
Noname manuscript No.
(will be inserted by the editor)

Works for Me! Cannot Reproduce – A Large Scale
Empirical Study of Non-reproducible Bugs

Mohammad M. Rahman · Foutse Khomh ·
Marco Castelluccio

the date of receipt and acceptance should be inserted later

Abstract Software developers attempt to reproduce software bugs to understand
their erroneous behaviours and to fix them. Unfortunately, they often fail to re-
produce (or fix) them, which leads to faulty, unreliable software systems. How-
ever, to date, only a little research has been done to better understand what
makes the software bugs non-reproducible. In this article, we conduct a multi-
modal study to better understand the non-reproducibility of software bugs. First,
we perform an empirical study using 576 non-reproducible bug reports from two
popular software systems (Firefox, Eclipse) and identify 11 key factors that might
lead a reported bug to non-reproducibility. Second, we conduct a user study in-
volving 13 professional developers where we investigate how the developers cope
with non-reproducible bugs. We found that they either close these bugs or solicit
for further information, which involves long deliberations and counter-productive
manual searches. Third, we offer several actionable insights on how to avoid non-
reproducibility (e.g., false-positive bug report detector) and improve reproducibil-
ity of the reported bugs (e.g., sandbox for bug reproduction) by combining our
analyses from multiple studies (e.g., empirical study, developer study). Fourth, we
explain the differences between reproducible and non-reproducible bug reports by
systematically interpreting multiple machine learning models that classify these
reports with high accuracy. We found that links to existing bug reports might help
improve the reproducibility of a reported bug. Finally, we detect the connected
bug reports to a non-reproducible bug automatically and further demonstrate how
93 bugs connected to 71 non-reproducible bugs from our dataset can offer com-
plementary information (e.g., attachments, screenshots, program flows).

Mohammad M. Rahman
Dalhousie University, Canada
E-mail: masud.rahman@dal.ca

Foutse Khomh
Polytechnique Montreal, Canada
E-mail: foutse.khomh@polymtl.ca

Marco Castelluccio
Mozilla Corporation
E-mail: mcastelluccio@mozilla.com

2 Mohammad M. Rahman et al.

Keywords Bug reproduction, non-reproducibility, empirical study, grounded
theory, developer feedback, reproducibility challenges, key factors, bug report
classification, model interpretation.

1 Introduction

Software bugs and failures claim trillions of dollars every year. In 2017 alone, 606
software bugs cost the global economy about $1.7 trillion with 3.7 billion people
affected and 314 companies impacted [5]. Finding such bugs within software code
and then fixing them are highly challenging. One of the major challenges is to
determine the root cause of a reported bug, which might help gain a better un-
derstanding of the bug [44]. Developers often attempt to reproduce a bug from
its report to determine its root cause and to explore its erroneous behaviours.
Unfortunately, the bug reports often do not contain useful information for repro-
ducing the bugs [21, 22, 16]. This leads to (a) an unexpected delay (e.g., three
months [38]) in bug fixing [32, 72] or (b) even worse, the release of a software
system without fixing potentially critical bugs, which could be costly in the long
run (e.g., Facebook’s privacy vulnerability [4]). Thus, (a) studying the key factors
(a.k.a., characteristics) that could make the reported bugs non-reproducible and
(b) detecting these non-reproducible bugs early in their management cycle – are
open research problems that warrant further investigations. Our work in this paper
addresses the first research problem.

Existing work from the literature (a) study the characteristics of a good bug
report [16] and classify the software bugs from open source systems [56, 42], (b)
predict which bugs get fixed [31, 30], re-assigned [32, 66] or re-opened [72] and (c)
investigate how bugs are coordinated among various stakeholders (e.g., software
testers, users, developers) [15, 60] and how the misclassification of bugs affects
the bug prediction task [33]. Unfortunately, little research has been done to bet-
ter understand what makes the reported bugs non-reproducible. Vyas et al. [60]
first analyse the social and human aspects of a bug reproduction process with an
ethnographic study. Their study explains the human collaboration aspect, which
might not be enough to explain the complex technical aspect of a bug reproduction
process. Joorabchi et al. [38] identify several factors (e.g., Inter-bug dependencies,
environmental differences) that might contribute to the non-reproducibility of a
reported bug. Although their study sheds some light on the factors leading to bug
non-reproducibility, it does not go as far as understanding the mitigation strate-
gies currently implemented in the field. Neither does it examine the mechanisms
to improve the reproducibility of reported bugs. Our work attempts to fill this gap
in the literature.

In this article, we conduct (a) an empirical study to better understand the
key factors behind non-reproducibility of software bugs and (b) a developer study
to understand how the professional developers cope with non-reproducible bugs
and how to improve the bug reports. First, we analyze 576 randomly sampled
bug reports marked as non-reproducible (250 from Mozilla Firefox + 326 from
Eclipse JDT) with a Grounded Theory method [29] and identify 11 key factors
that might lead a reported bug to non-reproducibility. We also contrast our find-
ings with those from Joorabchi et al. [38]. Second, we validate our empirical and
analytical findings with a user study involving 13 professional developers (from

Title Suppressed Due to Excessive Length 3

Firefox Bug
Reports (10,183)

1a

Eclipse Bug
Reports (1,395)

1b

Filtration
& Sampling

2 Selected NR
Bug Reports (576)

3 Qualitative Analysis
(Grounded Theory)

4

F1

F2

F3

F4

.

.

Fn

5

RQ1

Key Factors

Data

Fusion

Joorabchi et al. [38]

Developer Study

6a
RQ2 RQ4

RQ3
6b

6c

Actionable
Insights

7

RQ5

Reproducible
Bug Reports (533)

Bug classifier

RQ6 RQ7

8 9

Fig. 1: Schematic diagram of our conducted study

Mozilla and Freelancer) and gain meaningful insights on how the developers deal
with non-reproducible bugs, which were missing in the earlier work [38]. Third,
by cross-referencing findings from our qualitative analysis and the responses from
our developer study, we report several actionable insights for detecting and then
improving the non-reproducible bugs during their submission. Fourth, we show the
differences between reproducible and non-reproducible bug reports by interpreting
three machine learning models (using the SHAP framework [40]) that classify these
reports with high accuracy. Finally, we design a novel technique using Information
Retrieval to automatically detect the connected bug reports to a non-reproducible
bug. We further manually analyze 93 bug reports connected to 71 non-reproducible
bugs from our dataset and demonstrate how these connected reports can deliver
useful artifacts (e.g., attachments, screenshots, stack traces, program workflows)
to complement the non-reproducible bugs.

Novelty in contribution: This article is a significantly extended version of
our earlier work [49]. The earlier work (a) identifies 11 key factors analyzing 576
non-reproducible bug reports to explain the non-reproducibility of a bug report,
(b) validates these factors using the feedback from 13 professional developers, and
then (c) suggests how to prevent the non-reproducibility of bugs by combining
findings from multiple sources (e.g., empirical study, developer survey). In this
article, we (d) analyze an additional total of 533 reproducible bug reports, and (e)
investigate the differences between reproducible and non-reproducible bug reports
by systematically interpreting several machine learning models that classify these
reports with high performance (e.g., 83.60% precision, 83.60% recall). We found
that links to the past bug reports might help improve the reproducibility of a
reported bug. We thus further (f) demonstrate how the past bug reports connected
to a non-reproducible bug report can be detected automatically and could also offer
useful information (e.g., attachments, screenshots, stack traces). Finally, we also
(g) repeat our experiments using an extended collection of 1,990 bug reports (1,009
non-reproducible + 981 reproducible) and report our findings, which increase the
confidence and generalizability of our results.

Thus, we answer seven important research questions in this work as follows.

(a) RQ1: What are the key factors that make a reported software bug non-

reproducible?

4 Mohammad M. Rahman et al.

To mitigate the issue of bug non-reproducibility, understanding the key causes
(or factors) is essential. We find 11 key factors (e.g., bug duplication, intermit-
tency, missing information, ambiguous specifications, third-party defects) that
might lead a reported software bug to non-reproducibility.

(b) RQ2: What do professional developers consider to be key factors behind

the non-reproducibility of bugs?

