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Abstract—During maintenance, software developers deal with
a number of software change requests. Each of those requests
is generally written using natural language texts, and it involves
one or more domain related concepts. A developer needs to map
those concepts to exact source code locations within the project in
order to implement the requested change. This mapping generally
starts with a search within the project that requires one or more
suitable search terms. Studies suggest that the developers often
perform poorly in coming up with good search terms for a change
task. In this paper, we propose and evaluate a novel TextRank-
based technique that automatically identifies and suggests search
terms for a software change task by analyzing its task description.
Experiments with 349 change tasks from two subject systems and
comparison with one of the latest and closely related state-of-the-
art approaches show that our technique is highly promising in
terms of suggestion accuracy, mean average precision and recall.

Index Terms—Concept location, TextRank, Search Term, Re-
verse Engineering

I. INTRODUCTION

Studies show that about 80% of the total efforts is spent in
software maintenance and evolution [19]. During maintenance,
software developers deal with a number of software change
requests, and identifying the exact location (i.e., class, method)
within a project for a given change task is a major challenge.
Change requests are often made by software users, and are
generally written using natural language texts. The software
users might be familiar with the application domain of a
software product; however, they generally lack the idea of
how a particular software feature is implemented in the source
code. Thus a software change request by them mainly involves
one or more domain related concepts, and a developer needs
to map those concepts to the source code locations within
the project in order to implement the change [15, 16]. Such
mapping is possibly trivial for a developer who has substantial
knowledge about the target project. However, the developers
involved in maintenance might be unaware of the low-level
architecture of the project, and thus they often experience
difficulties in identifying the source locations (i.e., classes,
methods) to be changed. The mapping task generally starts
with a search within the project which requires one or more
suitable search terms. Previous studies [14] suggest that on
average, developers with varying experience perform poorly
in coming up with good search terms for a change task. For
example, according to Kevic and Fritz [14], developers can
come up with relevant search terms for only 12.2% of the
cases. One way to help them in this regard is to automatically
suggest useful and relevant search terms for the change task
in the first place.

Existing studies that attempt to support developers in feature
location tasks with search queries, adopt different lightweight
heuristics [14] and query reformulation or expansion strategies
[8, 12, 20], and perform different query quality analyses
[9, 10, 11] and mining activities [13, 15]. However, most
of these approaches expect a developer to provide the initial
search query which they can improve upon, and it is often a
non-trivial task for the developers as noted by other studies
too [14]. Kevic and Fritz [14] propose a heuristic model for
automatically identifying initial search terms for a change task
where they consider different heuristics related to frequency,
location, parts of speech and notation of the terms from
the task description. Although the model is found promising
in their preliminary evaluation, it suffers from two major
limitations. First, the model is trained using a limited number
of change tasks, and is not cross-validated using the change
tasks from another project. Thus it is still not quite mature
or reliable. Second, tf–idf is one of the dominating metrics
in their model, and it is subject to the size of test dataset for
inverse document frequency (idf) calculation. Thus the same
model is likely to perform differently with different sizes of
test dataset, and the model might require frequent re-training
to keep itself useful.

In this paper, we propose a novel TextRank-based technique
that automatically identifies and suggests search terms for
software change tasks. TextRank is an adaptation of PageRank
algorithm [7] for natural language texts where a text document
is considered as a lexical or semantic network of words [6, 18].
TextRank has found its applications in different information
retrieval tasks such as keyword and key phase extraction, ex-
tractive summarization, word sense disambiguation and other
tasks involving graph-based term weighting [18]. Given the
successful adoption of that algorithm in information retrieval
domain, it can also be exploited for search term extraction in
the context of feature location tasks. Actually, the algorithm
is highly suited for our purpose from several perspectives.
First, software change requests are generally made by the
people outside the development team, and they communicate
their requirements through domain level concepts and using
natural language texts. A graph-based representation (i.e., also
called text graph) of the task description can reveal important
semantic (i.e., co-occurrence) relationships among different
terms. Second, TextRank algorithm exploits connectivity of
a term in the graph, and considers not only the terms to
which the term is connected but also their weights (i.e.,
importance) for determining the weight of that term. The
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algorithm continues this process recursively, and thus has a
great potential to extract the most important terms from the
graph which can be suggested as search terms.

