Can Issues Reported at Stack Overflow Questions
be Reproduced? An Exploratory Study

Saikat Mondal, Mohammad Masudur Rahman, Chanchal K. Roy
Department of Computer Science, University of Saskatchewan, Canada
{saikat.mondal, masud.rahman, chanchal.roy} @usask.ca

Abstract—Software developers often look for solutions to their
code level problems at Stack Overflow. Hence, they frequently
submit their questions with sample code segments and issue
descriptions. Unfortunately, it is not always possible to reproduce
their reported issues from such code segments. This phenomenon
might prevent their questions from getting prompt and appropri-
ate solutions. In this paper, we report an exploratory study on the
reproducibility of the issues discussed in 400 questions of Stack
Overflow. In particular, we parse, compile, execute and even
carefully examine the code segments from these questions, spent a
total of 200 man hours, and then attempt to reproduce their pro-
gramming issues. The outcomes of our study are two-fold. First,
we find that 68% of the code segments require minor and major
modifications in order to reproduce the issues reported by the
developers. On the contrary, 22% code segments completely fail
to reproduce the issues. We also carefully investigate why these
issues could not be reproduced and then provide evidence-based
guidelines for writing effective code examples for Stack Overflow
questions. Second, we investigate the correlation between issue
reproducibility status (of questions) and corresponding answer
meta-data such as the presence of an accepted answer. According
to our analysis, a question with reproducible issues has at least
three times higher chance of receiving an accepted answer than
the question with irreproducible issues.

Index Terms—Issue reproducibility, Stack Overflow, code seg-
ments, code level modifications, reproducibility challenges

I. INTRODUCTION

Stack Overflow has become the ultimate platform for de-
velopers [15]. The number of users and the questions posted
at Stack Overflow are increasing exponentially [2]. A large
number of questions contain such code segments that could
potentially have issues (e.g., error, unexpected behaviour)
[25]. Once submitted, users at Stack Overflow generally at-
tempt to reproduce the programming issues discussed in the
questions, and then submit their solutions. Reproducibility
means a complete agreement between the reported issues
and the investigated issues [28]. Unfortunately, such pro-
gramming issues could always not be reproduced [14, 21]
by other users which might prevent these questions from
getting appropriate and prompt answers. Such scenario might
also explain the 13.36% unanswered and 47.04% unresolved
questions at Stack Overflow [2, 3, 17]. Given these major
challenges in question answering, a detailed investigation is
warranted on the reproducibility of the code level issues that
are reported at Stack Overflow questions. Several existing
studies [11, 29] investigate the usability and executability of
the code segments posted on Q&A sites. Yang et al. [29]
extract 914,974 code segments from the accepted answers of

Stack Overflow and analyse their parsability and compilability.
However, their analysis was completely automatic, and they
did not address the challenges of issue reproducibility. Horton
and Parnin [11] analyse the executability of the Python code
segments found on GitHub Gist system. They identify several
flaws (e.g., import error, syntax errors, indentation error) that
prevent the execution of such code segments. However, a
simple execution success of the code does not necessarily
guarantee the reproduction of the issues discussed at Stack
Overflow questions. Thus, their approach also fails to address
the reproducibility challenges that we are dealing with. In
short, all challenges of reproducibility could not be resolved
using only automated analysis. Thus, there is a marked lack of
research that (1) carefully investigates the challenges of issue
reproducibility (of Stack Overflow questions) and (2) develops
automated approaches to help overcome such challenges.

In this paper, we report an exploratory study on the re-
producibility of the discussed programming issues at 400
questions from Stack Overflow. For each of these questions,
we follow three logical and sequential steps. First, we attempt
to understand the issue of the question by analysing its code
segment and the associated textual description. Second, we
clone the code segment in our development environment (e.g.,
IDE), and attempt to reproduce the reported issue. Third, we
record our findings on the reproducibility of the issues from
each of the questions. In the case of failure, we investigate
why the issues could not be reproduced. We spent a total of
200 man-hours for our analysis in this study. Our findings
from this study are two-fold. First, we find that 68% issues
reported at Stack Overflow questions can be reproduced and
only 32% of them can be reproduced using the verbatim code
from Stack Overflow. The remaining code segments warrant
either minor or major modifications in order to reproduce
the issues. Second, we investigate the relationship between
the reproducibility status of the issues (from questions) and
the answer meta-data (e.g., accepted answer). We found that
a question with reproducible issues has more than three
times higher chance of getting an acceptable answer than the
question with irreproducible issues. Our in-depth investigation
and findings not only establish issue reproducibility as a
question quality paradigm but also encourage automated tool
supports for improving the code segments submitted at Stack
Overflow. We answer three research questions and thus make
three contributions in this paper as follows:

(RQ;) What are the challenges in reproducing the issues

reported at Stack Overflow questions? How can issue
reproducibility be measured? We conduct extensive manual
analysis and investigate what types of actions are needed to
reproduce the issues reported at Stack Overflow questions. We
classify the reproducibility status into two major categories
(reproducible, irreproducible) and also discuss why the re-
ported issues could not be reproduced using the submitted
code examples.

(RQ-) What proportion of reported issues at Stack Over-
flow questions can be reproduced successfully? We conduct
a detailed statistical analysis to determine what percentage of
the issues can be reproduced and what percentage cannot be
reproduced even after performing major modifications to their
corresponding code segments.

(RQ3) Does reproducibility of issues reported at Stack
Overflow questions help them get high-quality responses
including the acceptable answers? We conduct a detailed
investigation and determine the correlation between issue
reproducibility (of questions) and corresponding answer meta-
data such as presence of an accepted answer, time delay
between posting of a question and accepted answer, and the
number of answers.

II. MOTIVATING EXAMPLES

Code segments submitted as a part of the questions at Stack
Overflow might always not be sufficient enough to reproduce
the reported issues. Let us consider the example question in
Fig. 1. Here, the user attempts to reset all the variables while
starting a new game. He discovers that the code is not working
as expected and some of the variables are retaining their old
values. Unfortunately, this issue cannot be reproduced since
essential parts of the code are missing. For example, one user
commented — “Can you post more code? The Game class? The
class that contains the restart() method?” — while attempting
to answer the question. In Stack Overflow, this question has
failed to receive a precise response. Even though the above
code (i.e., Fig. 1) could be made parsable, compilable and
executable with all necessary editing, the above reported issue
could not be reproduced easily due to its complex nature.
Thus, the automated analyses done by the earlier studies
[11, 29] might also not be sufficient enough to overcome all
the challenges of this reproducibility.