Developers’ feedback on empirical findings is important to increase confidence
in the findings. Our identified key factors were validated by 13 professional
developers with an agreement level between 70% and 90%.

(c) RQ3: Do the identified factors match with the relevant earlier findings

from the literature?
Generalizability of findings across multiple studies and multiple datasets is
important to increase confidence in the findings. Five of our identified factors
match with the earlier findings derived from a different dataset [38]. Our study
also reveals several novel factors. Thus, our findings not only confirm but also
improve the existing understanding of non-reproducible software bugs.

(d) RQ4: How do the professional developers deal with non-reproducible

software bugs?

Understanding the current practices for dealing with non-reproducible bugs is
important to provide efficient solutions. We find that professional developers
deliberate over non-reproducible bugs and attempt to collect more informa-
tion when the bug reports are incomplete or the reported bugs are complex
(e.g., intermittent bugs, performance bugs). They also close the duplicate and
false-positive bug reports with suitable explanations. Many of these tasks are
performed in a counter-productive way due to the lack of appropriate alterna-
tives (e.g., tool supports).

(e) RQ5: How to prevent the non-reproducibility and/or improve the re-

producibility of reported bugs?

Non-reproducibility of software bugs leads to delays in bug-fixing and poten-
tially buggy software releases, which could be mitigated with appropriate tool
supports. For example, intelligent tools (1) for detecting duplicate or false-
positive bug reports and (2) for improving the software documentations could
help avoid non-reproducible bugs. On the other hand, intelligent tools for com-
plementing the incomplete bug reports could improve their reproducibility.
Furthermore, sandbox tools where the developers can repeat their experiments
could be useful for reproducing the complex software bugs (e.g., performance
bugs, intermittent bugs).

(f) RQ6: Can we leverage machine learning to characterize non-reproducible

software bugs?

Explaining the differences between non-reproducible and reproducible bug re-
ports using machine learning models and their interpretation frameworks (e.g.,
SHAP) could provide additional insights. We find that the bug reports sub-
mitted by actively contributing members in a project are more likely to be
reproducible than those from the others. The presence of attachments and
connected bugs in a bug report also improves its chance of being reproducible.
Thus, effective tools (1) to find the project members with relevant experience
and (2) to detect the linked bugs accurately during the submission of a bug
report could help improve its chance of being reproducible.

Title Suppressed Due to Excessive Length 5

Fig. 2: An example bug reporting thread – (a) title + description, (b) discussions
among stakeholders, and (c) non-reproducibility of the bug

(g) RQ7: Can we automatically detect bug reports connected to a non-

reproducible bug and leverage them to support its reproducibility?

About 20% of our non-reproducible bug reports were found to be connected
to prior bugs in the bug tracking system. Such connections were manually
established by the developers over a long period to extend their understanding
of bugs. We design a technique to automatically detect these connected reports
from history and to establish such connections during the submission of a
non-reproducible bug report. Our designed technique was also able to detect
the connected bug reports with 31%–86% accuracy when top 10 results were
considered. Missing information is a key factor behind the non-reproducibility
of many bug reports. According to our analysis, these connected bug reports
contain a wealth of information such as fix patches, attachments, screenshots,
test cases, stack traces, and program workflows, which have high potential to
complement the non-reproducible bug reports.

Structure of the article: The rest of the article is organized as follows: Section
2 provides an overview of non-reproducible bug reports and Section 3 discusses our
study methodology including dataset construction, the design of empirical study
and developer study, and the selection of suitable frameworks to interpret the
machine learning models. Section 4 presents our study results, Section 5 focuses
on the threats to validity, Section 6 discusses the related work and finally, Section
7 concludes our article with future work.

6 Mohammad M. Rahman et al.

Table 1: Study Dataset

System Domain BTS Comp. Type Duration All SBR

Initial dataset (1,109 bug reports)
Firefox Web browser Bugzilla Core NR 12/29/2017–12/29/2019 1,274 250
Eclipse IDE Bugzilla JDT NR 12/29/2014–12/29/2019 326 326
Firefox Web browser Bugzilla Core R 12/29/2017–12/29/2019 8,909 250
Eclipse IDE Bugzilla JDT R 12/29/2014–12/29/2019 1,069 283
Total - - - - - 1,109

Extended dataset (1,990 bug reports)
Firefox Web browser Bugzilla Core NR 12/29/2017–12/29/2019 1,274 683
Eclipse IDE Bugzilla JDT NR 12/29/2014–12/29/2019 326 326
Firefox Web browser Bugzilla Core R 12/29/2017–12/29/2019 8,909 698
Eclipse IDE Bugzilla JDT R 12/29/2014–12/29/2019 1,069 283
Total - - - - - 1,990

BTS=Bug Tracking System, Comp.=Component, NR=Non-reproducible, R=Reproducible,
SBR=Sampled Bug Reports.

2 Non-Reproducible Bugs

Software developers often attempt to reproduce their bugs to better understand
them. Non-reproducible bugs are the ones that cannot be reproduced by using the
information found in their corresponding bug reports. They are annotated with
several labels such as “Works on My Machine”, “Works For Me” and “Cannot Repro-

duce” in the bug-tracking systems [38]. About 17% of the reported bugs could be
non-reproducible [38], which is a significant amount. Based on a developer study,
Bettenburg et al. [16] suggest that developers expect at least three components
within a bug report – Observed Behaviour (OB), Expected Behaviour (EB) and
Steps to Reproduce (STR). OB describes the erroneous behaviour of a software
system whereas EB outlines the correct behaviour of the system. On the other
hand, STR provides the steps to reproduce a bug. Bug reports that miss these
components could be difficult to reproduce. According to Chaparro et al. [21],
about 65% of the bug reports miss the correct behaviour (EB) and 49% of the
reports do not contain any steps to reproduce the bugs. Fig. 2 shows an example
bug that erroneously deletes documents from the build path of an Eclipse project.
From the discussions, we also see that the bug report fails to provide any con-
crete steps or complementary information (e.g., logs, stack traces) for reproducing
this bug (Fig. 2-(c)). As a result, the bug was marked as non-reproducible (a.k.a.,
WORKSFORME) by the developers and was abandoned without fixing.

3 Study Methodology

Fig. 1 shows the schematic diagram of our performed studies in this paper. We first
perform an empirical study on bug non-reproducibility using 576 non-reproducible
bugs from two popular software systems. We not only revisit the earlier find-
ings [38] but also deliver novel insights towards the better understanding of non-
reproducible bugs. Then we validate our major findings with a developer study and
formulate further actionable insights. We also explain the reproducibility of bugs
by interpreting the machine learning models that classify them and then further
complement our analysis with manual investigation. In this section, we discuss the
major steps of our study design as follows.

Title Suppressed Due to Excessive Length 7

3.1 Selection of Bug Reports

Non-reproducible bug reports. We use a total of 576 non-reproducible bugs from
two popular, mature, open source systems – Mozilla Firefox and Eclipse – for our
study. Table 1 shows an overview of our study dataset. Several steps were taken to
carefully select these reported bugs. First, we collect all the bug reports from these
systems that were marked as WORKSFORME. Both systems use this tag to mark
their non-reproducible bugs [3]. Then we select the ones that were submitted within
the last two years from Firefox and within the last five years from Eclipse. We use
the recent bugs that the developers could still remember and that can provide
timely, relevant, actionable insights. We also choose the bug reports concerning
two major components – Firefox Core and Eclipse JDT – due to their critical roles.
This step provides a total of 1,600 non-reproducible bug reports (1,274 from Firefox
+ 326 from Eclipse) (Step 1, Fig. 1). Second, since manually analysing hundreds
of bug reports would be too expensive, we randomly choose 576 bug reports from
them. From Mozilla Firefox, we attempted to choose a sample with a confidence
level of 95% and an error margin of 5%, which indicates a total of 250 bug reports.
We thus identify top 25 critical subcomponents of Firefox Core (e.g., WebRender,
Playback, JavaScript Engine) based on their bug report frequency and choose 10
random bug reports from each of these subcomponents, which provides a total of
250. On the other hand, we choose all 326 bug reports targeting Eclipse JDT from
the last five years. Finally, we ended up with 576 (250+326) non-reproducible bugs
from two popular software systems (Steps 2-3, Fig. 1).

