
Improving IR-Based Bug Localization with Context-Aware
Query Reformulation

Mohammad Masudur Rahman

University of Saskatchewan

Saskatoon, Canada

masud.rahman@usask.ca

Chanchal K. Roy

University of Saskatchewan

Saskatoon, Canada

chanchal.roy@usask.ca

ABSTRACT
Recent findings suggest that Information Retrieval (IR)-based bug

localization techniques do not perform well if the bug report lacks

rich structured information (e.g., relevant program entity names).

Conversely, excessive structured information (e.g., stack traces) in

the bug report might not always help the automated localization ei-

ther. In this paper, we propose a novel technique–BLIZZARD– that

automatically localizes buggy entities from project source using

appropriate query reformulation and effective information retrieval.

In particular, our technique determines whether there are excessive

program entities or not in a bug report (query), and then applies

appropriate reformulations to the query for bug localization. Experi-

ments using 5,139 bug reports show that our technique can localize

the buggy source documents with 7%–56% higher Hit@10, 6%–

62% higher MAP@10 and 6%–62% higher MRR@10 than the base-

line technique. Comparison with the state-of-the-art techniques

and their variants report that our technique can improve 19% in

MAP@10 and 20% in MRR@10 over the state-of-the-art, and can

improve 59% of the noisy queries and 39% of the poor queries.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software testing and debugging;

KEYWORDS
Debugging automation, bug localization, bug report quality, query

reformulation, information retrieval, graph-based term weighting

ACM Reference Format:
Mohammad Masudur Rahman and Chanchal K. Roy. 2018. Improving IR-

Based Bug Localization with Context-Aware Query Reformulation. In Pro-
ceedings of the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),
November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3236024.3236065

1 INTRODUCTION
Despite numerous attempts for automation [5, 15, 19, 35, 68], soft-

ware debugging is still largely a manual process which costs a signif-

icant amount of development time and efforts [4, 37, 61]. One of the

Permission to make digital or hard copies of all or part of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00

https://doi.org/10.1145/3236024.3236065

three steps of debugging is the identification of the location of a bug

in the source code, i.e., bug localization [37, 56]. Recent bug local-

ization techniques can be classified into two broad families–spectra
based and information retrieval (IR) based [29]. While spectra-based

techniques rely on execution traces of a software system, IR-based

techniques analyse shared vocabulary between a bug report (i.e.,

query) and the project source for bug localization [34, 66]. Perfor-

mances of IR-based techniques are reported to be as good as that

of spectra-based techniques, and such performances are achieved

using a low cost text analysis [44, 56]. Unfortunately, recent quali-

tative and empirical studies [43, 56] have reported two major limi-

tations. First, IR-based techniques cannot perform well without the

presence of rich structured information (e.g., program entity names

pointing to defects) in the bug reports. Second, they also might not

perform well with a bug report that contains excessive structured

information (e.g., stack traces, Table 1) [56]. One possible explana-

tion of these limitations could be that most of the contemporary

IR-based techniques [29, 36, 44, 50, 51, 57, 66] use almost verbatim

texts from a bug report as a query for bug localization. That is, they

do not perform any meaningful modification to the query except a

limited natural language pre-processing (e.g., stop word removal,

token splitting, stemming). As a result, their query could be either

noisy due to excessive structured information (e.g., stack traces) or

poor due to the lack of relevant structured information (e.g., Table 2).

One way to overcome the above challenges is to (a) refine the noisy

query (e.g., Table 1) using appropriate filters and (b) complement

the poor query (e.g., Table 2) with relevant search terms. Existing

studies [28, 57, 58, 63] that attempt to complement basic IR-based lo-

calization with costly data mining or machine learning alternatives

can also equally benefit from such query reformulations.

In this paper, we propose a novel technique –BLIZZARD– that

locates software bugs from source code by employing context-aware
query reformulation and information retrieval. Our technique (1)

first determines the quality (i.e., prevalence of structured entities

or lack thereof) of a bug report (i.e., query) and classifies it as

either noisy, rich or poor, (2) then applies appropriate reformulation

to the query, and (3) finally uses the improved query for the bug

localization with information retrieval. Unlike earlier approaches

[49, 50, 57, 66], it either refines a noisy query or complements a

poor query for effective information retrieval. Thus, BLIZZARD

has a high potential for improving IR-based bug localization.

To illustrate the capability of our technique in improving bug

localization, we provide two examples in which it outperforms

the baseline. The baseline technique that uses all terms except

punctuation marks, stop words and digits from a bug report, returns

its first correct result for the noisy query containing stack traces in

Table 1 at the 53
rd

position. On the contrary, our technique refines

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mohammad Masudur Rahman and Chanchal K. Roy

Table 1: A Noisy Bug Report (#31637, eclipse.jdt.debug)
Field Content
Title should be able to cast “null"
Description When trying to debug an application the variables

tab is empty. Also when I try to inspect or display a variable,

I get following error logged in the eclipse log file:

java.lang.NullPointerException

at org.eclipse.jdt.internal.debug.core.

model.JDIValue.toString(JDIValue.java:362)

at org.eclipse.jdt.internal.debug.eval.ast.

instructions.Cast.execute(Cast.java:88)
at org.eclipse.jdt.internal.debug.eval.ast.engine.

.. (10 more).......................................

the same noisy query, and returns the first correct result at the

first position of the ranked list which is a significant improvement

over the baseline. Similarly, when we use a poor query containing

no structured entities such as in Table 2, the baseline technique

returns the correct result at the 30
th

position. On the other hand,

our technique improves the same poor query, and returns the result

again at the first position. BugLocator [66], one of the well cited IR-

based techniques, returns such results at the 19
th

and 26
th

positions

respectively for the noisy and poor queries which are far from ideal.

We evaluate our technique in several different dimensions using

four widely used performance metrics and 5,139 bug reports (i.e.,

queries) from six Java-based subject systems. First, we evaluate

in terms of the performance metrics, contrast with the baseline,

and BLIZZARD localizes bugs with 7%–56% higher accuracy (i.e.,

Hit@10), 6%–62% higher precision (i.e., MAP@10) and and 6%–62%

higher result ranks (i.e., MRR@10) than the baseline (Section 4.3).

Second, we compare our technique with three bug localization tech-

niques [50, 58, 66], and our technique can improve 19% in MAP@10

and 20% in MRR@10 over the state-of-the-art [58] (Section 4.4).

Third, we also compare our approach with four state-of-the-art

query reformulations techniques, and BLIZZARD improves the

result ranks of 59% of the noisy queries and 39% of the poor queries

which are 22% and 28% higher respectively than that of the state-

of-the-art [42] (Section 4.4). By incorporating report quality aspect
and query reformulation into IR-based bug localization, we resolve

an important issue which was either not addressed properly or

otherwise overlooked by earlier studies, which makes our work

novel. Thus, the paper makes the following contributions:

• Anovel query reformulation technique that filters noise from

and adds complementary information to the bug report, and

suggests improved queries for bug localization.

• A novel bug localization technique that locates bugs from

the project source by employing quality paradigm of bug

reports, query reformulation, and information retrieval.

• Comprehensive evaluation of the technique using 5,139 bug

reports from six open source systems and validation against

seven techniques including the state-of-the-art.

• A working prototype with detailed experimental data for

replication and third party reuses.

2 GRAPH-BASED TERMWEIGHTING
Term weighting is a process of determining relative importance

of a term within a body of texts (e.g., document). Jones [25] first

introduced TF-IDF (i.e., term frequency × inverse document fre-

quency) as a proxy to term importance which had been widely used

Table 2: A Poor Bug Report (#187316, eclipse.jdt.ui)
Field Content
Title [preferences] Mark Occurences Pref Page

Description There should be a link to the pref page on which you can change

the color. Namely: General/Editors/Text Editors/Annotations.

It’s a pain in the a** to find the pref if you do not know Eclipse’s

preference structure well.

by information retrieval community for the last couple of decades.

Unfortunately, TF-IDF does not consider semantic dependencies

among the terms in their importance estimation. Mihalcea and Ta-

rau [31] later proposed TextRank as a proxy of term importance

which was adapted from Google’s PageRank [11] and was reported

to perform better than TF-IDF. In TextRank, a textual document is

encoded into a text graph where unique words from the document

are denoted as nodes, and meaningful relations among the words

are denoted as connecting edges [31]. Such relationships could be

statistical (e.g., co-occurrence), syntactic (e.g., grammatical modi-

fication) or semantic (i.e., conceptual relevance) in nature [10]. In

this research, we identify important terms using graph-based term

weighting from a bug report that might contain structured elements

(e.g., stack traces) and unstructured regular texts.