Let us consider another example question as shown in the
Fig. 2. Suppose Alice, a software developer, wants to answer
this question. First, she attempts to identify the issue and soon
understands that the user is attempting to capture a person’s
full name (e.g., John Doe). Unfortunately, the user is getting
only the first part of the given name (e.g., John). He invoked
next () method of the Scanner class to take the input. In
order to answer, Alice first copies the code segment to the
IDE and then finds that the code does not even parse. As a
result, the IDE returns several parsing and compilation errors.
Fortunately, by performing several edits (e.g., addition of a

! https://stackoverflow.com/questions/798184
Zhttps://stackoverflow.com/questions/19509647

Java: Resetting all values in the program

| am working on this program where at the end of the game | ask the user if they want to
play again. If they say yes, | need to start a new game. | made a restart() method:

public void restart(){
Game g = new Game();
g.playGame();

However when | call this method some of the values in my program stay at what they were
during the previous game.

Is there a game to just clear everything and create an new instance of the game with all the
default values?

Fig. 1: An example question' of Stack Overflow. (Reproducibility
status: Irreproducible)

Scanner doesn't see after space

| am writing a program that asks for the person's full name and then takes that input
and reverses it (i.e John Doe - Doe, John). | started by trying to just get the input, but
it is only getting the first name.

Here is my code:

public static void processName(Scanner scanner) {
System.out.print("Please enter your full name: ");
String name = scanner.next();
System.out.print(name);

}

Fig. 2: An example question® of Stack Overflow. (Reproducibility
status: Reproducible)

demo class and main method) Alice could reproduce the stated
issue. Similarly, this issue was also reproduced by the other
users of Stack Overflow, and the question received a high-
quality answer within a couple of minutes. As the solution
suggests, the user should have used nextLine () method
instead of next () to avoid the reported issue.

III. STUDY METHODOLOGY

Fig. 3 shows the schematic diagram of our conducted
exploratory study. We first randomly select 400 questions of
Stack Overflow, and then attempt to reproduce their discussed
programming issues. In particular, we use their submitted code
segments, perform a list of edits, and then attempt to make
them reproduce the reported issues. The following sections
discuss different steps of our methodology.

A. Dataset Preparation

Fig. 4 depicts the data collection steps. We collect Novem-
ber 2018 data dump of Stack Overflow from Stack Exchange
site [2]. In particular, we select Java related questions since
Java is one of the most popular and widely used programming
languages. We collect a total of 85,876 questions that have
only one tag namely <java> from the data dump. It should
be noted that we impose this restriction on the question tags
to (1) choose purely Java related questions and (2) keep our
analysis simple. We then discard such questions that do not
have any code segments. Since we deal with the reproducibility
of the reported issues, the presence of code segments in the
question is warranted. We thus consider only such questions
that have at least one line of true Java code. According to our
investigation, 70,103 out of 85,876 (i.e., 81.63%) questions
have at least one line of code. We identify such questions

&

Question Issue

r- RQ1&RQ2 -;

s H—

Reproducible |

Reproducible?

Data Filtration

Data Collection

Data of Interest

? = > NO — :>
;—]]9 5@\4 ‘= =iy He > E,L—) 5

—><--p'

QO

D

Irreproducible H Correlation

Analysis !

Answer Meta-data

Fig. 3: Schematic diagram of our exploratory study.

NO NO
Code Has
Segment? Issue?

-, — &—|oonm
— con
—db = ||
Stack Overflow CLTT-T-1-1-]
Data dump Sampled Questions Random Sampling

Fig. 4: Selection of dataset for our study.

using specialised HTML tags such as <code> under <pre>,
and select them for our study.

Questions containing code segments might not always have
an issue that needs to be reproduced during the answering
time. Programmers might even seek general help or ask for
more efficient source code than the submitted code segment.
However, in this study, we target only such questions that
discuss at least one issue each and contain at least code
segment each. We thus carefully analyse the questions, and
look for several keywords such as - error, warning, issue,
exception, fix, problem, wrong, fail in the question texts. We
then identify a total number of 30,528 questions that might
have an issue. We randomly select 1,000 questions from them
for manual analysis.

During manual analysis, we found a significant number
of duplicate questions. In such cases, we consider the orig-
inal questions with explicit issues and discard the duplicate
questions. We also discard a few questions that were closed
by Stack Overflow due to their low quality. Overall, we
manually investigate 400 Java related questions from 1000
random samples that meet our selection criteria, and answer
our research questions.

Replication: All experimental data and relevant materials
are hosted online [1] for replication or third party reuse.

B. Environment Setup
We use Eclipse Oxygen.3a Release (4.7.3a)3
and NetBeans 8.2* to execute the code segments and

3 https://www.eclipse.org
“https://netbeans.org

TABLE I
LiST OF CODE EDITING ACTIONS

- Exception handling - Invocation of methods

- Code migration - Debugging

- Addition of demo classes and methods

- Inclusion of native and external libraries

- Object creation, identifier declaration and initialisation
- Deletion of redundant and erroneous statements

- External file, database and dataset creation

reproduce the programming issues. Eclipse and NetBeans are
two popular IDEs that are frequently used for Java program-
ming. When the issues are related to compilation errors, we
first employ javac to detect the compilation problems, and
then use Eclipse and NetBeans to reproduce the issues. In
particular, we attempt to find an exact match between our error
messages and the ones mentioned in the questions of Stack
Overflow. We use Java Development Kit (JDK)-1.8
as our development framework, J avaParser’ as our custom
AST parser, and MySQL Workbench® 8.0 as our example
database for this study. We use a desktop computer having
64-bit Windows 10 Operating System (OS) and 16GB primary
memory (i.e., RAM). We allocate 4GB as Java memory (Java
heap for the IDE.).

