate Deep Neural Network (DNN)

bugs through dynamic and statistical analysis. However, their method’s sole focus on

model and training bugs, low accuracy, and over-reliance on the Keras library pose

challenges for practical implementation. Deep learning-based approaches also lack

explainability and heavily rely on source code, which may not be sufficient for the

bugs with external dependencies (a.k.a extrinsic bugs) in deep learning applications.

Deep learning-based techniques for bug localization from the literature (CNN,

DBN, CFG, and DFG) [129] are not inherently explainable on their own [130]. LSTM

has a few inherent characteristics that can aid in explanation [130]. LSTM can high-

light the importance of different tokens in a sequence, which can provide a limited

85

explanation for their predictions. In short, the explainability of deep learning-based

techniques could only be achieved with additional techniques layered on top of their

models and structures [131].

Although explainable deep learning-based techniques could offer insights into the

workings of their models, they might not be the best fit for addressing the specifics

of our research questions in this work. Explainable deep learning techniques often

provide insights into a model’s decisions. However, our empirical study on bug local-

ization involves a broader context of matching bug reports to relevant source code,

which might be beyond individual model decisions. They might not be sufficient to

interpret bugs that involve interactions among multiple files or components. Bug

localization in deep learning systems often requires a holistic view of codebase inter-

actions as well as external dependencies. In particular, understanding extrinsic bugs

might require techniques that can capture the broader system’s behaviors and can

go beyond individual model’s decisions. Thus, existing DL-based techniques, despite

their potential for explainability, were not sufficient to answer our research questions

about the effectiveness of bug localization in deep-learning software systems.

To address the above gap, in this empirical study, we replicated three existing

IR-based techniques [43, 44, 60] to detect bugs in deep learning software systems.

Unlike the DL-based solution above, the IR-based approaches assume a simple notion

of suspiciousness, which is easy to understand. We also conduct extensive manual

analysis and explain they are difficult to localize (e.g., extrinsic factors, multifaceted

dependencies), which makes our work novel.

4.6 Summary

To summarize, identifying the location of a bug within a software system (a.k.a., bug

localization) is crucial to correct any bug. In recent years, IR-based bug localization

techniques have received considerable attention in the context of traditional software

debugging due to their low computational cost and minimal external dependencies,

but they might not be sufficient for deep learning systems. Deep learning bugs pose

a greater challenge due to their multifaceted dependencies. However, the potential

of IR-based approaches for localizing bugs in deep learning applications is not well

86

understood to date. In this work, we replicated three existing IR-based localiza-

tion approaches and found that they show poor performance in localizing bugs from

deep-learning applications. Secondly, through an in-depth analysis, we found that lo-

calizing certain categories of bugs (e.g., training bugs & GPU bugs) is more difficult

than other bugs in deep learning systems. Finally, we investigate and find that deep

learning bugs are more likely to be extrinsic, i.e., connects to non-code artifacts (e.g.,

training data). Our research thus offers empirical evidence and actionable insights

for deep learning software bugs, advancing automated software debugging research.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Software bugs claim billions of dollars from the global economy annually. They also

consume approximately 50% of developers’ time. A recent survey with major tech

giants (e.g., Google, Meta, Microsoft, Amazon) underscores the importance of vari-

ous bug report management tasks, including duplicate bug report detection and bug

localization. In this work, we aim to better understand the challenges of these two

bug report management tasks. First, traditional methods for detecting duplicate bug

reports mainly focus on textually similar duplicates, often overlooking the presence

of textually dissimilar duplicates commonly observed in bug tracking systems. To

address this gap, we collect a dataset consisting of 92,854 bug reports and construct

two separate datasets comprising textually similar and textually dissimilar duplicate

bug reports. We evaluate the performance of three existing techniques and answer

three research questions. Our findings highlight the limitations of current approaches

in detecting textually dissimilar duplicate bug reports and suggest that these reports

often miss crucial information (e.g., steps to reproduce). Second, pinpointing the

location of a bug within the software code poses another challenge in bug report

management, where IR-based techniques have been employed. However, limited ef-

forts have been made to detect bugs, specifically in deep learning systems. To address

this gap, we collect a dataset comprising 2,365 bugs from deep learning applications

and 2,913 bugs from traditional systems. We evaluate the performance of three exist-

ing IR-based techniques in localizing software bugs. Our findings reveal that IR-based

methods perform poorly when applied to localizing bugs in deep learning applications.

We also found that deep learning bugs are often associated with artifacts beyond the

source code (e.g., GPU, training data, and external dependencies), which may explain

the poor performance of the existing technique since they can analyze the source code.