3 BLIZZARD: PROPOSED TECHNIQUE
Fig. 1 shows the schematic diagram of our proposed technique–

BLIZZARD. Furthermore, Algorithm 1 shows the pseudo-code for

BLIZZARD.Wemake use of bug report quality, query reformulation,

and information retrieval for localizing bugs in source code from

bug reports of any quality as shown in the following sections:

3.1 Bug Report Classification
Since our primary objective with this work is to overcome the

challenges posed by the different kinds of information bug reports

may contain, we categorize the reports prior to bug localization. In

addition to having natural language texts, a bug report typically

may contain different structured elements: (1) stack traces (reported

active stack frames during the occurrence of a bug, e.g., Table 1),

and (2) program elements such as method invocations, package

names, and source file names. Having consulted with the relevant

literature [8, 9, 56], we classify the bug reports into three board

categories (Steps 1, 2a, 2b and 2c, Fig. 1) as follows:

BRST: ST stands for stack traces. If a bug report contains one or

more stack traces besides the regular texts or program elements, it

is classified into BRST . Since trace entries contain too much struc-

tured information, query generated from such a report is generally

considered noisy. We apply the following regular expression [34]

to locate the trace entries from the report content.

(.*)?(.+)\.(.+)(\((.+)\.java:\d+\)|\(Unknown␣Source\)
|\(Native␣Method\))

BRPE: PE stands for program elements. If a bug report contains

one or more program elements (e.g., method invocations, package

names, source file name) but no stack traces in the texts, then it

is classified into BRPE . Queries generated from such report are

considered rich. We use appropriate regular expressions [46] to

identify the program elements from the texts.

BRNL: NL stands for natural language. If a bug report contains

neither any program elements nor any stack traces, it is classified

Improving Bug Localization with Context-AwareQuery Reformulation ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Bug report

(Initial query)

Bug report

classification

BRST

BRPE

BRNL

Exception & traces Trace graph

Text preprocessing Text graph

Pseudo-relevance

feedback

Source token

graph

Graph-based

term weighting

Term ranking Reformulated

query

Bug

localization

Buggy entities

A B C

1

2a

2b

2c

3a

3b

3c

4a

4b

4c

5 6 7
8

Figure 1: Schematic diagram of the proposed technique: (A) Bug report classification, (B) Query reformulation, and (C) Bug localization

into BRNL . That is, it contains only unstructured natural language

description of the bug. Queries generated from such reports are

generally considered poor in this work.

We adopt a semi-automated approach in classifying the bug re-

ports (i.e., the queries). Once a bug report is provided, we employ

each of our regular expressions to determine its class. If the auto-

mated step fails due to ill-defined structures of the report, the class

is determined based on manual analysis. Given the explicit nature

of the structured entities, human developers can identify the class

easily. The contents of each bug report are considered as the initial
queries which are reformulated in the next few steps.

3.2 Query Reformulation
Once bug reports (i.e., queries) are classified into three classes

above based on their structured elements or lack thereof, we apply

appropriate reformulations to them. In particular, we analyse either

bug report contents or the results retrieved by them, employ graph-

based term weighting, and then identify important keywords from

them for query reformulation as follows:

Trace GraphDevelopment fromBRST:According to existing
findings [43, 56], bug reports containing stack traces are potentially

noisy, and performances of the bug localization using such reports

(i.e., the queries) are below the average. Hence, important search
keywords should be extracted from the noisy queries for effective

bug localization. In this work, we transform the stack traces into a

trace graph (e.g., Fig. 2) (Steps 3a, 4a, Fig. 1, Lines 8–10, Algorithm

1), and identify the important keywords using a graph-based term

weighting algorithm namely PageRank [10, 31].

To the best of our knowledge, to date, graph-based term weight-

ing has been employed only on unstructured regular texts [42] and

semi-structured source code [41]. On the contrary, we deal with

stack traces which are structured and should be analysed carefully.

Stack traces generally comprise of an error message containing the

encountered exception(s), and an ordered list of method invoca-

tion entries. Each invocation entry can be considered as a tuple

t{P ,C,M} that contains a package name P , a class name C , and
a method name M . While these entities are statically connected

within a tuple, they are often hierarchically connected (e.g., caller-

callee relationships) to other tuples from the traces as well. Hill

et al. [22] consider method signatures and field signatures as salient

entities from the source code, and suggest keywords from them for

code search. Similarly, we consider class name and method name

from each of the N tuples as the salient items, and represent them

Cast access

InterpreterJDIValue

toString run

runEvaluation

doEvaluation

EvaluationThread

execute

JDIThread

Thread

EvaluationThread

toString

JDIValue

run

execute

Figure 2: Trace graph of stack traces in Table 1
as the nodes and their dependencies as the connecting edges in

the graph. In stack traces, the topmost entry (i.e., i = 1) has the

highest degree of interest [16] which gradually decreases for the

entries at the lower positions in the list. That is, if ti {Pi ,Ci ,Mi } is

a tuple under analysis, and tj {Pj ,Cj ,Mj } is a neighbouring tuple

with greater degree of interest, then the nodes Vi and edges Ei are
added to the trace graph GST as follows:

Vi = {Ci , Mi }, Ei = {Ci ↔ Mi } ∪ {Ci → Cj , Mi → Mj } | j = i − 1

V =
N⋃
i=1
{Vi }, E =

N⋃
i=1
{Ei }, GST = (V , E)

For the example stack traces in Table 1, the following connecting

edges: JDIValue↔toString, Cast↔execute, Cast→JDIValue,
execute→toString, Interpreter↔execute, and Interpreter
→Cast are added to the example trace graph in Fig. 2.

Text Graph Development from BRPE: Bug reports contain-

ing relevant program entities (e.g., method names) are found effec-

tive as queries for IR-based bug localization [43, 50, 56]. However,

we believe that appropriate keyword selection from such reports

can further boost up the localization performance. Existing studies

employ TextRank and POSRank on natural language texts, and

identify search keywords for concept location [42] and information

retrieval [10, 31]. Although bug reports (i.e., from BRPE) might

contain certain structures such as program entity names (e.g., class

name, method name) and code snippets besides natural language

texts, the existing techniques could still be applied to them given

that these structures are treated appropriately. We thus remove stop

words [1] and programming keywords [2] from a bug report, split
the structured tokens using Samurai (i.e., a state-of-the-art token
splitting tool [17]), and then transform the preprocessed report

(Rpp) into a set of sentences (S ∈ Rpp). We adopt Rahman and Roy

[42] that exploits co-occurrences and syntactic dependencies among

the terms for identifying important terms from a textual body (e.g.,

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mohammad Masudur Rahman and Chanchal K. Roy

change request). We thus develop two text graphs (Steps 3b, 4b, Fig.

1, Lines 10–11, Algorithm 1) using co-occurrences and syntactic

dependencies among the words from each report as follows:

(1) Text Graph using Word Co-occurrences: In natural language

texts, the semantics (i.e., senses) of a given word are often deter-

mined by its contexts (i.e., surrounding words) [30, 32, 63]. That is,

co-occurring words complement the semantics of each other. We

thus consider a sliding window of size K (e.g., K = 2) [31], cap-

ture co-occurring words, and then encode the word co-occurrences

within each window into connecting edges E of a text graph [42].

The individual words (∀wi ∈ V) are denoted as nodes in the graph.

Thus, for a target wordwi , the following node Vi and two edges Ei
will be added to the text graph GPE as follows:

Vi = {wi }, Ei = {wi ↔ wi−1,wi ↔ wi+1} | S = [w1..wi ..wN]

V =
⋃

∀S ∈Rpp

⋃
wi ∈S
{Vi }, E =

⋃
∀S ∈Rpp

⋃
wi ∈S
{Ei }, GPE = (V ,E)

Thus, the example phrase–“source code directory"–yields two edges,
“source"↔“code" and “code"↔“directory" while extending the text
graph with three distinct nodes– “source", “code" and “directory".

(2) Text Graph using POS Dependencies: According to Jespersen’s
Rank theory [10, 24, 42], parts of speech (POS) from a sentence

can be divided into three ranks– primary (i.e., noun), secondary
(i.e., verb, adjective) and tertiary (i.e., adverb)– where words from a

higher rank generally define (i.e., modify) the words from the same

or lower ranks. That is, a noun modifies only another noun whereas

a verb modifies another noun, verb or an adjective. We determine

POS tags using Stanford POS tagger [54], and encode such syntactic

dependencies among words into connecting edges and individual

words as nodes in a text graph. For example, the sentence anno-

tated using Penn Treebank tags [54]–“OpenV B theDT sourceNN
codeNN directoryNN ”–has the following syntactic dependencies:

“source"↔“code", “code"↔“directory", “source"↔“directory",
“open"←“source", “open"←“code" and “open"←“directory", and thus

adds six connecting edges to the text graph.

