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Abstract—Software bug reports often miss critical information,
delaying their resolution. The last decade has seen a growing
trend of combining textual and multimedia information from
software artifacts (e.g., bug reports, and programming questions)
to support various software engineering tasks (e.g., duplicate
bug report detection, and bug reproduction). However, none of
the studies performs a fine-grained analysis of the multimedia
information attached to bug reports. Hence, it is not clear what
their attached images or videos contain or whether they could
help identify software bugs or errors automatically. In this paper,
we conduct a preliminary study that investigates the presence or
prevalence of key elements in 1,469 images attached to 1,000
bug reports and demonstrate their potential to support IR-based
bug localization. We have several interesting findings. First, our
analysis suggests that the attached images to visual bug reports
contain a mix of UI components, programming components,
and regular text. Second, our analysis using an LLM (e.g.,
GPT4o) suggests that it can extract the key elements from the
attached images effectively, posing a suitable alternative to human
annotators. Finally, our experiments suggest that the multimedia
information extracted from the attached images can enhance the
performance of a traditional technique for bug localization by
improving 34.06% of its search queries.

Index Terms—Visual bug reports, attached images, bug local-
ization, LLM

I. INTRODUCTION

A picture is worth a thousand words. Over the last decade,
there has been a growing trend of software developers com-
bining textual and multimedia information to solve their
development and maintenance problems [19]. For example,
in Stack Overflow Q&A site, users often attach multimedia
content (e.g., screenshots) to their posted questions. Similarly,
in Bugzilla, software users often attach multimedia content
to their issue reports [19]. Recently, GitHub launched a
new feature that allows its users to share their multimedia
documents (e.g. videos) as a part of the bug reports [6]. When
a bug report lacks a succinct description of an encountered
bug, the visual items have the potential to complement it
with relevant information. In visual bug reports, the attached
images or videos may convey various information including UI
screenshots, error messages, and programming code. However,

to date, visual bug reports have not received much attention.
It is also not clear which types of content are present in their
attached images or videos and what their prevalence is.

Several existing works leverage multimedia content (e.g.,
images or videos) to support various software maintenance
tasks including duplicate bug report detection [8], bug repro-
duction [10, 13, 16], and GUI testing [9]. Unfortunately, only
a little research has been done to better understand the char-
acteristics of visual bug reports. In recent work, Nayebi [19]
investigates the images attached to Stack Overflow questions
and Bugzilla reports to determine if they are informative and
essential to understand the submitted problems. Nayebi [19]
categorizes these images into multiple classes and investigates
how the developers perceive the value of these images through
a developer study. Recently, Kuramoto et al. [14] conduct a
preliminary study to analyze the characteristics of visual bug
reports by comparing them with non-visual bug reports. They
found that visual bug reports contain fewer text than that of
non-visual bug reports, but this does not affect their resolution
times. Although the above studies shed some light on the
characteristics of visual bug reports, they do not perform any
fine-grained analysis to understand the actual contents of the
images that are attached to visual bug reports.

There exists a large body of work on bug localization
[20, 22, 24, 25, 26, 27, 28, 29] that leverage various textual
contents from a bug report (e.g., text, stack traces, commit
diffs) to find the corresponding bug. Surprisingly, they often
overlook the relevance of the attached multimedia information
(e.g., images, videos). A recent work [15] demonstrates how
GUI operations from the videos of Mobile apps can benefit
the text-retrieval based methods for bug localization. However,
there is still a marked lack of research that investigates
how the multimedia information (e.g., attached images) from
bug reports could help identify the bugs within the source
code. Our work is the first that fills this significant gap by
extracting and utilizing information from attached images in
bug reports and thus improving bug localization performance,
which makes our work novel.



Fig. 1. Schematic diagram of the conducted Study

In this paper, we conduct a preliminary study using 1,000
visual bug reports from 223 projects (a) to better understand
the characteristics of their attached images, and (b) to deter-
mine whether they are useful for finding software bugs. We
ask two important research questions as follows.

• RQ1: What are the key elements found in the images
attached to visual bug reports? Our analysis suggests
that the attached images contain a mix of User Interface
(34.5%), programming components (16.2%), and regular
text (49.3%). We also found that commercial Large Lan-
guage Models (LLM) such as GPT-4o can extract these
elements from the attached images effectively, which has
significant implications.