Issue ID: 401358
Product: JDT, Component: Debug
Summary: Name selection for Mac VM installs needs
improvement
Description: When you search for a JDK/JRE on Mac, we
use information from the plist file to compute a name. This
works fine most of the time, but if you happen to have more
than one of the same version of VM installed they are added
with the same name. To make matters a bit worse, if you
edit one of the JREs the wizard starts out with an error
complaining that the name is already in use. The attached
screen shot shows the duplicated names for the Java 7 JREs.

Listing 1: An Example change request from eclipse.jdt.debug

For example, the change task in Listing 1 can be graphically
represented as the text graph in Fig. 1 by analyzing the co-
occurrence relationships among the words with a window size
(i.e., number of words considered in a semantic text unit) of
two. Our proposed technique analyzes the term connectivity,
calculates weight (i.e., importance) for each of the terms in the
graph, and then extracts the top-scored and the most suitable
five terms– Mac, selection, installs, improvement and JREs as
the initial search query for the task.

Experiments with 349 change tasks from two subject
systems– Apache Log4j and Eclipse JDT Debug show that
our approach can return relevant results (i.e., Java classes)
for 49.34% of the change tasks with 57.16% mean average
precision and 63.33% recall. We also compare with one
of the latest and closely related state-of-the-art approaches–
Kevic and Fritz [14], and report that our approach performs
relatively better in terms of all performance metrics. While our
preliminary results are found promising, they must be further
validated with more change tasks from more subject systems.
Thus the paper makes the following technical contributions:

• It demonstrates a novel use of TextRank algorithm in the
identification and suggestion of relevant search terms for
software change tasks.

• It reports a case study involving 349 software change
tasks from two subject systems and comparison with one
existing approach [14], and shows the effectiveness of the
proposed technique.

The rest of the paper is organized as follows – Section II
explains our adopted methodology and algorithms, Section III
discusses the conducted experiments and findings, Section IV
describes the related work, and finally Section V concludes
the paper with future work.

II. PROPOSED METHODOLOGY

Fig. 2 shows the schematic diagram of our proposed tech-
nique for search term identification and suggestion for a
change task. In this section, we discuss the different steps
involved with the technique as follows:

Fig. 1. Text Graph of change request in Listing 1

A. Data Collection

In order to suggest search terms for a change task, we
make use of natural language description (e.g., Listing 1)
for the task provided by the user. We collect actual task
descriptions of 349 tasks from BugZilla official repositories.
Each of those tasks is submitted using a semi-structured way,
and they contain several fields such as Issue ID (e.g., 401358),
Product (e.g., JDT), Component (e.g., Debug), Summary and
Description. We use the last two fields for the analysis by
our technique. While Summary shows the title of a requested
change task, Description contains the user’s explanation of the
task in natural language texts. In order to keep the algorithm
simple and lightweight, we do not consider content from the
files attached to the change request. Adding more available
information about the task is likely to improve the performance
of our technique; however, we consider that part as a scope
of future study.

B. Text Preprocessing

We analyze Summary and Description of a software
change request, and perform several preprocessing before
transforming the texts into a text graph. We consider
each sentence as a logical text unit that contributes to the
overall task description, and collect each of them from
those fields. We attempt to extract such terms from a
sentence that either convey useful semantics or represent
the domain level concepts of the software to be changed.
We thus remove stop words (i.e., frequently used non-
important words) from each of those sentences, and split
the dotted structured words (i.e., containing dots) into
simpler words from them. A dotted word often involves
multiple technical concepts, and splitting helps one to
analyze each of them in isolation. For example the word–
org.eclipse.ui.part.PageBookView.create
PartControl contains a package name (i.e.,
org.eclipse.ui.part), a class name (i.e., PageBookView)
and a method name (i.e., createPartControl), and only
splitting helps to analyze those concepts effectively. It should
be noted that we do not split the words based on camel-case
notation given these two observations. First, change requests
often contain different technical artifacts such as library
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Fig. 2. Schematic diagram of the proposed technique

name, class name and method name using camel-case
notations in the description, and they are of great interest to
the developers implementing those changes. Splitting such
words simply breaks those artifacts, and does not help in
identifying suitable search terms. Second, experiments with
such splitting do not result into performance improvement
of our technique. We also avoid stemming on the words of
the task description as it does not demonstrate any notable
improvement in the performance of our technique.

