
Why are Some Bugs Non-Reproducible?
–An Empirical Investigation using Data Fusion–

Mohammad Masudur Rahman Foutse Khomh Marco Castelluccio†
Polytechnique Montreal, Canada, Mozilla Corporation†

{masud.rahman, foutse.khomh}@polymtl.ca, mcastelluccio@mozilla.com†

Abstract—Software developers attempt to reproduce software
bugs to understand their erroneous behaviours and to fix them.
Unfortunately, they often fail to reproduce (or fix) them, which
leads to faulty, unreliable software systems. However, to date, only
a little research has been done to better understand what makes
the software bugs non-reproducible. In this paper, we conduct a
multimodal study to better understand the non-reproducibility
of software bugs. First, we perform an empirical study using 576
non-reproducible bug reports from two popular software systems
(Firefox, Eclipse) and identify 11 key factors that might lead a
reported bug to non-reproducibility. Second, we conduct a user
study involving 13 professional developers where we investigate
how the developers cope with non-reproducible bugs. We found
that they either close these bugs or solicit for further information,
which involves long deliberations and counter-productive manual
searches. Third, we offer several actionable insights on how to
avoid non-reproducibility (e.g., false-positive bug report detector)
and improve reproducibility of the reported bugs (e.g., sandbox
for bug reproduction) by combining our analyses from multiple
studies (e.g., empirical study, developer study).

I. INTRODUCTION

Software bugs and failures claim trillions of dollars ev-
ery year. In 2017 alone, 606 software bugs cost the global
economy about $1.7 trillion with 3.7 billion people affected
and 314 companies impacted [4]. Finding such bugs within
software code and then fixing them are highly challenging.
One of the major challenges is to determine the root cause
of a reported bug, which might help better understanding of
the bug [28]. Developers often attempt to reproduce a bug
from its report to determine its root cause and to explore
its erroneous behaviours. Unfortunately, the bug reports often
do not contain useful information for reproducing the bugs
[15, 16, 13]. This leads to (a) an unexpected delay (e.g., three
months [24]) in bug fixing [22, 41] or (b) even worse, the
release of a software system without fixing potentially critical
bugs, which could be costly in the long run (e.g., Facebook’s
privacy vulnerability [3]). Thus, (a) studying the key factors
(a.k.a., characteristics) that could make the reported bugs non-
reproducible and (b) detecting these non-reproducible bugs
early in their management cycle – are open research problems
that warrant further investigations. Our work in this paper
addresses the first research problem.

Existing work from the literature (a) study the character-
istics of a good bug report [13] and classify the software
bugs from open source systems [33, 26], (b) predict which
bugs get fixed [21, 20], re-assigned [22, 38] or re-opened
[41] and (c) investigate how bugs are coordinated among
various stakeholders (e.g., software testers, users, developers)
[12, 36] and how the misclassification of bugs affects the

bug prediction task [23]. Unfortunately, a little research has
been done to better understand what makes the reported bugs
non-reproducible. Vyas et al. [36] first analyse the social and
human aspects of a bug reproduction process with an ethno-
graphic study. Their study explains the human collaboration
aspect, which might not be enough to explain the complex
technical aspect of a bug reproduction process. Joorabchi
et al. [24] identify several factors (e.g., Inter-bug dependencies,
environmental differences) that might contribute to the non-
reproducibility of a reported bug. Although their study sheds
some light on the factors leading to bug non-reproducibility,
it does not go as far as understanding the mitigation strategies
currently implemented in the field. Neither does it examine the
mechanisms to improve the reproducibility of reported bugs.
Our work attempts to fill this gap in the literature.

In this paper, we conduct (a) an empirical study to better un-
derstand the key factors behind non-reproducibility of software
bugs and (b) a developer study to understand how the profes-
sional developers cope with non-reproducible bugs and how
to improve the bug reports. First, we analyze 576 randomly
sampled bug reports marked as non-reproducible (250 from
Mozilla Firefox + 326 from Eclipse JDT) with a Grounded
Theory method [19] and identify 11 key factors that might
lead a reported bug to non-reproducibility. We also contrast
our findings with those from Joorabchi et al. [24]. Second,
we validate our empirical and analytical findings with a user
study involving 13 professional developers (from Mozilla
and Freelancer) and gain meaningful insights on how
the developers deal with non-reproducible bugs, which were
missing in the earlier work [24]. Third, by cross-referencing
our findings from qualitative analysis and developer study,
we report several actionable insights for detecting and then
improving the non-reproducible bugs during their submission.
Thus, we answer five important research questions as follows.

(a) RQ1: What are the key factors that make a reported
software bug non-reproducible?
To mitigate the issue of bug non-reproducibility, under-
standing the key causes (or factors) is essential. We find
11 key factors (e.g., bug duplication, intermittency, miss-
ing information, ambiguous specifications, third-party de-
fects) that might lead a reported software bug to non-
reproducibility.

(b) RQ2: What do professional developers consider to be
key factors behind the non-reproducibility of bugs?
Developers’ feedback on empirical findings is important
to increase confidence in the findings. Our identified key

Firefox
Bug Reports

1a

Eclipse
Bug Reports

1b

Filtration & Sampling

2 Selected NR
Bug Reports

3 Qualitative Analysis
(Grounded Theory)

4

F1

F2

F3

F4

.

.

Fn

5

RQ1

Key Factors

Data

Fusion

Joorabchi et al. [24]

Developer Study

6a
RQ2 RQ4

RQ3
6b

6c

Actionable
Insights

7

RQ5

Fig. 1. Schematic diagram of our conducted study

Fig. 2. An example bug reporting thread – (a) title + description, (b) discussions among
stakeholders, and (c) non-reproducibility of the bug

factors were validated by 13 professional developers with
an agreement level between 70% and 90%.

(c) RQ3: Do the identified factors match with the relevant
earlier findings from the literature?
Generalizability of findings across multiple studies and
multiple datasets is important to increase confidence in
the findings. Five of our identified factors match with
the earlier findings derived from a different dataset [24].
Our study also reveals several novel factors. Thus, our
findings not only confirm but also improve the existing
understanding of non-reproducible software bugs.

(d) RQ4: How do the professional developers deal with
non-reproducible software bugs?
Understanding the current practices for dealing with
non-reproducible bugs is important to provide efficient
solutions. We find that professional developers deliberate
over non-reproducible bugs and attempt to collect more
information when the bug reports are incomplete or the
reported bugs are complex (e.g., intermittent bugs, per-
formance bugs). They also close the duplicate and false-
positive bug reports with suitable explanations. Many of
these tasks are performed in a counter-productive way due
to the lack of appropriate alternatives (e.g., tool supports).

