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Abstract—Software developers often experience difficulties in
preparing appropriate queries for code search. Recent finding has
suggested that developers fail to choose the right search keywords
from an issue report for 88% of times. Thus, despite a number of
earlier studies, automatic reformulation of queries for the code
search is an open problem which warrants further investigations.
In this dissertation work, we hypothesize that code search could
be improved by adopting appropriate term weighting, context-
awareness and data-analytics in query reformulation. We ask
three research questions to evaluate the hypothesis, and then
conduct six studies to answer these questions. Our proposed
approaches improve code search by incorporating (1) novel,
appropriate keyword selection algorithms, (2) context-awareness,
(3) crowdsourced knowledge from Stack Overflow, and (4) large-
scale data analytics into the query reformulation process.

I. INTRODUCTION

Changes are inevitable in a software system. Once a soft-
ware product is released, the customers (a.k.a., users) often (1)
report software bugs encountered in the product, and/or (2)
request for new software features. According to Cambridge
University researchers, software bugs cost about $312 billion
per year globally [1]. They also consume almost 50% of the
total development time and efforts. Addition of new software
features to an existing system is also responsible for 60%
of the total maintenance costs [11]. Thus, traditional ad hoc
practices for software debugging and other maintenance tasks
are not cost-effective and not sustainable [11].

Software users are presumably layman. They generally
describe their requirements in plain texts as an issue report
(a.k.a., bug report). In order to satisfy customer requirements
(e.g., fixing bugs, feature addition), a developer must locate
the source code that needs to be changed or reused. Such
code could be found either in the local codebase of a software
system or even in the online software repositories (e.g.,
SourceForge, GitHub). When performing code level changes
to an existing system, a developer first chooses a few impor-
tant keywords (or concepts) from an issue report. Then she
attempts to locate the source code entities (e.g., classes, meth-
ods) that deal with such concepts using a search operation.
Unfortunately, preparing an appropriate search query is highly
challenging even for the experienced developers [19, 24, 42].
According to Kevic and Fritz [19], developers fail to choose
the right search keywords from a bug report for 88% of times.
An ad hoc alternative solution could be the use of whole texts

from the bug report as a search query. Unfortunately, according
to existing evidence [8], such texts also make poor queries.
Besides local codebase, developers also frequently look for
relevant code on the web and spend about 19% of their time
[5]. When searching on the web, developers often use generic
natural language queries as a standard practice. However, such
queries are also not sufficient enough for the code search, and
almost 73% of them need further expansion [34, 36]. Thus,
appropriate query preparation for the code search is highly
challenging regardless of the search contexts, and automated
supports for query reformulation are in high demand.

Although there have been a number of studies that provide
query reformulation supports for various code search oriented
maintenance tasks such as concept/concern location [10, 12,
13, 15, 23] and bug localization [9, 39], they might (1) fail
to determine keyword importance accurately, (2) suffer from
noisy and poor bug reports, and (3) fail to efficiently use the
resources at hand (e.g., bug reports, source code). There exist
other studies [7, 26, 38, 41, 45] that automatically reformulate
queries for Internet-scale code search. Unfortunately, they
might also be affected badly by the low quality of given
queries. Thus, automated reformulation of query for the code
search is an open problem (regardless of problem contexts)
that warrants further investigations. We thus hypothesize:

Through the adoption of appropriate term weighting, document
contexts, crowdsourced knowledge, and large-scale data ana-
lytics in the query reformulation process, we can significantly
improve a given query intended for code search.

Research Questions: In order to evaluate our hypothesis,
we ask and attempt to answer three broad research questions
in this dissertation work as follows:

• RQ1: How do traditional approaches (e.g., TF, TF-IDF)
perform in extracting appropriate keywords from a bug
report? Are they sufficient enough for keyword selection
from a source code document? (Study-1, Study-2)

• RQ2: Does adoption of document contexts in the query
reformulation make any difference? (Study-2, Study-3)

• RQ3: Does adoption of crowdsourced resources or data
analytics derived from them in query reformulation help
improve a given query? (Study-4, Study-5, Study-6)

Expected Contributions: The dissertation work in this
paper presents six studies that answer three research questions
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Fig. 1. Automated query reformulation intended for code search

above with empirical evidences, and then offers a suite of
novel tools/techniques for improving query reformulations
intended for the code search. In particular, we make three
contributions to the literature as follows:
(a) Supporting query reformulation with appropriate

search keyword selection: We propose STRICT [30]
(Study-1) and ACER [29] (Study-2) for collecting ap-
propriate search keywords from regular texts and from
source code respectively. Both approaches outperformed
the traditional alternatives (e.g., TF, TF-IDF [19]) in iden-
tifying important keywords and thus, in turn improved
upon baseline queries significantly (e.g., 10%–30% [29]).