C. Text Graph Development

After preprocessing, we get a list of sentences each of
which contains semantically important and domain related
terms, and we use them to develop a term graph for the task
description. We represent each of those terms as a distinct node
in the graph, and consider the co-occurrence of those terms
in the sentences as an indication of semantic relationships
(i.e., dependencies) among them [6, 18]. For example, if we
consider the sentence– ”This works fine most of the time, but
if you happen to have more than one of the same version
of VM installed they are added with the same name” from
the example description (Listing 1), the preprocessed version
forms an ordered list of terms– ”works fine time happen
version installed”. We note that the transformed sentence
contains several phrases such as works fine and version
installed, and the terms in those phrases are semantically
dependent on each other for comprehensive meaning. We thus
consider a window size of two (i.e., best performing size
according to Mihalcea and Tarau [18]) as a semantic unit
of words, and get the following relationships– works←→fine,
fine←→time, time←→happen, happen←→version, and ver-
sion←→installed. We then encode such relationships into the
connecting edges among the corresponding nodes in the graph.

D. TextRank Calculation

In order to estimate the weight (i.e., importance) of each
of the terms in text graph, we use TextRank algorithm by
Mihalcea and Tarau [18] which is adapted from the popu-
lar PageRank algorithm [7] for web link analysis. TextRank
analyzes the connectivity details such as incoming links and
outgoing links of each term in the graph recursively, and
calculates its weight, S(vi), as follows:

S(vi) = (1− φ) + φ
∑

jεIn(vi)

S(vj)

|Out(vj)|
(0 ≤ φ ≤ 1)

Here, In(vi), Out(vj), and φ denote the node list connected
to vi through incoming links, the node list to which vj is
connected through outgoing links, and the dumping factor
respectively. In the text graph, each of the edges is bi-
directional (i.e., terms depend on each other), and thus in-

degree is equal to the out-degree for a node (i.e., term). In the
context of web surfing, dumping factor, φ, is considered as the
probability of randomly choosing a web page by the surfer,
and 1−φ is the probability of jumping off that page. Mihalcea
and Tarau [18] use a heuristic value of 0.85 for φ, and we also
use the same value for TextRank calculation. We initialize each
of the terms in the graph with a default value of 0.25, and run
an iterative version of the algorithm [7]. It should be noted
that the initial value of a term does not affect its final score
[18]. The computation iterates until the scores of the terms
converge below a certain threshold or it reaches the maximum
iteration limit (i.e., 100 as suggested by Blanco and Lioma
[6]). As Mihalcea and Tarau [18] suggest, we use a heuristic
threshold of 0.0001 for the convergence checking. TextRank
applies the underlying mechanism of a recommendation (i.e.,
voting) system, where a term recommends (i.e., votes) another
term if the second term complements the semantics of the first
term in any way [18]. The algorithm captures recommendation
for a term in terms of incoming links in the text graph (e.g.,
Fig. 1) from another terms both in local (i.e., same sentence)
and global (i.e., entire document) context, and determines
importance of the term. Once computation is over, each of the
terms in the graph is found with a score which is considered
as the weight or importance of that term in the texts.

E. Search Term Selection

Once TextRank is calculated, we rank the terms based on
their weights (i.e., importance), and choose the search terms
for a change task in a heuristic fashion. According to Kevic
and Fritz [14], the terms that exist both in Summary and
Description of a task are the most suitable for search terms.
We adapt that idea given the fact that the overlapping terms
in those fields might not be sufficient enough to form a search
query. We thus first look for top-scored five terms in the
Summary (i.e., title) of a change task. If the Summary is too
small to provide all the terms, we collect the rest from the
Description of the task. It should be noted that in both cases,
terms are chosen based on their ranks or weights which are
calculated by recursively analyzing the surrounding terms in
the text graph. For instance, in the case of our example change
task (Listing 1), the first four search terms– Mac (score: 0.64),
selection (score: 0.27), installs (score: 0.27) and improvement
(score: 0.25) come from the title. The remaining search term–
JREs (score: 1.00), one of the most important terms, is not
contained in the title, and thus it comes from the description.