Source Term Graph Development for BRNL: Bug reports

containing only natural language texts and no structured entities

are found not effective for IR-based bug localization [43, 56]. We

believe that such bug reports possibly miss the right keywords

for bug localization. Hence, they need to be complemented with

appropriate keywords before using. A recent study [41] provides

improved reformulations to a poor natural language query for

concept location by first collecting pseudo-relevance feedback and

then employing graph-based term weighting. In pseudo-relevance

feedback, Top-K result documents, returned by a given query, are

naively considered as relevant and hence, are selected for query

reformulation [12, 20]. Since bug reports from BRNL class contain

only natural language texts, the above study might directly be

applicable to them. We thus adopt their approach for our query

reformulation, collect Top-K (e.g., K = 10) source code documents

retrieved by a BRNL-based query, and develop a source term graph

(Steps 3c, 4c, Fig. 1, Lines 13–15, Algorithm 1).

Hill et al. [22] consider method signatures and fields signatures

from source code as the salient items, and suggest keywords for code

search from them. In the same vein, we also collect these signatures

from each of the K feedback documents for query reformulation.

In particular, we extract structured tokens from each signature,

Algorithm 1 Bug Localization with Query Reformulation and IR

1: procedure BLIZZARD(R) ◃ R: a given bug report

2: Q ′ ← {} ◃ reformulated query terms

3: ◃ Classifying and preprocessing the bug report R
4: CR ← getBugReportClass(R)
5: Rpp ← preprocess (R)
6: ◃ Representing the bug report as a graph

7: switch CR do
8: case BRST
9: ST ← getStackTraces (R)
10: GST ← getTraceGraph (ST)
11: case BRPE
12: GPE ← getTextGraphs (Rpp)

13: case BRNL
14: RF ← getPseudoRelevanceFeedback (Rpp)
15: GNL ← getSourceTermGraph (RF)
16: ◃ Getting term weights and search keywords

17: if ClassKey CK ∈ {ST , PE, NL} then
18: PRCK ← getPageRank (GCK)

19: Q [CR] ← getTopKTerm(sortByWeight(PRCK))

20: end if
21: ◃ Constructing the reformulated query Q ′

22: switch CR do
23: case BRST
24: NE ← getExceptionName(R)
25: ME ← getErrorMessage(R)
26: Q ′ ← {NE ∪ME ∪Q [CR]}
27: case BRPE
28: Q ′ ← Q [CR]
29: case BRNL
30: Q ′ ← {Rpp ∪Q [CR]}

31: ◃ Bug localization with Q ′ from codebase corpus
32: return Lucene(corpus , Q ′)
33: end procedure

split them using Samurai, and then generate a natural language

phrase from each token [22]. For example, the method signature–

getContextClassLoader()–can be represented as a verbal phrase–
“get Context Class Loader". We then analyse such phrases across all

the feedback documents, capture co-occurrences of terms within a

fixed window (i.e., K = 2) from each phrase, and develop a source

term graph. Thus, the above phrase adds four distinct nodes and

three connecting edges – “get"↔“context", “context"↔“class" and
“class"↔“loader" – to the source term graph.

Term Weighting using PageRank: Once each body of texts

(e.g., stack traces, regular texts, source document) is transformed

into a graph, we apply PageRank [11, 31, 41, 42] to the graph for

identifying important keywords. PageRank was originally designed

for web link analysis, and it determines the reputation of a web

page based on the votes or recommendations (i.e., hyperlinks) from

other reputed pages on the web [11]. Similarly, in the context of

our developed graphs, the algorithm determines importance of a

node (i.e., term) based on incoming links from other important

nodes of the graph. In particular, it analyses the connectivity (i.e.,

connected neighbours and their weights) of each term Vi in the

graph recursively, and then calculates the node’s weight TW (Vi):

TW (Vi) = (1 − ϕ) + ϕ
∑

jϵ In(Vi)

TW (Vj)

|Out(Vj)|
(0 ≤ ϕ ≤ 1)

Improving Bug Localization with Context-AwareQuery Reformulation ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Here, In(Vi) refers to nodes providing incoming links toVi ,Out(Vj)
refers to nodes that Vj is connected to through outgoing links,

and ϕ is the damping factor. Brin and Page [11] consider ϕ as the

probability of staying on the web page and 1 − ϕ as the probability

of jumping off the page by a random surfer. They use ϕ = 0.85

which was adopted by later studies [10, 31, 42], and we also do the

same. We initialize each node in the graph with a value of 0.25 [31],

and recursively calculate their weights unless they converge below

a certain threshold (i.e., 0.0001) or the iteration count reaches the

maximum (i.e., 100) [31]. Once the calculation is over, we end up

with an accumulated weight for each node (Step 5, Fig. 1, Lines

16–20, Algorithm 1). Such weight of a node is considered as an

estimation of relative importance of corresponding term among all

the terms (i.e., nodes) from the bug report (i.e., graph).

Reformulation of the Initial Query: Once term weights are

calculated, we rank the terms based on their weights, and select the

Top-K (8≤ K ≤30, Fig. 4) terms for query reformulations. Since bug

reports (i.e., initial queries) from three classes have different degrees

of structured information (or lack thereof), we carefully apply our

reformulations to them (Steps 6, 7, Fig. 1, Lines 21–30, Algorithm

1). In case of BRST (i.e., noisy query), we replace trace entries with

the reformulation terms, extract the error message(s) containing

exception name(s), and combine them as the reformulated query.

For BRNL (i.e., poor query), we combine preprocessed report texts

with the highly weighted source code terms as the reformulated

query. In the case of BRPE , only Top-K weighted terms from the

bug report are used as a reformulated query for bug localization.

3.3 Bug Localization
Code Search:Once a reformulated query is constructed, we submit

the query to Lucene [20, 33]. Lucene is a widely adopted search

engine for document search that combines Boolean search and

VSM-based search methodologies (e.g., TF-IDF [25]). In particular,

we employ the Okapi BM25 similarity from the engine, use the

reformulated query for the code search, and then collect the results

(Step 8, Fig. 1, Lines 31–32, Algorithm 1). These resultant and poten-

tially buggy source code documents are then presented as a ranked

list to the developer for manual analysis.

Working Examples: Table 3 shows our reformulated queries

for the showcase bug reports in Table 1 (i.e., BRST), Table 2 (i.e.,

BRNL), and another example report from BRPE class. Baseline

queries from these reports return their first correct results at the

53
rd

(for BRST), 27
th

(for BRPE) and 30
th

(for BRNL) positions of

their corresponding ranked lists. On the contrary, BLIZZARD re-

fines the noisy query from BRST report, selects important keywords

from BRPE report, and enriches the poor query from BRNL report

by adding complementary terms from relevant source code. As a re-

sult, all three reformulated queries return their first correct results

(i.e., buggy source files) at the topmost (i.e., first) positions, which

demonstrate the potential of our technique for bug localization.

4 EXPERIMENT
We evaluate our proposed technique in several different dimensions

using four widely used performance metrics and more than 5K bug

reports (the queries) from six different subject systems. First, we

evaluate in terms of the performance metrics and contrast with the

Table 3: Working Examples
Technique Group Query Terms QE
Baseline

BRST
127 terms from Table 1 after preprocessing,

Bug ID# 31637, eclipse.jdt.debug
53

BLIZZARD NullPointerException + “Bug should be
able to cast null" + {JDIValue toString
execute EvaluationThread run}

01

Baseline

BRPE
195 terms (after preprocessing) from Bug
ID# 15036, eclipse.jdt.core

27

BLIZZARD {astvisitor post postvisit previsit pre file post

pre astnode visitor}

01

Baseline

BRNL
32 terms from Table 2 after preprocessing,

Bug ID# 475855, eclipse.jdt.ui
30

BLIZZARD Preprocessed report texts + {compliance
create preference add configuration
field dialog annotation}

01

QE = Query Effectiveness, rank of the first returned correct result

baseline for different classes of bug reports/queries (Section 4.3).

Second, we compare our approach with three state-of-the-art bug

localization techniques (Section 4.4). Third, and possibly the most

importantly, we also compare our approach with four state-of-the-

art query reformulations techniques (Section 4.4). In particular, we

answer four research questions using our experiments as follows:

• RQ1: (a) How does BLIZZARD perform in bug localization,

and (b) how do various parameters affect its performance?

• RQ2: Do our reformulated queries perform better than the

baseline search queries from the bug reports?

• RQ3: Can BLIZZARD outperform the existing bug localiza-

tion techniques including the state-of-the-art?

• RQ4: Can BLIZZARD outperform the existing query refor-

mulation techniques targeting concept/feature location and

bug localization?

4.1 Experimental Dataset
Dataset Collection: We collect a total of 5,139 bug reports from

six open source subject systems for our experiments. The dataset

was taken from an earlier empirical study [43]. Table 4 shows our

dataset. First, all the resolved (i.e., marked as RESOLVED) bug

reports of each subject system were collected from the BugZilla and

JIRA repositories given that they were submitted within a specific

time interval (Table 4). Then the version control history of each

system at GitHub was consulted to identify the bug-fixing commits

[6]. Such approach was regularly adopted by the relevant literature

[7, 34, 66], and we also follow the same. In order to ensure a fair

evaluation, we also discard such bug reports from our dataset for

which no source code files (e.g., Java classes) were changed or no

relevant source files exist in the collected system snapshot.