(b) Supporting query reformulation with document con-
texts and structured entities: We propose BLIZZARD
[31] (Study-3) and ACER [29] (Study-2) that capture
meaningful structured entities (e.g., stack traces, method
signatures) from bug reports and from source documents
respectively, and then leverage them in the query refor-
mulation. Both approaches improve upon the baseline
queries for code search significantly in terms of accuracy
(e.g., 56% [31]) and precision (e.g., 62% [31]).

(c) Supporting query reformulation with crowdsourced
knowledge and data analytics: We also propose
RACK [33, 35] (Study-4), NLP2API [32] (Study-5)
and BLADER (Study-6) that exploit 1.40 million Q
& A threads of Stack Overflow and the data-analytics
derived from them, and then complement poor queries
with meaningful keywords. They expand a given query
with either relevant API classes from Stack Overflow or
relevant keywords from the project source code, and thus,
improve upon the baseline accuracy by 37% [32].

II. BACKGROUND & RELATED WORK

A. Background

Reformulation of a search query involves its (1) expansion
with appropriate keywords, (2) reduction by discarding the
noisy words, or (3) replacement with an alternative query
[13]. Fig. 1 shows a typical scenario of automated query
reformulation for code search. Let us assume that a developer,
Sam, submits a query to the code search engine (e.g., Lucene
[2]) (Steps 1–3). Unfortunately, the retrieved results are not
relevant (Steps 3–4). Now, our tool captures this query, the
retrieved results and other third party resources (e.g., Stack
Overflow). It analyses them carefully, and then suggests a
reformulated version of the query to the developer, Sam (Steps

5, 1). This iterative process continues until Sam finds out the
right code that needs to be changed or could be reused.

B. Related Work

Keyword Selection for Query Reformulation: Selection
of appropriate keywords is an important step of query reformu-
lation. Kevic and Fritz [19] employ four lightweight heuristics
such as part of speech, notation, frequency and position of a
term within an issue report, and determine the term’s eligibility
as a search keyword. Unfortunately, their provided regression
model was neither generalizable nor cross-validated.

Several existing studies [10, 13, 19, 28] capture apparently
relevant source code documents for a given query. Then
they analyse them with Rocchio’s method and expand the
given query. These studies use TF-IDF [18] as the de facto
term weighting method for keyword selection. However, TF-
IDF was originally designed for unstructured regular texts
(e.g., news article). Thus, it might be neither appropriate nor
sufficient enough for delivering appropriate search keywords
from a source code document which is full of structures.

A few studies [25, 37] make use of natural language
thesauri such as WordNet [27] for collecting synonyms and
semantically similar words. Then they expand a given query
with them. However, existing evidence [40] suggests that the
same word could bear two different semantics when used in
the regular texts (e.g., news article) and when used in the
source code. Thus, keywords taken from WordNet might not
be effective for query reformulation intended for code search.

Several studies [16, 20, 43] mine software repositories,
extract semantically similar word pairs from them, and then
use such pairs for query reformulation. That is, these studies
require the source code to be well documented with high
quality code comments. Thus, they might not perform well
if the software repositories are poorly documented.

Document Contexts in Query Reformulation: Hill et al.
[15] leverage the context of query keywords within a source
code document for query reformulation. They locate query
keywords in various structured entities such as method signa-
tures and field signatures, and then suggest their co-occurring
terms as candidates for query reformulation. Sisman and Kak
[39] define keyword context using spatial code proximity,
and also choose reformulation terms from the context. Thus,
both approaches above exploit term co-occurrences in the
query reformulation. However, semantically similar/relevant
terms might always not co-occur [17, 21]. Thus, simple
co-occurrence frequency might not be sufficient enough for
selecting appropriate search keywords for query reformulation.