C. Qualitative Analysis

We, two of the authors, took part in the manual analysis
and spent a total of 200 man-hours on the 400 questions.
We follow a two-step approach for reproducing the issues
reported at Stack Overflow questions. First, we attempt to
understand the reported issues clearly and identify the key
problem statements from the question description. We also
gather the supporting data such as input-output values, file
format from the question texts. Second, using the code snippet
and supporting data we attempt to reproduce the reported
issues. We perform trivial, minor and major edits on the code
segments in order to reproduce their issues. Table I shows our

5htlp://javaparser.org
®https://www.mysql.com/products/workbench

list of editing actions. We discuss each of the actions that are
taken during qualitative analysis to make the code segments
reproduce the reported issues as follows:

(a) Addition of Demo Classes and Methods: In Stack Over-
flow, users often submit only the code examples of interest
which are neither complete nor compilable. We wrap such
code segments with a demo Java class and then place them
under a main method. Main method acts as the entry point to
the program.

In some cases, the code segment contains statements related
to the creation of an object of a class or method invocation
using an object while the definitions of the class and the
method are absent. For instance, one of our code snippets has
the following statements:

A obj A = new A(X,VY);
obj A.add();

We see that the definition of the class A is absent. In
order to make this code compilable, we define the class, add
a constructor and also define the method add() within the
class. Although the actual implementation is unknown, such
modifications help us to resolve the compilation errors.

(b) Inclusion of Native and External Libraries: JDK comes
with many libraries that help the developers accomplish many
of the common tasks. However, developers frequently use ex-
ternal libraries for various specialized tasks. In Stack Overflow
questions, code segments that use classes and methods from
native or external libraries often miss the import statements.
We add the import statements associated with native libraries
with the help of the IDE (e.g., Eclipse). In the case of external
libraries, we look for relevant library references in the question
texts. If such libraries were found, we include them in the IDE
and then add necessary import statements.

(c) Exception Handling: Developers often submit question
claiming that the code generates unexpected exception. We
also find some questions whose issues are not related to Java
exception but their code throws one or more exceptions. In that
cases, we resolve them using appropriate exception handling.

(d) Object Creation, Identifier Declaration and Initializa-
tion: Undeclared identifier is one of the common compilation
errors for the code segments submitted at Stack Overflow.
We declare the unresolved identifiers according to their types
and initialize them with appropriate values according to the
question specifications.

(e) Invocation of Methods: We identify several code snippets
that have user defined methods but the methods were not
invoked from anywhere. We thus add extra statements to call
the methods if the issue reproduction warrants the execution
of these methods. We also add appropriate parameters to call
the methods.

(f) Deletion of Redundant and Erroneous Statements: We
find several code segments that contain redundant and even
erroneous code statements which are not related to the reported

"https://stackoverflow.com/questions/53159149

Java 8 Day Difference without the Time Component

a
My utility method accepts Java 7 Dates (I have no control over that since that is ()
external) but needs to calculate a Day Difference. | am using the Java 8 ChronoUnit
approach to be precise to avoid all the problems with leap years, daylight savings, etc.

public static long daysBetweenDatesWithSign(Date d1, Date d2) {
Instant instantl = d1.tolnstant();
Instant instant2 = d2.tolnstant();
long diff = ChronoUnit.DAYS.between(instant1, instant2);
return diff;

}

The result is not what | want because it takes time into account, e.g.

([Nov.5,2018 11:00am] , [Mar.5,2019 10:00am]) gives -119 rather than -120.
([Nov.5,2018 11:00am] , [Mar.5,2019 3:00pm]) gives -120.

| need both of these to give -120 because my function should be a Day/no-Time comparison.
But | don't want to go back to the Java 7 Calendar's because of problems with leap years etc.
To be precise | need the new Java 8 approach, but can | make it compare Days/no-Time in
Java 8?

(a) An example question from Stack Overflow with reproducible issue

package reproducedissue;

(b)

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.Instant;

import java.time.temporal.ChronoUnit;
import java.util.Date;

(public class SO_53159149] {
[public static void main(String[]

)] [(throws ParseException]{
"Nov.5,2018 11:00am";

"Mar.5,2019 10:00am";

String "Nov.5,2018 11:00am";

String "Mar.5,2019 3:00pm";

SimpleDateFormat = new SimpleDateFormat("MMM.d,yyyy hh:mma");

.parse());
.parse());

W N OV WN B

String
String

P
=]

PP
w N

14 long
15 long

= daysBetweenDatesWithSign(fmt.parse()
= daysBetweenDatesWithSign(fmt.parse(),

16 System.out.printin(d1);
17 System.out.println(d2);
18 }

19 |public static long daysBetweenDatesWithSign(Date
20 Instant = d1.tolnstant();

21 Instant = d2.tolnstant();

22 long = ChronoUnit.DAYS.between(y);
23 return g

24 |}

25}

, Date d2) {

O import statements O class and methods @ exception handling
(0 objects and identifiers (O given code snippet (J printing values J method call

(b) The final code after necessary editing

Fig. 5: An example question’ from Stack Overflow and the final
source code after editing. (Reproducibility status: Reproducible)

issues. We delete such statements or simply comment them out
so that they are ignored by compilers and interpreters.

(g) Code Migration: We identify several code snippets
that use outdated APIs which are not compatible with our
environment. We replace the outdated APIs with the equivalent
updated APIs. In some cases, we also invoke extra APIs to
make the code compilable.

(h) External File, Database and Dataset Creation: We
identify several code segments that accept input from . txt or
. csv file. In such cases, we create one or more necessary files
in our local drive and add the sample data from the question so
that we can verify the program correctness. Besides text file
or spreadsheet, some programs require image file especially

which are related to User Interface (UI). In such cases, we
create images with specified format and dimension, and then
execute the program. We also create a demo relational database
(e.g., MySQL) and necessary tables when the code segments
deal with database operations. Needless to say, we use the
sample dataset provided by the question.

(i) Debugging: We identify several code segments that
warrant for debugging to reproduce the issue. Sometimes
programmers claim that they are getting unexpected behaviour
from the code. For example, a developer reports that one
of the if statements is never executed i.e., the expression
of the 1f is always been false. Then we debug the code
and check whether the if statement is really executed. When
programmers claim that they are not getting expected values
from an identifier, we usually print the value or debug the code
to check the run time value of the identifier.

