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Abstract

Software developers spend about 20% of their programming time searching for rele-

vant code. They often spend a lot of time to manually choose queries for their code

search. Unfortunately, due to vocabulary mismatch problems, the accurate answer

may not be always retrieved, which leads to numerous trials and errors. Furthermore,

many answers might not contain the relevant code examples that the developers look

for. In this thesis, we extend RACK, an existing solution for code search, and at-

tempt to solve the code search problem effectively. First, we replicate RACK in

Python language from its original implementation in Java. Second, we construct a

token-API database by analyzing thousands of Python posts from Stack Overflow.

Third, we determine the relevance between a natural language query and API classes

using three co-occurrence based heuristics – KKC, KAC and KPAC. Then we return

a list of relevant API classes against a natural language query. Finally, we integrate

our RACK implementation into a VS-code plugin. The plug-in accepts a natural

language query and retrieves relevant code examples from GitHub by leveraging its

search API and the API classes from RACK. Software developers can use these code

examples to solve their programming problems much faster.
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Chapter 1

Introduction

Software engineers often search on the web when they need relevant code examples to

solve their programming problems. However, search results are not always guaranteed

to have valid code examples. Software practitioners often use general-purpose search

engines such as Google to find code examples. However, many of their results contain

simple text-based answers (e.g., Figure 1.1 [1]), which might not be sufficient.

Developers often spend a lot of time manually designing search queries, which leads

to numerous trials and errors with the search engines. Rahman et al [2] proposed a

technique namely RACK that tackles the problem of code search. The original RACK

has been used to search Java-based code examples against natural language queries.

We replicated RACK in Python programming language to make it deliver Python

code examples.

In this thesis, we undertake four major activities. First, we replicated RACK

in Python programming language by carefully understanding its business logic and

algorithms implemented in Java. Second, we constructed the token-API database by

collecting the questions and Python code examples from the Stack Overflow Q&A

site. Third, we determine the relevance between keywords in natural language and

candidate API classes using three heuristics: Keyword-API Co-occurence (KAC),

Keyword-Keyword Co-occurence (KKC) and Keyword Pair API Co-occurrence (KPAC).

Then we use natural language queries to retrieve a list of related API classes. We col-

lected 50 questions from four programming sites (freecodecamp.org, programiz.com,

geeksforgeeks.org and realpython.com) to test the accuracy of the recommended API

classes. (e.g., Figure 1.2) Finally, we designed a Visual Studio Code plug-in that

encapsulates our solution. The plug-in accepts a natural language query, returns

relevant code examples from GitHub, and then further refines them using the rele-

vant API classes/methods from the RACK module. Software developers can use this

RACK VS-code plug-in to reduce their hassle in code example searching.

2
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Figure 1.1: Search result from Google: “How do you parse HTML?”

Figure 1.2: Question title and ranked recommended API classes



Chapter 2

Background

We introduce the required terminologies and concepts to follow the remaining of the

thesis. We employ techniques such as Search Queries, HTML Parsing, GitHub Search

API, AST Parsing, Jaccard Similarity, and the development of a VS-Code extension.

2.1 Search Query

A search query is words or phrases that we enter in the search box. There are

three types of queries: Navigational search queries, Informational search queries and

Transactional search queries. Navigational search queries are used to find specific

places such as websites. For example, we use Google Scholar to find the academic

articles we want. Information search queries allow us to find related resources based

on the words or phrases we enter. For example, if we search for ”Moon” in Google

Chrome, we can get information about the moon such as the moon’s Size, distance

from the Earth and other information. Transactional search queries are mainly used

for ads. This is usually where companies buy ads from the website. For example, if we

search for facial cleansers, we will see websites selling facial cleansers to promote our

transactions [3]. We mainly use navigation search queries in this thesis. We search

query in VS-code IDE and return related top 5 code snippets.

2.2 HTML parsing

We need to use HTML parsing to extract the code content of the websites by Beautiful

Soup. Beautiful Soup 1 is a popular Python library, which creates a parse tree for the

parsed page that can be used to extract data from the HTML. So we can extract all

the code parts from HTML files. We need to install Beautiful Soup first. Second, we

need to import Beautiful Soup into our Python files. Third, we find HTML tags and

1url https://beautiful-soup-4.readthedocs.io/en/latest/

4
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extract the full content from HTML tags. Then we use “find all(’code’)” to extract

all the code parts from HTML files. Finally, we need to iterate through all the code

parts and use get text() to like code can be printed.