(e) RQ5: How to prevent the non-reproducibility and/or
improve the reproducibility of reported bugs?
Non-reproducibility of software bugs leads to delays
in bug-fixing and potentially buggy software releases,
which could be mitigated with appropriate tool supports.
For example, intelligent tools (1) for detecting dupli-
cate or false-positive bug reports and (2) for improv-
ing the software documentations could help avoid non-
reproducible bugs. On the other hand, intelligent tools for
complementing the incomplete bug reports could improve
their reproducibility. Furthermore, sandbox tools where
the developers can repeat their experiments could be
useful for reproducing the complex software bugs (e.g.,
performance bugs, intermittent bugs).

II. NON-REPRODUCIBLE BUGS

Software developers often attempt to reproduce their bugs
to better understand them. Non-reproducible bugs are the
ones that cannot be reproduced by using the information
found in their corresponding bug reports. They are anno-
tated with several labels such as “Works on My Machine”,
“Works For Me” and “Cannot Reproduce” in the bug-tracking
systems [24]. About 17% of the reported bugs could be
non-reproducible [24], which is a significant amount. Based
on a developer study, Bettenburg et al. [13] suggest that
developers expect at least three components within a bug
report – Observed Behaviour (OB), Expected Behaviour (EB)
and Steps to Reproduce (STR). OB describes the erroneous
behaviour of a software system whereas EB outlines the
correct behaviour of the system. On the other hand, STR
provides the steps to reproduce a bug. Bug reports that miss
these components could be difficult to reproduce. According
to Chaparro et al. [15], about 65% of the bug reports miss
the correct behaviour (EB) and 49% of the reports do not
contain any steps to reproduce the bugs. Fig. 2 shows an
example bug that erroneously deletes documents from the
build path of an Eclipse project. From the discussions, we
also see that the bug report fails to provide any concrete steps
or complementary information (e.g., logs, stack traces) for
reproducing this bug (Fig. 2-(c)). As a result, the bug was

TABLE I
STUDY DATASET

System Domain BTS Component Duration All NR Bugs Selected NR Bugs
Mozilla Firefox Web browser Bugzilla Core Dec 29, 2017–Dec 29, 2019 1,274 250
Eclipse Programming IDE Bugzilla JDT Dec 29, 2014–Dec 29 2019 326 326
Total - - - - 1,600 576

NR = Non-Reproducible, BTS = Bug Tracking System

marked as non-reproducible (a.k.a., WORKSFORME) by the
developers and was abandoned without fixing.

III. STUDY METHODOLOGY

Fig. 1 shows the schematic diagram of our performed
studies in this paper. We first perform an empirical study on
bug non-reproducibility using 576 non-reproducible bugs from
two popular software systems. We not only revisit the earlier
findings [24] but also deliver novel insights towards better
understanding of non-reproducible bugs. Then we validate our
major findings with a developer study and formulate further
actionable insights. In this section, we discuss the major steps
of our study design as follows.

A. Dataset Construction

We use a total of 576 non-reproducible bugs from two popu-
lar, mature, open source systems – Mozilla Firefox and Eclipse
– for our study. Table I shows an overview of our study dataset.
Several steps were taken to carefully select these reported
bugs. First, we collect all the bug reports from these systems
that were marked as WORKSFORME. Both systems use this
tag to mark their non-reproducible bugs [2]. Then we select the
ones that were submitted within the last two years from Firefox
and within the last five years from Eclipse. We use the recent
bugs that the developers could still remember and that can
provide timely, relevant, actionable insights. We also choose
the bug reports concerning two major components – Firefox
Core and Eclipse JDT – due to their critical roles. This step
provides a total of 1,600 non-reproducible bug reports (1,274
from Firefox + 326 from Eclipse) (Step 1, Fig. 1). Second,
since manually analysing hundreds of bug reports would be too
expensive, we randomly choose 576 bug reports from them.
In particular, we identify top 25 critical subcomponents in
Firefox Core (e.g., WebRender, Playback, JavaScript Engine)
based on their bug report frequency and choose 10 random bug
reports from each of these subcomponents, which provides 250
random bug reports. Our sample has a confidence level of 95%
with an error margin of 5.56%. On the other hand, we choose
all 326 bug reports targeting Eclipse from the last five years.
Finally, we ended up with 576 (250+326) non-reproducible
bugs from two popular software systems (Steps 2-3, Fig. 1).

B. Identifying Key Factors with Qualitative Analysis

We carefully analyse the information available in the bug
reports and attempt to understand the key factors behind the
non-reproducibility of their discussed bugs (Steps 4–5, Fig. 1).
We first establish the scope of our analysis and then employ
a widely used qualitative method – Grounded Theory [19] –
for our analysis as follows.

Determining the Scope of Manual Analysis: In modern
bug-tracking systems (e.g., Bugzilla), each bug report captures
(1) bug description from a reporter and (2) discussions among
various stakeholders (e.g., reporter, developers, testers). Once
an encountered bug is reported, the stakeholders engage in a
discussion where they attempt to reproduce the bug using the
available information at hand. Since we attempt to understand
the key issues behind bug non-reproducibility, we analyse both
the bug description and the discussion texts from each bug
report. While textual contents are mostly prevalent, bug reports
might also contain supplementary materials (e.g., stack traces,
logs, memory dump, test cases, configuration files) to assist in
bug fixing. In this study, we systematically analyse the textual
contents and occasionally check the supplementary materials
for deriving our insights.

Grounded Theory: We analyse bug reports using Grounded
Theory method [19] to determine the key factors behind
bug non-reproducibility. Grounded Theory has been widely
adopted in the social science researches to derive theories that
are firmly grounded in the data under analysis (e.g., interview
scripts, questionnaires). Recently, this method has also found
applications in the Software Engineering researches [32, 14].
We systematically analyse the bug description and discussion
texts, and look for potential clues (e.g., missing information,
technical difficulty) that might explain the non-reproducibility
of a reported bug. Grounded theory method involves three
stages of coding as follows.

(a) Open Coding consists in breaking the gathered data
(e.g., bug reports) into identifiable, interesting chunks. We go
through the bug description and discussion texts of each bug
report and look for potential clues that might explain the non-
reproducibility of a bug. We record our identified clues using a
set of key phrases [1]. The core idea was to keep an open mind
and to choose as many codes as needed to carefully represent
each bug report. In our open coding, 574 unique codes were
produced from 576 bug reports. We spent ≈100 man-hours in
the open coding of 576 bug reports and their discussions.

(b) Axial Coding focuses on finding connections among the
open codes. In this stage, we place our open codes into a
spreadsheet document and annotate the similar or connected
codes with the same colours. We consider not only lexical
overlap but also semantic relatedness in establishing the con-
nection. Our goal was to divide the open codes into low-level
categories. This step provides a set of 33 tentative categories
from our 574 open codes above.