D. An Example of Issue Reproduction

Let us consider the question shown in the Fig. 5a. First,
we attempt to identify the issue and soon understand that
the user is trying to calculate the time delay (in days)
between two given dates. Unfortunately, the user did not
get the expected results for several input values. We then
copy the code segment in the IDE and find that the code
does not even parse. As a result, the IDE returns several
parsing and compilation errors. Fortunately, by performing
several actions we can reproduce the findings. First, we
add a demo class (Fig. 5b, line No. 7) and place the
method daysBetweenDatesWithSignwith within the
class. Second, we add a main method (Fig. 5b, line No. 8).
Third, we create four String objects (Fig. 5b, line No. 9-
12) and initialize them with sample values according to the
question description. Fourth, we then create an object fmt
(Fig. 5b, line No. 13) of the class SimpleDateFormat to
invoke the parse API that converts the text values stored in
datel, date2, date3 and date4 to the type Date.
Since SimpleDateFormat throws ParseException,
we also handle the exception (Fig. 5b, latter part of line No.
8). Afterward, we invoke the given method and keep the return
values in d1 and d2 of type long (Fig. 5b, line No. 14-15).
Two inline variable declarations are also required here. We
import the libraries for the classes SimpleDateFormat,
Date, ParseException, Instant and also the enum
ChronoUnit (Fig. 5b, line No. 2-6). We then execute the
modified code, print the outputs and then check whether the
outputs match with the ones reported by the user. Interestingly,
the issue was reproducible.

IV. STUDY FINDINGS

We collect 400 questions from Stack Overflow (Section
III-A), and analyse their code segments and textual descrip-
tions. In particular, we attempt to reproduce the issues reported
in these question texts by executing their corresponding code
segments. We also ask three research questions in this study,
and answer them carefully with the help of our empirical and
qualitative findings as follows:

TABLE II
CHALLENGES PREVENTING ISSUE REPRODUCTION

Identified Reason | Percentage
Class/Interface/Method not found 51.00%
Important part of code missing 22.99%
External library not found 20.69%
Identifier/Object type not found 14.94%
Too short code snippet 12.64%
Miscellaneous 6.90%
Database/File/UI dependency 4.60%
Outdated code 1.15%

A. Answering RO,

RQ:(a): What are the challenges in reproducing the
issues reported at Stack Overflow questions? We attempt to
reproduce the reported issue discussed in the question using
the given code segment and other supporting information (e.g.,
data, instruction). However, we fail to reproduce them due to
several non-trivial challenges. First, programmers often submit
code segments that use methods from the classes which are not
defined in the code segment. Despite adding appropriate class
and method definitions, many issues cannot be reproduced.
Second, code segments often miss such statements that are
essential to reproduce the issues. For instance, reproducibility
of an issue depends on the values of an array which are
absent from the code segment. We could not reproduce such
issues with the sample array values. Third, dependency on
the external libraries is another major challenge towards issue
reproducibility from the submitted code. In many cases, we
do not find any hints that point to the appropriate libraries.
We also identify such code segments that are too short to
reproduce the issue. Too short code is also identified as the
reason for getting no answer to Stack Overflow questions
[3]. We also identify several code segments that could not
reproduce the issues due to their complex interactions with Ul
elements, databases and external files. We find a few segments
containing outdated code (e.g., deprecated API) that cannot be
replaced by alternative one. Several code segments are too long
and noisy to reproduce the issues.

Table II shows the major challenges that prevent the re-
production of issues reported at Stack Overflow questions.
A question might experience multiple challenges. We note
that half of irreproducible issues are plagued by undefined
classes, interfaces and methods. That is, they are used in the
code segments without proper definitions. We also note that
about 40% issues could not be reproduced due to their missing
import statements and missing external libraries.

RQ;(b): How can issue reproducibility be measured?
We divide the issue reproducibility status (of questions) using
two different dimensions. They are the success status of
reproducibility and level of editing efforts in reproducing the
issues reported at Stack Overflow questions. Reproducibility
status can be classified into rwo major categories: reproducible

8https://stackoverflow.com/questions/1715533

Question on String Operation

My understanding of java String got wrong when i see this code. | am not sure how this
is happening. Can anyone explain why is so?

public class NewClass {
public static void main(String[] args) {
String str=null;
System.out.printIn(str+"Added");
}
}

output: nullAdded

Fig. 6: An example question from Stack Overflow® (Reproducibility
status: reproducible without modification)

and irreproducible. In the following section, we discuss both
categories in detail.

Reproducible (REP): Reproducibility of issues usually
requires some modifications to the code segments. In some
cases, issues can be reproduced from the given code segments
without any modification. We therefore classify the repro-
ducible status into three more sub-categories based on the
complexity of the code level modifications, the level of human
efforts spent and the time required to reproduce the issue. Fig.
7 shows our sub-classification of the reproducible category.

- Reproducible without Modification (RWM): The given
code snippet is complete, stand-alone, and no explicit action
is required to reproduce the issue. Fig. 6 shows a simple
example of reproducible issue. Here, the user assigned null
to a String object and then added to another string. Not
surprisingly, he found that the null was also printed with the
other string. To reproduce this issue, we just copy the code
segment, paste it in the Eclipse IDE and then successfully
reproduce the same output as noted in the question. Many of
these issues are reported by the novice developers.

- Reproducible with Minor Modification (RMM): The issue
can be reproduced from the code by performing one or more
modifications that are comparatively less complex and less
time consuming. Box A shows the low cost modifications
added to the code. We spend about 15-30 minutes to reproduce
each programming issue from this sub-category.

- Reproducible with Major Modification (RMJM): The
reported issue can be reproduced from the code segment
by performing one or more complex and time consuming
modifications. Box B shows the high cost modifications. We
spend about 30-60 minutes to reproduce each issue from
this sub-category. Fig. 5 shows an example of reproducible
issue where major modifications are performed on the code to
reproduce the reported issue.