2.3 GitHub Search API

We use the website ”https://api.github.com/search/” to search for APIs in GitHub.

The GitHub search API supports different types of searches, such as code, reposito-

ries and issues. In the thesis, we need to find relevant code snippets, so we choose

to set ”code search”. We can choose to search for answers in different program-

ming languages. We chose Python in our search. We can search for URLs con-

taining code. But this website contains other content besides code. So we need

to convert github.com into a raw URL (raw.githubuserconten.com). For example:

”http://tinyurl.com/4bkme64u” needs to convert to ”http://tinyurl.com/3fj8axfr” .

Then we use ast parsing to analyze and process these codes.

2.4 AST Parsing

AST (Abstract Syntax Trees) parsing can analyze and return the code structure when

we enter Python code. For example, in the fourth step of methodology (”Design of

a VS-Code Plug-in for Code Search”) We use ast parsing to analyze and extract all

definition functions by the nodes of ast. AST parsing has three steps: lexical analysis,

syntax analysis and code generation [4]. First, we divide the content into different

parts, such as punctuation numbers and nouns. Inthe second step, we will generate

the syntax tree. The syntax tree includes different parts such as body content, value,

sourceType and so on. Third, when we know enough information about the code

structure, we can find the specific location based on this information, and then return

the code.

2.5 Jaccard Similarity

The Jaccard similarity is one of the similarity measurement techniques between two

sets that are widely used in natural language processing, recommendation systems

and so on [5]. It is the size of the intersection of two sets divided by the size of their
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Figure 2.1: Jaccard similarity formula

union.( Figure 2.1) This article measures the similarity between recommended APIS

and GitHub code snippets, which can help us to recommend relative code snippets

with the 5 highest Jaccard similarity. The formula is the number of intersections

between recommended API classes and defined function API classes divided by the

number of unions between recommended API classes and defined function API classes.

2.6 VS-Code extension

We build a VS-Code extension IDE to let people use questions in natural language

to search code snippets from it. We need to build a new VS-Code extension. First,

we need to install Node.js and Git. Then we need to build a development-ready

TypeScript project with a generator. After creating the extension with basic code,

we can edit extension.ts to let it run our files in the src folder. Fourth, we press F5

in the extension.ts, the extension can be run in a new Extension Development Host

window. Fifth, the extension command can be run from the Command Palette in the

new window. Finally, we can see the result from the debug console. printed.

2.7 ChatGPT

People can use ChatGPT to find code samples for issues. ChatGPT will provide

relevant codes based on the question. However, ChatGPT also has some problems.

We could not find the original source of the code in ChatGPT. This may be affected

by some software developers, especially students. Their work may be considered to be

plagiarism without reference. Additionally, the results of ChatGPT can be integrated

directly into the IDE. Therefore, using ChatGPT you need to switch context from

your IDE to the browser before you can do this. This means that ChatGPT may not
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capture the full context of the IDE, so this is a limitation of ChatGPT.

2.8 Summary

In this chapter, we discussed several key concepts such as Search Query, HTML

parsing, GitHub Search API, AST Parsing, Jaccard Similarity, VS-Code extension

and ChatGPT. We need to understand what search query is. We use Beautiful Soup

to perform HTML parsing to extract code from the stack overflow website to create

a database. Because we want to find and return relevant code snippets in GitHub,

we need to understand the GitHub search API. AST parsing is used to extract code

snippets from the code part. Jaccard Similarity is used to calculate the correlation

between code snippets and recommended API classes so that we can find more relevant

and effective code snippets. We need to use VS Code to build a plug-in IDE so that

we can return relevant codes based on our natural language search query in this IDE.

ChatGPT can also search code based on natural language search queries, so we need

to know what ChatGPT cannot do that our technology can.



Chapter 3

Methodology

We go through four steps to find relevant code snippets based on natural language

search queries. First, we replicate RACK in Python language from its original im-

plementation in Java language. Second, we construct a token-API database using

Python posts from Stack Overflow. Third, we determine the relevance between nat-

ural language and API classes and return a list of related API classes. Finally, we

design an IDE Plug-in for Code Search to get relevant code snippets.

3.1 Replication of RACK in Python

First, we analyzed the original RACK to understand all required components in-

cluding data, operating logic and their usage. Then we replicated RACK in Python

language from its original implementation in Java language. Python and Java have

different syntax and styles, which led to a significant learning curve. We thus migrate

a lot of functions from Java to Python using W3School1 [6].