87

88

5.2 Future Work

Given our conducted studies and findings, there are several potential directions for

future work. We discuss them in detail as follows:

5.2.1 Duplicate bug report detection

Our work demonstrates the limitations of existing approaches in detecting textually

dissimilar duplicate bug reports. We also found that these reports might miss crucial

information, which leads to textual dissimilarity. We thus pose the following questions

as future work.

• How can we effectively incorporate multimedia attachments (e.g., screenshots,

screen recordings) into bug reports to complement their missing components

and improve the overall quality of bug reports?

• Can we leverage multimedia attachments and domain-specific embeddings along-

side other features (e.g., bug report metadata, code snippets, and stack traces)

to detect textually dissimilar duplicate bug reports?

Our investigation highlights the significant impact of bug report quality on the

effectiveness of duplicate bug report detection, even when employing neural networks.

In particular, for textually dissimilar duplicates, we observed a higher occurrence of

missing components (e.g., steps to reproduce and observed behaviors). In several

cases, we found that bug reports in a duplicate pair mainly contain multimedia at-

tachments like screenshots, screen recordings, and noisy elements (e.g., stack trace

history) but not enough text. This situation poses challenges in finding similarities

with the master report since existing approaches are designed around texts. Cooper

et al. [105] leverage multimedia attachments, specifically screen recordings, for dupli-

cate bug report detection. However, their approach assumes that both bug reports

within a duplicate pair will be in video format, which we found to be impractical

based on our observations. Therefore, the questions posed in this section remain

open and require further investigation in the future.

89

5.2.2 Bug localization

Our work demonstrates the limitations of existing approaches in localizing bugs from

deep-learning software systems. Our analysis reveals that different types of deep

learning bugs pose distinct challenges, and we observe that these bugs tend to be

predominantly influenced by external factors. We thus pose the following questions

as future work.

• Is the embedding sufficient to capture the required information from bug re-

ports? Can we design a richer embedding for DL-related bug reports?

Word embeddings (e.g., GLoVE) offer a valuable representation of text data, in-

cluding bug reports. However, more context-aware and specialized embeddings

from DL bug reports can enhance the performance of duplicate bug report de-

tection and bug localization. Designing a richer embedding for DL bug reports

is possible by considering the following.

(1) Domain-specific features: Incorporating software-specific jargon or technical

terms that are prevalent in bug reports can enhance the embedding’s contextual

relevance [55, 78, 132, 133].

(2) Hierarchical structures: Utilizing hierarchical attention mechanisms to give

varying weights to different segments of a bug report (e.g., title, description,

comments, tags) to preserve the inherent structure and relationships.

(3) External knowledge sources: Integrating embeddings with information from

external sources like API documentation, stack traces, version control history,

or code repositories can enhance the understanding of bug context and potential

causes.

This enriched embedding can capture finer nuances and complexities specific to

software bugs, improving model performance in tasks like duplicate bug report

detection and localization.

• Can meaningful structured items be extracted from deep learning code using

AST-based parsing, and how can domain-specific knowledge of deep learning

models and neural network layer architectures be leveraged for this purpose?

Future research could focus on more efficient and compact encodings for the

90

structural information in deep learning source code. Exploring techniques such

as graph-based representations, data flow graphs (DFGs), control flow graphs

(CFGs), and program dependency graphs (PDGs) could offer a nuanced under-

standing of the code’s structure [134]. Investigating how to efficiently capture

both the high-level architecture and low-level operations within these represen-

tations would improve bug localization capabilities. Moreover, tailoring AST-

based parsing techniques to the intricacies of deep learning model architecture is

an intriguing direction. Designing parsing methods that capture domain-specific

patterns, such as layer interactions, tensor operations, and optimization proce-

dures, would provide a more granular representation of the code. This could

help identify the code segments prone to bugs and thus could lead to precise

localization.

Integration of domain-specific knowledge about deep learning models in the bug

localization process is a promising direction [55, 78, 132, 133]. Creating a repos-

itory of layer architectures, common model design issues, and hyperparameter

sensitivities would enable bug localization methods to leverage this expertise.

For instance, understanding the impact of specific hyperparameters on train-

ing stability could guide bug detection algorithms to focus on regions of code

where these parameters are manipulated. As traditional IR-based techniques

struggle with multifaceted bugs due to their limited scope within the codebase,

another promising direction involves hybrid methods that combine structural

code analysis with system-level observations [135]. By integrating code-level

analysis with system-level monitoring, these hybrid techniques could uncover

intricate dependencies between code artifacts and external factors, providing a

comprehensive perspective on bug localization for categories such as data bugs

and GPU-related issues.