Reproducible bug reports. We also use a total of 533 (250+283) reproducible
bugs from Firefox Core and Eclipse JDT for our study. These bug reports were
marked as FIXED. First, we collect 8,909 fixed (and hence reproducible) bug re-
ports within the same timeline as above from Firefox Core and separate the reports
targeting 25 critical components (e.g., WebRender, Playback). Then we randomly
select 10 bug reports from each component, which provides a total of 250 repro-
ducible bug reports. Second, we collect 1,069 reproducible bug reports from Eclipse
JDT that were submitted during the last five years. Then we randomly sample
283 bug reports from them, which leads to 95% confidence level and 5% margin of
error. Thus, we collect a total of 1,109 (576 non-reproducible+533 reproducible)
bug reports from Firefox Core and Eclipse JDT, which are used to answer RQ6.

Bug Reports connected to non-reproducible bugs. About 27%–31% of our
576 non-reproducible bugs are duplicates of earlier bugs. That means, they were
already solved and thus were not reproducible. However, we also found 350 bugs
(187 from Eclipse + 163 from Firefox) that cannot be reproduced due to other
factors (e.g., missing information, ambiguous specifications). We further analyze
these 350 bugs and select the ones that are connected to earlier bugs from history.
In particular, we analyze the metadata of each bug from Bugzilla, check two of
their fields – blocked and dependson, and then select the bugs that have one or
more connected bugs. We use a popular Java library namely Jsoup1 to access the
metadata. This step leads us to a collection of 71 non-reproducible bugs (12 from
Eclipse + 59 from Firefox) that are connected to 93 existing bugs from the bug
tracking system. We use these reports to answer our research question RQ7.

1 https://jsoup.org/

8 Mohammad M. Rahman et al.

Extended dataset. We wanted to gain more confidence in our findings by
increasing the size of our dataset. Thus, we extend our initial dataset by adding
881 new bug reports from Firefox Core system (433 non-reproducible + 448 re-
producible). Over the last two years, 1,274 non-reproducible bug reports were
submitted targeting this system (Table 1). We extend our initial sample of 250
with 433 non-reproducible bug reports from the 25 critical components of Fire-

fox Core (mentioned above). This leads to a sample of 683 non-reproducible bug
reports, which has 95% confidence level with 2.5% error margin against the pop-
ulation of 1,274 reports. Similarly, we also randomly select 448 reproducible bug
reports from the same 25 components and construct a sample of 698 reproducible
bug reports. Such a sample has 95% confidence level with ≈3.5% error margin
against the population of 8,909 reproducible bug reports. We did not extend our
dataset using Eclipse JDT since all of its non-reproducible bug reports from the
last five years were already included in the initial dataset. Finally, we thus ended
up with an extended dataset of 1,990 bug reports (1,009 non-reproducible and 981
reproducible bug) from two popular software systems for our experiments.

We also analyzed 1,009 non-reproducible bug reports and found that 274 (27%)
of them were connected to one or more existing bugs in the bug-tracking system
(e.g., Bugzilla). These connections were made by human developers over a long
period. We select these reports and their connected bug reports (30 from Eclipse
+ 222 from Firefox), and construct a corpus of 526 bug reports where 252 con-
nected reports serve as the ground truth against 274 non-reproducible bugs during
automated detection of their connected bug reports. Then we use these corpus and
ground truth to evaluate our technique for automatically detecting the connected
bug reports in RQ7 (Section 4.7).

3.2 Identifying Key Factors with Qualitative Analysis

We carefully analyse the information available in the bug reports and attempt to
understand the key factors behind the non-reproducibility of their discussed bugs
(Steps 4–5, Fig. 1). We first establish the scope of our analysis and then employ
a widely used qualitative method – Grounded Theory [29] – for our qualitative
analysis as follows.

Determining the Scope of Manual Analysis: In modern bug-tracking sys-
tems (e.g., Bugzilla), each bug report captures (1) bug description from a reporter
and (2) discussions among various stakeholders (e.g., reporter, developers, testers).
Once an encountered bug is reported, the stakeholders engage in a discussion where
they attempt to reproduce the bug using the available information at hand. Since
we attempt to understand the key issues behind bug non-reproducibility, we anal-
yse both the bug description and the discussion texts from each bug report. While
textual contents are mostly prevalent, bug reports might also contain supplemen-
tary materials (e.g., stack traces, logs, memory dump, test cases, configuration
files) to assist in bug fixing. In this study, we systematically analyse the textual
contents and occasionally check the supplementary materials to derive our insights.

Grounded Theory: We analyse bug reports using the Grounded Theory method
[29] to determine the key factors behind bug non-reproducibility. Grounded Theory
has been widely adopted in the social science researches to derive theories that are
firmly grounded in the data under analysis (e.g., interview scripts, questionnaires).

Title Suppressed Due to Excessive Length 9

Recently, this method has also found applications in the Software Engineering re-
searches [53, 20]. We systematically analyse the bug description and discussion
texts, and look for potential clues (e.g., missing information, technical difficulty)
that might explain the non-reproducibility of a reported bug. Grounded theory
method involves three stages of coding as follows.

(a) Open Coding consists in breaking the gathered data (e.g., bug reports) into
identifiable, interesting chunks. We go through the bug description and discussion
texts of each bug report and look for potential clues that might explain the non-
reproducibility of a bug. We record our identified clues using a set of key phrases
[1]. The core idea was to keep an open mind and to choose as many codes as needed
to carefully represent each bug report. In our open coding, 574 unique codes were
produced from 576 bug reports. We spent ≈100 man-hours in the open coding of
576 bug reports and their discussions.

(b) Axial Coding focuses on finding connections among the open codes. In this
stage, we place our open codes into a spreadsheet document and annotate the
similar or connected codes with the same colours. We consider not only lexical
overlap but also semantic relatedness in establishing the connection. Our goal was
to divide the open codes into low-level categories. This step provides a set of 33
tentative categories from our 574 open codes above.

(c) Selective Coding determines the core variables (or categories) and constructs
a theory to explain the phenomenon under study, i.e., the non-reproducibility
of the reported bugs. While the axial coding provides low-level categories, we
carefully merge them into higher level categories based on their common themes
and semantic relatedness. This step provides a total of 11 key factors that might
explain the non-reproducibility of reported software bugs (Step 5, Fig. 1). Each of
these key factors is represented using a set of semantically connected key phrases.

Determining the Prevalence of Key Factors in Bug Reports: During open
coding, we represent each bug report using a set of suitable key phrases that explain
why the bug could not be reproduced. Similarly, each of our identified factors is
represented using a set of semantically connected key phrases. To analyse the
prevalence of key factors in our dataset, we determine the presence of one or more
key factors in each bug report using their overlapping key phrases.

3.3 Complementing Empirical Study with Developer Study

Although our empirical findings are derived from developer discussions, we fur-
ther validate and complement these findings with a developer study involving 13
professional developers. We also investigate how these developers cope with non-
reproducible bugs in practice and how the research community could help them.
We discuss our study setup including questionnaire preparation and participant
selection as follows.

Questionnaire Preparation: We first provide a summary of our empirical find-
ings on bug non-reproducibility. Then we ask five different questions on four topics.
First, we ask the participants whether they agree or disagree with our identified
causes of bug non-reproducibility (Table 2) using dichotomous questions. Second,
we ask how they deal with non-reproducible bugs as a part of their job. Third,
we ask how the research community could help the developers in dealing with

10 Mohammad M. Rahman et al.

the non-reproducible bugs. Fourth, we ask the developers about their professional
experience level, which was used for the demographic analysis.

Participant Selection: We first conduct a pilot study with one professional
developer from Mozilla Firefox, which helped us improve our questionnaire. Then
we invite the professional developers from Mozilla, Freelancer and Stack Overflow
who have relevant bug-fixing experience to answer our questionnaire. We send our
invitations to the developers using direct correspondences, organization’s mailing
lists (e.g., Mozilla Firefox) and public forums (e.g., LinkedIn, Twitter). Thirteen
participants responded to our invitation including four developers from Mozilla
Firefox. About 23% of these participants have more than 10 years of professional
development experience, 15% of them have 5 to 10 years of experience and about
39% have 1 to 5 years of development experience. Our study was non-paid.