(c) Selective Coding determines the core variables (or cat-
egories) and constructs a theory to explain the phenomenon
under study, i.e., the non-reproducibility of the reported bugs.
While the axial coding provides low-level categories, we

carefully merge them into higher level categories based on
their common themes and semantic relatedness. This step
provides a total of 11 key factors that might explain the non-
reproducibility of reported software bugs (Step 5, Fig. 1). Each
of these key factors is represented using a set of semantically
connected key phrases [1].

Determining the Prevalence of Key Factors in Bug
Reports: During open coding, we represent each bug report
using a set of suitable key phrases that explain why the bug
could not be reproduced. Similarly, each of our identified
factors is represented using a set of semantically connected
key phrases. To analyse the prevalence of key factors in our
dataset, we determine the presence of one or more key factors
in each bug report using their overlapping key phrases.

C. Complementing Empirical Study with Developer Study

Although our empirical findings are derived from developer
discussions, we further validate and complement these findings
with a developer study involving 13 professional developers.
We also investigate how these developers cope with non-
reproducible bugs in practice and how the research community
could help them. We discuss our study setup including ques-
tionnaire preparation and participant selection as follows.

Questionnaire Preparation: We first provide a summary
of our empirical findings on bug non-reproducibility. Then
we ask five different questions on four topics. First, we
ask the participants whether they agree or disagree with our
identified causes of bug non-reproducibility (Table II) using
dichotomous questions. Second, we ask how they deal with
non-reproducible bugs as a part of their job. Third, we ask how
the research community could help the developers in dealing
with the non-reproducible bugs. Fourth, we ask the developers
about their professional experience level, which was used for
the demographic analysis.

Participant Selection: We first conduct a pilot study
with one professional developer from Mozilla Firefox, which
helped us improve our questionnaire. Then we invite the
professional developers from Mozilla, Freelancer and Stack
Overflow who have relevant bug-fixing experience to answer
our questionnaire. We send our invitations to the developers
using direct correspondences, organization’s mailing lists (e.g.,
Mozilla Firefox) and public forums (e.g., LinkedIn, Twitter).
Thirteen participants responded to our invitation including four
developers from Mozilla Firefox. About 23% of these partic-
ipants have more than 10 years of professional development
experience, 15% of them have 5 to 10 years of experience and
about 39% have 1 to 5 years of development experience. Our
study was non-paid.

D. Analysing Agreement between Independent Findings

Once the key factors behind bug non-reproducibility are
identified, we validate them with two independent studies
(Steps 6-7, Fig. 1). First, we investigate how these factors are
assessed by the professional developers. We not only deter-
mine the severity of each factor but also gain further actionable
insights from this developer study. Second, we determine how

these factors match with the earlier findings of Joorabchi et al.
[24]. While Joorabchi et al. adopt an ad hoc method, we
employ a systematic method namely Grounded Theory [19]
for the qualitative analysis. We also use a different dataset in
this work. Thus, an agreement between our identified factors
and the earlier ones would indicate their generalizability and
thus also would strengthen the understanding of bug non-
reproducibility.

IV. STUDY RESULTS

In this section, we present the results of our study by
answering the five research questions as follows.

A. RQ1: What are the key factors that make a reported
software bug non-reproducible?

We identify a total of 11 key factors that are likely to explain
the non-reproducibility of software bugs. Table II shows the
identified factors from our qualitative analysis (Section III-B).
We explain each of these factors with illustrative examples
collected from the bug reports as follows.

Bug Duplication (F1) is one of the key factors behind
the non-reproducibility of software bugs. The duplicate bugs
are often known to the developers and thus might have been
already fixed in recent releases. As a result, they cannot
be reproduced with the up-to-date version of the software
system. The following discussion comment from Firefox (Bug
#1428773) refers to duplicate bugs and explains why it cannot
be reproduced.

D: “This looks a lot like the issues in bug 1420748
and related bugs, so it might be fixed by the WR
update in bug 1426116.”

Since the duplicate bugs might already be fixed, they are often
resolved by closing them as duplicates and then pointing their
reporters to a recent software version that contains the fixes.

False Positive Bugs (F2) (a.k.a., feature requests) might
not be reproducible. Software users often discuss about non-
existent features in their bug reports; this cannot be repro-
duced. Sometimes, they also report configuration issues as
bugs, which can be resolved with simple tweaking rather than
code level changes. For example, the following comment from
Firefox (Bug #1444194) shows how a simple configuration
tweak can resolve a bug regarding slow network proxy.

D: “What happens if you set the about:config pref
”security.OCSP.enabled” to 0?”
R: “yep disabling the OCSP check fixed it. Then this
works fine ..”

Bug Intermittency (F3) is another key factor behind bug
non-reproducibility. Intermittent bugs have non-deterministic
properties and they do not occur frequently or consistently.
Thus, they are difficult to reproduce and fix. The following
discussion comment from Eclipse (Bug #501488) explains the
intermittency of a reported bug.

R: “I forgot to write that the problem does not
always appear, sometimes working as it should. I
have inserted a screenshot of the problem.”

TABLE II
KEY FACTORS BEHIND THE NON-REPRODUCIBILITY OF SOFTWARE BUGS

Key Factor Overview
F1: Bug Duplication The bug might have been already fixed in the recent releases
F2: False Positive Bug The reported issue might not be a bug, but rather indicates a non-existent software feature
F3: Bug Intermittency The bug does not occur frequently or consistently
F4: Missing Information The required information (e.g., steps to reproduce) is missing in the bug report
F5: Ambiguous Specifications The expected behaviour of the software application is misunderstood by the reporter
F6: Performance Regression Performance loss that is encountered as a side effect of recent changes
F7: Lack of Cooperation The reported bug fails to draw the attention of the stakeholders (e.g., developers)
F8: Memory Misuse The bug is triggered by the mismanagement of memory
F9: Third-Party Defect The bug has been triggered by defects in a third-party component
F10: Restricted Security Access Bugs that warrant specialized authentication or authorization for reproduction
F11: Touch & Gestures The accessibility bugs that warrant touches, gestures and special interactions

Missing Information (F4) is a key problem that makes
a reported bug non-reproducible. Developers often look for
relevant items in a bug report (e.g., steps to reproduce, stack
traces, performance profiles, screenshot, test cases, system
configurations) that could help them in reproducing the bug.
Unfortunately, in practice, these items often are either missing
or not reported carefully. The example comments from Eclipse
(Bugs #476042, #477898) request for missing information in
the bug report.

D: “Please try with Eclipse Neon M6 build and
provide exact steps that reproduce the issue. Also,
attach the log file having stacktrace.”
D: “Please provide the code snippet that reproduces
the issue.”

Sometimes, the mere presence of the required items might not
be sufficient. The reported bugs could also not be reproduced
if the provided information is incomplete or inaccurate.