Irreproducible (IREP): These issues are less likely to
reproduce even after several minor and major code level
modifications. As mentioned above, two of the authors took
part in the manual analysis. When one fails to reproduce
the issue, the same question is analysed by the other author.
If both fail, we then conclude the issue as irreproducible.
In some cases, we spent even a few hours for a single
question. Fig. 1 shows an example where the issue could not be
reproduced since important details of the code/implementation

Reproducibility Status

| Reproducible | Irreproducible
Without Minor Major
Modification Modification Modification

Fig. 7: Classification of issue reproducibility status

are missing. Table II shows our identified challenges that
prevent a programming related issue from reproducing.

Box A : Minor Modifications

=+ Addition of a demo class or a main method or
a method definition 4 Creation of a constructor =+
Declaration of an identifier/object whose type can be
predicted easily. 4~ Initialization of an identifier/object
by a default value or a sample value from the ques-
tion 4 Inclusion of the import statements (of native
libraries) + Handling an exception 4 Resolve an
external library dependency when the the code segment
contains the import statements of them - Resolve
the less complex compilation errors 4+ Creation of
the text/image/csv files 4 Addition of sample values
to the files from the question discussion 4 Minor
changes in the existing code + Invoke a method with
no parameters or known parameters.

Box B : Major Modifications

=+ Resolve external library dependency when the im-
port statements are not in the code segment. 4+ Cre-
ation of database and table entries according to the
problem description + Major changes in existing code
snippets + Declaration of an identifier/object whose
type cannot be predicted easily and their initialisation
that demand code analysis + Addition of sample input
values to the files that are absent from question discus-
sion 4 Invoke a method with parameters where sample
parameters are absent from the question description =+
Code debugging

Besides the major classification above, we also consider
the appropriateness of developers’ claims about issues during
the question submission. We found that there exist two more
classes of issues that could not be reproduced as well. We
discuss them in detail as follows:

Inaccurate Claim (IAC): In some cases, the stated program-
ming issues in the Stack Overflow questions might not be
accurate. We call these issues Inaccurate Claim. The question
shown in the Fig. 8 shows an example of inaccurate claim
about programming issue. Here, the user raised an issue
that he could parse the string like ?var=val but could
not parse the string like var=val. When we attempt to

StringTokenizer - first string?

I have this code to parse url string such as "?var=val" but when "search" is just "var=val"
this code fails, how to make just "var=val" work as well?

StringTokenizer st1 =
new StringTokenizer(search, "?&;");
while(st1.hasMoreTokens()){
String st2= st1.nextToken();
int ii = st2.indexOf("=");
if (ii > 0) {
int ib = st2.length();
myparms.put(st2.substring(0,ii) , st2.substring(ii+1,ib));
}
}

Fig. 8: An example question of Stack Overflow® with inaccu-
rate claim about the programming issue

execute this code in our IDE, we find that both strings can be
parsed successfully. Even two programmers also commented
as follows: 'Sorry, that code doesn’t fail’ and 'This works
for me too’. We find similar occurrences with run-time errors,
compiler errors, unexpected behaviour reported by the users at
Stack Overflow questions. Such anomalies could have several
explanations. First, this might happen due to the difference
in the development environment. Second, users might fail to
locate the defective code, and hence, they submit the wrong
code fragments.

lll-Defined Issue (IDEF): 1ll-defined issues refer to the
problems which cannot be reproduced consistently under any
circumstances. That is, the question submitter does not specify
the context precisely in which situation the alleged program-
ming issue encounters. For instance, a user claimed that he
was getting run-time exception after clicking buttons. During
code execution we find several buttons in the user interface
and some of them trigger runtime exceptions. However, since
the user does not specify a button, the reported issue could
also not be reproduced successfully.

B. Answering RQ>

What proportion of reported issues at Stack Overflow
questions can be reproduced successfully? We classify the
issue reproducibility status into two major categories which
are again classified into further sub-categories. We investigate
the reproducibility of programming issues discussed at 400
randomly sampled questions from Stack Overflow. Fig. 9
shows the statistics on the reproducibility statuses of the
questions. According to our analysis, 270 (67.50%) issues
among 400 can be reproduced. On the contrary, 87 (21.75%)
issues cannot be reproduced due to the challenges shown in
Table II. We find that 7.25% issues are claimed inaccurately.
This might happen due to the lack of programming experience
or proper analysis of the code during question submission.
Unfortunately, we could not determine the reproducibility of
issues for 14 (3.50%) questions. The users often fail to provide
the appropriate contexts in their questions which are required
to reproduce the reported issues. We thus call them as ill-
defined issues (IDEF).

*https://stackoverflow.com/questions/750557

80

67.5%
60

40
21.75%

Issues (%)

20

REP IREP
Reproducibility Status

[AC IDEF

Fig. 9: Issue reproducibility status. REP = Reproducible, IREP =
Irreproducible, IAC = Inaccurate Claim, IDEF = Ill-Defined Issue

S

£

= — -
z © AT.04%

2 40(32.22% |
e H 20.74%
2 20| g
e

g0

o RWM RMM RMIM

Modification Effort Level

Fig. 10: Reproducible issues and modification effort level. RWM
= Reproducible Without Modification, RMM = Reproducible with
Minor Modification, RMJM = Reproducible with Major Modification

The ratio of reproducible status according to the effort level
is shown in Fig. 10. A half of them require minor modification
whereas 20.74% issues require major modification to make
the code snippets capable of reproducing the reported issues.
Fortunately 32.22% snippets can reproduce the issues without
any modifications.

TABLE III
ISSUE REPRODUCIBILITY STATUS VS. PRESENCE OF
ACCEPTED ANSWER (AA)

| AA Present | AA Absent | Total

Reproducible | 201 (74.44%) | 69 (25.56%) | 270

Treproducible | 18 (20.69%) | 69 (19.31%) | 87

Total 219 138 357
TABLE 1V

ISSUE REPRODUCIBILITY SUBCATEGORY VS. PRESENCE
OF ACCEPTED ANSWER (AA)

[AA Present [AA Absent [Total

Without Modification 66 (75.86%) 21 (24.14%) 87
Minor Modification 102 (80.31%) 25 (19.69%) 127
Major Modification 33 (41.07%) 23 (58.93%) 56
Ireproducible 18 (20.69%) 69 (79.31%) 87
Total 219 138 357