3.2 Construction of token-API database for Python posts from Stack

Overflow

In this step, we build a token-API database from Stack Overflow. We extracted

the main items including post ID, question title and answer from the Python posts

[7]. To collect the data from Stack Overflow, we execute relevant SQL queries at

Stack Exchange Data Explorer (e.g., Figure 3.1). Since the question was for Python,

we selected the question with “python” tags. Since the answer needs to include code

segments, we select the answers containing the “code” tag(s) in their body. Since there

were millions of posts, we downloaded them in batches where each batch contained

up to fifty thousand posts. We downloaded all the post-related data and saved them

1url https://www.w3schools.com/

8
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Figure 3.1: Stack overflow Python posts include ID, Title and the body content of
posts

into one CSV file. To ensure data correctness, we first use the data of one hundred

posts.

We used standard natural language pre-processing to extract the keywords and

code elements from each question and answer respectively. For example, let us

consider the question – “How do you use the argparse module in Python to parse

command-line arguments?”. First, we identify individual words by splitting the ques-

tion against white space and punctuation marks. Second, we determine the parts of

speech of each term and select verbs and nouns. Third, we remove stop words to get a

list of keywords – [ ”argparse”, ”module”, ”Python”, ”parse”, ”command-line”, “ar-

guments”]. Finally, we use stemming to get the root form of each keyword as follows

– [’argpars’, ’modul’, ’python’, ’pars’, ’command’, ’argument’]. Once keywords are

extracted from a question, we use Beautiful Soup [8] to extract the code-like elements

from each answer. (e.g., Figure 3.2)

In particular, we extracted the API methods and class names from the code part

of each answer. Then we establish the connection between keywords and API items

based on their co-occurrence on Stack Overflow posts and store these connections in a

database. Figure 3.3 [9] shows different steps of our token-API database construction,

as done in the earlier work [2].
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Figure 3.2: One example about one Python stack overflow post

Figure 3.3: Construction of token-API database using Python posts from Stack Over-
flow
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Figure 3.4: Determining the relevance between a natural language query and API
classes and return a list of related API classes

3.3 Determine the relevance between natural language and API classes

and return a list of related API classes

In the third step, we have some code search queries and use natural language pro-

cessing to get natural language tokens. We have the token API mapping database

that can be used. The list is a natural language token to find the candidate API class

sections from the token API as my mapping database. Then we use the heuristic

metrics calculation to rank the API classes. (Figure 3.4 [9])

For RACK in Python, we use three heuristics –Keyword-API Co-occurence(KAC),

Keyword-Keyword Co-occurence(KKC) and Keyword Pair API Co-occurrence(KPAC)

to find the relevant API classes and methods against a natural language query [2].

KAC refers to the fact that some keywords may appear frequently with a specific

API or may be associated with multiple API classes in various programming solu-

tions. There is a potential semantic connection between the keywords and the API.

KKC identifies that candidate API should not only be related to multiple keywords,

but also should be mutually consistent or compatible with each other. A set of com-

patible API classes/methods are more likely to implement a programming solution.

KPAC computes the co-occurrence score of an API against a pair of keywords. The

API is likely to be relevant for queries containing these two keywords [10]. KAC,

KKC and pair against an API [10]. In RACK, KAC, KKC and KPAC are combined

and used to recommend relevant API classes against a given query [9]. (Figure 3.5

[9])
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Figure 3.5: API Relevance Ranking Algorithm

We accumulate these metrics for each candidate API, rank the API classes based

on their relevance, and recommend the top five API classes. For example, for the

query – “generate MD5 hash from a string” RACK recommends these API classes/methods

– hexdigest, md5, encode, update, hashlib. These API classes will be used to find

relevant code from GitHub later. (e.g., Figure 3.6)
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Figure 3.6: Search for complete sentences and phrases with the same meaning

3.4 Design of a VS-Code Plug-in for Code Search

Once RACK in Python is functional, we build a VS-code plug-in for our solution.