• RQ2: Does incorporating multimedia information
(e.g., attached images) into Information Retrieval-
based methods improve their performance in bug
localization? We found that the multimedia information
from the attached images can help a traditional technique
for bug localization (e.g., Apache Lucene [5]) achieve bet-
ter performance (e.g., ≈21% higher Hit@1 than baseline)
by improving 34% of its search queries.

II. STUDY METHODOLOGY

Fig. 1 shows the schematic diagram of our conducted study.
First, we manually analyze the bug reports and their attached
images, and identify key elements from the images (e.g., UI
controls, and programming code). We also repeat identify-
ing key elements using the GPT-4o API [2] to determine
the LLM’s effectiveness for the task (RQ1). An automatic
multimedia information analysis could help us combine text
and multimedia information in bug localization. Second, we
leverage the extracted information from the attached images
in bug localization using Information Retrieval (RQ2). In this
section, we discuss the major steps of our study as follows.

A. Dataset Construction

We collect our dataset from an existing benchmark of
Kuramoto et al. [14]. The benchmark dataset contains a total
of 1,230 videos and 18,760 images attached to 226,286 bug re-
ports that were submitted to 4,173 software projects at GitHub.
As our research focuses on images rather than videos, we
select the visual bug reports that contain only images. We then
examined 1,615 projects from the dataset, analyzed hundreds
of visual bug reports, and identified those containing ground
truth information (e.g., changed source documents). Through

this process, we compiled a final dataset of 1,000 visual bug
reports from 223 open-source projects on GitHub, as ground
truth information is essential for conducting experiments in
bug localization. The entire process required approximately
110 person-hours to complete.

B. Analysis of Bug Reports and their Attached Images

Manual analysis. In our manual analysis, we employ the
snowball approach [11] to identify unique elements in the
images attached to visual bug reports (Step 1a, Fig. 1). In
the snowball approach, we start with a few key categories
and then gradually add more categories or sub-categories.
Our selection of these categories was inspired by the existing
literature [14, 19]. For each attached image, we first determine
if it matches one of three major categories: UI components,
Programming components, and Natural language text (see
Table II). If yes, we attempt to find more granular items (e.g.,
stack traces, Git commands) from the image. Otherwise, we
check if it is a novel category. We involve one human annotator
for the manual analysis. The annotator was provided with the
necessary training and relevant guidelines before the training
process. The annotator spent ≈85 hours analyzing 1,000 bug
reports and 1,469 attached images.

Automated analysis. Despite clear, explicit guidelines, hu-
man annotations could suffer from subjective bias. Involving
multiple annotators is a way to mitigate such bias. However,
given the extreme costs of annotation, we decided to use
another feasible alternative. We annotate the attached images
to bug reports using an LLM-based image recognition tech-
nique, namely GPT-4o [2] (Step 1b, Fig. 1). The Open AI
GPT-4o has shown remarkable capabilities in various problem-
solving tasks including image annotation. We first construct
an appropriate prompt outlining the key categories and sub-
categories and instruct GPT-4o to annotate the attached im-
ages. (The prompt can be found in the replication package
[4]). Then we execute the prompt with the LLM for each of
the 1,469 attached images and collect the results containing
the annotated key elements.

Agreement analysis between manual and automated
annotations. We perform agreement analysis between the two
types of annotations above using Cohen’s Kappa measure
(Step 1c, Fig. 1). Cohen’s kappa is a statistical measure to
quantify the level of agreement between two raters (e.g.,
annotators, judges, observers) [3]. Our analysis has reported
an almost perfect agreement score of 80.49%, indicating that
an LLM-based solution (e.g., GPT-4o) can effectively extract
key elements from the images attached to bug reports. In our
work, the disagreements between the human annotator and
GPT-4o were resolved by involving another human annotator.
This process took approximately 10 hours to complete.

C. Construction of Queries and Corpus

Once the key elements from the attached images are iden-
tified, we apply them to bug localization to determine their
benefit. In particular, we incorporate them in an Information
Retrieval (IR)-based approach and attempt to improve its



search queries (Step 2, Fig. 1). We construct search queries
and corpus for our experiment as follows.

Query construction. We construct two types of search
queries for our experiment. First, we capture both the title
and description from each bug report to design our baseline
query (i.e., T+D). We perform standard natural language pre-
processing on these fields, involving stop word or punctuation
removal and token splitting. We use a standard list [1] to
discard the stop words and punctuation marks. We also use
appropriate regular expressions to split the structured tokens
(e.g., getMethodName is divided into get, Method, and
name). Second, to construct the extended query (i.e., T+D+I),
we additionally extract the tokens from the key elements found
in the attached images. First, we use GPT-4o to convert an im-
age containing text into machine-readable text. Then, we apply
the same preprocessing steps (e.g., stop word removal, token
splitting) to the machine-readable text and combine it with
the baseline query to make the extended query (Step 2a, Fig.
1). Given that the incorporation of multimedia information in
query construction is automatic, it has important implications.