C. Answering RQs

Reproduction of a programming issue discussed in the ques-
tion texts allows one to experience the issue first hand. Such
experience could help the users submit appropriate answers
to the questions more promptly and more accurately. We thus
analyze the relationship between reproducibility status of the
reported issues at Stack Overflow and the answer meta data
such as presence of accepted answer, time delay between
question and answer, and number of questions. In particular,
we divide RQ3 into three sub-questions, and answer them with
detailed statistics as follows:

RQs3(a): Does reproducibility of issues discussed at Stack
Overflow questions encourage the acceptable answers?
Table IIT shows the confusion matrix where the rows represent
the reproducibility status (e.g., reproducible or irreproducible)
and the columns represent the presence of accepted answer
(e.g., present or absent). We note that 74.44% (201 out of 270)
questions whose code segments are capable of reproducing
the reported issues receive acceptable answers (i.e., solutions).
On the contrary, only 20.69% (18 out of 87) questions with
irreproducible issues receive the acceptable answers. Thus,
the reproducibility of question issues increases the chance of
getting a solution more than three times. We examine the cor-
relation between the two categorical variables - reproducibility
status and accepted answer presence. We use statistical test
namely Chi-Squared test to measure the independence of
these two categorical variables shown in Table III. We find
statistically significant p-value (p — value = 0 < 0.05).
Thus, there is a strong positive correlation between the issue
reproducibility of questions and their chance of getting the
acceptable answers.

We also further analyse the reproducibility status based on
effort level and determine their correlation with the accepted
answer presence as shown in Table IV. We again find statis-
tically significant p-value (p — value = 0 < 0.05) from the
Chi-Squared test. Thus, the human efforts in reproducing the
question issues are significantly correlated with the chance of
getting the accepted answer. From the Table IV we see that
there is 75.86% (66 out of 87) chance of getting accepted
answer when the issues can be directly reproduced from the
verbatim code segment. On the contrary, the chance reduces to
58.93% (33 out of 56) when the submitted code needs major
modifications. Surprisingly, the chance of getting accepted
answer is highest (80.32%) for the questions whose code
fragments require minor modifications to reproduce the issues.
We thus further investigate this interesting scenario with more
manual analysis. Three factors were identified that might
explain such inconsistency:

Redundant and long code: The users at Stack Overflow
often submit questions that contain unnecessarily long code.
Such questions often fail to get appropriate answers even
though their code is capable to reproduce the reported issues
without any modifications. According to our investigation,
such code segments have more than 72 lines of code. We
believe that such long code places extra burden on the other

Time (in minute)
20
|

10

i
T H T H
. H . . .

T

REP

T T T T
IREP RWM RMM RMJM

Fig. 11: Time spent for reproducible and irreproducible issues

users during question answering. Thus, despite being repro-
ducible without modifications, such code actually decreases
the chance of getting an accepted answer.

Potential problem statements are not identified: Users
often fail to mention the potential problematic statements
within the submitted code in their questions. This increases
the analysis time for the other users at Stack Overflow while
answering the question. Thus, despite the verbatim code seg-
ments being able to reproduce the question issues (without
modifications), they might not receive the accepted answers.

Novice user: Sometimes novice users add a long code (e.g.,
an entire course assignment) without proper analysis. They
even do not discuss about the issues properly. According to
our analysis, 50% of users who added a long and redundant
code and did not get an exact answer have a reputation score
below 20.

RQ3(b): Does reproducibility of issues discussed at Stack
Overflow questions reduce the time delay of getting the
accepted answers? According to RQ3a, there is a strong cor-
relation between reproducibility status of question issues and
the chance of getting an accepted answer. In fact, the chance
is more than three times higher for the reproducible issues. In
this section, we investigate whether the delay of getting the
accepted answer could be influenced by the reproducibility
status of the submitted issues at Stack Overflow questions.
We determine the delay between the submission time of a
question and that of the accepted answer, and contrast between
reproducible and irreproducible issues using such delays. Fig.
11 shows the box plots for the delay of getting the accepted
answers. We see that the median delay of getting an accepted
answer is about 5 minutes when the issue reported at the
question is reproducible. On the contrary, such delay is almost
double when the reported issue is not reproducible with the
submitted code. We also find a significant difference in time
delay for getting the accepted answer between reproducible
and irreproducible status. We use Mann-Whitney-Wilcoxon
test, a non-parametric statistical significance test and get
statistically significant p-value (p-value = 0.04 < 0.05). We
also examine the effect size using Cliff’s delta test and find
large effect size, i.e., Cliff’s |d| = 0.9365857 (large) with 95
percent confidence. Given all these evidences above, the delay
of getting an acceptable answer is significantly higher for the
questions with irreproducible issues. Thus, reproducibility of

<

& — (] 0 Reproducible

i 60 [_ H

q; 0o Trreproducible

&

2 a0l

=

3

=¥ 20 H

[

Q

O

< 0 T T
0<t<10 10<t<20 ¢>20

Fig. 12: Accepted answer fraction vs. the time delay between
question and accepted answer submission

Number of Answer

I I ' ' '
o - J—— J— - - -
T

REP

T T T T
IREP RWM RMM RMJM

Fig. 13: Number of answers for the questions with reproducible and
irreproducible issues

the reported issues is an important quality paradigm for Stack
Overflow questions, and such attribute could help them get the
accepted answers quickly, even within 5 minutes.

TABLE V
REPRODUCIBILITY STATUS VS. TIME DELAY BETWEEN
QUESTION AND ACCEPTED ANSWER SUBMISSION

| t<10 | t>10 | Total
Reproducible 130 (64.68%) 71 (35.32%) 201
Ireproducible 7 (38.89%) 11 (61.11%) 18
Total 137 82 219

Although the above box plots demonstrate the benefits
of issue reproducibility, we further classify the delay of
getting accepted answers into three intervals: 0 < ¢t < 10,
10 <t < 20, t > 20. Fig. 12 shows the percentage of the
accepted answers for reproducible and irreproducible issues
against these intervals. We see that questions with reproducible
issues receive about 65% of their accepted answers within only
10 minutes. Such percentage is only 39% for the questions
with irreproducible issues. It also should be noted that 44%
of these questions require more than 20 minutes on average
to receive the accepted answers. Table V provides the raw
statistics on the accepted answers and time interval. We exam-
ine the relation between these two categorical variables using
statistical test namely Chi-Squared test. Thus, given all the
evidences in above the tables and plots, issue reproducibility
status is very likely to influence the time delay for getting the
acceptable answers at Stack Overflow.