(Figure 3.10 [9]) We package all related files of RACK (e.g., .py files) into a wheel file,

and make a Python library. Then we can use pip/pip3 to install RACK successfully

on the local machine. (It can be installed on other machines as well). In this way,

we can call it anywhere from the terminal. (e.g., Figure 3.7) Then we build a new

typescript-based extension for the VS Code IDE. This extension not only can load

our RACK solution but also can respond to our query. For example, when we enter

our query in natural language, the plug-in is able to return the relevant API classes

in the Debug Console. (e.g., Figure 3.8)

When we get the recommended API classes, we leverage them to search for relevant

code snippets from GitHub. Toward that goal, we can develop a REST API client

for GitHub and execute our NL query against the GitHub search [x].

From the GitHub search API, we extract the results and download the source code

files programmatically. We also parse each source code file using AST parsing and

extract the method bodies. Our idea was to prioritize the method bodies containing
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Figure 3.7: Using RACK in terminal

Figure 3.8: Running rackextension

Figure 3.9: The relevant code snippet of API classes (md5)

the relevant API classes, recommended by RACK. We thus calculate the relative

percentage. We use the Set operation to determine the overlap between the ranked

API classes and the API classes of the candidate code. Then based on their Jaccard

similarity (intersection(recommended API classes, definition function API classes) /

union(recommended API classes, definition function API classes)), we rank the top-5

code examples against each query. For example, Figure 3.9 shows the top relevant

code example for our query – ”generate MD5 hash from a string”.
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Figure 3.10: Code snippet search in GitHub

3.5 Summary

We analyze and understand all required components from the original implementa-

tion in Java programming language. We replicate RACK in Python language by

migrating the syntax and styles between Java and Python. Then we construct a

token-API database by combining the same posts’ natural language token that the

title of Stack Overflow deals with natural language processing, and the API classes

that the function names and method name from the code of Stack Overflow. Third, we

use all heuristics and three heuristics (Keyword-API Co-occurrence(KAC), Keyword-

Keyword Co-occurrence(KKC), and Keyword Pair API Co-occurrence(KPAC)) to

rank and return recommended API classes based on natural language search queries.

Finally, Rack is encapsulated in a VS-Code plug-in to get recommended API classes

and related code snippets that are from GitHub.



Chapter 4

Empirical findings & discussions

In this chapter, we collected 50 Python questions from four open source sites to

evulate the accuracy of the recommendation API classes technology of RACK by

three performance metrics (Precision (P) , Recall (R) and F1-score (F)). We also

answer two research questions.

4.1 Evaluation & Performance Metrics

In the experiments, We collected 50 Python questions from four programming sites

(freecodecamp.org, programiz.com, geeksforgeeks.org and realpython.com).

We calculate Mean P(precision), Mean R(recall) and Mean F percent of Keyword-

API Co-occurence (KAC), Keyword-Keyword Co-occurence (KKC), Keyword Pair

API Co-occurrence (KPAC) and all (KAC, KKC and KPAC) to validate the 50 ques-

tions. KAC uses contextual information in Stack Overflow question titles to enhance

code search queries by considering co-occurring words and identifying relevant API

classes based on multiple query keywords. KKC uses the complexity of code search

Figure 4.1: Recommended API classes and Ground-truth API classes and methods
for the questions

16
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Figure 4.2: The title, keywords and recommended API classes of the question

Figure 4.3: The title, code, method names, function names and API class names
(method names + function names) of the question

queries using multiple keywords by ensuring that candidate API lists exhibit con-

sistent semantics, leveraging semantic similarity methods, and using consistent key-

word pairs extracted from the Stack Overflow context. KPAC identifies relevant API

classes by analyzing their co-occurrence with keyword pairs in searches, providing

an approach to finding API classes that are closely related to specific keywords in a

query, especially when multiple keywords are involved. (e.g., Figure 4.1, 4.2 and 4.3)

Precision (P): It is a measure of the accuracy of the positive predictions made

by a model. There, it refers to the percentage of the retrieved API classes that are

relevant. Formula: (GT n Ra) / Ra

Recall (R): It is a measure of the ability of a model to capture all the relevant

instances of a particular class. There, it refers to the percentage of relevant API
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Figure 4.4: The recommended APIs by KAC, KPAC, KKC and all. Query: How to
send email?

classes that are retrieved. Formula: (GT n Ra) / GT

F1-score (F): It provides a balanced measure. It is the harmonic mean of preci-

sion and recall. Formula: (2 * P * R) / (P + R)

GT: It is a shorthand for the term “ground truth”, all method names and function

names of the website definition function

Ra: ranked recommended API classes

Harmonic mean: a type of average calculated by dividing the number of observa-

tions by the reciprocal of each number in the series and then taking the reciprocal of

that result.