3.4 Analyzing Agreement between Independent Findings

Once the key factors behind bug non-reproducibility are identified, we validate
them with two independent studies (Steps 6-7, Fig. 1). First, we investigate how
these factors are assessed by the professional developers. We not only determine the
severity of each factor but also gain further actionable insights from this developer
study. Second, we determine how these factors match with the earlier findings of
Joorabchi et al. [38]. While Joorabchi et al. adopt an ad hoc method, we employ
a systematic method namely Grounded Theory [29] for the qualitative analysis.
We also use a different dataset in this work. Thus, an agreement between our
identified factors and the earlier ones would indicate their generalizability and
thus also would strengthen the understanding of bug non-reproducibility.

3.5 Construction of Training Dataset for Machine Learning Models

Our empirical study and developer study provide useful insights on non-reproducible
software bugs from a qualitative perspective. Using machine learning-based classifi-
cation models, we further differentiate between reproducible and non-reproducible
bug reports from a quantitative perspective.

We select a total of 17 features (12 structural + 2 textual + 3 semantic)
from each bug report to train our classification models. Table 4 provides a brief
overview of our selected features. Although our selection has been inspired by
relevant existing studies [30, 27], we focus on collecting the features that might
be available during the submission of a bug report. Goyal and Sardana [30] first
use eight structural features (e.g., component, priority, severity) and one semantic
feature (e.g., sentiment) from bug reports to separate the non-reproducible bugs
from the reproducible bugs. They suggest that the sentiments expressed in the non-
reproducible bug reports could be different from that of the reproducible reports.
We thus select six out of their eight features to train our models. We discard the
features that might not be available during the submission of a bug report (e.g.,
number of discussion comments). Fan et al. [27] combine a set of structural (e.g.,
presence of stack traces) and textual features (e.g., readability) from a bug report
and design a machine learning model to separate the invalid bug reports from
the valid bug reports. We select one textual feature –readability– from this work.

Title Suppressed Due to Excessive Length 11

Thus, we select a total of 17 features capturing three different aspects of a bug
report (e.g., structural, textual, semantic, Table 4) to train our models.

Once the features are selected, we collect their values from each of the 1,109
bug reports (576 non-reproducible + 533 reproducible) in our dataset (Section
3.1). We first extract the structural features (e.g., component, priority, severity)
using the Jsoup library through web scraping. Then we determine the readability of
texts from each bug report (i.e., title + description) using five popular readability
metrics –Flesch-Kincaid Grade Level, Gunning-Fog Score, Coleman-Liau Index,
SMOG Index and Automated Readability Index [45]. We calculate the readability
of title and description fields separately since they contain different levels of tech-
nical details. Then we also collect the semantic feature from each bug report by
analyzing its texts with a sentiment analysis tool. We use a popular tool namely
Stanford CoreNLP [55] and calculate the number of positive, negative and neu-
tral statements in the title of each bug report. One might argue about the use of
Stanford CoreNLP library [55]. According to a recent study [39], other tools such
as SentiStrength [57] have been found to be more accurate to detect sentiments in
software engineering texts (e.g., JIRA issue comments). We thus also apply Sen-
tiStrength [57] to our dataset, detect word-level positive and negative sentiments
in the title of each bug report, and then repeat our experiments.

One might argue about the data imbalance problem in our dataset, i.e., 576
non-reproducible and 533 reproducible bug reports. To address this, we apply
down-sampling to the collection of non-reproducible bug reports during training
phase, and make our dataset balanced. Then we repeat our experiments using
the balanced dataset with RandomForest, the best-performing algorithm with our
original dataset. We use WEKA toolkit [2] to train and test our model.

3.6 Selection of Model Interpretation Framework

Using machine learning models and their interpretation frameworks, we further
explain the differences between reproducible and non-reproducible bug reports.
Over the years, there have been several popular frameworks such as SHAP [40]
and LIME [50] to interpret the machine learning models. The SHAP framework
considers all possible predictions for an instance by considering all possible com-
binations of input features, which makes it slow but accurate. On the other hand,
the LIME framework builds sparse linear models to explain each prediction for an
instance, which makes it fast but less accurate. More importantly, SHAP offers
appropriate explanations for tree-based models (e.g., RandomForest, XGBoost)
whereas LIME is mainly suitable for simpler models such as KNN2. Since we
use tree-based models in our classification, we use the SHAP framework [40] to
interpret the results of our machine learning models (Section 4.6).

4 Study Results

In this section, we present the results of our study by answering the seven research
questions as follows.

2 https://bit.ly/39Qh2eH

12 Mohammad M. Rahman et al.

Table 2: Key Factors behind the Non-Reproducibility of Software Bugs

Key Factor Overview

F1: Bug Duplication The bug might have been already fixed in the recent releases
F2: False Positive Bug The reported issue might not be a bug, but rather indicates a

non-existent software feature
F3: Bug Intermittency The bug does not occur frequently or consistently
F4: Missing Information The required information (e.g., steps to reproduce) is missing

in the bug report
F5: Ambiguous Specifications The expected behaviour of the software application is misun-

derstood by the reporter
F6: Performance Regression Performance loss that is encountered as a side effect of recent

changes
F7: Lack of Cooperation The reported bug fails to draw the attention of the stakeholders

(e.g., developers)
F8: Memory Misuse The bug is triggered by the mismanagement of memory
F9: Third-Party Defect The bug has been triggered by defects in a third-party compo-

nent
F10: Restricted Security Access Bugs that warrant specialized authentication or authorization

for reproduction
F11: Touch & Gestures The accessibility bugs that warrant touches, gestures and spe-

cial interactions

4.1 RQ1: What are the key factors that make a reported software bug
non-reproducible?

We identify a total of 11 key factors that are likely to explain the non-reproducibility
of software bugs. Table 2 shows the identified factors from our qualitative analysis
(Section 3.2). We explain each of these factors with illustrative examples collected
from the bug reports as follows.

Bug Duplication (F1) is one of the key factors behind the non-reproducibility
of software bugs. The duplicate bugs are often known to the developers and thus
might have been already fixed in recent releases. As a result, they cannot be repro-
duced with the up-to-date version of the software system. The following discussion
comment from Firefox (Bug #1428773) refers to duplicate bugs and explains why
it cannot be reproduced.

D: “This looks a lot like the issues in bug 1420748 and related bugs, so it might

be fixed by the WR update in bug 1426116.”

Since the duplicate bugs might already be fixed, they are often resolved by closing
them as duplicates and then pointing their reporters to a recent software version
that contains the fixes.

False Positive Bugs (F2) (a.k.a., feature requests) might not be reproducible.
Software users often discuss about non-existent features in their bug reports; this
cannot be reproduced. Sometimes, they also report configuration issues as bugs,
which can be resolved with simple tweaking rather than code level changes. For
example, the following comment from Firefox (Bug #1444194) shows how a simple
configuration tweak can resolve a bug regarding slow network proxy.

D: “What happens if you set the about:config pref “security.OCSP.enabled” to

0?”

R: “yep disabling the OCSP check fixed it. Then this works fine ..”

Bug Intermittency (F3) is another key factor behind bug non-reproducibility.
Intermittent bugs have non-deterministic properties and they do not occur fre-
quently or consistently. Thus, they are difficult to reproduce and fix. The following

Title Suppressed Due to Excessive Length 13

discussion comment from Eclipse (Bug #501488) explains the intermittency of a
reported bug.

R: “I forgot to write that the problem does not always appear, sometimes working

as it should. I have inserted a screenshot of the problem.”

Missing Information (F4) is a key problem that makes a reported bug non-
reproducible. Developers often look for relevant items in a bug report (e.g., steps
to reproduce, stack traces, performance profiles, screenshot, test cases, system
configurations) that could help them in reproducing the bug. Unfortunately, in
practice, these items often are either missing or not reported carefully. The example
comments from Eclipse (Bugs #476042, #477898) request for missing information
in the bug report.

D: “Please try with Eclipse Neon M6 build and provide exact steps that reproduce

the issue. Also, attach the log file having stacktrace.”

D: “Please provide the code snippet that reproduces the issue.”