RQs(c): Does reproducibility of issues discussed at Stack

Overflow questions encourage more answers? According
to RQ3a and RQ3b, the reproducibility of reported issues
at Stack Overflow question might encourage quick and high
quality responses from the users. In this section, we further
investigate whether such reproducibility also encourages more
answers at Stack Overflow. Fig. 13 shows the box plots for
the answer count of our selected questions against their issue
reproducibility status. We clearly see that questions with issue
reproducibility receive more answers on average than the
counterpart. We also find a significant difference in the number
of answers between two types of questions. Mann-Whitney-
Wilcoxon test shows p — value = 0 whereas Cliff’s |d| = 0.57
(large) with 95% confidence. Given these statistical findings,
we suggest that the reproducibility status of a reported issue at
Stack Overflow question has a significant impact on its chance
of getting more answers.

V. KEY FINDINGS & GUIDELINES

While submitting a question at Stack Overflow, it is rec-
ommended to add a bit of code fragment so that the reported
program issues can be reproduced easily [22]. Experts users of
Stack Overflow also suggest to add complete and standalone
code in the question [20]. However, our study delves further
into the submitted code, and delivers more in-depth insights
on the question issue reproducibility using such code.

(a) Redundancy Hurts: Only those statements should be
added that are required to reproduce the reported issue and the
redundant code should be avoided. Long and redundant code
waste the developers time unnecessarily which might also hurt
the question’s chance of getting an accepted answer.

(b) Dependency Matters: Adding the import statements
targeting the external libraries is very important. This is one
of the major difficulties that we faced during the reproduction
of question issues with the submitted code. The question texts
also should point to the external libraries (if used) so that the
users can include them in the IDE during issue reproduction.

(c) Executable Code for Debugging: The submitted code
segment should compile and run if the reported issue requires
debugging to reproduce. This is especially required when the
program shows stochastic or unexpected behaviour. Without a
reproducible code segment, such questions are generally hard
to answer effectively.

(d) One Issue Per Question: Multiple issues should not
be discussed using a single code segment. Separate questions
and code snippets are encouraged for separate programming
issues for effective question answering.

VI1. THREATS TO VALIDITY

Threats to external validity relate to the generalizablity
of a technique. We manually analyse a limited number of
questions and as such our results may not generalise to all the
questions. However, we investigate a wide variety of questions
of different types of issues in order to combat potential bias
in our results. Nonetheless, replication of our study using ad-
ditional questions and different languages may prove fruitful.
Besides, we investigate only Java code segments. However,

we believe that our insights can generalise to other statically-
typed, compiled programming languages such as C++ and C#.
But we caution readers to not over-generalise our results.

Threats to internal validity relate to experimental errors
and biases [23]. The reproducibility status (e.g., reproducible,
irreproducible) of the reported issue is threatened by the
subjectivity of our classification approach. Thus, we cross-
validate our results when an issue cannot be reproduced. We
finalise the reproducibility status as irreproducible if we both
fail to reproduce the question issue.

Threats to construct validity relate to suitability of evalua-
tion metrics. We use Mann-Whitney-Wilcoxon test which is a
widely used non-parametric test for evaluating the difference
between two sample sets. However, the significance level
might suffer due to the limited size of the samples. We thus
consider the effect size along with the p-value. To see the
correlation between two categorical variables we use Chi-
square test. This statistical test of independence works well
when there is a small number of categories (< 20) [13].

VII. RELATED WORK

There have been several studies on the reproducibility of
software bugs [10, 14, 21, 28]. However, to the best of our
knowledge, ours is the first work that investigates the repro-
ducibility of the reported issues at Stack Overflow questions
using their submitted code.

Yang et al. [29] and Horton and Parnin [11] are the only
closely related studies in terms of research methodologies and
problem aspects. Yang et al. analyse the usability of 914,974
Java code snippets on Stack Overflow and report that only
3.89% are parsable and 1.00% are compilable. They analyse
the code segments found in only the accepted answers of Stack
Overflow and employ automated tool such as Eclipse JDT
and ASTParser for the parsing and compiling the code. Then
they report the errors that prevent the code segments from
parsing and compiling without human involvement. Similarly,
we analyse the Java code snippets from the questions of Stack
Overflow. However, unlike their approach which is completely
automated, our approach is a combination of automatic and
manual analysis. Not only we make the code parsable, compi-
lable and runnable using appropriate modifications to the code,
we also overcome the challenges to make them reproduce the
reported issues at Stack Overflow.

Horton and Parnin investigate the executability of Python
code found on GitHub Gist system. Their primary focus was
the execution of the Python snippets. However, we go beyond
code execution and manually investigate the reproducibility
of issues using Java code snippets submitted with Stack
Overflow questions. They also report the types of execution
failures encountered while running Python gists. Similarly, we
categorise the reproducibility status and identify the reasons
why the issues could not be reproduced. Interestingly some
reasons are common between ours and their study such as
import error, syntax error. However, executability of a code
does not always guarantee the reproducibility of an issue
reported at Stack Overflow question. Reproducibility requires

testing and debugging which warrant for manual analysis, and
this was not done by any of the earlier works. Besides, our
research context differs from theirs since they examine gists
shared on GitHub whereas we deal with code snippets found
in Stack Overflow questions.

Due to the growing popularity and importance of Stack
Overflow Q&A site, there have been several studies that focus
on question/answer quality analysis. Duijn et al. [9] collect
the Java code segments found in Stack Overflow questions
and suggest that several code level constructs (e.g., code
length, keywords) are correlated to the quality of a code
fragment. A number of studies investigate the quality of a code
segment by measuring its readability [4, 5, 8, 16, 18, 24] and
understandability [12, 19, 26]. Unfortunately, their capability
of reproducing the issues reported at Stack Overflow ques-
tions was not investigated by any of the early studies. This
makes our work novel. As our empirical findings suggest, like
readability and understandability, the reproducibility of issues
could be considered as one of the major quality aspects of
Stack Overflow questions.