Ambiguous Specifications (F5) often lead the reported
bugs to non-reproducibility. Bug reporters might misunder-
stand the expected behaviours of a software system if the
specifications are not clearly defined. As a consequence,
they might characterize a legitimate functionality as a bug,
which could introduce confusion or disagreement during bug
reproduction. For example, the following discussion comments
from Firefox (Bug #1477421) indicate a misunderstanding of
the specifications regarding autoplay for muted videos.

R: “Actual results: Video autoplays although the
sound is muted. Expected results: Video should not
autoplay.”
D: “Muted videos are expected to autoplay. This is
a design choice.”

Performance Regression (F6) related bugs (a.k.a., perfor-
mance bugs) are hard to reproduce. They are often subtle
and subjective, or dependent on specific characteristics of
a machine, which introduces confusion and disagreement
among the stakeholders (e.g., reporters, developers) during
bug reproduction. For example, the following comment from
Firefox (Bug #1485402) indicates the subtle and subjective
natures of the performance bug.

D: “On my 24-core desktop machine, I’m seeing
Firefox Nightly 63 being quite a bit *faster* than

Chrome DevEdition 70. I wonder why I’m seeing
the opposite of Stephen (reporter)...”

Lack of Cooperation (F7) among the stakeholders is
another key factor that could make a reported bug non-
reproducible. An earlier study [36] also suggests that col-
laboration dynamics could play a major role during bug
reproduction. Sometimes the reported bugs fail to draw the
attention of human developers. They are closed by either the
automated bots (e.g., Eclipse Genie) or the reporters and are
marked as WORKSFORME. Bug reproduction might also fail
due to the lack of response from the reporters. For example, the
following comment from Eclipse (Bug #495568) indicates that
the bug cannot be reproduced due to the lack of cooperation
(and required information) from the bug reporter.

D: “No further feedback, closing. Please reopen if
you can confirm the problem and provide repro-
ducible examples.”

Memory Misuse (F8) such as memory leaks, memory
overflows, and concurrent modifications might trigger the
complex bugs that are difficult to reproduce. A leak of a
small object that is hardly noticeable during the execution
of the program might cause the memory usage to grow
unbounded. Such issues could also be compounded by legacy
hardware. For example, the following comment from Firefox
(Bug #1547586) indicates the complex nature of a memory
related bug regarding excessive RAM usage.

D: “I am unable to reproduce. I created a new
profile, opened ... until the page was finished load-
ing, measured RAM ... and a Firefox about:memory
report. Then I disabled accessibility services, and
restarted with ..., and re-measured RAM. I did not
see any significant change. I tried this on a 9 year
old laptop and a 2 year old laptop and saw no
significant differences.”

Third-Party Defects (F9) are often responsible for non-
reproducible bugs. Modern software systems are routinely
developed with third-party dependencies (e.g., libraries, re-
sources) and environmental specifications (e.g., OS, memory,
hardware, plug-ins, anti-viruses [10]) that might trigger bugs
and failures. However, these bugs might not be reproducible
since the developers often do not have enough control over

them, or do not have a way to install the same third-party
software which is the root cause of the bug. For example,
the following comment from Firefox (Bug #1427890) suggests
that the bug could be specific to an operating system.

D: “It works for me on Firefox 57 with windows 10.
Since reporters use windows 7, maybe it is related
to the windows version.”

Restricted Security Access (F10) is another important fac-
tor behind the non-reproducibility of software bugs. Although
bug reports are supposed to provide the required information
for reproducing the bugs, many confidential items (e.g., user
credentials, security certificates) cannot be shared publicly.
Thus, reproducing the end-user’s experience accurately could
be challenging. For example, if there is a bug with Firefox on
Netflix and the developer does not have a NetFlix account, then
she might not be able to reproduce it. The following comment
from Firefox (Bug #1594272) indicates the non-reproducibility
of a bug due to possibly restricted security access.

D: “Hi Mark, I wasn’t able to reproduce the bug
since I don’t have an account but I’ve chosen a
component for this bug ...”

Touch & Gestures (F11) are often hard to imitate pre-
cisely, which could make accessibility-related bugs non-
reproducible. For example, the following comment from Fire-
fox (Bug #1457726) discusses the challenges in reproducing
a touch/gesture related bug.

D: “I have tested this issue on a Surface machine
with Windows 10 x64 ... and haven’t managed to
reproduce the issue. After opening multiple tabs
and tapping on the ”x” close button, the tab is
automatically closed”

Summary of RQ1-(a): There are at least 11 key factors
(e.g., bug duplication, intermittency, missing information, am-
biguous specifications, third-party defects) that could lead a
reported software bug to non-reproducibility.

To better understand the importance of each of the identified
factors, we analyse their prevalence in our dataset of non-
reproducible bugs (Section III-B). We determine the presence
of one or more key factors in each bug report and then
summarize our findings (Table III) as follows.

Table III shows the prevalence of 11 key factors in our
dataset. We see that bug duplication is a major factor be-
hind bug non-reproducibility. About 29% of bugs from the
dataset cannot be reproduced since they are duplicates and
were possibly fixed earlier. Both Firefox and Eclipse systems
encounter a significant number of duplicate, non-reproducible
bugs (e.g., 27%–31%). Bug intermittency is another prevailing
factor behind the bug non-reproducibility. On average, 14% of
the bugs do not occur frequently and consistently, which makes
it hard to reproduce them. Up to 26% of the Firefox bugs
are intermittent in nature. Developers also fail to reproduce
at least 8% of the bugs due to missing information (e.g.,

Fig. 3. Developers’ responses on the key factors behind bug non-reproducibility

steps to reproduce, stack traces, test cases). This problem
is especially severe for Eclipse where ≈14% of the bug
reports lack the required information for reproduction. During
our analysis, we also note that the mere presence of items
might not be sufficient rather they should be complete and
accurate. Ambiguous specification is another important factor
that could lead ≈8% of bugs to non-reproducibility. That is,
the expected behaviours were either ill-defined or outdated,
and the users considered the legitimate software behaviours as
bugs. From Table III, we also see that performance regression
and false-positive bugs are also two important factors behind
the non-reproducibility of bugs. Minor performance losses as
a side effect of recovery from the critical bugs are often
acceptable to the developers. Hence, they might be reluctant
to reproduce these performance bugs. On the other hand, in
false-positive bug reports, the reporters complain about non-
existent software features, which are impossible to reproduce.
The remaining key factors (e.g., third-party defects, memory
misuse, restricted security access) lead ≈12% of the bugs to
non-reproducibility, which is also a significant amount. Finally,
≈11% of the bugs from our dataset are application-specific
(e.g., video player autoplay problem, refactoring failure) that
cannot be reproduced due to miscellaneous reasons (e.g.,
novice mistakes).