Finally, future research could develop bug-specific strategies from the existing

taxonomy of deep-learning bugs [62]. For instance, for bugs associated with

external dependencies, techniques could leverage dependency analysis and ver-

sion tracking to identify discrepancies. Likewise, data lineage analysis could be

employed for data-related bugs [136].

91

• How can we automatically identify the extrinsic bugs in deep learning applica-

tions based on the heuristics of Rodriguezperez et al. [42]?

• How can we automatically classify different types of deep learning bugs (such

as model bugs, training bugs, and GPU bugs)? Can we determine the most

appropriate bug localization technique for each specific bug category?

• What strategies can be devised to effectively handle the challenges posed by

external factors (e.g., GPU, training data) in deep learning bugs?

We found that bugs from deep learning applications often exhibit extrinsic character-

istics with multifaceted dependencies such as external frameworks (e.g., third-party

libraries), external environments (e.g., OS, GPU), and non-code artifacts (e.g., train-

ing data). Traditional bug localization techniques, including IR-based ones, might not

be equipped well to tackle these multifaceted dependencies, as they are not typically

found within the software codebase. Hence, identifying extrinsic bugs is crucial in de-

termining whether IR-based bug localization techniques can be effectively employed.

We also found that IR-based techniques are not suitable for several categories of deep

learning bugs from the taxonomy, such as bugs with multifaceted external dependen-

cies and extrinsic nature (e.g., data bugs, GPU bugs). Interestingly, IR-based bug

localization techniques were effective in localizing several categories of deep learning

bugs, such as model bugs and tensor bugs. Model bugs are connected to a model’s

type, properties, and layers, which might be mentioned in a bug report. Similarly,

training and tensor bugs are structured items from code, such as incorrect tensor

shapes or incorrect loss functions, which could be useful for structured IR-based bug

localization techniques. Thus, based on our findings and existing literature on bug

localization for deep learning applications, the presented questions above remain open

and warrant further investigation.

Bibliography

[1] A. Arcuri. On the automation of fixing software bugs. In ICSE, pages 1003–
1006, 2008.

[2] R. M. Karampatsis and C. Sutton. How often do single-statement bugs occur?
the manysstubs4j dataset. In MSR, pages 573–577, 2020.

[3] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu. How practitioners
perceive automated bug report management techniques. IEEE TSE, 46(8):
836–862, 2020.

[4] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Proc. ICSE,
pages 361–370, 2006.

[5] N. Shrikanth, S. Majumder, and T. Menzies. Early life cycle software defect
prediction. why? how? In ICSE, pages 448–459. IEEE, 2021.

[6] N. Jalbert and W. Weimer. Automated duplicate detection for bug tracking
systems. In Proc. DSN, pages 52–61, 2008.

[7] M. M. Rahman, F. Khomh, and M. Castelluccio. Why are some bugs non-
reproducible?:–an empirical investigation using data fusion–. In ICSME, pages
605–616. IEEE, 2020.

[8] J. Kanwal and O. Maqbool. Bug prioritization to facilitate bug report triage.
Journal of Computer Science and Technology, 27:397–412, 2012.

[9] I. M. Rodrigues, D. Aloise, E. R. Fernandes, and M. Dagenais. A soft alignment
model for bug deduplication. In Proc. MSR, pages 43–53, 2020.

[10] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports. In ICSE,
pages 14–24, 2012.

[11] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect
reports using natural language processing. In Proc. ICSE, pages 499–510, 2007.

[12] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting
duplicate bug reports using natural language and execution information. In
Proc. ICSE, pages 461–470, 2008.

[13] A. Sureka and P. Jalote. Detecting duplicate bug report using character n-
gram-based features. In APSEC, pages 366–374, 2010.

92

93

[14] C. Z. Yang, H. H. Du, S. S. Wu, and X. Chen. Duplication detection for software
bug reports based on bm25 term weighting. In Proc. TAAI, pages 33–38, 2012.

[15] K. Aggarwal, F. Timbers, T. Rutgers, A. Hindle, E. Stroulia, and R. Greiner.
Detecting duplicate bug reports with software engineering domain knowledge.
Journal of Software: Evolution and Process, 29(3):e1821, 2017.

[16] A. Alipour, A. Hindle, and E. Stroulia. A contextual approach towards more
accurate duplicate bug report detection. In MSR, pages 183–192, 2013.

[17] R. P. Gopalan and A. Krishna. Duplicate bug report detection using clustering.
In ASWEC, pages 104–109, 2014.

[18] Y. Tian, C. Sun, and D. Lo. Improved duplicate bug report identification. In
Proc. CSMR, pages 385–390, 2012.