Corpus construction. We collect all the source code docu-
ments from a software project to construct our corpus (Step 2b,
Fig. 1). We perform the same standard natural language pre-
processing on each source document and index them carefully.
From the indices, one can locate the documents containing one
or more keywords from a given query, which helps rank the
documents according to their relevance. To index and search
our corpus, we use the Apache Lucene [5]. The tool has been
widely used for indexing and searching in various software
engineering tasks including bug localization [12, 17, 18, 21].

D. Ground Truth Selection

We use a standard approach for selecting the ground truth
code against each bug report (i.e., query). We go through all
the commit messages of a software repository and identify
the bug-fixing commits using appropriate regular expressions
(e.g., (B|b)ug\s+\d+|\=\d+| <Repo>-\d+) [7]. Then
we map these commits to the bug IDs of our visual bug
reports and extract all the changed source documents from
each relevant commit. Such changed documents are then used
as the ground truth code for the corresponding bug reports
(i.e., queries). The same approach has been widely adopted
by the literature [23, 26], which justifies our choice.

E. Retrieval of Buggy Source Documents

Retrieval and ranking of relevant buggy documents were
performed based on textual similarity between a given query
and each of the documents in the corpus. We employ the
Apache Lucene [5], a BM25-based, widely used search engine,
to retrieve the buggy source documents according to their
relevance to each query (Step 2c, Fig. 1).

F. Performance Metrics

We chose two performance metrics to evaluate the perfor-
mance of an IR-based technique for bug localization: Hit@K
and QE. These metrics have been widely used by the relevant

literature [22, 29], which makes them appropriate for our
experiment. Hit@K calculates the fraction of search queries
(i.e., bug reports) for each of which at least one ground truth
document is retrieved within the Top-K results. The higher the
Hit@K value is, the better the bug localization performance is.
On the other hand, Query Effectiveness (QE) is a performance
metric that returns the rank of the first result that matches
the ground truth document within the ranked list. That is, the
lower the effectiveness value is, the better a query is.

III. STUDY FINDINGS

A. Answering RQ1: What are the key elements found in the
images attached to visual bug reports?

Key elements found in the attached images: We analyze
the images attached to bug reports through manual and auto-
mated analysis and determine the presence and prevalence of
key elements. We found 8 different types of elements under 3
major categories as follows.

(a) UI Components: The elements from this category
contain one or more UI controls that can be acted upon. They
may or may not contain any textual labels. We found one key
element under this category as follows.

Textual UI. In this case, the attached images contain one or
more UI components with textual content or labels.

(b) Programming Components: This category contains
program-like elements, which could be either structured or
semi-structured. We found five key elements under this cate-
gory as follows.

Programming code. In many cases, the attached images
contain a snapshot of code snippets relevant to the bugs.

Exceptions and errors. The attached images often contain
error or exception messages that could be useful to understand
the encountered bugs.

Git Commands. Git bash commands and their output were
also found in several images attached to visual bug reports.

Python Commands. Python commands and their output were
also found in several images attached to visual bug reports.

Other Commands. Several commands such as Unix com-
mands, GPS system commands, and .NET commands were
also found in several images attached to visual bug reports.

(c) Natural Language text: Natural language text were
also found in many images attached to visual bug reports.
They were written in English or other languages.

English text. Most of the attached images are written in the
English language.

Other Language text. We also found text in the attached
images that were not written in the English language.

Prevalence of key elements. Table II and Fig. 2 show the
prevalence of key elements within the images attached to bug
reports. From Fig. 2 (a), we see that most of the attached
images contain natural language text (49.3%) followed by UI
components (34.5%) and programming components (16.2%).
Fig. 2 (b) further breaks down these statistics for eight key ele-
ments. We see that most of the attached images contain English
text (43.7%) followed by textual UI (34.6%). However, we also
notice the prevalence of programming code (7.0%), errors,



Fig. 2. Prevalence of key elements in the attached images.