We also investigate how one or more key factors might
lead the software bugs to non-reproducibility. We found that
75% of the non-reproducible bugs from our dataset cannot be
reproduced due to one of the key reasons (e.g., bug duplication,
intermittency, missing information). On the other hand, about
22% of the bugs have two key factors and 2% of the bugs
have three factors behind their non-reproducibility. Bug non-
reproducibility due to multiple factors might be more difficult
to resolve than that due to single factor.

Summary of RQ1-(b): About 75% of the selected bugs are
non-reproducible because of single key factors whereas the
remaining ones are made non-reproducible by a combination
of two or more key factors (e.g., intermittency + regression).

B. RQ2: What do the professional developers consider to be
key factors behind the non-reproducibility of bugs?

In the developer study, we present our identified factors
behind bug non-reproducibility (Table III) to the professional

TABLE III
PREVALENCE OF THE KEY FACTORS IN NON-REPRODUCIBLE BUGS

Proposed Study Joorabchi et al.
Key Factor Firefox Eclipse Key Category All
F1: Bug Duplication 26.83% 31.33% C1: Inter-bug Dependencies 45.00%
F2: False Positive Bug 4.57% 21.67% - -
F3: Bug Intermittency 26.22% 2.61% C5: Non-deterministic Behaviour 3.00%
F4: Missing Information 1.52% 13.84% C3: Insufficient Information 14.00%
F5: Ambiguous Specifications 5.18% 9.40% C4: Conflicting Expectations 12.00%
F6: Performance Regression 8.54% 1.83% - -
F7: Lack of Cooperation 3.96% 3.66% - -
F8: Memory Misuse 4.88% 1.00% - -
F9: Third-Party Defects 1.83% 2.35% C2: Environmental Differences 24.00%
F10: Restricted Security Access 4.27% 0.00% - -
F11: Touch & Gestures 2.44% 0.00% - -
Miscellaneous 9.76% 12.53% C6: Others 2.00%

developers. We collect their responses on whether they agree
or disagree with these factors. Fig. 3 shows that about 92%
of the participants consider missing information (F4) to be
the major cause of bug non-reproducibility. About 85% of
the participants (i.e., 11 of 13) agree that duplicate bugs (F1),
performance bugs (F6), memory misuse related bugs (F8), and
third-party defects (F9) are often hard to reproduce. According
to ≈75% of the professional developers (i.e., 10 of 13), false-
positive bug reports (F2), bug intermittency (F3), ambiguous
software specifications (F5), and restricted security access
(F10) could lead the reported bugs to non-reproducibility.
Finally, 67% of the developers (i.e., 9 of 13) agree that
touch and gesture related bugs (F11) could also be difficult
to reproduce due to their subtle, subjective nature. All these
findings above suggest that the professional developers agree
to a large extent with our identified factors behind the non-
reproducibility of bugs.

We also provide free-form text boxes in our questionnaire
to allow the developers to mention any factor that was not
included in our list. Two more important causes were identified
from their responses. First, hardware faults are very hard to
reproduce. These bugs might need a specific combination of
hardware and software (e.g., device drivers) and a long set of
steps to reproduce. They also align with one of our factors–
third-party defects (F9). Second, bugs connected to a random
function that is initialized with an unknown seed could also
be hard to reproduce due to their non-deterministic nature.

Summary of RQ2: About 70%–90% of the professional de-
velopers agree with the factors behind bug non-reproducibility
derived from our empirical study. They also point out two ad-
ditional types of bugs (e.g., hardware faults, random function
bugs) that are difficult to reproduce.

C. RQ3: Do the identified factors match with the earlier
findings from the literature?

Our first research question (RQ1) identifies a list of key
factors behind bug non-reproducibility (Table II) using qual-
itative analysis, which were cross-examined by a group of
professional developers (RQ2). However, the generalizability

of bug non-reproducibility could be further strengthened by
validating these factors against the previously reported causes
[24]. Joorabchi et al. [24] report six major causes of bug
non-reproducibility. Table III shows their reported causes. We
analyse each of our key factors, identify the semantically
equivalent causes from their list by consulting their corre-
sponding explanations and examples, and then determine the
agreement between these two lists as follows.

From Table III, we see that five of our key factors can
be comfortably mapped to their Top-5 causes as follows.
First, both their study and ours suggest that bug duplica-
tion (i.e., F1↔C1) is the most dominant factor behind bug
non-reproducibility. That is, a significant number of non-
reproducible bugs are already fixed. Second, while bug inter-
mittency (i.e., F3↔C5) is another important factor according
to our analysis, Joorabchi et al. found it less important. Third,
both studies agree that missing information (i.e., F4↔C3)
is a major factor that could lead ≈14% of the reported
bugs to non-reproducibility. Fourth, ambiguous specifications
semantically match with conflicting expectations (i.e., F5↔C4)
due to misunderstanding of the software’s correct behaviours.
Both their study and ours report this as an important cause
behind bug non-reproducibility. Fifth, third-party defects and
environmental differences could also be considered as equiv-
alent causes of bug non-reproducibility (i.e., F9↔C2). The
environmental differences are mostly created by the third-party
items (e.g., operating system, network configurations) and the
software bugs triggered by them could be hard to reproduce for
the developers. Thus, in essence, our study reproduces all the
major causes reported by Joorabchi et al., which strengthens
the generalizability of our findings.

Besides the existing equivalent causes, we also identify
several novel causes of bug non-reproducibility that were not
previously known. For example, we found that false-positive
bug reports could be a major source of non-reproducibility
(e.g., F2, 14% bugs). We also found that performance bugs
could be difficult to reproduce since they are often subjective
in nature. Minor performance loss as a side effect of critical
changes is often overlooked by the developers. According to
our analysis, memory misuse related bugs (e.g., memory leak,

memory overflow) are also hard to reproduce. We also found
three other factors – lack of cooperation, restricted security
access, touch & gestures – that could be responsible for 7%
of non-reproducible bugs. Furthermore, our developer study
reveals two more bugs (e.g., hardware faults, bugs connected
to random function) that could be very hard to reproduce.

We also compare our findings with the earlier ones [24]
in terms of assigned cause categories. According to Joorabchi
et al., each bug report could be non-reproducible due to only
one major cause. However, we found that at least 25% of
the reported bugs could be non-reproducible because of a
combination of two or more factors.

Summary of RQ3: Five of our key factors match with the
previously reported causes of bug non-reproducibility [24].
Our study also reports seven novel factors (false-positive
bugs, performance regression, memory misuse, restricted se-
curity access, touch & gestures, hardware faults, bugs from
random functions) that could lead the reported bugs to non-
reproducibility. Thus, our study strengthens the understanding
of bug non-reproducibility both by confirming the earlier
findings and by uncovering new factors.