GoldsetDevelopment:We collect changeset (i.e., list of changed
files) from each of our selected bug-fixing commits, and develop a

goldset. Multiple changesets for the same bug were merged together.

Replication Package: Our working prototype and experimen-

tal data are publicly available [3] for replication and reuse.

4.2 Performance Metrics
We use four performance metrics for the evaluation and compari-

son of our technique. Since these metrics were frequently used by

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mohammad Masudur Rahman and Chanchal K. Roy

Table 4: Experimental Dataset
System Time Period BRST BRPE BRNL BRAll System Time Period BRST BRPE BRNL BRAll Total
ecf Oct, 2001–Jan, 2017 71 319 163 553 eclipse.jdt.ui Oct, 2001–Jun, 2016 130 578 407 1,115 BRST = 826 (16.06%)

eclipse.jdt.core Oct, 2001–Sep, 2016 159 698 132 989 eclipse.pde.ui Oct, 2001–Jun, 2016 123 239 510 872 BRPE = 2,767 (53.81%)

eclipse.jdt.debug Oct, 2001–Jan, 2017 126 202 229 557 tomcat70 Sep, 2001–Aug, 2016 217 731 105 1,053 BRNL= 1,546 (30.08%)

Total: 5,139

BRST =Bug reports with stack traces, BRPE=Bug reports with program entities but no stack traces, BRNL=Bug reports with only natural language texts

the relevant literature [34, 42, 50, 57, 63, 66], they are also highly

appropriate for our experiments in this work.

Hit@K: It is defined as the percentage of queries for which at

least one buggy file (i.e., from the goldset) is correctly returned

within the Top-K results. It is also called Recall@Top-K [50] and

Top-K Accuracy [42] in the literature.

Mean Average Precision@K (MAP@K): Unlike regular pre-
cision, this metric considers the ranks of correct results within a

ranked list. Precision@K calculates precision at the occurrence of

each buggy file in the list. Average Precision@K (AP@K) is defined

as the average of Precision@K for all the buggy files in a ranked list

for a given query. Thus, Mean Average Precision@K is defined as

the mean of Average Precision@K (AP@K) of all queries as follows:

AP@K =

∑D
k=1 Pk × buддy(k)

|S |
, MAP@K =

∑
qϵQ AP@K(q)

|Q |

Here, function buддy(k) determines whether kth file (or result) is

buggy (i.e., returns 1) or not (i.e., returns 0), and Pk provides the

precision at kth result. D refers to the number of total results, S is

the true positive result set of a query, and Q is the set of all queries.

The bigger the MAP@K value is, the better a technique is.

Mean Reciprocal Rank@K (MRR@K): Reciprocal Rank@K

is defined as the multiplicative inverse of the rank of first correctly

returned buggy file (i.e., from gold set) within the Top-K results.

Thus, Mean Reciprocal Rank@K (MRR@K) averages such measures

for all queries in the dataset as follows:

MRR@K(Q) =
1

|Q |

∑
q∈Q

1

f irstRank(q)

Here, f irstRank(q) provides the rank of first buggy file within a

ranked list. MRR@K can take a maximum value of 1 and a mini-

mum value of 0. The bigger the MRR@K value is, the better a bug

localization technique is.

Effectiveness (E): It approximates a developer’s effort in locat-

ing the first buggy file in the result list [34]. That is, the measure

returns the rank of first buggy file in the result list. The lower the

effectiveness value is, the better a given query is, i.e., the developer

needs to check less amount of results from the top before reaching

the actual buggy file in the list.

4.3 Experimental Results
We first show the performance of our technique in terms of ap-

propriate metrics (RQ1-(a)), then discuss the impacts of different

adopted parameters upon the performance (RQ1-(b)), and finally

show our comparison with the baseline queries (RQ2) as follows:

Selection of Baseline Queries, and Establishment of Base-
line Technique and Baseline Performance: Existing studies

suggest that text retrieval performances could be affected by query

quality [20], underlying retrieval engine [33] or even text prepro-

cessing steps [23, 26]. Hence, we choose the baseline queries and

baseline technique pragmatically for our experiments. We conduct

Table 5: Performance of BLIZZARD in Bug Localization
Dataset Technique Hit@1 Hit@5 Hit@10 MAP@10 MRR@10

BRST
Baseline 21.67% 40.03% 48.25% 28.09% 0.29

BLIZZARD *34.42% *66.28% *75.21% *45.50% *0.47

BRPE
Baseline 39.85% 64.29% 72.09% 47.28% 0.50

BLIZZARD 44.31% *69.48% *77.84% *52.08% *0.55

BRNL
Baseline 28.24% 50.96% 61.23% 35.48% 0.38

BLIZZARD 29.16% 53.78% 65.21% *37.62% 0.40

All

Baseline 34.32% 57.83% 66.47% 41.66% 0.44

BLIZZARD *38.58% *65.08% *74.52% *47.13% *0.50

*=Significantly higher than baseline, Emboldened= Comparatively higher

a detailed study where three independent variables– bug report

field (e.g., title, whole texts), retrieval engine (e.g., Lucene [20], Indri

[50]) and text preprocessing step (i.e., stemming, no stemming)–are

alternated, and then we choose the best performing configuration

as the baseline approach. In particular, we chose the preprocessed

version (i.e., performed stop word and punctuation removal, split

complex tokens but avoided stemming) of the whole texts (i.e., title
+ description) from a bug report as a baseline query. Lucene was

selected as the baseline technique since it outperformed Indri on

our dataset. The performance of Lucene with the baseline queries

was selected as the baseline performance (i.e., Table 5) for IR-based

bug localization in this study. In short, our baseline is: (preprocessed

whole texts + splitting of complex tokens + Lucene search engine).

Answering RQ1(a) – Performance of BLIZZARD:As shown
in Table 5, on average, our technique–BLIZZARD–localizes 74.52%

of the bugs from a dataset of 5,139 bug reports with 47% mean av-

erage precision@10 and a mean reciprocal rank@10 of 0.50 which

are 12%, 13% and 14% higher respectively than the baseline perfor-

mance measures. That is, on average, our technique can return the

first buggy file at the second position of the ranked list, almost half

of returned files are buggy (i.e., true positive) and it succeeds three

out of four times in localizing the bugs. Furthermore, while the

baseline technique is badly affected by the noisy (i.e., BRST) and

poor queries (i.e., BRNL), our technique overcomes such challenges

with appropriate query reformulations, and provides significantly

higher performances. For example, the baseline technique can local-

ize 48% of the bugs from BRST dataset (i.e., noisy queries) with only

28% precision when Top-10 results are considered. On the contrary,

our technique localizes 75% of the bugs with 46% precision in the

same context which are 56% and 62% higher respectively than the

corresponding baseline measures. Such improvements are about 7%

for BRNL , i.e., poor queries. In the cases where bug reports contain

program entities, i.e., BRPE , and the baseline performance measures

are already pretty high, our technique further refines the query

and provides even higher performances. For example, BLIZZARD

improves both baseline MRR@10 and baseline MAP@10 for BRPE
dataset by 10% which is promising.

Fig. 3 further demonstrates the comparative analyses between

BLIZZARD and the baseline technique for various Top-K results in

terms of (a) precision and (b) reciprocal rank in the bug localization.

Improving Bug Localization with Context-AwareQuery Reformulation ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Figure 3: Comparison of BLIZZARD with baseline technique in
terms of (a) MAP@K and (b) MRR@K

Figure 4: Impact of query reformulation length on the MAP@10 of
our technique–BLIZZARD

Table 6: Query Improvement by BLIZZARD over Baseline Queries
Dataset Query Pair Improved/MRD Worsened/MRD Preserved

BRST
BLIZZARD vs. BLT 484 (58.60%)/-82 206 (24.94%)/+34 136 (16.46%)

BLIZZARD vs. BL 485 (58.72%)/-122 174 (21.07%)/+72 167 (20.22%)

BRPE
BLIZZARD vs. BLT 1,397 (50.49%)/-60 600 (21.68%)/+38 770 (27.83%)

BLIZZARD vs. BL 865 (31.26%)/-34 616 (22.26%)/+24 1,286 (46.48%)

BRNL
BLIZZARD vs. BLT 869 (56.21%)/-27 355 (22.96%)/+29 322 (20.83%)

BLIZZARD vs. BL 597 (38.62%)/-16 455 (29.43%)/+31 494 (31.95%)

All

BLIZZARD vs. BLT 2,750 (53.51%) /-55 1,161 (22.59%)/+32 1,228 (23.90%)

BLIZZARD vs. BL 1,947 (37.89%)/-50 1,245 (24.22%)/+30 1,947 (37.89)%

Preserved=Query quality unchanged, MRD = Mean Rank Difference between BLIZZARD and

baseline queries, BLT = title, BL = title + description

Figure 5: Quality improvement of (a) noisy and (b) poor baseline
queries by our technique–BLIZZARD
From Fig. 3-(a), we see that precision reaches to themaximum pretty

quickly (i.e., at K ≈ 4) for both techniques. While the baseline tech-

nique suffers from noisy (i.e., from BRST) and poor (i.e., from BRNL)

queries, BLIZZARD achieves significantly higher precision than

the baseline. Our non-parametric statistical tests–Mann-Whitney
Wilcoxon and Cliff’s Delta–reported p-values< 0.05 with a large
effect size (i.e., 0.77 ≤ ∆ ≤ 1.00). Although the baseline precision

for BRPE is higher, BLIZZARD offers even higher precision. From

Fig. 3-(b), we see that mean reciprocal ranks of BLIZZARD have

a logarithmic shape and whereas the baseline counterparts look

comparatively flat. That is, as more results from the top of the

ranked list are considered, more true positives are identified by our

technique than the baseline technique does. Statistical tests also

reported strong significance (i.e., p-values<0.001) and a large effect
size (i.e., 0.62≤∆≤1.00) of our measures over the baseline counter-

parts. That is, BLIZZARD performs a good job in reformulating the

noisy and poor queries, and such reformulations contribute to a

significant improvement in the bug localization performances.