In addition, we answer two research questions:

In RQ1, What are the Precision, Recall and F1-Score of RACK in Python for all

heuristics and individual heuristics?

In RQ2, Java VS Python – for which language does RACK perform better?

4.2 RQ1: What are the Precision, Recall and F1-Score of RACK in

Python for all heuristics and individual heuristics?

To answer R1, RACK uses three heuristics Keyword-API Co-occurence (KAC), Keyword-

Keyword Co-occurence (KKC) and Keyword Pair API Co-occurrence (KPAC) to cal-

culate the accuracy of API recommendations.

To prove the effectiveness of Rack recommended API technology, RACK ranks

API classes by using Keyword-API Co-occurence (KAC), Keyword-Keyword Co-

occurence (KKC) and Keyword Pair API Co-occurrence (KPAC) to calculate the

correlation of each API token with the title tokens in the title. (e.g., Figure 4.4)
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Figure 4.5: The P, R and F of all heuristics (KAC, KKC and KPAC) with the top
10 ranked API classes

Figure 4.6: The P, R and F of KPAC heuristics with the top 10 ranked API classes

For the evaluation and validation of RACK, we should use a large number of

examples. RACK recommends 10 relevant APIs for each query based on KKC, KPAC

and KAC. We use 50 questions randomly collected from open source sites to validate
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Figure 4.7: The P, R and F of KKC heuristics with the top 10 ranked API classes

Figure 4.8: The P, R and F of KAC heuristics with the top 10 ranked API classes

API ranking and the accuracy of the relevance of API [2].

We calculate Mean P(precision), Mean R(recall) and Mean F (f1-score) percent

of KAC, KKC, KPAC and all (KAC, KKC and KPAC).

Figure 4.5- Figure 4.8 are about the Mean P(precision), Mean R(recall) and Mean
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Figure 4.9: The P, R and F of all heuristics (KAC, KKC and KPAC) with the top 5
ranked API classes

Figure 4.10: The P, R and F of all heuristics (KAC, KKC and KPAC) with the top
3 ranked API classes

F (F1-score) of ranked top 10 API classes for Keyword-API Co-occurence (KAC),

Keyword-Keyword Co-occurence (KKC), Keyword Pair API Co-occurrence (KPAC)
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and all (KAC, KKC and KPAC). Comparing Figure 4.5- Figure 4.8 we can know when

KKC, KAC and KPAC combine that they can provide the maximum performance

of Mean P(precision), Mean R(recall) and Mean F, and the ranking combination of

APIs is more reasonable. The Mean P(precision) of all of KKC, KPAC and KAC are

about 11%. All heuristics have 20% in the Mean P(precision), which is the highest

one. The highest Mean R(recall) is about 24% in all heuristics. KPAC has the second

highest Mean R(recall), which is about 11%. All have about 20% Mean F (f1-score),

which is the highest one. both of KAC and KPAC has the second highest Mean F

(f1-score), which is about 13%. Hence, all heuristics is the most effective, and KPAC

is the most effective of the three individual heuristics.

Figure 4.5, Figure 4.9 and Figure 4.10 are about the Mean P(precision), Mean

R(recall) and Mean F (f1-score) percent of ranked top 3, 5 and 10 API classes for all

(combines KAC KKC and KPAC). Comparing Figure 4.5, Figure 4.9 and Figure 4.10,

we can know top 5 ranked API classes have the highest Mean P(precision) percentage,

which is about 40%. The top 10 ranked API classes have the highest Mean R(recall)

percentage, which is about 24%. Both of the ranked top 5 and 10 API classes have

the similar Mean F (f1-score) percentage, which is about 20%.

4.3 RQ2: Java VS Python – for which language does RACK perform

better?

To answer R2, we compared Top-3, 5 and 10 Accuracy, Mean Precision@K, and Mean

Recall@K of KKC, KAC and ALL in Python (Table 4.1and Table 4.3) and Java (Table

4.2 [2] and Table 4.4 [2]).

From Table 4.1 and Table 4.2 [2], we can know Mean Average Precision@K for

the top 3 and 5 all recommended API classes in JAVA(30.39% and 33.6%) are lower

than those in Python (about 33.3% and 40%). However, the top 10 recommended

API classes Mean Average Precision(34.92%) for all heuristics is higher than those

in Python (20%). For Mean Recall @K of all heuristics for the top 3,5 and10 recom-

mended API classes in Java (23.71%, 33.48%, 45.02%) is higher than those in Python

(8.3%, 14.3%, 23.6%). Therefore, RACK in Java for all heuristics performs better

than Python in Mean Recall @K.