Chaparro et al. [9] divide the texts of an ideal bug report
(given query) into three components– Expected Behaviour
(EB), Observed Behaviour (OB), and Steps to Reproduce
(S2R). Then they use only OB part as a reduced/reformulated
version of the given query. However, their work is empir-
ical in nature, which warrants significant manual analysis.
Furthermore, the use of OB part as the reformulated query
might not be theoretically justified. According to Kevic and
Fritz [19], simultaneous occurrences of a term both in title



and in description of a bug report indicates its salience as a
code search keyword. Unfortunately, such hypothesis was not
properly evaluated using substantial experiments.

Data Analytics for Query Reformulation: Ye et al. [44]
first incorporate semantic similarity into Information Retrieval-
based bug localization where they learn the word embeddings
from API documentations, tutorials and wiki pages using skip-
gram algorithm. However, such documentations might always
not be available for every project under study. Zhang et al.
[45] learn the word embeddings from a large corpus of ≈25K
software projects, and then suggest semantically related API
classes against a given programming task (given query). Their
approach requires the presence of both query keywords and
API classes in the source code. However, source code is often
scarce in vocabulary and rich in structures [14]. Thus, their
approach might not perform well if the corpus projects lack
sufficient vocabulary. Lin et al. [23] represent each document
(or query) as a collection of weighted API classes, and then
leverage conceptual knowledge mined from project source
code for retrieving the API learning resources. Since the API
representation step relies on lexical similarity, their approach
might also suffer from poor queries. A few studies [22, 28, 38]
mine crowdsourced knowledge from Stack Overflow, and then
complement the given queries with relevant program elements,
user tags or technical words. Unfortunately, Stack Overflow
could be noisy, and TF-IDF alone might not be sufficient
enough to remove all noisy elements. Thus, their reformulated
queries might also suffer from low performance.

III. DISSERTATION WORK

To date, six different studies have been conducted in this
dissertation research namely STRICT [30], ACER [29], BLIZ-
ZARD [31], RACK [33, 35], NLP2API [32] and BLADER.
We categorize them into three groups based on their contribu-
tion aspects and research methodologies as follows:

(a) Answering RQ1: Supporting Query Reformulation
with Appropriate Search Keyword Selection: TF-IDF [18]
determines the importance of a word based on its isolated
frequency, and overlooks the presence of other words within
a document. However, co-occurring words often depend on
each other for their complete semantics. For example, the
phrase “code search” conveys a different semantic than that of
“code” or “search” alone. TF-IDF fails to capture such aspect
during keyword selection for code search. We performed
Study-1 and Study-2 in order to address this issue as follows:

Study-1 (a.k.a., STRICT [30]) analyses the contents of an
issue report, and returns a list of appropriate keywords for
code search. Unlike TF-IDF, we capture (1) co-occurrences
[3] and (2) syntactic dependencies [3] among the words from
an issue report. Then we represent each of these relationships
as the connecting edges of a graph where the unique words
from the report are being the nodes. Thus, each issue report
is transformed into two different graphs based on word co-
occurrences and syntactic dependencies. Then we employ two
popular term weighting algorithms–TextRank and POSRank–
on these graphs, and calculate the weight of each word [3].

Finally, weights of each word from these two graphs are
combined, and only Top-K weighted keywords are suggested
as a search query for concept location (i.e., local code search).

Study-2 (a.k.a., ACER [29]) analyses a list of source
documents retrieved by a given query, and then suggests a
list of appropriate keywords as the reformulated query. We
first collect structured entities such as method signatures,
constructor signatures and field signatures from each doc-
ument, and transform them into phrase like structures with
natural language preprocessing. Then, unlike TF-IDF [18],
we leverage the co-occurrences among the terms within each
phrase, and construct a source term graph. Then we employ
PageRank [6] on this graph and calculate the weight of each
of the terms. Finally, Top-K weighted terms from the graph
are suggested as a reformulated version of the given query.

(b) Answering RQ2: Supporting Query Reformulation
with Document Contexts & Structured Entities: Two of our
studies–Study-2 and Study-3– employ document contexts and
structured entities in the query reformulation.