Sometimes, the mere presence of the required items might not be sufficient. The re-
ported bugs could also not be reproduced if the provided information is incomplete
or inaccurate.

Ambiguous Specifications (F5) often lead the reported bugs to non-reproducibility.
Bug reporters might misunderstand the expected behaviours of a software system if
the specifications are not clearly defined. As a consequence, they might characterize
a legitimate functionality as a bug, which could introduce confusion or disagree-
ment during bug reproduction. For example, the following discussion comments
from Firefox (Bug #1477421) indicate a misunderstanding of the specifications
regarding autoplay for muted videos.

R: “Actual results: Video autoplays although the sound is muted. Expected re-

sults: Video should not autoplay.”

D: “Muted videos are expected to autoplay. This is a design choice.”

Performance Regression (F6) related bugs (a.k.a., performance bugs) are
hard to reproduce. They are often subtle and subjective, or dependent on specific
characteristics of a machine, which introduces confusion and disagreement among
the stakeholders (e.g., reporters, developers) during bug reproduction. For exam-
ple, the following comment from Firefox (Bug #1485402) indicates the subtle and
subjective natures of the performance bug.

D: “On my 24-core desktop machine, I’m seeing Firefox Nightly 63 being quite a

bit *faster* than Chrome DevEdition 70. I wonder why I’m seeing the opposite

of Stephen (reporter)...”

Lack of Cooperation (F7) among the stakeholders is another key factor that
could make a reported bug non-reproducible. An earlier study [60] also suggests
that collaboration dynamics could play a major role during bug reproduction.
Sometimes the reported bugs fail to draw the attention of human developers. They
are closed by either the automated bots (e.g., Eclipse Genie) or the reporters and
are marked as WORKSFORME. Bug reproduction might also fail due to the lack
of response from the reporters. For example, the following comment from Eclipse
(Bug #495568) indicates that the bug cannot be reproduced due to the lack of
cooperation (and required information) from the bug reporter.

14 Mohammad M. Rahman et al.

D: “No further feedback, closing. Please reopen if you can confirm the problem

and provide reproducible examples.”

Memory Misuse (F8) such as memory leaks, memory overflows, and concurrent

modifications might trigger the complex bugs that are difficult to reproduce. A leak
of a small object that is hardly noticeable during the execution of the program
might cause the memory usage to grow unbounded. Such issues could also be
compounded by legacy hardware. For example, the following comment from Firefox
(Bug #1547586) indicates the complex nature of a memory related bug regarding
excessive RAM usage.

D: “I am unable to reproduce. I created a new profile, opened ... until the page

was finished loading, measured RAM ... and a Firefox about:memory report.

Then I disabled accessibility services, and restarted with ..., and re-measured

RAM. I did not see any significant change. I tried this on a 9 year old laptop

and a 2 year old laptop and saw no significant differences.”

Third-Party Defects (F9) are often responsible for non-reproducible bugs.
Modern software systems are routinely developed with third-party dependencies
(e.g., libraries, resources) and environmental specifications (e.g., OS, memory,
hardware, plug-ins, anti-viruses [13]) that might trigger bugs and failures. How-
ever, these bugs might not be reproducible since the developers often do not have
enough control over them, or do not have a way to install the same third-party soft-
ware which is the root cause of the bug. For example, the following comment from
Firefox (Bug #1427890) suggests that the bug could be specific to an operating
system.

D: “It works for me on Firefox 57 with windows 10. Since reporters use windows

7, maybe it is related to the windows version.”

Restricted Security Access (F10) is another important factor behind the non-
reproducibility of software bugs. Although bug reports are supposed to provide the
required information for reproducing the bugs, many confidential items (e.g., user
credentials, security certificates) cannot be shared publicly. Thus, reproducing the
end-user’s experience accurately could be challenging. For example, if there is a bug
with Firefox on Netflix and the developer does not have a NetFlix account, then
she might not be able to reproduce it. The following comment from Firefox (Bug
#1594272) indicates the non-reproducibility of a bug due to possibly restricted
security access.

D: “Hi Mark, I wasn’t able to reproduce the bug since I don’t have an account

but I’ve chosen a component for this bug ...”

Touch & Gestures (F11) are often hard to imitate precisely, which could make
accessibility-related bugs non-reproducible. For example, the following comment
from Firefox (Bug #1457726) discusses the challenges in reproducing a touch/ges-
ture related bug.

D: “I have tested this issue on a Surface machine with Windows 10 x64 ... and

haven’t managed to reproduce the issue. After opening multiple tabs and tapping

on the ”x” close button, the tab is automatically closed”

Title Suppressed Due to Excessive Length 15

Table 3: Prevalence of the Key Factors in Non-Reproducible Bugs

Proposed Study Joorabchi et al.
Key Factor Firefox Eclipse Key Category All

F1: Bug Duplication 26.83% 31.33% C1: Inter-bug Dependencies 45.00%
F2: False Positive Bug 4.57% 21.67% - -
F3: Bug Intermittency 26.22% 2.61% C5: Non-deterministic Behaviour 3.00%
F4: Missing Information 1.52% 13.84% C3: Insufficient Information 14.00%
F5: Ambiguous Specifications 5.18% 9.40% C4: Conflicting Expectations 12.00%
F6: Performance Regression 8.54% 1.83% - -
F7: Lack of Cooperation 3.96% 3.66% - -
F8: Memory Misuse 4.88% 1.00% - -
F9: Third-Party Defects 1.83% 2.35% C2: Environmental Differences 24.00%
F10: Restricted Security Access 4.27% 0.00% - -
F11: Touch & Gestures 2.44% 0.00% - -
Miscellaneous 9.76% 12.53% C6: Others 2.00%

Summary of RQ1-(a): There are at least 11 key factors (e.g., bug duplication,

intermittency, missing information, ambiguous specifications, third-party defects) that
could lead a reported software bug to non-reproducibility.

To better understand the importance of each of the identified factors, we an-
alyze their prevalence in our dataset containing non-reproducible bugs (Section
3.2). We determine the presence of one or more key factors in each bug report and
then summarize our findings (Table 3) as follows.

Table 3 shows the prevalence of 11 key factors in our dataset. We see that bug
duplication is a major factor behind bug non-reproducibility. About 29% of bugs
from the dataset cannot be reproduced since they are duplicates and were possibly
fixed earlier. Both Firefox and Eclipse systems encounter a significant number of
duplicate, non-reproducible bugs (e.g., 27%–31%). Bug intermittency is another
prevailing factor behind the bug non-reproducibility. On average, 14% of the bugs
do not occur frequently and consistently, which makes it hard to reproduce them.
Up to 26% of the Firefox bugs are intermittent in nature. Developers also fail
to reproduce at least 8% of the bugs due to missing information (e.g., steps to
reproduce, stack traces, test cases). This problem is especially severe for Eclipse
where ≈14% of the bug reports lack the required information for reproduction.
During our analysis, we also note that the mere presence of items might not be
sufficient rather they should be complete and accurate. Ambiguous specification
is another important factor that could lead ≈8% of bugs to non-reproducibility.
That is, the expected behaviours were either ill-defined or outdated, and the users
considered the legitimate software behaviours as bugs. From Table 3, we also see
that performance regression and false-positive bugs are also two important factors
behind the non-reproducibility of bugs. Minor performance losses as a side effect
of recovery from the critical bugs are often acceptable to the developers. Hence,
they might be reluctant to reproduce these performance bugs. On the other hand,
in false-positive bug reports, the reporters complain about non-existent software
features, which are impossible to reproduce. The remaining key factors (e.g., third-
party defects, memory misuse, restricted security access) lead ≈12% of the bugs
to non-reproducibility, which is also a significant amount. Finally, ≈11% of the
bugs from our dataset are application-specific (e.g., video player autoplay problem,
refactoring failure) that cannot be reproduced due to miscellaneous reasons (e.g.,
novice mistakes).