D. RQ4: How do the professional developers deal with non-
reproducible bugs in practice?

In our developer survey, we ask the developers about how
they handle the non-reproducible bugs in practice. We wanted
to know what actions they take when the reported bugs
cannot be reproduced due to various causes (e.g., Table II).
We carefully analyze their qualitative responses against our
questions, detect the general themes, and then summarize their
actions in respect to the non-reproducible bugs as follows.

(a) Duplicate, non-reproducible software bugs are gen-
erally closed by the developers. That is, if the developers
find a duplicate bug to be working in the latest release, they
might close it as WORKSFORME. They could also try to find
whether the patch of the original bug solves the bug at hand,
and then mark this bug as a DUPLICATE of the original bug.

(b) Developers generally close the false-positive bugs as
INVALID. They also consult with official functional specifica-
tions and occasionally send an explanation to the bug reporters.
For example, according to one participant, “I write a comment
explaining why it is a false positive and then close the bug.”

(c) Developers attempt to collect useful information from
various sources when they encounter intermittent bugs. For
example, if the bug leads to a system crash, they ask for crash
dump from the reporter. They also look for debugging logs
or system logs associated with the bug, which can provide
them rich contexts or insights. They also search for fellow
developers and testers who might have experience with similar
bugs, and then delegate the reproduction task to them. The
intermittent bugs are also marked as low priority bugs by the
developers. That is, if they are not encountered again for a
certain period (e.g., 12 weeks), they are eventually closed.

(d) Developers request for more information (e.g., steps-
to-reproduce, screencast) from the reporters when the bugs

cannot be reproduced due to missing information. If the
information is not provided in a timely fashion (e.g., two
weeks), then the bug is closed as WONTFIX.

(e) Developers ask for further clarifications from the
reporters when the bugs cannot be reproduced due to
conflicting expectations. In particular, they explain the ex-
pected outcome of a software based on official functional
requirements, request for the clarifications and then close the
bug if no feedback is received within a certain period (e.g.,
two weeks).

(f) Developers request for performance tracing infor-
mation (e.g., performance profiles) when they deal with
performance bugs. Such information might help them iden-
tify the source of performance bottleneck. They also look for
the colleagues who might have relevant expertise.

(g) Developers carefully examine the third-party de-
pendencies, their versions and compatibility when they
encounter non-reproducible software bugs triggered by third-
party defects. They also check the logs for potential clues
and use docker containers for more in-depth investigation.
While they emphasize on using only authentic, well-tested
plug-ins, many of them are in favour of banning such third-
party components that have a strong negative impact upon the
main applications (e.g., Firefox browser).

(h) Non-reproducibility of software bugs due to re-
stricted security access is a major concern for the de-
velopers. They often work with the reporters closely to help
her debug and potentially fix the bug. They also request for
regression range from the reporter that might have induced
a bug. They might also collect appropriate permission and
dummy accounts from the testers to reproduce the bugs.

(i) Developers attempt to optimize their code when
they deal with memory misuse related bugs. They increase
the memory size for their application and perform extensive
debugging to avoid any potential memory leaks. Although
the developers claim that they hardly encounter touch/gesture
related bugs, they want to take help from the experts in dealing
with these bugs.

Summary of RQ4: Developers manually identify and close
the duplicate and false-positive bug reports. They often look
for useful, complementary information from multiple sources
when they deal with complex bugs such as intermittent bugs,
performance bugs or third-party bugs. They also work closely
with various stakeholders (e.g., fellow developers, testers,
reporters) and often delegate bug reproduction task to them.

E. RQ5: How to prevent the non-reproducibility and/or im-
prove the reproducibility of reported bugs?

In our developer study, we ask the developers about how the
research community might be able to assist them in dealing
with non-reproducible bugs. Given their responses and our
empirical analysis, we provide a list of actionable insights both
for preventing the non-reproducibility and for improving the
reproducibility of software bugs as follows.

(a) Develop intelligent tools for detecting the duplicate
bugs. About 29% of the non-reproducible bugs are duplicate
bugs, which are already fixed (e.g., Table III). Most of these
bugs are marked as duplicates by the developers during their
failed attempts for reproduction. These reproduction efforts
could be saved by carefully detecting the duplicate bugs before
their submission. One of our study participants responds,
“Help finding duplicate bugs automatically.” Unfortunately,
many existing tools for detecting the duplicate bugs might not
be mature enough for practical use. In particular, they simply
rely on textual features [17, 35], meta data from bug reports
(e.g., products, components) [9] or execution traces [37] for
detecting the duplicate bugs, and as a consequence, might fail
to detect the complex duplicate bugs that have different symp-
toms but share the same root causes. Therefore, intelligent
tools or techniques are warranted that can accurately detect
the duplicate bugs during their report submission and thus can
save the wasted efforts in failed reproduction. Furthermore,
by putting together multiple similar bugs that share the same
root cause, such a tool might equip the developers with enough
information for a single bug. One of our developer participants
also confirms –“The more information, the better.”

(b) Develop intelligent tools for detecting the false-
positive bug reports. About 5%–22% of the non-reproducible
bugs are false-positive bugs. They often discuss the non-
existent features of a software system that can be neither
exercised nor reproduced by the developers. However, this
non-reproducibility is detected by the developers during their
failed reproduction attempts and deliberations, which could be
costly. Thus, intelligent tools that can detect the false-positive
bug reports during the submission could save valuable devel-
opment time and efforts. A few existing technique [11, 25]
attempt to separate the bug reports from the feature requests
by analysing their textual features, which might always not
be enough. In particular, the underlying semantics could be
crucial to separate the software bugs from the features. Thus,
further research is warranted to prevent the submission of
feature requests as bug reports in the bug-tracking system.

(c) Complement the incomplete bug reports. Bug reports
often lack the elements that are crucial to bug reproduction
(e.g., steps to reproduce, expected behaviour, stack traces)
[15]. A few studies [40, 16] attempt to reproduce the reported
bugs by constructing appropriate test cases from the available
information in the bug reports (e.g., steps to reproduce).
Unfortunately, they are not sufficient since they are likely to
fail when the bug reports lack the required information. Thus,
more intelligent tools and techniques are warranted that (1) can
help the reporters improve their bug reports during submission
or (2) can automatically complement the incomplete bug
reports by leveraging the historical information. For example,
incomplete bug reports could be complemented with partial but
valuable information collected from their duplicate or similar
bug reports (e.g., stack traces, screen shots).