[19] C. Sun, D. Lo, X. Wang, J. Jiang, and S. C. Khoo. A discriminative model
approach for accurate duplicate bug report retrieval. In Proc. ICSE, volume 1,
pages 45–54, 2010.

[20] N. Klein, C. S. Corley, and N. A. Kraft. New features for duplicate bug detec-
tion. In Proc. MSR, page 324–327, 2014.

[21] J. He, L. Xu, X. Yan, M. an Xia, and Y. Lei. Duplicate bug report detection
using dual-channel convolutional neural networks. In Proc. ICPC, pages 117–
127, 2020.

[22] A. Budhiraja, K. Dutta, R. Reddy, and M. Shrivastava. Dwen: deep word
embedding network for duplicate bug report detection in software repositories.
In Proc. ICSE, pages 193–194, 2018.

[23] S. Gupta and S. K. Gupta. A systematic study of duplicate bug report detection.
International Journal of Advanced Computer Science and Applications, 12(1),
2021.

[24] I. Chawla and S. K. Singh. Performance evaluation of vsm and lsi models to
determine bug reports similarity. In Proc. IC3, pages 375–380, 2013.

[25] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabulary
problem in human-system communication. Commun. ACM, 30(11):964–971,
1987.

[26] S. Y. Ho, K. Phua, L. Wong, and W. W. B. Goh. Extensions of the exter-
nal validation for checking learned model interpretability and generalizability.
Patterns, 1(8):100129, 2020.

[27] S. A Akbar and A. C Kak. A large-scale comparative evaluation of ir-based
tools for bug localization. In MSR, pages 21–31, 2020.

94

[28] D. Binkley and D. Lawrie. Information retrieval applications in software main-
tenance and evolution. Encyclopedia of software engineering, pages 454–463,
2010.

[29] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu. A comprehensive study
on challenges in deploying deep learning-based software. In ESEC/FSE, pages
750–762, 2020.

[30] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan,
B. Nushi, and T. Zimmermann. Software engineering for machine learning: A
case study. In ICSE-SEIP, pages 291–300, 2019.

[31] D. Gonzalez, T. Zimmermann, and N. Nagappan. The state of the ml-universe:
10 years of artificial intelligence & machine learning software development on
github. In MSR, pages 431–442, 2020.

[32] L. Nganyewou Tidjon, B. Rombaut, F. Khomh, and A. E. Hassan. An empirical
study of library usage and dependency in deep learning frameworks. arXiv e-
prints, pages arXiv–2211, 2022.

[33] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin. Improving bug localization with
an enhanced convolutional neural network. In APSEC, pages 338–347, 2017.

[34] M. Wardat, W. Le, and H. Rajan. Deeplocalize: Fault localization for deep
neural networks. In ICSE, pages 251–262, 2021.

[35] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C Sun. Duplicate bug
report detection with a combination of information retrieval and topic modeling.
In Proc. ASE, pages 70–79, 2012.

[36] B. S. Neysiani and S. M. Babamir. Duplicate detection models for bug reports
of software triage systems: A survey. Current Trends In Computer Sciences
and Applications, 1(5):128–134, 2019.

[37] O. Obulesu, M. Mahendra, and M. ThrilokReddy. Machine learning techniques
and tools: A survey. In ICIRCA, pages 605–611, 2018.

[38] J. S. Almeida. Predictive non-linear modeling of complex data by artificial
neural networks. Current opinion in biotechnology, 13(1):72–76, 2002.

[39] Z. Bitvai and T. Cohn. Non-linear text regression with a deep convolutional
neural network. In Proc. ACL, pages 180–185, 2015.

[40] L. Deng and Y. (Eds.) Liu. Deep learning in natural language processing.
Springer, 2018.

[41] L. Feng, L. Song, C. Sha, and X. Gong. Practical duplicate bug reports detection
in a large web-based development community. In APWEB, pages 709–720, 2013.

95

[42] G. Rodriguezperez, M. Nagappan, and G. Robles. Watch out for extrinsic
bugs! a case study of their impact in just-in-time bug prediction models on the
openstack project. IEEE TSE, 2020.

[43] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports. In ICSE,
pages 14–24, 2012.

[44] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving bug localization
using structured information retrieval. In ASE, pages 345–355, 2013.

[45] M. M. Rahman and C. K. Roy. Improving ir-based bug localization with
context-aware query reformulation. In ESEC/FSE, pages 621–632, 2018.

[46] S. Wang and D. Lo. Version history, similar report, and structure: Putting
them together for improved bug localization. In ICPC, pages 53–63, 2014.

[47] L. Moreno, J. Treadway, J, A. Marcus, and W. Shen. On the use of stack traces
to improve text retrieval-based bug localization. In ICSME, pages 151–160,
2014.