16 Mohammad M. Rahman et al.

Fig. 3: Developers’ responses on the key factors behind bug non-reproducibility

Fig. 4: Prevalence of key factors behind bug non-reproducibility (a) Firefox, (b)
Eclipse, and (c) both software systems

We also investigate how one or more key factors might lead the software bugs
to non-reproducibility. Fig. 4 summarizes our analysis from this investigation.
We found that 75% of the non-reproducible bugs from our dataset cannot be
reproduced due to one of the key reasons (e.g., bug duplication, intermittency,
missing information). On the other hand, about 22% of the bugs have two key
factors and 2% of the bugs have three factors behind their non-reproducibility.
Bug non-reproducibility due to multiple factors might be more difficult to resolve
than that due to single factor.

Summary of RQ1-(b): About 75% of the selected bugs are non-reproducible be-
cause of single key factors whereas the remaining ones are made non-reproducible
by a combination of two or more key factors (e.g., intermittency + regression).

4.2 RQ2: What do the professional developers consider to be key factors behind
the non-reproducibility of bugs?

In the developer study, we present our identified factors behind bug non-reproducibility
(Table 3) to the professional developers. We collect their responses on whether they
agree or disagree with these factors. Fig. 3 shows that about 92% of the partic-
ipants (i.e., 12 of 13) consider missing information (F4) to be a major cause of
bug non-reproducibility. About 85% of the participants (i.e., 11 of 13) agree that
duplicate bugs (F1), performance bugs (F6), memory misuse related bugs (F8),
and third-party defects (F9) are often hard to reproduce. According to 77% of

Title Suppressed Due to Excessive Length 17

the professional developers (i.e., 10 of 13), false-positive bug reports (F2), bug in-
termittency (F3), ambiguous software specifications (F5), and restricted security
access (F10) could lead the reported bugs to non-reproducibility. Finally, 69% of
the developers (i.e., 9 of 13) agree that touch and gesture related bugs (F11) could
also be difficult to reproduce due to their subtle, subjective nature. All these find-
ings above suggest that the professional developers agree to a large extent with
our identified factors behind the non-reproducibility of bugs.

We also provide free-form text boxes in our questionnaire to allow the develop-
ers to mention any factor that was not included in our list. Two more important
causes were identified from their responses. First, hardware faults are very hard to
reproduce. These bugs might need a specific combination of hardware and software
(e.g., device drivers) and a long set of steps to reproduce. They also align with
one of our factors– third-party defects (F9). Second, bugs connected to a random
function that is initialized with an unknown seed could also be hard to reproduce
due to their non-deterministic nature.

Summary of RQ2: About 70%–90% of the professional developers agree with
the factors behind bug non-reproducibility derived from our empirical study. They
also point out two additional types of bugs (e.g., hardware faults, random function
bugs) that are difficult to reproduce.

4.3 RQ3: Do the identified factors match with the earlier findings from the
literature?

Our first research question (RQ1) identifies a list of key factors behind bug non-
reproducibility (Table 2) using qualitative analysis, which were cross-examined by
a group of professional developers (RQ2). However, the generalizability of bug non-
reproducibility could be further strengthened by validating these factors against
the previously reported causes [38]. Joorabchi et al. [38] report six major causes
of bug non-reproducibility. Table 3 shows their reported causes. We analyse each
of our key factors, identify the semantically equivalent causes from their list by
consulting their corresponding explanations and examples, and then determine the
agreement between these two lists as follows.

From Table 3, we see that five of our key factors can be comfortably mapped to
their Top-5 causes as follows. First, both their study and ours suggest that bug du-
plication (i.e., F1↔C1) is the most dominant factor behind bug non-reproducibility.
That is, a significant number of non-reproducible bugs are already fixed. Second,
while bug intermittency (i.e., F3↔C5) is another important factor according to
our analysis, Joorabchi et al. found it less important. Third, both studies agree
that missing information (i.e., F4↔C3) is a major factor that could lead ≈14% of
the reported bugs to non-reproducibility. Fourth, ambiguous specifications seman-
tically match with conflicting expectations (i.e., F5↔C4) due to misunderstanding
of the software’s correct behaviours. Both their study and ours report this as an
important cause behind bug non-reproducibility. Fifth, third-party defects and
environmental differences could also be considered as equivalent causes of bug
non-reproducibility (i.e., F9↔C2). The environmental differences are mostly cre-
ated by the third-party items (e.g., operating system, network configurations) and
the software bugs triggered by them could be hard to reproduce for the developers.

18 Mohammad M. Rahman et al.

Thus, in essence, our study reproduces all the major causes reported by Joorabchi
et al., which strengthens the generalizability of our findings.

Besides the existing equivalent causes, we also identify several novel causes of
bug non-reproducibility that were not previously known. For example, we found
that false-positive bug reports could be a major source of non-reproducibility (e.g.,
F2, 14% bugs). We also found that performance bugs could be difficult to repro-
duce since they are often subjective in nature. Minor performance loss as a side
effect of critical changes is often overlooked by the developers. According to our
analysis, memory misuse related bugs (e.g., memory leak, memory overflow) are
also hard to reproduce. We also found three other factors – lack of cooperation,
restricted security access, touch & gestures – that could be responsible for 7% of
non-reproducible bugs. Furthermore, our developer study reveals two more com-
plex bugs (e.g., hardware faults, bugs connected to random function) that could
be very hard to reproduce.

We also compare our findings with the earlier ones [38] in terms of assigned
cause categories. According to Joorabchi et al., each bug report could be non-
reproducible due to only one major cause. However, we found that at least 25%
of the reported bugs could be non-reproducible because of a combination of two
or more factors.

Summary of RQ3: Five of our key factors match with the previously reported
causes of bug non-reproducibility [38]. Our study also reports eight novel factors

(false-positive bugs, performance regression, lack of cooperation, memory misuse,
restricted security access, touch & gestures, hardware faults, bugs from random
functions) that could lead the reported bugs to non-reproducibility. Thus, our
study strengthens the understanding of bug non-reproducibility both by confirming
the earlier findings and by uncovering new factors.

4.4 RQ4: How do the professional developers deal with non-reproducible bugs in
practice?

In our developer survey, we ask the developers about how they handle the non-
reproducible bugs in practice. We wanted to know what actions they take when
the reported bugs cannot be reproduced due to various causes (e.g., Table 2). We
carefully analyze their qualitative responses against our questions, detect the gen-
eral themes, and then summarize their actions in respect to the non-reproducible
bugs as follows.

(a) Duplicate, non-reproducible software bugs are generally closed by

the developers. That is, if the developers find a duplicate bug to be working in
the latest release, they might close it as WORKSFORME. They could also try to
find whether the patch of the original bug solves the bug at hand, and then mark
this bug as a DUPLICATE of the original bug.

(b) Developers generally close the false-positive bugs as INVALID. They
also consult with official functional specifications and occasionally send an expla-
nation to the bug reporters. For example, according to one participant, “I write a

comment explaining why it is a false positive and then close the bug.”

(c) Developers attempt to collect useful information from various sources

when they encounter intermittent bugs. For example, if the bug leads to a sys-

Title Suppressed Due to Excessive Length 19

tem crash, they ask for crash dump from the reporter. They also look for debugging
logs or system logs associated with the bug, which can provide them rich contexts
or insights. They also search for fellow developers and testers who might have ex-
perience with similar bugs, and then delegate the reproduction task to them. The
intermittent bugs are also marked as low priority bugs by the developers. That is,
if they are not encountered again for a certain period (e.g., 12 weeks), they are
eventually closed.

(d) Developers request for more information (e.g., steps-to-reproduce,

screencast) from the reporters when the bugs cannot be reproduced due to

missing information. If the information is not provided in a timely fashion (e.g.,
two weeks), then the bug is closed as WONTFIX.

(e) Developers ask for further clarifications from the reporters when

the bugs cannot be reproduced due to conflicting expectations. In particu-
lar, they explain the expected outcome of a software based on official functional
requirements, request for the clarifications and then close the bug if no feedback
is received within a certain period (e.g., two weeks).

(f) Developers request for performance tracing information (e.g., per-

formance profiles) when they deal with performance bugs. Such information
might help them identify the source of performance bottleneck. They also look for
the colleagues who might have relevant expertise.

(g) Developers carefully examine the third-party dependencies, their

versions and compatibility when they encounter non-reproducible software bugs
triggered by third-party defects. They also check the logs for potential clues and
use docker containers for more in-depth investigation. While they emphasize on
using only authentic, well-tested plug-ins, many of them are in favour of banning
such third-party components that have a strong negative impact upon the main
applications (e.g., Firefox browser).