(d) Improve software specifications and documentations.
A significant fraction of the reported bugs (e.g., 8%) cannot
be reproduced due to conflicting expectations between the

reporters and the developers. Such a conflict is often triggered
by an incorrect understanding of the expected behaviours of
a software system, which underscores the need for up-to-date,
readable software specifications. One of our study participants
responds –“I do see that some companies’ documentations
are vague or ambiguous, so developers, QA, managers, or
users may not have a clear understanding on the requirement.”
There have been a few tools for creating software documenta-
tions from the code (e.g., Doxygen [5], srcML [8]). Since they
provide API-level documentations, they might be useful to the
developers but not to the users of a software who need more
high-level documentations. Thus, further research is warranted
on (1) how to validate the correctness of existing software
documentations, (2) how to improve the poor-quality software
documentations, and (3) developing tools and techniques that
can offer suitable, high-level documentations for software
users. Tools that can point the users to the right location within
the software documentations could also be very useful.

(e) Develop appropriate sandbox to assist in the bug
reproduction. To investigate several complex bugs (e.g., in-
termittent bugs, concurrency bugs, performance bugs), soft-
ware systems need to be executed repeatedly. For example,
intermittent bugs are non-deterministic and their true charac-
teristics could only be understood from multiple executions.
Developers might need to contrast between a normal execution
and a crash using their memory dumps when they deal with
memory/concurrency bugs. They might also need to compare
among the performance profiles from multiple executions to
identify the performance bugs. According to the developers,
there is a marked lack of such tools and technologies that
could help them execute their software applications repeatedly
and reproduce these complex bugs. For example, one of our
developer participants responds, “It would be interesting to
have a tool that allows the run of a task multiple times
and reporting some relevant information as memory usage,
dependencies errors, etc.” There have been a few relevant tools
(e.g., Firefox Profiler [6], rr [27], Pernosco [7]). Firefox Pro-
filer can analyse the performance profiles of Firefox and the
Gecko browser engines. On the other hand, rr and Pernosco
can record program executions during testing, which could be
useful for debugging. However, many of these tools might be
limited in scope (i.e., Firefox-specific) or not well-adapted for
reproducing bugs. Thus, further research is warranted to come
up with an appropriate sandbox for reproducing the bugs.

(f) Find the people with right expertise automatically.
Software developers often look for fellow developers and
testers with relevant expertise during reproducing complex
bugs (e.g., intermittent bugs, concurrency bugs, performance
bugs). Although the search might be trivial for a small develop-
ment group, it could be a major challenge for a geographically
distributed, large group. Besides, the relevant expertise might
not be obvious and could be hidden as low-level code changes
within the version control history. Thus, an intelligent tool for
finding the right people might greatly help the developers.
There have been a rich literature on finding experts during
bug triaging [31]. Many of these studies simply rely on the

texts of a bug report rather than its semantics (e.g., bug
types, root causes) to find similar past bug reports and then
suggest their assigned developers as experts, which might
not be effective enough for practical, widespread adoption.
Many existing techniques also rely on naive heuristics (e.g.,
commit history, code churn) as a proxy of developer’s expertise
[29, 34], which might not be enough. Thus, developing more
effective tools for finding the experts during bug reproduction
could be a scope for future research.

Summary of RQ5: Software developers need intelligent,
effective tools for (1) detecting the duplicate or false-positive
bug reports, (2) complementing the incomplete bug reports,
(3) improving the software documentations, and (4) finding
the people with right expertise. They also need a sandbox
tool where they can repeat their experiments as a part of
reproducing the complex bugs (e.g., performance bugs) and
exploring the execution space of their software systems.

V. THREATS TO VALIDITY

Threats to internal validity relate to experimental errors and
biases [39]. Our key factors behind bug non-reproducibility
were derived from a qualitative study (Section III-B), which
could be a source of subjective bias. However, our identified
factors were validated by a group of 13 professional developers
with an agreement level of 70%–90% (RQ2). Hence, such a
threat might be mitigated. Developers might sometimes use
WORKSFORME tag loosely or inconsistently, which might
introduce some noise in our dataset [24]. However, since we
carefully analyse each of the 576 bug reports and finally
summarize our findings, the impacts of such noise might not
be significant.

Threats to external validity relate to generalizability of our
findings [39]. We analyse 576 bug reports from two open
source systems (Firefox and Eclipse), which might not be
representatives for the proprietary software systems. However,
our findings align with that of an earlier study [24] performed
using a different dataset (open source + proprietary) (RQ3),
which possibly indicates the generalizability of our study.

The observations from our developer study and our con-
clusions drawn from them could be a source of threat to
conclusion validity [30]. In particular, there could be a few
unseen variables behind the non-reproducibility of bugs (e.g.,
developer’s inexperience, technical infeasibility), which might
have been overlooked accidentally. However, we share our
dataset [1] publicly for third-party replication and reuse.

VI. RELATED WORK

There have been several studies that analyse the character-
istics of a good bug report [13] or classify the software bugs
from open source systems [33, 26]. Many studies attempt to
predict which bugs get fixed [21, 20], re-assigned [22, 38] or
re-opened [41]. A few studies also investigate how bugs are
coordinated among various stakeholders (e.g., software testers,
users, developers) [12, 36] and how the misclassification of
bugs affects the bug prediction task [23]. Unfortunately, to

date, only a little research has been done to better understand
what makes the reported bugs non-reproducible or how to
improve their reproducibility during the report submission.

Joorabchi et al. [24] first identify six major causes that might
explain the non-reproducibility of software bugs (e.g., Inter-
bug dependencies, environmental differences). While their
work is a source of inspiration, it does not provide actionable
insights on how to detect or improve the non-reproducible bugs
during their submission. Their findings were also not validated
by the developers.

Fan et al. [18] analyse five different dimensions related to
software bugs (e.g., bug report texts, reporter’s experience,
developer-reporter collaborations) and classify valid and in-
valid bug reports using machine learning. Although their work
is related to ours, their adopted features might not be appro-
priate to characterize the non-reproducible bugs. Furthermore,
non-reproducibility of the bugs might always not mean that
they are invalid bugs.

Vyas et al. [36] analyse social and human aspects of a bug
reproduction process with an ethnographic study. Since their
findings focus on human collaboration dynamics, they might
also not be enough to properly explain the complex technical
aspect of a bug reproduction process.

Unlike many earlier studies above, we conduct an extensive
qualitative study with Grounded Theory method [19] using
576 bugs reports from Firefox and Eclipse systems, identify 11
key factors behind bug non-reproducibility, and then validate
our major findings with 13 professional developers from the
industry (e.g., Mozilla). We not only (1) capture how the pro-
fessional developers cope with non-reproducible bugs but also
(2) offer a list of actionable insights by combining information
from multiple analyses (empirical study, developer study),
which makes our work novel. Our findings are generalizable
(RQ3) and datasets are publicly available [1].