[48] A. Perez, R. Abreu, and A. Riboira. A dynamic code coverage approach to
maximize fault localization efficiency. Journal of Systems and Software, 90:
18–28, 2014.

[49] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Bug localization
with combination of deep learning and information retrieval. In ICPC, pages
218–229, 2017.

[50] M. Kim, Y. Kim, and E. Lee. An empirical study of ir-based bug localization
for deep learning-based software. In ICST, pages 128–139, 2022.

[51] T. Akilan, D. Shah, N. Patel, and R. Mehta. Fast detection of duplicate bug
reports using lda-based topic modeling and classification. In Proc. SMC, pages
1622–1629, 2020.

[52] J. Deshmukh, K. M. Annervaz, S. Podder, S. Sengupta, and N. Dubash. To-
wards accurate duplicate bug retrieval using deep learning techniques. In Proc.
ICSME, pages 115–124, 2017.

[53] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

[54] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In Proc. EMNLP, pages 1532–1543, 2014.

[55] T. L. Chen, M. Emerling, G. R. Chaudhari, Y. R. Chillakuru, Y. Seo, T. H.
Vu, and J. H. Sohn. Domain specific word embeddings for natural language
processing in radiology. Journal of biomedical informatics, 113:103665, 2021.

96

[56] A. Roy, Y. Park, and S. Pan. Learning domain-specific word embeddings from
sparse cybersecurity texts. arXiv:1709.07470, 2017.

[57] F. Nooralahzadeh, L. Øvrelid, and J. T. Lønning. Evaluation of domain-specific
word embeddings using knowledge resources. In Proc. LREC), 2018.

[58] S. Muvva, A. E. Rao, and S. Chimalakonda. Bugl–a cross-language dataset for
bug localization. arXiv preprint arXiv:2004.08846, 2020.

[59] M. Kim, Y. Kim, and E. Lee. Denchmark: A bug benchmark of deep learning-
related software. In MSR, pages 540–544, 2021.

[60] K. C. Youm, J. Ahn, and E. Lee. Improved bug localization based on code
change histories and bug reports. Information and Software Technology, 82:
177–192, 2017.

[61] M. M. Rahman, F. Khomh, S. Yeasmin, and C. K. Roy. The forgotten role of
search queries in ir-based bug localization: an empirical study. EMSE, 26(6):
116, 2021.

[62] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and P. Tonella.
Taxonomy of real faults in deep learning systems. In ICSE, pages 1110–1121,
2020.

[63] C. D Manning, P Raghavan, and H Sch”utze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[64] S. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25
and beyond. Now Publishers Inc, 2009.

[65] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.

[66] H. M. Wallach. Topic modeling: beyond bag-of-words. In Proc. ICML, pages
977–984, 2006.

[67] H Yu and J Yang. A direct lda algorithm for high-dimensional data—with
application to face recognition. Pattern recognition, 34(10):2067–2070, 2001.

[68] S. Syed and M. Spruit. Full-text or abstract? examining topic coherence scores
using latent dirichlet allocation. In DSAA, pages 165–174, 2017.

[69] J Inglesfield. A method of embedding. Journal of Physics C: Solid State Physics,
14(26):3795, 1981.

[70] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factor-
ization. Advances in neural information processing systems, 27, 2014.

97

[71] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In EMNLP, pages 1532–1543, 2014.

[72] O. I Abiodun, A Jantan, A. E Omolara, K. V Dada, N. A Mohamed, and
H Arshad. State-of-the-art in artificial neural network applications: A survey.
Heliyon, 4(11):e00938, 2018.

[73] J Gu, Z Wang, J Kuen, L Ma, A Shahroudy, B Shuai, T Liu, X Wang, G Wang,
J Cai, et al. Recent advances in convolutional neural networks. Pattern recog-
nition, 77:354–377, 2018.

[74] R. R Varior, M Haloi, and GWang. Gated siamese convolutional neural network
architecture for human re-identification. In ECCV, pages 791–808, 2016.

[75] S. Robertson and H. Zaragoza. The probabilistic relevance framework: Bm25
and beyond. FnTs in Information Retrieval, 3(4):333–389, 2009.

[76] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus. Reformulating queries for
duplicate bug report detection. In SANER, pages 218–229, 2019.

[77] R. F. Woolson. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials,
pages 1–3, 2007.

[78] V. Efstathiou, C. Chatzilenas, and D. Spinellis. Word embeddings for the
software engineering domain. In Proc. MSR, pages 38–41, 2018.

[79] B. S. Li, T. Estlander, R. Jolanki, and H. I. Maibach. Advantages and dis-
advantages of gloves. Kanerva’s Occupational Dermatology, pages 2547–2561,
2020.