From Table 4.3 and Table 4.4 [2], we can know Top-10 Mean Average Precision@K
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Performance Metric Top-3 Top-5 Top-10
Mean precision 33.3% 40% 20%
Mean Recall 8.3% 14.3% 23.6%

Table 4.1: Top - 3, 5 and 10 Mean Precision and Mean Recall of all heuristics in
Python

Performance Metric Top-3 Top-5 Top-10
Mean Average precision 30.39% 33.36% 34.92%
Mean Recall 23.71% 33.48% 45.02%

Table 4.2: Top - 3, 5 and 10 Mean Average Precision@K, and Mean Recall@K of all
in JAVA

Heuristics Metric Top-10
Keyword-API Co-occurence (KAC) Mean precision 11.1%

Mean Recall 6.3%
Keyword-Keyword Co-occurence (KKC) Mean precision 11.1%

Mean Recall 0%

Table 4.3: Mean Precision, and Mean Recall of KKC, KAC and (KKC+KAC) in
Python

Heuristics Metric Top-10
Keyword-API Co-occurence (KAC) Mean Average precision 35.41%

Mean Recall 44.8%
Keyword-Keyword Co-occurence (KKC) Mean Average precision 24.11%

Mean Recall 19.52%

Table 4.4: Top - 3, 5 and 10 Mean Average Precision@K, and Mean Recall@K of
KKC, KAC and (KKC+KAC) in JAVA

of KKC and KAC heuristics in JAVA (35.41% and 24.11%) is higher than those in

Python (11.1% and 11.1%). Top-10 Recall@K of KKC and KAC heuristics in JAVA

(44.80% and 19.52% ) is higher than them in Python (0% and6.3% ). Therefore,

RACK in Java performs better than Python in both KKC and KAC heuristics.

4.4 Summary

We evaluate the accuracy of the recommendation of RACK by collecting 50 Python

questions from four open-source sites (freecodecamp.org, programiz.com, geeksforgeeks.org

and realpython.com). Three performance metrics (Precision (P), Recall (R), and F1-

score (F)) are used to evaluate the performance of all heuristics and three individual
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heuristics (KKC, KPAC and KAC). In the research, we found ALL heuristics provide

the best performance, with KPAC being the most effective individual heuristic. And

Java has better performance in Mean Recall@K, and KKC and KAC heuristics.
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Threats to validity

We also face several limitations and threats. We extracted API from Stack overflow,

but some issues in Stack overflow may have incorrect labels. When asked some less

common questions, the correlation between keywords and API is very low. We have

demonstrated that RACK can be used in Python and Java, but it can also be used

in other programming languages such as JavaScript, C and C++.

Less common questions: When we search less common questions on RACK,

the database may not be able to give accurate answers, and the accuracy of the

recommendation API could be very low. We can use web scraping to search for

relevant questions and answers across multiple platforms to mitigate such issues.

Diversity of programming languages: We have only two programming lan-

guages (Python and Java) available in RACK, and currently it does not support other

programming languages such as C, Javascript and C++. In future, we will try more

types of programming language from Stack Overflow to test the generalizability of

RACK.

Unable to return code: When we use GitHub to find related code repositories,

we should only proceed with the next steps when the web response is 200, otherwise,

errors occur. If the status codes are different such as 404 (not found), we need to

handle the error accordingly. One of the common non-response situations is that

we did not give the correct developer token or the original token has expired so the

response is not successful. We need to check and update tokens regularly to prevent

expiration issues. There are other reasons such as poor network connection. In

addition, if the code snippets have syntactic errors, our program can not parse the

code snippets.

25



Chapter 6

Related work

Rack is a method for recommending relevant API classes based on natural language

search queries. At the same time, we found other methods that can recommend API

classes: ChatGPT, NLP2API, and Thung et al. (API methods are recommended

based on feature requests).

6.1 ChatGPT

ChatGPT can use natural language queries to find relevant API classes. ChatGPT

parses the search query to find the keywords and understand the query intent. Then

the keywords extracted from the query are mapped to the parameters of the API

classes to find the relevant ones. Since ChatGPT has learned from millions of web

pages and code examples from the Internet, it can effectively provide users with

relevant API classes based on their natural language search query.