AnsweringRQ1(b) –Impact of Parameters and Settings:We

investigate the impacts of different adopted parameters -query re-
formulation length, word stemming, and retrieval engine - upon our

technique, and justify our choices. BLIZZARD reformulates a given

query (i.e., bug report) for bug localization, and hence, size of the

reformulated query is an important parameter. Fig. 4 demonstrates

how various reformulation lengths can affect the MAP@10 of our

technique. We see that precision reaches the maximum for three

report classes at different query reformulation lengths (i.e., RL). For

BRST , we achieve the maximum precision at RL=11, and for BRNL ,

such maximum is detected with RL ranging between 8 and 12. On

the contrary, precision increases in a logarithmic manner for BRPE
bug reports. We investigated up to 30 reformulation terms and

found the maximum precision. Given the above empirical findings,

we chose RL=11 for BRST , RL=30 for BRPE and RL=8 for RNL as

the adopted reformulation lengths and our choices are justified.

We also investigate the impact of stemming and text retrieval

engine on our technique. We found that stemming did not improve

the performance of BLIZZARD, i.e., reduced localization accuracy.

Similar finding was reported by earlier studies as well [23, 26]. We

also found that Lucene performs better than Indri on our dataset.

Besides, Lucene has been widely used by relevant literature [20,

33, 34, 42]. Given the above findings and earlier suggestions, our

choices on stemming and retrieval engine are also justified.

BLIZZARD outperforms baseline in accuracy, precision and recip-

rocal rank by 7%–56%, 6%–62% and 6%–62% respectively across

three report groups, and our adopted parameters are also justified.

AnsweringRQ2-ComparisonwithBaselineQueries:While

Table 5 contrasts BLIZZARD with the baseline approach for top

1 to 10 results, we further investigate how BLIZZARD performs

compared to the baseline when all results of a query are considered.

We compare our queries with two baseline queries –title (i.e., BLT),
title+description (i.e., BL) – from each of the bug reports. When

our query returns the first correct result at a higher position in the

result list than that of corresponding baseline query, we call it query
improvement and vice versa query worsening. When result ranks of

the reformulated query and the baseline query are the same, then

we call it query preserving. From Table 6, we see that our applied

reformulations improve 59% of the noisy queries (i.e., BRST) and

39%–56% of the poor (i.e., BRNL) queries bothwith≈ 25%worsening

ratios. That is, the improvements are more than two times the

worsening ratios. Fig. 5 further demonstrates the potential of our

reformulations where improvement, worsening and preserving

ratios are plotted for each of the six subject systems. We see that

noisy queries get benefited greatly from our reformulations, and on

average, their query effectiveness improve up to 122 positions (i.e.,

MRD of BRST , Table 6) in the result list. Such improvement of ranks

can definitely help the developers in locating the buggy files in the

result list more easily. The poor queries also improve due to our

reformulations significantly (i.e., p-value=0.004<0.05, Cliff’s ∆=0.94
(large)), and the correct results can be found 16 positions earlier

(than the baseline) in the result list starting from the top. Quantile

analysis in Table 9 also confirms that noisy and poor queries are

significantly improved by our provided reformulations. Besides,

the benefits of query reformulations are also demonstrated by our

findings in Table 5 and Fig. 3.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mohammad Masudur Rahman and Chanchal K. Roy

Table 7: Comparison with IR-Based Bug Localization Techniques
RG Technique Hit@1 Hit@5 Hit@10 MAP@10 MRR@10

BRST

BugLocator 28.79% 55.08% 67.00% 38.49% 0.40

BLUiR 23.38% 44.34% 54.06% 30.96% 0.32

AmaLgam+BRO 45.33% 66.97% 73.29% 52.88% 0.55

BLIZZARD 34.42% 66.28% 75.21% 45.50% 0.47

BLIZZARDBRO 47.42% 73.74% 78.77% 56.22% 0.59
AmaLgam+ 50.51% 66.47% 71.66% 55.97% 0.58

BLIZZARD+ 53.39% *76.12% *80.03% 60.65% 0.63

BRPE

BugLocator 36.25% 61.37% 70.96% 44.24% 0.47

BLUiR 35.54% 62.93% 72.17% 43.67% 0.47

AmaLgamBRO 33.90% 60.48% 69.09% 42.00% 0.45

BLIZZARD *44.31% *69.48% 77.84% *52.08% *0.55
BLIZZARDBRO 47.16% 71.26% 78.25% 53.69% 0.57
Amalgam+ 52.00% 68.54% 72.93% 55.80% 0.59

BLIZZARD+ 56.84% 74.70% 80.09% 60.78% 0.65

BRNL

BugLocator 25.11% 48.52% 59.04% 32.19% 0.35

BLUiR 29.87% 56.63% 66.10% 38.07% 0.41

AmaLgam+BRO 29.40% 56.07% 65.01% 37.74% 0.40

BLIZZARD 29.16% 53.78% 65.21% 37.62% 0.40
BLIZZARDBRO 35.45% 58.75% 69.17% 42.26% 0.46
AmaLgam+ 49.72% 65.42% 71.49% 52.74% 0.57

BLIZZARD+ 47.97% 66.24% 74.49% 52.12% 0.56

All

BugLocator 31.85% 57.37% 67.87% 40.17% 0.43

BLUiR 32.45% 59.18% 68.65% 40.82% 0.44

Amalgam+BRO 35.03% 61.32% 69.89% 43.36% 0.46

BLIZZARD 38.58% 65.08% 74.52% 47.13% *0.50
BLIZZARDBRO 44.26% 69.15% 76.61% 51.41% *0.55
AmaLgam+ 52.29% 68.53% 73.58% 56.03% 0.59

BLIZZARD+ 54.78% 73.76% 79.66% 59.32% 0.63

RG=Report Group, BRO=Bug Report Only, *=Significantly higher

Table 8: Components behind Existing IR-Based Bug Localization

Technique Bug Report Only External Resources MRR
BRT BRS ST QR BRH VCH AH

Baseline ● 0.44

BugLocator ● ● 0.43

BLUiR ● ● 0.44

AmaLgam+BRO ● ● ● 0.46

BLIZZARD ● ● *0.50
BLIZZARDBRO ● ● ● ● *0.55
AmaLgam+ ● ● ● ● ● ● 0.59

BLIZZARD+ ● ● ● ● ● ● ● 0.63

BRT=Bug Report Texts, BRS=Bug Report Structures, ST=Stack Traces,

QR=Query Reformulation, BRH=Bug Report History, VCH=Version Control

History, AH=Authoring History, BRO=Bug Report Only, ●=Feature used

Our applied reformulations to the bug localization queries im-

prove 59% of the noisy queries and 39%–56% of the poor queries,

and return the buggy files closer to the top of result list. Such

improvements can reduce a developer’s effort in locating bugs.

4.4 Comparison with Existing Techniques
Answering RQ3 –Comparison with Existing IR-Based Bug
Localization Techniques: Our evaluation of BLIZZARD with

four widely used performance metrics shows promising results.

The comparison with the best performing baseline shows that our

approach outperforms the baselines. However, in order to further

gain confidence and to place our work in the literature, we also

compared our approach with three IR-based bug localization tech-

niques [50, 58, 66] including the state-of-the-art [58]. Zhou et al.

[66] first employ improved Vector Space Model (i.e., rVSM) and bug

report similarity for locating buggy source files for a new bug re-

port. Saha et al. [50] employ structured information retrieval where

(1) a bug report is divided into two fields–title, description and a

source document is divided into four fields–class, method, vari-
able and comments, and then (2) eight similarity measures between

these two groups are accumulated to rank the source document.