[80] S. M. Rezaeinia, R. Rahmani, A. Ghodsi, and H. Veisi. Sentiment analysis based
on improved pre-trained word embeddings. Expert Systems with Applications,
117:139–147, 2019.

[81] B. W. Yap, K. A. Rani, H. A. A. Rahman, S. Fong, Z. Khairudin, and N. N. Ab-
dullah. An application of oversampling, undersampling, bagging and boosting
in handling imbalanced datasets. In Proc. DaEng, pages 13–22, 2014.

[82] I. Žliobaitė. Learning under concept drift: an overview. arXiv:1010.4784, 2010.

[83] D. Buscaldi, R. Tournier, N. Aussenac-Gilles, and J. Mothe. Irit: Textual
similarity combining conceptual similarity with an n-gram comparison method.
In SemEval, pages 552–556, 2012.

[84] F. Peng, D. Schuurmans, V. Keselj, and S. Wang. Language independent au-
thorship attribution with character level n-grams. In EACL, 2003.

[85] K. Bansal and H. Rohil. Literature review of finding duplicate bugs in open
source systems. In CCICT, pages 389–396, 2021.

98

[86] A. Hindle and C. Onuczko. Preventing duplicate bug reports by continuously
querying bug reports. EMSE, 24(2):902–936, 2019.

[87] S. Gupta and V. Varma. Scientific article recommendation by using distributed
representations of text and graph. In Proc. WWW, pages 1267–1268, 2017.

[88] A. Lazar, S. Ritchey, and B. Sharif. Improving the accuracy of duplicate bug
report detection using textual similarity measures. In Proc. MSR, 2014.

[89] M. Hossin and M. N. Sulaiman. A review on evaluation metrics for data clas-
sification evaluations. IJDKP, 5:01–11, 03 2015.

[90] J. Lafferty and D. Blei. Correlated topic models. Advances in neural information
processing systems, 18:147, 2006.

[91] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional neural networks
for text classification. In Proc. AAAI, 2015.

[92] P. Royston. Approximating the shapiro-wilk w-test for non-normality. Statistics
and computing, 2(3):117–119, 1992.

[93] T. K. Kim. T test as a parametric statistic. Korean journal of anesthesiology,
68(6):540, 2015.

[94] R. Rosenthal, H. Cooper, and L. Hedges. Parametric measures of effect size.
The handbook of research synthesis, 621(2):231–244, 1994.

[95] R. A. Groeneveld and G. Meeden. Measuring skewness and kurtosis. Journal of
the Royal Statistical Society Series D (The Statistician), 33(4):391–399, 1984.

[96] L. T. DeCarlo. On the meaning and use of kurtosis. Psychological methods, 2
(3):292, 1997.

[97] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger. From word embeddings to
document distances. In ICML, pages 957–966, 2015.

[98] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann.
What makes a good bug report? In Proc. SIGSOFT/FSE, pages 308–318, 2008.

[99] A. Alwehaibi and K. Roy. Comparison of pre-trained word vectors for arabic
text classification using deep learning approach. In ICMLA, pages 1471–1474,
2018.

[100] Y. Tian, D. Lo, and J. Lawall. Automated construction of a software-specific
word similarity database. In Proc. CSMR-WCRE, pages 44–53, 2014.

[101] K. S. Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 1972.

99

[102] M. A. Garćıa-Pérez. Statistical conclusion validity: Some common threats and
simple remedies. Frontiers in psychology, 3:325, 2012.

[103] L. Wu, S. C. Hoi, and N. Yu. Semantics-preserving bag-of-words models and
applications. IEEE TIP, 19(7):1908–1920, 2010.

[104] A. Aizawa. An information-theoretic perspective of tf–idf measures. Information
Processing and Management, 39(1):45–65, 2003.

[105] N. Cooper, C. Bernal-Cárdenas, O. Chaparro, K. Moran, and D. Poshyvanyk.
It takes two to tango: Combining visual and textual information for detecting
duplicate video-based bug reports. In ICSE, pages 957–969. IEEE, 2021.

[106] R. Reddy Budhiraja and M. Shrivastava. Lwe: Lda refined word embeddings
for duplicate bug report detection. In Proc. ICSE, pages 165–166, 2018.

[107] A. H. Beg and M. Z. Islam. Advantages and limitations of genetic algorithms
for clustering records. In ICIEA, pages 2478–2483, 2016.

[108] T. M. Rocha and A. L. D. C. Carvalho. Siameseqat:a semantic context-based
duplicate bug report detection using replicated cluster information. IEEE Ac-
cess, 9:44610–44630, 2021.