(h) Non-reproducibility of software bugs due to restricted security ac-

cess is a major concern for the developers. They often work with the reporters
closely to help her debug and potentially fix the bug. They also request for re-
gression range from the reporter that might have induced a bug. They might also
collect appropriate permission and dummy accounts from the testers to reproduce
the reported bugs.

(i) Developers attempt to optimize their code when they deal with mem-

ory misuse related bugs. They increase the memory size for their application and
perform extensive debugging to avoid any potential memory leaks. Although the
developers claim that they hardly encounter touch/gesture related bugs, they want
to take help from the experts in dealing with these bugs.

Summary of RQ4: Developers manually identify and close the duplicate and
false-positive bug reports. They often look for useful, complementary information
from multiple sources when they deal with complex bugs such as intermittent
bugs, performance bugs or third-party bugs. They also work closely with various
stakeholders (e.g., fellow developers, testers, reporters) and often delegate bug
reproduction task to them.

20 Mohammad M. Rahman et al.

4.5 RQ5: How to prevent the non-reproducibility and/or improve the
reproducibility of reported bugs?

In our developer study, we ask the developers about how the research commu-
nity might be able to assist them in dealing with non-reproducible bugs. Given
their responses and our empirical analysis, we provide a list of actionable insights
both for preventing the non-reproducibility and for improving the reproducibility
of software bugs as follows.

(a) Develop intelligent tools for detecting the duplicate bugs. About 29%
of the non-reproducible bugs are duplicate bugs, which are already fixed (e.g.,
Table 3). Most of these bugs are marked as duplicates by the developers during
their failed attempts for reproduction. These reproduction efforts could be saved by
carefully detecting the duplicate bugs before their submission. One of our study
participants responds, “Help finding duplicate bugs automatically.” Unfortunately,
many existing tools for detecting the duplicate bugs might not be mature enough
for practical use. In particular, they simply rely on textual features [23, 59], meta
data from bug reports (e.g., products, components) [12] or execution traces [63]
for detecting the duplicate bugs, and as a consequence, might fail to detect the
complex duplicate bugs that have different symptoms but share the same root
causes. Therefore, intelligent tools or techniques are warranted that can accurately
detect the duplicate bugs during their report submission and thus can save the
wasted efforts in failed reproduction. Furthermore, by putting together multiple
similar bugs that share the same root cause, such a tool might equip the developers
with enough information for a single bug. One of our developer participants also
confirms –“The more information, the better.”

(b) Develop intelligent tools for detecting the false-positive bug reports.

About 5%–22% of the non-reproducible bugs are false-positive bugs. They often
discuss the non-existent features of a software system that can be neither exercised
nor reproduced by the developers. However, this non-reproducibility is detected
by the developers during their failed reproduction attempts and deliberations,
which could be costly. Thus, intelligent tools that can detect the false-positive bug
reports during the submission could save valuable development time and efforts.
A few existing technique [14, 41] attempt to separate the bug reports from the
feature requests by analysing their textual features, which might always not be
enough. In particular, the underlying semantics could be crucial to separate the
software bugs from the features. Thus, further research is warranted to prevent
the submission of feature requests as bug reports in the bug-tracking system.

(c) Complement the incomplete bug reports. Bug reports often lack the
elements that are crucial to bug reproduction (e.g., steps to reproduce, expected
behaviour, stack traces) [21]. A few studies [70, 22] attempt to reproduce the
reported bugs by constructing appropriate test cases from the available information
in the bug reports (e.g., steps to reproduce). Unfortunately, they are not sufficient
since they are likely to fail when the bug reports lack the required information.
Thus, more intelligent tools and techniques are warranted that (1) can help the
reporters improve their bug reports during submission or (2) can automatically
complement the incomplete bug reports by leveraging the historical information.
For example, incomplete bug reports could be complemented with partial but
valuable information collected from their duplicate or similar bug reports (e.g.,
stack traces, screen shots).

Title Suppressed Due to Excessive Length 21

(d) Improve software specifications and documentations. A significant
fraction of the reported bugs (e.g., 8%) cannot be reproduced due to conflicting
expectations between the reporters and the developers. Such a conflict is often trig-
gered by an incorrect understanding of the expected behaviours of a software sys-
tem, which underscores the need for up-to-date, readable software specifications.
One of our study participants responds –“I do see that some companies’ documen-

tations are vague or ambiguous, so developers, QA, managers, or users may not have

a clear understanding on the requirement.” There have been a few tools for creating
software documentations from the code (e.g., Doxygen [7], srcML [10]). Since they
provide API-level documentations, they might be useful to the developers but not
to the users of a software who need more high-level documentations. Thus, further
research is warranted on (1) how to validate the correctness of existing software
documentations, (2) how to improve the poor-quality software documentations,
and (3) developing tools and techniques that can offer suitable, high-level docu-
mentations for software users. Tools that can point the users to the right location
within the software documentations could also be very useful.

(e) Develop appropriate sandbox to assist in the bug reproduction. To
investigate several complex bugs (e.g., intermittent bugs, concurrency bugs, per-
formance bugs), software systems need to be executed repeatedly. For example,
intermittent bugs are non-deterministic and their true characteristics could only
be understood from multiple executions. Developers might need to contrast be-
tween a normal execution and a crash using their memory dumps when they deal
with memory/concurrency bugs. They might also need to compare among the
performance profiles from multiple executions to identify the performance bugs.
According to the developers, there is a marked lack of such tools and technologies
that could help them execute their software applications repeatedly and reproduce
these complex bugs. For example, one of our developer participants responds, “It

would be interesting to have a tool that allows the run of a task multiple times and re-

porting some relevant information as memory usage, dependencies errors, etc.” There
have been a few relevant tools (e.g., Firefox Profiler [8], rr [43], Pernosco [9]). Fire-

fox Profiler can analyse the performance profiles of Firefox and the Gecko browser
engines. On the other hand, rr and Pernosco can record program executions during
testing, which could be useful for debugging. However, many of these tools might
be limited in scope (i.e., Firefox-specific) or not well-adapted for reproducing bugs.
Thus, further research is warranted to come up with an appropriate sandbox for
reproducing the bugs.

(f) Find the people with right expertise automatically. Software devel-
opers often look for fellow developers and testers with relevant expertise during
reproducing complex bugs (e.g., intermittent bugs, concurrency bugs, performance
bugs). Although the search might be trivial for a small development group, it could
be a major challenge for a geographically distributed, large group. Besides, the rel-
evant expertise might not be obvious and could be hidden as low-level code changes
within the version control history. Thus, an intelligent tool for finding the right
people might greatly help the developers. There have been a rich literature on
finding experts during bug triaging [52]. Many of these studies simply rely on the
texts of a bug report rather than its semantics (e.g., bug types, root causes) to
find similar past bug reports and then suggest their assigned developers as experts,
which might not be effective enough for practical, widespread adoption. Many ex-
isting techniques also rely on naive heuristics (e.g., commit history, code churn)

22 Mohammad M. Rahman et al.

Table 4: Features Used for the Bug Report Classification

Feature Category Description

component

Structural

Name of the component that a reported bug is related to.
priority Priority of a reported bug. It has five different levels (e.g.,

P1–P5), where P1 refers to the highest priority.
severity Severity of a reported bug. It can be blocker, critical, major,

normal, minor, or trivial.
isDependent Indicates whether a reported bug depends on other bugs

from the bug tracking system.
numberOfDepends Number of bugs on which a reported bug depends on.
doesBlock Indicates whether a reported bug blocks one or more exist-

ing bugs from the bug tracking system.
numberOfBlocked Number of bugs blocked by a reported bug.
reporterIsAssignee Indicates whether a bug report has been assigned to its

reporter for the fixing.
hasCC Indicates whether a reported bug has been forwarded to

one or more developers.
numberOfCC Number of developers to whom a reported bug has been

forwarded.
hasAttachment Indicates whether a bug report includes one or more at-

tachments.
numberOfAttachment Number of attached items to a submitted bug report.
titleReadability

Textual
Readability score of the title from a bug report.

descReadability Readability score of the description from a bug report.
positiveCount

Semantic
Number of positive statements in the title of a bug report.

negativeCount Number of negative statements in the title of a bug report.
neutralCount Number of neutral statements in the title of a bug report.

as a proxy of developer’s expertise [47, 58], which might not be enough. Thus,
developing more effective tools for finding the experts during bug reproduction
could be a scope for future research.