III. EXPERIMENT

In order to evaluate our proposed technique, we conduct
experiments using the change tasks from two subject systems.
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TABLE I
EXPERIMENTAL RESULTS

Metric Log4j eclipse.jdt.debug Average
T3

1 T4
2 T5

3 T3 T4 T5 T5

No. of Tasks Solved (NTS) 86(230) 98(230) 111(230) 48(119) 54(119) 60(119) –
% of Tasks Solved (PTS) 37.39% 42.61% 48.26% 40.34% 45.38% 50.42% 49.34%
Mean Average Precision (MAP) 66.54% 62.82% 61.16% 56.79% 51.45% 53.16% 57.16%
Mean Recall (MR) 53.22% 55.54% 54.66% 73.56% 73.27% 72.00% 63.33%

1Results for three search terms, 2Results for four search terms, 3Results for five search terms

We also compare with one existing approach, and this section
discusses our evaluation and validation details.

A. Dataset

In our experiments, we use 349 change tasks from two sub-
ject systems– Log4j by Apache and eclipse.jdt.debug
by Eclipse. Each of those tasks were marked as RESOLVED,
and we follow a careful approach for their selection. First we
collect all the RESOLVED change tasks from the BugZilla
repositories [1, 3], and then attempt to map them against the
commit history of the corresponding projects (i.e., repositories)
at GitHub [2, 4]. We analyze the commit messages of each
project, and look for specific Bug IDs (i.e., identifiers of
change tasks) in those messages. In GitHub, we note that
each commit operation that solves a software bug or addresses
a change request, generally mentions the corresponding Bug
ID in the very first sentence of its commit message. We
found such 230 commits in Log4j and 119 commits in
eclipse.jdt.debug. We then collect the changeset (i.e.,
list of changed files) for each of those commit operations,
and develop a solution set for the corresponding change tasks.
Thus, for our experiments, we collect not only the actual
change tasks from the reputed subject systems but also their
solutions that were applied in practice by the developers. We
use different utility commands such as git, clone, rev-list and
log on GitHub Bash for collecting those information.

B. Search Engine

We use a vector space model based search engine– Apache
Lucene [19] for searching the files that need to be changed
for a change task. The search engine indexes the files in the
corpus prior to search, and we note that the indexing by Lucene
Indexer is not efficient. Especially the terms indexed from
the source files are not meaningful and they often contain
different special characters (i.e., punctuations). The indexer
is basically targeted for simple text documents whereas the
source files in the project contain items beyond regular texts
(e.g., code segments). We thus apply limited preprocessing
(i.e., stemming was avoided) on each of those source files in
each project, and remove all punctuation characters from them.
This transforms the source files into text like files, and the
indexer becomes able to perform more effectively, especially
in choosing meaningful index terms. Once a search is initiated
using a query, the search engine filters irrelevant files in the
corpus using a boolean search model, and then applies a tf-
idf based scoring technique to return a ranked list of relevant
documents. As existing studies suggest [5, 14, 17], we consider

only the top ten results from the search engine for performance
evaluation and validation of our technique.

C. Performance Metrics

Mean Average Precision at K (MAPK): Precision at K
calculates precision at the occurrence of every relevant result
in the ranked list. Average Precision at K (APK) averages
the precision at K for all relevant results in the list for a
search query. Thus Mean Average Precision at K (MAPK) is
calculated from the mean of average precision at K for all
queries in the dataset as follows:

APK =

∑D
k=1 Pk × relk
|S|

, MAPK =

∑
qεQAPK(q)

|Q|
Here, relk denotes the relevance function of kth result in the
ranked list, Pk denotes the precision at kth result, and D refers
to number of total results. S is the solution set for a query,
and Q is the set of all queries.

Mean Recall (MR): Recall denotes the fraction of the
solution set that is retrieved for a search query. Mean Recall
averages such measures for all queries in the dataset.

D. Experimental Results

We conduct experiments using 349 change tasks from two
subject systems, and apply four different metrics–no. of tasks
solved, % of tasks solved, mean average precision and mean
recall for performance evaluation. We consider different sizes
for the search query, and collect the performance details of
our suggested queries for both subject systems which are
reported in Table I. From the table, we note that our queries
perform the best when five terms are used for search. For
example, they return relevant results for 111 (48.26%) out
of 230 change tasks from Log4j, and for 60 (50.42%) out
of 119 change tasks from eclipse.jdt.debug, which is
promising. Thus, on average, our queries retrieve 63.33% of
the solutions from the dataset with a mean average precision
of 57.16% for each of the subject systems. We also conduct
search using six query terms; however, we note that our queries
perform relatively poor in that regard for both subject systems.