[109] Q. Xie, Z. Wen, J. Zhu, C. Gao, and Z. Zheng. Detecting duplicate bug reports
with convolutional neural networks. In Proc. APSEC, pages 416–425, 2018.

[110] M. M. Rahman and C. K. Roy. Improving ir-based bug localization with
context-aware query reformulation. In ESEC/FSE, pages 621–632, 2018.

[111] T. K. Kim. T test as a parametric statistic. Korean Journal of Anesthesiology,
68(6):540, 2015.

[112] M. E. Rice and G. T. Harris. Comparing effect sizes in follow-up studies: Roc
area, cohen’s d, and r. Law and human behavior, 29:615–620, 2005.

[113] P. A. Hernandez, C. H. Graham, L. L. Master, and D. L. Albert. The effect
of sample size and species characteristics on performance of different species
distribution modeling methods. Ecography, 29(5):773–785, 2006.

[114] A. S. Acharya, A. Prakash, P. Saxena, and A. Nigam. Sampling: Why and how
of it. Indian Journal of Medical Specialties, 4(2):330–333, 2013.

[115] C. P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. Boosting bug-
report-oriented fault localization with segmentation and stack-trace analysis.
In ICSME, pages 181–190, 2014.

[116] J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon. Bench4bl: re-
producibility study on the performance of ir-based bug localization. In ISSTA,
pages 61–72, 2018.

100

[117] R. Rosenthal, H. Cooper, and L. Hedges. Parametric measures of effect size.
The handbook of research synthesis, 621(2):231–244, 1994.

[118] H. Aoyama. A study of stratified random sampling. Ann. Inst. Stat. Math, 6
(1):1–36, 1954.

[119] P. F. Watson and A Petrie. Method agreement analysis: a review of correct
methodology. Theriogenology, 73(9):1167–1179, 2010.

[120] M. L. McHugh. The chi-square test of independence. Biochemia medica, 23(2):
143–149, 2013.

[121] M. Wen, R. Wu, and S. C. Cheung. Locus: Locating bugs from software changes.
In ASE, pages 262–273, 2016.

[122] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee,
J. E. Tan, Y. Yieh, et al. Bugsinpy: a database of existing bugs in python
programs to enable controlled testing and debugging studies. In ESEC/FSE,
pages 1556–1560, 2020.

[123] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan. A comprehensive study on deep
learning bug characteristics. In ESEC/FSE, pages 510–520, 2019.

[124] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan. Repairing deep neural networks:
Fix patterns and challenges. In ICSE, pages 1135–1146, 2020.

[125] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization with stochastic
transformations and perturbations for deep semi-supervised learning. Advances
in neural information processing systems, 29, 2016.

[126] X. Ye, R. Bunescu, and C. Liu. Learning to rank relevant files for bug reports
using domain knowledge. In FSE, pages 689–699, 2014.

[127] X. Huo, M. Li, and Z. H. Zhou. Learning unified features from natural and
programming languages for locating buggy source code. In IJCAI, volume 16,
pages 1606–1612, 2016.

[128] H. Liang, L. Sun, M. Wang, and Y. Yang. Deep learning with customized
abstract syntax tree for bug localization. IEEE Access, 7:116309–116320, 2019.

[129] Yunhua Zhao, Kostadin Damevski, and Hui Chen. A systematic survey of
just-in-time software defect prediction. ACM Computing Surveys, 55(10):1–35,
2023.

[130] W. Samek, T. Wiegand, and K.R. Müller. Explainable artificial intelligence:
Understanding, visualizing and interpreting deep learning models. arXiv
preprint arXiv:1708.08296, 2017.

101

[131] G. Ras, N. Xie, Van G. M., and D. Doran. Explainable deep learning: A
field guide for the uninitiated. Journal of Artificial Intelligence Research, 73:
329–396, 2022.

[132] K. Aggarwal, F. Timbers, T. Rutgers, A. Hindle, E. Stroulia, and R. Greiner.
Detecting duplicate bug reports with software engineering domain knowledge.
JSEP, 29(3):e1821, 2017.

[133] F. Nooralahzadeh, L. Øvrelid, and J. T. Lønning. Evaluation of domain-specific
word embeddings using knowledge resources. In Proc. LREC, 2018.

[134] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather. Pro-
graml: Graph-based deep learning for program optimization and analysis. arXiv
preprint arXiv:2003.10536, 2020.

[135] I. Stefanakos, S. Gerasimou, and R. Calinescu. Software performance engineer-
ing with performance antipatterns and code-level probabilistic analysis. In 2021
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), pages 249–253, 2021.