TABLE I
IMPACT OF KEY ELEMENTS ON SEARCH QUERY USING QE

Key Elements Improved Worsened Net Improved
Textual UI 184 (31.62%) 177 (30.41%) 1.21%
Programming Code 50 (32.46%) 33 (21.43%) 11.03%
Exceptions and Errors 41 (38.32%) 33 (30.84%) 7.48%
Git Commands 1 (25%) 2 (50%) -25%
Python Commands 7 (50.00%) 5 (37.71%) 14.29%
Other Commands 23 (38.98%) 15 (25.42%) 13.56%
Enlgish Text 245 (35.40%) 205 (29.62%) 5.78%
Other Language Text 23 (22.77%) 27 (26.73%) -3.96%

TABLE II
KEY ELEMENTS IN THE ATTACHED IMAGES

Category Key Item #Images
UI Components Textual UI 1032

Programming Components

Programming code 209
Exceptions and errors 167
Git commands 4
Python commands 27
Other commands 76

Natural Language text English text 1305
Other Language text 168

and exceptions (5.6%), which can complement the textual
information from bug reports. Python and other commands
were found in ≈3% of the attached images. It should be
noted that the same attached image contains key elements
from multiple categories, indicating the diverse nature of the
attached images to visual bug reports.

Summary of RQ1: Visual bug reports contain 8
key elements from 3 major categories - UI compo-
nents, programming components, and natural language
text. However, 16.2% of the attached images contain
program-like elements (e.g., code snippets, errors, ex-
ceptions, stack traces), which could complement the
text from bug reports.

B. Answering RQ2: Does incorporating multimedia informa-
tion (e.g., attached images) into Information Retrieval methods
improve their performance in bug localization?

We select 773 visual bug reports from 175 projects based on
their ground truth availability at GitHub. Two types of queries
– (a) baseline query (T + D), and (b) extended query (T + D
+ I) – were captured from each bug report and were executed
against the IR-based method [5] to collect the results.

From Table III, we see that the extended query (T+D+I) per-
forms better than the baseline query (T+D) consistently across

TABLE III
IMPACT OF ATTACHED IMAGES ON BUG LOCALIZATION

Group Hit@1 Hit@5 Hit@10
T+D 13.87% 37.35% 47.67%
T+D+I 16.89% 38.78% 49.59%

T = Title, D = Description, and I = Text from Image

TABLE IV
IMPACT OF ATTACHED IMAGES ON SEARCH QUERIES

QE Improved Preserved Worsened Net Improved
UIC 184 (31.62%) 221 (37.97%) 177(30.41%) 1.21%
PC 122 (41.64%) 83 (28.32%) 88 (30.03%) 11.61%
All 250 (34.06%) 269 (36.65)% 215 (29.29)% 4.77%

UIC = UI Components, PC = Programming Components

three Hit@K measures. In particular, it achieves 21.77%,
3.28%, and 4.03% higher performance in Hit@1, Hit@5 and
Hit@10 respectively, which are promising. Table I shows
how the key elements from the attached images improve the
search queries during bug localization. We see that the Pro-
gramming Code and Python Commands significantly improve
the baseline queries, delivering 11%–14% net improvement
in queries. On the other hand, textual UI or English text
improve the queries marginally. A few components, especially
non-English text introduce noise and lead to worse queries
than the baseline. From Table IV, we see that 122 of the
extended queries perform better than the baseline queries
when all key elements from Programming Components are
considered. Besides, 36.65% of the extended queries retain
their performance when all 8 key elements are used. Thus,
the information extracted from the attached images has the
potential to improve the search queries and thus can benefit
existing IR-based methods for bug localization.

Summary of RQ2: Multimedia information from
visual bug reports has the potential to support existing
methods for bug localization. Key elements from the
attached images (e.g., Programming Components) can
complement the text-based baseline queries, delivering
11%–14% net improvement in query effectiveness.

IV. CONCLUSION AND FUTURE WORK

A few studies attempted to understand the characteristics
of the images attached to bug reports, but they did not
perform any fine-grained analysis. In this paper, we conduct
an empirical study with 1,000 bug reports and 1,469 attached
images and answer two important research questions. Our
findings suggest that the attached images contain eight key
elements under three major categories. Most elements contain
natural language text or UI, but 16% contain programming
components. We also found that the extracted information
from the attached images can improve the chance of localizing
software bugs when applied to an existing technique. Thus, our
preliminary findings have significant implications for tackling
the challenge of software bug localization. Future work can
exhaustively investigate the roles and benefits of multimedia
information (e.g., attached images) in bug localization.
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