We investigate whether the preprocessing (Section III-B) of
corpus files significantly influences the performance of our
queries. We re-ran the experiments on the corpus without
preprocessing, and did not experience any major performance
degradation. Thus, the findings actually demonstrate the ro-
bustness of our suggested search terms for a change task.
We also investigate whether a list of randomly chosen five
search terms from the Summary of change task is comparable
to our suggested search terms given that our algorithm also
emphasizes on Summary terms (Section II-E). We conducted

543



TABLE II
COMPARISON WITH AN EXISTING APPROACH

Technique Metric Log4j eclipse.jdt.debug

T3
1 T5

2 T3 T5

Kevic and Fritz [14]

No. of Tasks Solved (NTS) 47(230) 65(230) 27(119) 39(119)
% of Tasks Solved (PTS) 20.43% 28.26% 22.69% 32.77%
Mean Average Precision (MAP) 54.08% 56.90% 50.61% 54.92%
Mean Recall (MR) 50.39% 48.36% 66.70% 78.53%

Proposed

No. of Tasks Solved (NTS) 86(230) 111(230) 48(119) 60(119)
% of Tasks Solved (PTS) 37.39% 48.26% 40.34% 50.42%
Mean Average Precision (MAP) 66.54% 61.16% 56.79% 53.16%
Mean Recall (MR) 53.22% 54.66% 73.56% 72.00%
1Results for three search terms, 2Results for five search terms

experiments with such queries from both subject systems
where we noted that the queries performed quite poorly. For
example, the search engine returns relevant results for at most
54 (compared to 111) tasks from Log4j and 39 (compared
to 60) tasks from eclipse.jdt.debug. Thus, the findings
demonstrate that our proposed technique for search term
suggestion is relatively more effective and more reliable.

E. Comparison with an Existing Approach

We compare with one of the latest and closely related state-
of-the-art approaches– Kevic and Fritz [14] using our dataset
(Section III-A). Kevic and Fritz [14] propose a heuristic model
for search term suggestion for a change task where they
consider frequency (i.e., tf-idf ), location (i.e., inSumAndBody,
isInMiddle) and notation (i.e., isCamelCase) of the terms from
the task description. They suggest three search terms as a
search query whereas we find our technique performing the
best with five search terms in a query. We thus consider
both sizes for the queries in our experiments. We implement
their relevance model in our working environment, collect the
search queries for the change tasks, and evaluate them using
the same search engine (Section III-B). From Table II, we
note that our queries are more effective compared to theirs for
both subject systems. For example, their queries can retrieve
relevant results for at most 65 (28.26%) out of 230 change
tasks from Log4j and 39 (32.77%) out of 119 tasks from
eclipse.jdt.debug. In terms of precision and recall, we
note that our queries also perform relatively better than theirs.

IV. RELATED WORK

There exist a number of studies in the literature that attempt
to support developers in feature location tasks with search
queries. They adopt different lightweight heuristics [14] and
query reformulation or expansion strategies [8, 12, 20], and
perform different query quality analyses [9, 10, 11] and mining
activities [13, 15]. However, most of these approaches expect
a developer to provide the initial search query which they can
improve upon, and their main focus is on improving a given
query for a change task. On the other hand, in this study, we
propose a novel technique that suggests a list of suitable terms
as an initial search query for the given task. From technical
perspective, we adapt an established algorithm– TextRank
from information retrieval domain that analyzes the relative
importance of the terms from the task description using a
graph-based technique, and suggests the most important terms

as search terms. Besides, we perform a case study using 349
change tasks that demonstrates the potential of the adapted
technique.

V. CONCLUSION & FUTURE WORK
To summarize, in this paper, we propose a novel TextRank-

based technique that automatically identifies and suggests
search terms for software change tasks. Experiments with 349
change tasks from two subject systems show that our approach,
on average, can return relevant results (i.e., Java classes)
for 49.34% of the change tasks with 57.16% mean average
precision and 63.33% recall. Comparison with one of the latest
and closely related state-of-the-art approaches also shows that
our approach performs comparatively better in different perfor-
mance metrics. While these preliminary findings demonstrate
the high potential of the proposed approach, further validation
with more subject systems of diverse varieties and change
tasks is warranted.
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