We collect authors’ implementations of both techniques for our

experiments.

While the above studies use bug report contents only, the later ap-

proaches combine them [49] and add more internal [60] or external

information sources such as version control history [57] and au-

thor information [58]. In the same vein, Wang and Lo [58] recently

combine five internal and external information sources - similar

bug report, structured IR, stack traces, version control history and

bug reporter’s history – for ranking a source document, and out-

perform five earlier approaches which makes it the state-of-the-art

in IR-based bug localization. Given that authors’ implementation

is not publicly available, we implement this technique ourselves

by consulting with the original authors. Since BLIZZARD does

not incorporate any external information sources, to ensure a fair

comparison, we also implement a variant of the state-of-the-art

namely AmaLgam+BRO . It combines bug report texts, structured

IR and stack traces (i.e., Table 8) for source document ranking.

From Table 7, we see that AmaLgam+ performs the best among

the existing techniques. However, its performance comes at a high

cost of mining six information contents (i.e., Table 8). Besides, for op-

timal performance, AmaLgam+ needs past bug reports, version con-

trol history and author history which might always not be available.

Thus, to ensure a fair comparison, we develop two variants of our

technique–BLIZZARDBRO and BLIZZARD+. BLIZZARDBRO com-

bines query reformulation with bug report only features whereas

BLIZZARD+ combines query reformulation with all ranking com-

ponents of AmaLgam+ (i.e., details in Table 8). We then compare

both BLIZZARD and BLIZZARDBRO with AmaLgam+BRO , and

BLIZZARD+ with AmaLgam+ respectively.

As shown in Table 7, BLIZZARD outperforms AmaLgam+BRO in

terms of all three metrics especially for BRPE reports while perform-

ing moderately high with other report groups. For example, BLIZ-

ZARD provides 22% higherMRR@10 and 24% higherMAP@10 than

AmaLgam+BRO for BRPE . When all report only features are com-

plemented with appropriate query reformulations, our technique,

BLIZZARDBRO outperforms AmaLgam+BRO in terms of all three

metrics–Hit@K, MAP@10 and MRR@10– with each report groups.

Such findings suggest that BLIZZARDBRO can better exploit the

available resources (i.e., bug report contents) than the state-of-the-

art variant, and returns the buggy files at relatively higher posi-

tions in the ranked list. Furthermore, BLIZZARD+ outperforms the

state-of-the-art, AmaLgam+, by introducing query reformulation

paradigm. For example, BLIZZARD+ improves Hit@5 and Hit@10

over AmaLgam+ for each of the three query types, e.g., 15% and

12% respectively for noisy queries (BRST). It also should be noted

that none of the existing techniques is robust to all three report

groups simultaneously. We overcome such issue with appropriate

query reformulations, and deliver ≈75%–80% Hit@10 irrespective

of the bug report quality. From Table 8, we see that BLIZZARDBRO
provides 20% higher MRR@10 than AmaLgam+BRO by consuming

equal amount of resources, i.e., bug report only. All these findings

above suggest two important points. First, earlier studies might

have failed to exploit the report contents and structures properly for

bug localization. Second, query reformulation has a high potential

for improving the IR-based bug localization. Fig. 6 demonstrates a

comparison of BLIZZARD with the existing techniques in terms of

Improving Bug Localization with Context-AwareQuery Reformulation ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 9: Comparison of Query Effectiveness with Existing Query Reformulation Techniques

Technique RG Improvement Worsening Preserving
#Improved Mean Q1 Q2 Q3 Min. Max. #Worsened Mean Q1 Q2 Q3 Min. Max. #Preserved

Rocchio [48] 337 (40.80%) 68 4 12 60 1 1,245 264 (31.96%) 118 6 21 97 2 2,824 225 (27.24%)

RSV [47] 218 (26.39%) 163 10 43 158 1 2,103 236 (28.57%) 198 17 71 245 2 2,487 372 (45.04%)

Sisman and Kak [52] BRST 339 (41.04%) 66 4 12 53 1 1,245 265 (32.08%) 121 7 23 100 2 2,846 222 (26.88%)

STRICT [42] (826) 399 (48.30%) 35 1 4 17 1 1,538 318 (38.50%) 139 6 25 110 2 3,066 109 (13.20%)

Baseline 153 7 35 149 2 2,221 70 1 5 30 1 2,469

BLIZZARD 485 (58.72%) 22 1 3 9 1 932 174 (21.07%) 112 4 15 60 2 3,258 167 (20.22%)
Rocchio [48] 32 (2.07%) 33 4 8 19 1 365 24 (1.55%) 140 4 12 146 2 850 1,490 (96.38%)

RSV [47] 345 (22.27%) 112 3 9 38 1 6,564 751 (48.57%) 105 7 23 81 2 2,140 450 (29.11%)

Sisman and Kak [52] BRNL 499 (32.28%) 59 2 6 26 1 2,019 575 (37.19%) 98 5 15 64 2 2,204 472 (30.47%)

STRICT [42] (1,546) 467 (30.21%) 57 2 6 30 1 1,213 654 (42.30%) 112 5 18 63 2 4,933 425 (27.44%)

Baseline 91 5 15 57 2 2,434 61 2 8 30 1 1,894

BLIZZARD 597 (38.62%) 75 2 8 32 1 3,063 455 (29.43%) 92 5 15 54 2 2,024 494 (31.95%)

Figure 6: Comparison of (a) MAP@K and (b) Hit@K with the state-
of-the-art IR-based bug localization techniques

Figure 7: Comparison of Hit@10 across all subject systems

(a) MAP@K and (b) Hit@K for various Top-K results. Our statistical

tests report that BLIZZARD, BLIZZARDBRO and BLIZZARD+ out-

perform AmaLgam+BRO and AmaLgam+ respectively in MAP@K

by a significant margin (i.e., p-values≤0.001) and large effect size
(i.e., 0.82≤∆≤1.00). Similar findings were also achieved for Hit@K.

Fig. 7 and Fig. 8 focus on subject system specific performances.

From Fig. 7, we see that BLIZZARD outperforms AmaLgam+BRO
with four systems in Hit@10, and falls short with two systems. How-

ever, BLIZZARDBRO and BLIZZARD+ outperform AmaLgam+BRO
and AmaLgam+ respectively for all six systems. As shown in the

box plots of Fig. 8, BLIZZARD has a higher median in MRR@10 and

MAP@10 than AmaLgam+BRO across all subject systems. AmaL-

gam+ improves both measures especially MAP@10. However, BLIZ-

ZARD+ provides even higher MRR@10 and MAP@10 than any of

the existing techniques including the state-of-the-art.

Our technique outperforms the state-of-the-art from IR-based

bug localization in various dimensions. It offers 20% higher preci-

sion and reciprocal rank than that of state-of-the-art variant (i.e.,

AmaLgam+BRO) by using only query reformulation rather than

costly alternatives, e.g., mining of version control history

Answering RQ4 –Comparison with Existing Query Refor-
mulation Techniques: While we have already showed that our

Figure 8: Comparison of (a) MRR@10 and (b) MAP@10 with exist-
ing techniques across subject systems

approach outperforms the baselines and the state-of-the-art IR-

based bug localization approaches, we also wanted to further eval-

uate our approach in the context of query reformulation. We thus

compared BLIZZARD with four query reformulation techniques

[20, 42, 48, 52] including the state-of-the-art [42] that were mostly

used for concept/feature location. We use authors’ implementation

of the state-of-the-art, STRICT, and re-implement the remaining

three techniques. We collect Query Effectiveness (i.e., rank of the

first correct result) of each of the reformulated queries provided

by each technique, and compare with ours using quantile analysis.

From Table 9, we see that 48% of the noisy (i.e., BRST) queries are

improved by STRICT, and 32% of the poor (i.e., BRNL) queries are

improved by Sisman and Kak [52]. Neither of these techniques con-

siders bug report quality (i.e., prevalence of structured information

or lack thereof) and each technique applies the same reformula-

tion strategy to all reports. On the contrary, BLIZZARD chooses

appropriate reformulation based on the class of a bug report, and

improves 59% of the noisy queries and 39% of the poor queries

which are 22% and 20% higher respectively. When compared using

quantile analysis, we see that our quantiles are highly promising

compared to the baseline. Our reformulations clearly improve the

noisy queries, and 75% of the improved queries return their first

correct results within Top-9 (i.e., Q3=9) positions whereas STRICT

needs Top-17 positions for the same. In the case of poor queries,

quantiles of BLIZZARD are comparable to that of Sisman and Kak.

However, BLIZZARD worsens less and preserves higher amount of

the baseline queries which demonstrate its high potential.