[136] A. Jurčo. Data lineage analysis for pyspark and python orm libraries. 2023.

Appendix A

Supplementary details

A.1 Replication Package

A.1.1 Duplicate bug report detection

Github repository: https://github.com/SigmaJahan/Towards-Understanding-the-

Impacts-of-Textual-Dissimilarity-on-Duplicate-Bug-Report-Detection

A.1.2 Bug localization

Github repository: https://github.com/SigmaJahan/Bug-Localization-for-Deep-

Learning-Software-Bugs

A.1.3 Source Code and Bug Report

• Details of Model bug —

1. Ground truth file: https://bit.ly/3XJCdqq

2. Incorrect retrieved file by BugLocator: https://bit.ly/43klnj9

3. Incorrect retrieved file by BLUiR: https://bit.ly/3PQo88U

3. Bug report: https://github.com/asyml/texar-pytorch/issues/313

• Details of Training bug —

1. Ground truth file: https://bit.ly/3NKfRAH

2. Incorrect retrieved file: https://bit.ly/3O5yEIa

3. Bug report: https://github.com/fastai/fastai/issues/3048

• Details of Tensor bug —

1. Ground truth file: https://bit.ly/3XLe82y

2. Incorrect retrieved file: https://bit.ly/3Dr5LA9

3. Bug report: https://github.com/apache/mxnet/issues/13760

102

103

• Details of API bug —

1. Ground truth file: https://bit.ly/3JT1JE8

2. Incorrect retrieved file: https://bit.ly/43oMl9r

3. Bug report: https://github.com/apache/mxnet/issues/13862

• Details of GPU bug —

1. Ground truth file: https://bit.ly/44llZXc

2. Bug report: https://github.com/keras-team/autokeras/issues/1238

Figure A.1: Code snippet of the ground truth for the model bug

Figure A.2: Code snippet of the incorrect source file for the model bug retrieved by
BugLocator

104

Figure A.3: Code snippet of the incorrect source file for the model bug retrieved by
BLUiR

105

Figure A.4: Code snippet of the ground truth for training bug

Figure A.5: Code snippet of the incorrect source file for the training bug retrieved by
BugLocator

106

Figure A.6: Code snippet of the ground truth for the tensor bug

Figure A.7: Code snippet of the incorrect source file for the tensor bug retrieved by
BugLocator

107

Figure A.8: Code snippet of the ground truth for the API bug

Figure A.9: Code snippet of the incorrect source file for the API bug retrieved by
BLUiR

108

Figure A.10: Code snippet of the GPU bug

	Title Page
	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Contribution
	Related Publications
	Outline of the report

	Background
	Software bug
	Bug report
	Duplicate bug report
	Textually similar duplicate bug reports
	Textually dissimilar duplicate bug reports

	Categories of Bug
	Extrinsic bug
	Intrinsic bug
	Taxonomy of bugs in deep learning software systems

	Information Retrieval (IR)
	BM25
	Vector Space Model

	Topic Modeling
	Latent Dirichlet Allocation (LDA)

	Embedding
	Word Embedding
	GloVe: A Pre-trained Word Embedding

	Neural Network
	Convolutional Neural Network
	Siamese Convolutional Neural Network

	Duplicate Bug Report Detection
	Introduction
	Study Methodology
	Construction of dataset
	Replication of existing techniques for experiments
	Performance evaluation

	Study Finding
	Answering RQ1: Does the performance of existing techniques differ significantly in duplicate bug report detection between textually similar and textually dissimilar duplicate bug reports?
	Answering RQ2: How do textually similar and textually dissimilar duplicate bug reports differ in their semantics and structures?
	Answering RQ3: Does domain-specific embedding help improve the detection of textually dissimilar duplicate bug reports?

	Threats to Validity
	Related Work
	IR-based duplicate bug report detection
	Topic modeling-based duplicate bug report detection
	Machine learning and deep learning–based duplicate bug report detection

	Summary

	Bug Localization
	Introduction
	Study Methodology
	Construction of dataset
	Replicating of existing techniques for experiments
	Performance evaluation

	Study Finding
	Answering RQ1: How effective are the existing IR-based approaches in localizing bugs from deep learning software systems?
	Answering RQ2: How do different types of bugs in deep learning software systems impact bug localization?
	Answering RQ3: What are the implications of extrinsic bugs in deep learning systems for bug localization?

	Threats to Validity
	Related Work
	Software bug
	Information Retrieval-based bug localization
	Machine learning and deep learning-based bug localization

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Duplicate bug report detection
	Bug localization

	Bibliography
	Supplementary details
	Replication Package
	Duplicate bug report detection
	Bug localization
	Source Code and Bug Report