Several other studies [6, 7, 22, 27] investigate how to get
a fast answer, create a high quality post or mine a successful
answer. They suggest that information presentation, code-text
ratio and question posting time are the key factors behind
getting the high quality answers. Similarly, our findings show
that reproducibility of an issue discussed in the question
is likely to encourage high quality responses including the
acceptable answers. Rahman and Roy [17] investigate why
questions at Stack Overflow remain unresolved. However, they
also do not consider the issue reproducibility in their study.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we manually analyse 400 randomly selected
questions from Stack Overflow and investigate the repro-
ducibility of their reported issues using their code segments.
We answer three research questions in this work. We classify
status of reproducibility into two major categories - repro-
ducible and irreproducible. We find that 68% of issues can be
reproduced using the submitted code after performing minor
or major modifications to them. We also investigate and report
why several issues could not be reproduced using the attached
code segments. We then examine the correlation between the
reproducibility of issues (of questions) and answer meta-data.
Our findings suggest that reproducibility of question issues
is likely to encourage more high quality responses including
the acceptable answers. Thus, reproducibility of issues can
also be treated as a novel metric of question quality for Stack
Overflow which was ignored by the earlier studies. In future,
we plan to develop automated tool supports for predicting
the reproducibility of a given question issue and for turning
irreproducible issues into reproducible ones.

Acknowledgement: This research is supported by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC), and by a Canada First Research Excellence Fund
(CFREF) grant coordinated by the Global Institute for Food
Security (GIFS).

REFERENCES

[1] SO question issue reproducibility: Replication package.
URL https://bit.ly/2JgxabU.

[2] StackExchage API. URL http://data.stackexchange.com/
stackoverflow.

[3] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and
K. A Schneider. Answering questions about unanswered
questions of stack overflow. In Proc. MSR, pages 97-100,
2013.

[4] R. PL Buse and W. R. Weimer. A metric for software
readability. In Proc. ISSTA, pages 121-130, 2008.

[5] R. PL Buse and W. R. Weimer. Learning a metric for
code readability. TSE, 36(4):546-558, 2010.

[6] E. Calefato, F. Lanubile, M. C. Marasciulo, and
N. Novielli. Mining successful answers in stack overflow.
In Proc. MSR, pages 430-433, 2015.

[7] E. Calefato, F. Lanubile, and N. Novielli. How to ask
for technical help? evidence-based guidelines for writing
questions on stack overflow. IST, 94:186-207, 2018.

[8] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer.
Modeling readability to improve unit tests. In Proc. FSE,
pages 107-118, 2015.

[9] M. Duijn, A. Kucera, and A. Bacchelli. Quality questions
need quality code: Classifying code fragments on stack
overflow. In Proc. MSR, pages 410-413, 2015.

[10] M. Fazzini, M. Prammer, M. d’Amorim, and A. Orso.
Automatically translating bug reports into test cases for
mobile apps. In Proc. ISSTA, pages 141-152, 2018.

[11] E. Horton and C. Parnin. Gistable: Evaluating the
executability of python code snippets on github. In Proc.
ICSME, pages 217-227, 2018.

[12] JC Lin and KC Wu. Evaluation of software understand-
ability based on fuzzy matrix. In Proc. WCCI, pages
887-892, 2008.

[13] M. L. McHugh. The chi-square test of independence.
BM, 23(2):143-149, 2013.

[14] K. Moran, M. Linares-Vsquez, C. Bernal-Crdenas,
C. Vendome, and D. Poshyvanyk. Automatically dis-
covering, reporting and reproducing android application
crashes. In Proc. ICST, pages 33—44, 2016.

[15] L. Ponzanelli, A. Mocci, A. Bacchelli, and M. Lanza.
Understanding and classifying the quality of technical
forum questions. In Proc. QSIC, pages 343-352, 2014.

D. Posnett, A. Hindle, and P. Devanbu. A simpler model
of software readability. In Proc. MSR, pages 73-82,
2011.

M. M. Rahman and C. K. Roy. An insight into the
unresolved questions at stack overflow. In Proc. MSR,
pages 426429, 2015.

S. Scalabrino, M. Linares-Vasquez, D. Poshyvanyk, and
R. Oliveto. Improving code readability models with
textual features. In Proc. ICPC, pages 1-10, 2016.

S. Scalabrino, G. Bavota, C. Vendome, M. Linares-

Viasquez, D. Poshyvanyk, and R. Oliveto. Automatically
assessing code understandability: how far are we? In

Proc. ASE, pages 417-427, 2017.

J. Skeet. The golden rule: Imagine youre trying to answer
the question, 2010. URL https://codeblog.jonskeet.uk/
2010/08/29/writing-the-perfect-question.

M. Soltani, A. Panichella, and A. van Deursen. A guided
genetic algorithm for automated crash reproduction. In
Proc. ICSE, pages 209-220, 2017.

M. Squire and C. Funkhouser. ” A bit of code”: How
the stack overflow community creates quality postings.
In Proc. HICSS, pages 1425-1434, 2014.

Y. Tian, D. Lo, and J. Lawall. Automated construction
of a software-specific word similarity database. In Proc.
CSMR-WCRE, pages 44-53, 2014.

C. Treude and M. P. Robillard. Understanding stack
overflow code fragments. In Proc. ICSME, pages 509—
513, 2017.

C. Treude, O. Barzilay, and M. Storey. How do program-
mers ask and answer questions on the web?: Nier track.
In Proc. ICSE, pages 804-807, 2011.

A. Trockman, K. Cates, M. Mozina, T. Nguyen,
C. Kistner, and B. Vasilescu. Automatically assess-
ing code understandability reanalyzed: combined metrics
matter. In Proc. MSR, pages 314-318, 2018.

S. Wang, TH Chen, and A. E Hassan. Understanding the
factors for fast answers in technical q&a websites. ESE,
23(3):1552-1593, 2018.

M. White, M. Linares-Vasquez, P. Johnson, C. Bernal-
Cérdenas, and D. Poshyvanyk. Generating reproducible
and replayable bug reports from android application
crashes. In Proc. ICPC, pages 48-59, 2015.

D. Yang, A. Hussain, and C. V. Lopes. From query to
usable code: an analysis of stack overflow code snippets.
In Proc. MSR, pages 391-402, 2016.