Study-2 treats each source document as a connected net-
work of methods and fields rather than plain texts [10, 13].
While each field refers to a unique attribute, method names
disclose the actions available to the entity (i.e., class). The
remaining parts of a source document are noisy since they deal
with low level implementations [15]. We leverage these salient
contexts (e.g., method signatures) from a source document, and
construct multiple reformulation candidates. Then we apply
query difficulty analysis [12] and machine learning on them,
and suggest the best reformulation for a given query.

Study-3 (a.k.a., BLIZZARD [31]) deals with the contexts
and structures from a bug report. Bug reports often contain var-
ious structured entities (e.g., stack traces, method signatures).
We detect their presence using appropriate regular expressions,
and categorize each bug report (given query) as either noisy,
rich or poor. Noisy bug reports contain stack traces and regular
texts. Rich bug reports contain both regular texts and program
elements but no stack traces. On the contrary, poor bug reports
contain only regular texts and no structured entities. Once
a bug report is categorized, we apply such reformulation
algorithm that is appropriate for the category, and then deliver
the best reformulation to the given query.

(c) Answering RQ3: Supporting Query Reformulation
with Crowdsourced Knowledge and Data Analytics: Three
of our studies–Study-4, Study-5 and Study-6–exploit crowd-
sourced knowledge from Stack Overflow Q & A site and the
data analytics derived from them in the query reformulation.

Study-4 (a.k.a., RACK [33, 35]) accepts a programming
task description (i.e., given query), and then returns a list of
API classes relevant to the task. We capture co-occurrences
of query keywords (in question title) and API classes (in
the accepted answer) within the same Q & A pairs, analyse
them using three different heuristics, and then suggest Top-K
relevant API classes. Unlike earlier approaches [7, 26], RACK
does not rely on lexical similarity between query and API
classes for query expansion. Thus, it has high potential for
overcoming the vocabulary mismatch problem in code search.



Study-5 (a.k.a., NLP2API [32]) combines crowdsourced
knowledge from Stack Overflow and large-scale data analytics
in the query reformulation. We first collect Top-N candidate
API classes from relevant Q & A threads for a given query.
Then we determine their relevance by calculating (1) Borda
count and (2) semantic distance of each API class from the
given query. We then suggest Top-K relevant API classes as
the reformulated query. Unlike earlier studies [44, 45], our
corpus –Stack Overflow– contains sufficient regular texts and
source code, and thus offers an extra-large vocabulary.

Study-6 (a.k.a., BLADER) also leverages large-scale data
analytics in the query reformulation like NLP2API. However,
it adopts the concept of clustering tendency rather than simple
semantic distance between a given query and the reformu-
lation candidates. First, we construct a semantic hyperspace
by learning word embeddings from Stack Overflow corpus
using FastText [4]. Second, we develop multiple reformulation
candidates, and determine their clustering tendencies (e.g.,
Hopkins statistic, Polygon area) with the given query. Third,
we deliver the best reformulated query using machine learning.

Evaluation Methodology: This dissertation addresses code
search problem in two different working contexts– (1) local
code search (e.g., bug localization, concept location), and
(2) Internet-scale code search. In the case of concept/bug
localization (Study-1, Study-2, Study-3, Study-6), we use
5000+ bug reports from eight systems for experiments. We
construct ground truth for each bug report (query) by analysing
corresponding bug fixing commits from version control history
at GitHub. In the case of Internet-scale code search, we
evaluate our studies (Study-4, Study-5) using 300+ queries
collected from four programming tutorial sites (e.g., KodeJava,
JavaDB, Java2s, CodeJava). We use the standard performance
metrics such as Hit@K, MAP, MRR, Recall, and QE.

IV. TIMELINE & FUTURE WORK

The author of this paper is a fifth year PhD student who
has passed the qualifying exam in May, 2018, and now is
preparing for the comprehensive exam. Five out of six studies
have already been accepted and published in top venues of
Software Engineering (e.g., ICSE, ESEC/FSE, ASE, EMSE,
and ICSME), and the sixth study is ready for ESEC/FSE 2019
submission. Currently, the journal version of Study-1 is under
TSE review. The author hopes to graduate by August, 2019.
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