BLIZZARD outperforms the state-of-the-art in query reformula-

tion using context-aware (i.e., responsive to report quality) query

reformulation. Whatever improvements are offered to noisy and

poor queries by the state-of-the-art, our technique improves 22%

more of noisy queries and 20% more of the poor queries.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mohammad Masudur Rahman and Chanchal K. Roy

5 THREATS TO VALIDITY
Threats to internal validity relate to experimental errors and biases

[65]. Replication of existing studies and misclassification of the

bug reports are possible sources of such threats. We use authors’

implementation of three techniques [42, 50, 66] and re-implement

the remaining four. While we cannot rule out the possibility of

any implementation errors, we re-implemented them by consult-

ing with the original authors [58] and their reported settings and

parameters [20, 48, 52]. While our technique employs appropriate

regular expressions for bug report classification, they are limited

in certain contexts (e.g., ill-structured stack traces) which require

limited manual analysis currently. More sophisticated classification

approaches [38, 53, 67] could be applied in the future work.

Threats to external validity relate to generalizability of a tech-

nique [65]. We conduct experiments using Java systems. However,

since we deal with mostly structured items (e.g., stack traces, pro-

gram entities) from a bug report, our technique can be adapted to

other OOP-based systems that have such structured items.

6 RELATEDWORK
Bug Localization: Automated bug localization has been an active

research area for over two decades [50]. Existing studies from the lit-

erature can be roughly categorized into two broad families–spectra
based and information retrieval (IR) based [29, 56]. We deal with

IR-based bug localization in this work. Given that spectra based

techniques are costly and lack scalability [34, 56], several studies

adopt IR-basedmethods such as Latent Semantic Indexing (LSI) [39],

Latent Dirichlet Allocation (LDA) [36, 44] and Vector Space Model

(VSM) [27, 34, 50, 51, 60, 66] for bug localization. They leverage the

shared vocabulary between bug reports and source code entities

for bug localization. Unfortunately, as existing evidences [43, 56]

suggest, they are inherently subject to the quality of bug reports.

A number of recent studies complement traditional IR-based local-

ization with spectra based analysis [29], machine learning [28, 62]

and mining of various repositories– bug report history [49], ver-

sion control history [51, 57], code change history [59, 64] and bug

reporter history [58]. Recently, Wang and Lo [58] combine bug

report contents and three external repositories, and outperform

five earlier IR-based bug localization techniques [49–51, 57, 60, 66]

which makes it the state-of-the-art. In short, the contemporary

studies advocate for combining (1) multiple localization approaches

(e.g., dynamic trace analysis [29], Deep learning [28], learning to

rank [62, 63]) and (2) multiple external information sources with

classic IR-based localization, and thus, improve the localization per-

formances. However, such solutions could be costly (i.e., multiple

repository mining) and less scalable (i.e., dependency on external

information sources), and hence, could be infeasible to use in prac-

tice. In this work, we approach the problem differently, and focus

on better leveraging the potential of the resources at hand (i.e., bug

report and source code) which might have been underestimated by

the earlier studies. In particular, we refine the noisy queries (i.e.,

containing stack traces) and complement the poor queries (i.e., lacks

structured items), and offer an effective information retrieval unlike

the earlier studies. Thus, issues raised by low quality bug reports

[56] have been significantly addressed by our technique, and our

experimental findings support such conjecture. We compare with

three existing studies including the state-of-the-art [58], and the

detailed comparison can be found in Section 4.4 (i.e., RQ3).

A few studies [34, 60] analyse stack traces from a bug report for

bug localization. However, they apply the trace entries to boost

up source document ranking, and superfluous trace entries were

not discarded from their stack traces. Learning-to-rank [62, 63]

and Deep learning [28] based approaches might also suffer from

noisy and poor queries since they adopt classic IR without query

reformulation in their document ranking. Recent studies [55, 63]

employ distributional semantics of words to address limitations of

VSM. Since noisy terms in the report could be an issue, our approach

can complement these approaches through query reformulation.

Query Reformulation: There exist several studies [14, 18, 20–
22, 26, 40, 42, 45, 63] that support concept/feature/concern location

tasks using query reformulation. However, these approaches mostly

deal with unstructured natural language texts. Thus, they might

not perform well with bug reports containing excessive structured

information (e.g., stack traces), and our experimental findings also

support this conjecture (Table 9). Sisman and Kak [52] first intro-

duce query reformulation in the context of IR-based bug localiza-

tion. However, their approach cannot remove noise from a query.

Recently, Chaparro et al. [13] identify observed behaviour (OB),

expected behaviour (EB) and steps to reproduce (S2R) from a bug

report, and then use OB texts as a reformulated query for bug lo-

calization. However, they only analyse unstructured texts whereas

we deal with both structured and unstructured contents. Since we

apply query reformulation, we compare with four recent query

reformulation techniques employed for concept location–Rocchio

[48], RSV [47], STRICT [42] [41] and bug localization– SCP [52].

The detailed comparison can be found in Section 4.4 (i.e., RQ4).

In short, existing IR-based techniques suffer from quality issues
of bug reports whereas traditional query reformulation techniques

are not well-adapted for the bug reports containing excessive struc-

tured information (e.g., stack traces). Our work fills this gap of

the literature by incorporating context-aware (i.e., report quality

aware) query reformulation into the IR-based bug localization. Our

technique better exploits resources at hand and delivers equal or

higher performance than the state-of-the-art at a relatively lower

cost. To the best of our knowledge, such comprehensive solution

was not provided by any of the existing studies.

7 CONCLUSION AND FUTUREWORK
Traditional IR-based bug localization is inherently subject to the

(low) quality of submitted bug reports. In this paper, we propose

a novel technique that leverages the quality aspect of bug reports,

incorporates context-aware query reformulation into the bug lo-

calization, and thus, overcomes such limitation. Experiments using

5,139 bug reports from six open source systems report that BLIZ-

ZARD can offer up to 62% and 20% higher precision than the best

baseline technique and the state-of-the-art respectively. Our tech-

nique also improves 22% more of noisy queries and 20% more of

the poor queries than that of state-of-the-art. In future, we plan to

apply our learned insights and our technique to further complex

activities during debugging such as automatic bug fixing.

Acknowledgement:This researchwas supported by Saskatchewan
Innovation &Opportunity Scholarship (2017–2018), and the Natural

Sciences and Engineering Research Council of Canada (NSERC).

Improving Bug Localization with Context-AwareQuery Reformulation ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] 2011. Stop words. https://code.google.com/p/stop-words

Accessed: June 2017.

[2] 2015. Java keywords. https://docs.oracle.com/javase/tutorial/

java/nutsandbolts/_keywords.html Accessed: June 2017.

[3] 2018. BLIZZARD: Replication package. https://goo.gl/

NTUqcK

[4] J. Anvik, L. Hiew, and G. C. Murphy. 2006. Who Should Fix

This Bug?. In Proc. ICSE. 361–370.
[5] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V.

Vangala. 2009. DebugAdvisor: A Recommender System for

Debugging. In Proc. ESEC/FSE. 373–382.
[6] A. Bachmann and A. Bernstein. 2009. Software Process Data

Quality and Characteristics: A Historical View on Open and

Closed Source Projects. In Proc. IWPSE. 119–128.
[7] B. Bassett and N. A. Kraft. 2013. Structural information based

term weighting in text retrieval for feature location. In Proc.
ICPC. 133–141.

[8] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and

T. Zimmermann. 2008. What Makes a Good Bug Report?. In

Proc. FSE. 308–318.
[9] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. 2008.

Extracting Structural Information from Bug Reports. In Proc.
MSR. 27–30.

[10] R. Blanco and C. Lioma. 2012. Graph-based Term Weighting

for Information Retrieval. Inf. Retr. 15, 1 (2012), 54–92.
[11] S. Brin and L. Page. 1998. The Anatomy of a Large-Scale

Hypertextual Web Search Engine. Comput. Netw. ISDN Syst.
30, 1-7 (1998), 107–117.

[12] C. Carpineto and G. Romano. 2012. A Survey of Automatic

Query Expansion in Information Retrieval. ACMComput. Surv.
44, 1 (2012), 1:1–1:50.

[13] O. Chaparro, J. M. Florez, and AMarcus. 2017. Using Observed

Behavior to Reformulate Queries during Text Retrieval-based

Bug Localization. In Proc. ICSME. to appear.

[14] O. Chaparro and A. Marcus. 2016. On the Reduction of Verbose

Queries in Text Retrieval Based Software Maintenance. In Proc.
ICSE-C. 716–718.

[15] F. Chen and S. Kim. 2015. Crowd Debugging. In Proc. ESEC/FSE.
320–332.

[16] J. Cordeiro, B. Antunes, and P. Gomes. 2012. Context-based

Recommendation to Support Problem Solving in Software

Development. In Proc. RSSE. 85 –89.
[17] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. 2009. Min-

ing source code to automatically split identifiers for software

analysis. In Proc. MSR. 71–80.
[18] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. 2009. On the

Use of Relevance Feedback in IR-based Concept Location. In

Proc. ICSM. 351–360.

[19] Z. Gu, E.T. Barr, D. Schleck, and Z. Su. 2012. ReusingDebugging

Knowledge via Trace-based Bug Search. In Proc. OOPSLA. 927–
942.