6.2 NLP2API

NLP2API is one of the methods to find relevant API classes based on natural lan-

guage search queries. It uses crowdsourced knowledge to recommend the relevant

API classes. NLP2API uses natural language pre-processing, word embeddings using

fastText and semantic proximity evaluation to find related APIs. NLP2API inputs

natural language queries in the an plug-in IDE called NLP2API-runner and can return

a ranking list of related API classes [11][12].

26
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6.3 Thung et al.

Thung et al. automatically recommend API methods based on feature requests. It

takes natural language queries as input. Thung et al. process queries by extract-

ing relevant information such as abstracts and descriptions. Leveraging a history-

based recommendation approach, Thung et al. compare queries with historical fea-

ture requests by considering various criteria such as summary, description, compo-

nent, reporter, and priority to get a historical similarity score (SimHISTORY). The

description-based recommendation process calculates a similarity score (RecScore-

DESCRIPTION) between queries and API methods based on textual descriptions.

The two recommendation scores are combined to produce a final recommendation

score (RecScore) for API classes. Thung et al.use weighting adjustments to optimize

the contribution of historical and description-based recommendations. The technique

provides developers with a ranked list of related API classes that combine historical

context and textual similarity to guide effective feature implementation [13].

6.4 Summary

ChatGPT, NLP2API, and Thung et al. can return relevant API classes for natural

language search queries. ChatGPT recommends API classes by parsing keywords,

mapping them to API class parameters and employing error handling to provide

effective suggestions. NLP2API uses crowdsourced knowledge, fastText-based word

embeddings, and semantic evaluation to return a ranked recommendation list and

display it in the NLP2API-runner. Thung et al. combine historical, description-

based recommendations with historical context and textual relevance to calculate

similarity scores to recommended API classes.



Chapter 7

Conclusion & Future work

7.1 Conclusion

Software developers spend a lot of time searching for code examples to solve problems.

We use RACK for automated code search to enhance the efficiency and accuracy of

code search. RACK is used for searching natural language questions to get related-

code answers by three individual heuristics — Keyword-API Co-occurence (KAC),

Keyword-Keyword Co-occurence (KKC), Keyword Pair API Co-occurrence (KPAC)

and all heuristics (KAC, KKC and KPAC). And we use it to make API database

mapping. We use 50 examples from four programming sites to test RACK in Python.

programming language. We use Precision, Recall and F1-Score to evaluate RACK

effectiveness. We built an RACK plug-in tool to let software developers easily search

questions and get more accurate answers with code snippets. In total, RACK is a

type of effective API class recommendation technology. We designed a VS-Code tool

to make the RACK available for Python code search in natural language. We will

find 50 questions from four programming sites (freecodecamp.org, programiz.com,

geeksforgeeks.org and realpython.com) to test ranked API classes to make sure it’s

accurate and widely usable [2].

RACK VS-Code plugin can find the keyword token of the problem by analyzing

the natural language query. According to the keyword tokens, we get the relevant

recommended API classes. We find the code snippets with these API classes in

GitHub based on the relevant recommended API classes. Then we arrange them

according to the relevance percent ( the intersection of ranked API classes with all

code’s API classes divided by the union of ranked API classes with all code’s API

classes) and select the top five GitHub websites and return those code snippets. So

software developers can quickly find suitable and accurate code snippet answers.

Github link: https://github.com/shihuiMaxine/RACK 2023.git 1

1https://github.com/shihuiMaxine/RACK 2023.git
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7.2 Future work

In future work, we will adapt RACK to other programming languages such as C,

C++ and PHP. We will try more programming languages in RACK. We use three

heuristics, KKC, KAC and KPAC, to query API classes. However, we may try to

find more heuristics to replace KPAC to better help software developers find related

API classes. We only use Jaccard similarity to calculate the matching between rec-

ommended and ground-truth API classes and return code snippets. We may try to

use more evaluation methods. In addition, we can let recommended API classes be

closer to natural language tokens. We can try using existing state-of-the-art API

recommendation techniques to combine with RACK to look for their advantage to

work and recommend API classes together.

We collect relevant code snippets from GitHub. We will also ask and answer sev-

eral questions like these. If we use some other open source websites such as Bitbucket,

SourceForge and Codeberg, can we find valid relevant code snippets? If we merge

content from multiple open source sites together, we will see if we can find a more

efficient and accurate answer with code. We will try different open source sites in the

future to find the answer.
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