VII. CONCLUSION AND FUTURE WORK

Non-reproducibility of software bugs is a major challenge
for the developers since it prevents/delays the bug-fixing.
Unfortunately, to date, only a little research has been done
to understand the non-reproducibility of bugs. In this paper,
we conduct an empirical study using 576 non-reproducible
bug reports, and identify 11 key factors behind bug non-
reproducibility (e.g., bug duplication, bug intermittency, miss-
ing information, false-positive bugs). We not only validate our
findings using the feedback from 13 professional developers
but also investigate how they cope with non-reproducible bugs.
Finally, we provide several actionable insights on how to
avoid non-reproducibility and/or improve reproducibility of the
reported bugs. By leveraging these insights, future work could
focus on developing effective tools and technologies to assist
in the bug reproduction (e.g., sandbox for bug reproduction).

ACKNOWLEDGMENT

This work was supported by Fonds de Recherche du Quebec
(FRQ) and the Natural Sciences and Engineering Research
Council of Canada (NSERC). We would also like to thank all
the anonymous respondents to the survey.

REFERENCES

[1] ICSME 2020 replication package. URL https://github.
com/masud-technope/ICSME2020-Replication-Package.

[2] Works for me. URL https://bit.ly/2M94cff.
[3] Researcher posts facebook bug report to mark zucker-

berg’s wall, 2013. URL https://cnet.co/2PvIH9O.
[4] Report: Software failure caused $1.7 trillion in financial

losses in 2017, 2019. URL https://tek.io/2FBNl2i.
[5] Doxygen, 2020. URL https://www.doxygen.nl/index.

html.
[6] Firefox profiler, 2020. URL https://profiler.firefox.com.
[7] Pernosco, 2020. URL https://pernos.co/about/overview.
[8] Srcml, 2020. URL https://www.srcml.org/.
[9] M. Amoui, N. Kaushik, A. Al-Dabbagh, L. Tahvildari,

S. Li, and W. Liu. Search-based duplicate defect de-
tection: An industrial experience. In Proc. MSR, pages
173–182, 2013.

[10] L. An, M. Castelluccio, and F. Khomh. An empirical
study of dll injection bugs in the firefox ecosystem.
EMSE, 24:1799–1822, 2019.

[11] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and
Y. Guéhéneuc. Is it a bug or an enhancement? a text-
based approach to classify change requests. In Proc.
CASCON, page 15, 2008.

[12] J. Aranda and G. Venolia. The secret life of bugs: Going
past the errors and omissions in software repositories. In
Proc. ICSE, pages 298–308, 2009.

[13] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report? In
Proc. FSE, pages 308–318, 2008.

[14] O. Chaparro, J. M. Florez, and A Marcus. Using
observed behavior to reformulate queries during text
retrieval-based bug localization. In Proc. ICSME, page
to appear, 2017.

[15] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta,
A. Marcus, G. Bavota, and V. Ng. Detecting missing
information in bug descriptions. In Proc. ESEC/FSE,
pages 396–407, 2017.

[16] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran,
A. Marcus, M. Di Penta, D. Poshyvanyk, and V. Ng.
Assessing the quality of the steps to reproduce in bug
reports. In Proc.ESEC/FSE, pages 86–96, 2019.

[17] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus.
Reformulating queries for duplicate bug report detection.
In Proc. SANER, pages 218–229, 2019.

[18] Y. Fan, X. Xia, D.Lo, and A. E. Hassan. Chaff from the
wheat: Characterizing and determining valid bug reports.
TSE, 2018.

[19] B. G. Glaser and A. L. Strauss. The discovery of
grounded theory : strategies for qualitative research.
Chicago : Aldine Publishing, 1967.

[20] A. Goyal and N. Sardana. Nrfixer: Sentiment based
model for predicting the fixability of non-reproducible
bugs. e-Informatica, 11(1):103–116, 2017.

[21] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy.
Characterizing and predicting which bugs get fixed: An

empirical study of microsoft windows. In Proc. ICSE,
pages 495–504, 2010.

[22] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy.
”not my bug!” and other reasons for software bug report
reassignments. In Proc. CSCW, pages 395–404, 2011.

[23] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not
a bug, it’s a feature: How misclassification impacts bug
prediction. In Proc. ICSE, pages 392–401, 2013.

[24] M. E. Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works
for me! characterizing non-reproducible bug reports. In
Proc. MSR, pages 62–71, 2014.

[25] W. Maalej and H. Nabil. Bug report, feature request, or
simply praise? on automatically classifying app reviews.
In Proc. RE, pages 116–125, 2015.

[26] M. Nayrolles and A. Hamou-Lhadj. Towards a classifi-
cation of bugs to facilitate software maintainability tasks.
In Proc. SQUADE, pages 25–32, 2018.

[27] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll,
and N. Partush. Engineering record and replay for
deployability. In Proc. USENIX, pages 377–389, 2017.

[28] C. Parnin and A. Orso. Are Automated Debugging
Techniques Actually Helping Programmers? In Proc.
ISSTA, pages 199–209, 2011.

[29] M. M. Rahman, C. K. Roy, and J. Collins. CORRECT:
Code Reviewer Recommendation Based on Cross-Project
and Technology Experience. In Proc. ICSE, page to
appear, 2016.

[30] M. M. Rahman, C. K. Roy, and D. Lo. Automatic
query reformulation for code search using crowdsourced
knowledge. EMSE, 24:1869–1924, 2019.

[31] A. Sarkar, P. C. Rigby, and B. Bartalos. Improving bug
triaging with high confidence predictions at ericsson. In
Proc. ICSME, pages 81–91, 2019.

[32] H. A. Shafiq and Z. Arshad. Automated debugging and
bug fixing solutions : A systematic literature review and
classification. 2014.

[33] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai.
Bug characteristics in open source software. EMSE, 19
(6):1665–1705, 2014.

[34] P. Thongtanunam, R. G. Kula, N. Yoshida, H. Iida, and
K. Matsumoto. Who Should Review my Code ? In Proc.
SANER, pages 141–150, 2015.

[35] Y. Tian, C. Sun, and D. Lo. Improved duplicate bug
report identification. In Proc. CSMR, page 385–390,
2012.

[36] D. Vyas, T. Fritz, and D. Shepherd. Bug reproduction:
A collaborative practice within software maintenance
activities. In COOP, pages 189–207, 2014.

[37] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using natural
language and execution information. Proc. ICSE, pages
461–470, 2008.

[38] X. Xia, D. Lo, E. Shihab, and X. Wang. Automated bug
report field reassignment and refinement prediction. TSR,
65(3):1094–1113, 2016.

[39] T. Yuan, D. Lo, and J. Lawall. Automated Construction
of a Software-specific Word Similarity Database. In
Proc. CSMR-WCRE, pages 44–53, 2014.

[40] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and
W.G.J. Halfond. Recdroid: Automatically reproducing

android application crashes from bug reports. In Proc.
ICSE, pages 128–139, 2019.

[41] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy.
Characterizing and predicting which bugs get reopened.
In Proc. ICSE, pages 1074–1083, 2012.