[20] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and

T. Menzies. 2013. Automatic Query Reformulations for Text

Retrieval in Software Engineering. In Proc. ICSE. 842–851.

[21] S. Haiduc, G. Bavota, R. Oliveto, A. De Lucia, and A. Marcus.

2012. Automatic Query Performance Assessment During the

Retrieval of Software Artifacts. In Proc. ASE. 90–99.
[22] E. Hill, L. Pollock, and K. Vijay-Shanker. 2009. Automatically

Capturing Source Code Context of NL-queries for Software

Maintenance and Reuse. In Proc. ICSE. 232–242.
[23] E Hill, S Rao, and A Kak. 2012. On the Use of Stemming for

Concern Location and Bug Localization in Java. In Proc. SCAM.

184–193.

[24] O. Jespersen. 1929. The Philosophy of Grammar. (1929).

[25] K S Jones. 1972. A Statistical Interpretation Of Term Specificity

And Its Application In Retrieval. J. Doc. 28, 1 (1972), 11–21.
[26] K. Kevic and T. Fritz. 2014. Automatic Search Term Identifica-

tion for Change Tasks. In Proc. ICSE. 468–471.
[27] D. Kim, Y. Tao, S. Kim, and A. Zeller. 2013. Where Should We

Fix This Bug? A Two-Phase Recommendation Model. TSE 39,

11 (2013), 1597–1610.

[28] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen.

2017. Bug Localization with Combination of Deep Learning

and Information Retrieval. In Proc. ICPC. 218–229.
[29] Tien-Duy B. Le, R. J. Oentaryo, and D. Lo. 2015. Informa-

tion Retrieval and Spectrum Based Bug Localization: Better

Together. In Proc. ESEC/FSE. 579–590.
[30] R.Mihalcea. 2005. Unsupervised Large-vocabularyWord Sense

Disambiguation with Graph-based Algorithms for Sequence

Data Labeling. In Proc. HLT. 411–418.
[31] R. Mihalcea and P. Tarau. 2004. TextRank: Bringing Order into

Texts. In Proc. EMNLP. 404–411.
[32] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.

2013. Distributed Representations of Words and Phrases and

their Compositionality. In Proc. NIPS. 3111–3119.
[33] L. Moreno, G. Bavota, S. Haiduc, M. Di Penta, R. Oliveto, B.

Russo, and A. Marcus. 2015. Query-based Configuration of

Text Retrieval Solutions for Software Engineering Tasks. In

Proc. ESEC/FSE. 567–578.
[34] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen. 2014. On

the Use of Stack Traces to Improve Text Retrieval-Based Bug

Localization. In Proc. ICSME. 151–160.
[35] D. Mujumdar, M. Kallenbach, B. Liu, and B. Hartmann. 2011.

Crowdsourcing Suggestions to Programming Problems for

Dynamic Web Development Languages. In Proc. CHI. 1525–
1530.

[36] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and

T. N. Nguyen. 2011. A Topic-based Approach for Narrowing

the Search Space of Buggy Files from a Bug Report. In Proc.
ASE. 263–272.

[37] C. Parnin and A. Orso. 2011. Are Automated Debugging Tech-

niques Actually Helping Programmers?. In Proc. ISSTA. 199–
209.

[38] N. Pingclasai, H. Hata, and K. i. Matsumoto. 2013. Classifying

Bug Reports to Bugs andOther Requests Using TopicModeling.

In Proc. APSEC, Vol. 2. 13–18.
[39] D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G. Antoniol, and

V. Rajlich. 2007. Feature Location Using Probabilistic Ranking

of Methods Based on Execution Scenarios and Information

Retrieval. TSE 33, 6 (2007), 420–432.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mohammad Masudur Rahman and Chanchal K. Roy

[40] M. M. Rahman and C. K. Roy. 2016. QUICKAR: Automatic

Query Reformulation for Concept Location Using Crowd-

sourced Knowledge. In Proc. ASE. 220–225.
[41] M. M. Rahman and C. K. Roy. 2017. Improved Query Reformu-

lation for Concept Location using CodeRank and Document

Structures. In Proc. ASE. 428–439.
[42] M. M. Rahman and C. K. Roy. 2017. STRICT: Information Re-

trieval Based Search Term Identification for Concept Location.

In Proc. SANER. 79–90.
[43] M.M. Rahman andC. K. Roy. 2018. Improving Bug Localization

with Report Quality Dynamics and Query Reformulation. In

Proc. ICSE-C. 348–349.
[44] S. Rao and A. Kak. 2011. Retrieval from Software Libraries

for Bug Localization: A Comparative Study of Generic and

Composite Text Models. In Proc. MSR. 43–52.
[45] S. Rastkar, G. C. Murphy, and G. Murray. 2010. Summarizing

Software Artifacts: A Case Study of Bug Reports. In Proc. ICSE.
505–514.

[46] P. C. Rigby and M.P. Robillard. 2013. Discovering Essential

Code Elements in Informal Documentation. In Proc. ICSE. 832–
841.

[47] S. E. Robertson. 1991. On Term Selection for Query Expansion.

J. Doc. 46, 4 (1991), 359–364.
[48] J.J. Rocchio. [n. d.]. The SMART Retrieval System—Experiments

in Automatic Document Processing. Prentice-Hall, Inc. 313–323
pages.

[49] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry. 2014. On the

Effectiveness of Information Retrieval Based Bug Localization

for C Programs. In Proc. ICSME. 161–170.
[50] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry. 2013. Improv-

ing bug localization using structured information retrieval. In

Proc. ASE. 345–355.
[51] B. Sisman and A. C. Kak. 2012. Incorporating Version Histories

in Information Retrieval Based Bug Localization. In Proc. MSR.
50–59.

[52] B. Sisman and A. C. Kak. 2013. Assisting code search with

automatic Query Reformulation for bug localization. In Proc.
MSR. 309–318.

[53] F. Thung, D. Lo, and L. Jiang. 2012. Automatic Defect Catego-

rization. In Proc. WCRE. 205–214.
[54] K. Toutanova, D. Klein, C.D. Manning, and Y. Singer. 2003.

Feature-Rich Part-of-Speech Tagging with a Cyclic Depen-

dency Network. In Proc. HLT-NAACL. 252–259.

[55] Y. Uneno, O. Mizuno, and E. H. Choi. 2016. Using a Distributed

Representation of Words in Localizing Relevant Files for Bug

Reports. In Proc. QRS. 183–190.
[56] Q. Wang, C. Parnin, and A. Orso. 2015. Evaluating the Useful-

ness of IR-based Fault Localization Techniques. In Proc. ISSTA.
1–11.

[57] S. Wang and D. Lo. 2014. Version History, Similar Report, and

Structure: Putting Them Together for Improved Bug Localiza-

tion. In Proc. ICPC. 53–63.
[58] S. Wang and D. Lo. 2016. AmaLgam+: Composing Rich Infor-

mation Sources for Accurate Bug Localization. JSEP 28, 10

(2016), 921–942.

[59] M. Wen, R. Wu, and S. C. Cheung. 2016. Locus: Locating bugs

from software changes. In Proc. ASE. 262–273.
[60] C. P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H.

Mei. 2014. Boosting Bug-Report-Oriented Fault Localization

with Segmentation and Stack-Trace Analysis. In Proc. ICSME.
181–190.

[61] X. Xia, L. Bao, D. Lo, and S. Li. 2016. “Automated Debugging

Considered Harmful" Considered Harmful: A User Study Re-

visiting the Usefulness of Spectra-Based Fault Localization

Techniques with Professionals Using Real Bugs from Large

Systems. In Proc. ICSME. 267–278.
[62] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to

Rank Relevant Files for Bug Reports Using Domain Knowledge.

In Proc. FSE. 689–699.
[63] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. 2016. From

Word Embeddings to Document Similarities for Improved In-

formation Retrieval in Software Engineering. In Proc. ICSE.
404–415.

[64] K. C. Youm, J. Ahn, J. Kim, and E. Lee. 2015. Bug Localization

Based on Code Change Histories and Bug Reports. In Proc.
APSEC. 190–197.

[65] T. Yuan, D. Lo, and J. Lawall. 2014. Automated Construction of

a Software-Specific Word Similarity Database. In Proc. CSMR-
WCRE. 44–53.

[66] J. Zhou, H. Zhang, and D. Lo. 2012. Where should the bugs be

fixed? More accurate information retrieval-based bug localiza-

tion based on bug reports. In Proc. ICSE. 14–24.
[67] Y. Zhou, Y. Tong, R. Gu, and H. Gall. 2014. Combining Text

Mining and Data Mining for Bug Report Classification. In Proc.
ICSME. 311–320.

[68] T. Zimmermann, N. Nagappan, and A. Zeller. 2008. Predicting

Bugs from History. In Software Evolution. Springer, 69–88.