Summary of RQ5: Software developers need intelligent, effective tools for (1)
detecting the duplicate or false-positive bug reports, (2) complementing the in-
complete bug reports, (3) improving the software documentations, and (4) finding
the people with right expertise. They also need a sandbox tool where they can
repeat their experiments as a part of reproducing the complex bugs (e.g., perfor-
mance bugs) and exploring the execution space of their software systems.

4.6 RQ6: Can we leverage machine learning to characterize non-reproducible
software bugs?

Our previous research questions explain why the reported bugs might not be re-
producible (RQ1-RQ4) and how their reproducibility could be improved (RQ5).
In this section, we further contrast between non-reproducible and reproducible
bugs, classify them using machine learning models, and then interpret the model
predictions using the SHAP framework [40]. Our goals are to (a) explain how the
non-reproducible bugs might differ from the reproducible bugs in terms of tradi-
tional features (e.g., severity, attachment, readability), and (b) suggest how they
could be improved. We thus answer our research question RQ6 as follows.

(a) Model training: We train our classification models using five popular ma-
chine learning algorithms – Naive Bayes [37], Logistic Regression [19], J48 [46],
RandomForest [18], and XGBoost [24]. Naive Bayes assumes independence among

Title Suppressed Due to Excessive Length 23

features and predicts a class based on their maximum log-likelihood estimation.
Logistic regression assumes a linear relationship between the features and classes,
and provides a binary response using a sigmoid function. Unlike the Logistic regres-
sion, J48 is a decision-tree based algorithm that assumes a non-linear relationship
between the features and classes. On the other hand, RandomForest is an ensemble
learning technique that predicts a class based on the responses from multiple de-
cision trees. Finally, XGBoost is the state-of-the-art tree-based ensemble learning
technique that adopts an extreme gradient boosting method [24]. We use 10-fold
cross-validation to train and test our classification models. To train our first four
models, we use WEKA tool whereas the XGBoost model was trained using xgboost

from the scikit-learn library. Each of these models was trained using the default
parameters and thresholds that were provided by these libraries.

(b) Classification results and discussions: Table 5 summarizes the results of
our five classification models. We see three important findings. First, all five mod-
els perform well and achieve high precision, high recall, and high F1-score. While
RandomForest and XGBoost models stand out, the other three models can be
considered as comparable in their performance. Second, with non-reproducible bug
reports, recall is relatively higher than corresponding precision for each of our five
different models. We conducted Mann-Whitney Wilcoxon and Cliff’s delta tests
on these precision and recall measures and found the recall measures to be signif-
icantly higher than precision measures with a large effect size (i.e., p-value=0.008,
δ=1.00). On the other hand, our models deliver high precision and relatively low re-
call for the reproducible bug reports. We also conducted Mann-Whitney Wilcoxon
and Cliff’s delta tests on these precision and recall measures and found the pre-
cision measures to be significantly higher than recall measures with a large effect
size (i.e., p-value=0.008, δ=1.00). These findings suggest the inherent differences
between the two types of bugs (and their corresponding reports). Third, despite
the sophistication (e.g., extreme gradient boosting), the XGBoost model could not
always outperform the traditional RandomForest model with our bug reports.

We train our classification models with different combination of features and
evaluate their performance using 10-folds cross-validation. Table 5 shows the ef-
fectiveness of three different feature types–structural, textual, and semantic (Table
4). When trained with 12 structural features, we see that the XGBoost model
performs the best with non-reproducible bugs (e.g., 80% precision, 84% recall).
Its performance is comparable to that of RandomForest with the reproducible
bugs. However, the XGBoost model outperforms all four other models with a
small margin for the whole dataset and achieves 81% precision and 81% recall.
When both structural and textual features (e.g., readability) are used in model
training, we see that RandomForest outperforms other models in classification. It
achieves more than 80% precision for both the non-reproducible and reproducible
bugs with 78%–83% recall. Thus, as a whole, it delivers 80.50% precision, 80.40%
recall, and 80.40% F1-score for a dataset of 1,109 bug reports. We also repeat our
experiment using an extended dataset of 1,990 bug reports and find that Ran-
domForest achieves 83.50% precision and 83.50% recall for the combination of
structural and textual features. According to our experiments, the addition of se-
mantic features (e.g., sentiment) did not improve the model performances. In fact,
we notice that the performance dropped for many models due to the addition of
sentiment features. However, our RandomForest model outperformed the other

24 Mohammad M. Rahman et al.

Table 5: Classification of Bug Reports

Model
Non-reproducible Reproducible All

P R F P R F P R F

Using structural features only (1,109 bug reports)
NB 75.20% 86.10% 80.30% 82.20% 69.20% 75.20% 78.50% 78.00% 77.80%
LR 76.60% 83.00% 79.70% 79.80% 72.60% 76.00% 78.10% 78.00% 77.90%
J48 75.60% 84.90% 80.00% 81.20% 70.40% 75.40% 78.30% 77.90% 77.80%
RF 79.30% 82.50% 80.90% 80.20% 76.70% 78.40% 79.70% 79.70% 79.70%

XGB 80.22% 83.84% 81.90% 81.80% 77.49% 79.49% 80.98% 80.80% 80.74%
Using both structural and textual features (1,109 bug reports)

NB 74.30% 85.80% 79.60% 81.50% 67.90% 74.10% 77.80% 77.20% 77.00%
LR 76.00% 83.20% 79.40% 79.70% 71.70% 75.50% 77.80% 77.60% 77.50%
J48 75.80% 84.20% 79.80% 80.60% 70.90% 75.40% 78.10% 77.80% 77.70%
RF 80.00% 83.20% 81.50% 81.00% 77.50% 79.20% 80.50% 80.40% 80.40%

XGB 79.15% 82.29% 80.57% 80.48% 76.54% 78.30% 79.79% 79.54% 79.48%
Using both structural and semantic features (1,109 bug reports)

NB 75.20% 86.80% 80.60% 82.90% 69.00% 75.30% 78.90% 78.30% 78.10%
LR 76.30% 83.30% 79.70% 80.00% 72.00% 75.80% 78.10% 77.90% 77.80%
J48 77.10% 84.20% 80.50% 81.00% 73.00% 76.80% 79.00% 78.80% 78.70%
RF 79.00% 82.10% 80.50% 79.80% 76.40% 78.00% 79.40% 79.40% 79.30%

XGB 79.11% 81.23% 80.08% 79.33% 76.73% 77.91% 79.21% 79.08% 79.04%
Using structural, textual, and semantic features (1,109 bug reports)

NB 73.90% 85.90% 79.50% 81.50% 67.20% 73.70% 77.60% 76.90% 76.70%
LR 75.60% 83.00% 79.10% 79.50% 71.10% 75.00% 77.50% 77.30% 77.20%
J48 77.70% 83.90% 80.60% 80.90% 73.90% 77.30% 79.20% 79.10% 79.00%
RF 79.60% 83.30% 81.40% 81.00% 76.90% 78.90% 80.30% 80.30% 80.20%

XGB 79.13% 81.94% 80.42% 79.92% 76.55% 78.10% 79.51% 79.35% 79.31%

Using both structural and semantic features (SentiStrength) (1,109 bug reports)
NB 75.20% 86.30% 80.40% 82.40% 69.20% 75.20% 78.60% 78.10% 77.90%
LR 76.40% 82.60% 79.40% 79.40% 72.40% 75.80% 77.90% 77.70% 77.70%
J48 76.00% 84.20% 79.90% 80.70% 71.30% 75.70% 78.30% 78.00% 77.90%
RF 78.80% 80.90% 79.90% 78.80% 76.50% 77.60% 78.80% 78.80% 78.80%

XGB 77.70% 82.27% 79.86% 79.86% 74.49% 76.99% 78.73% 78.54% 78.48%
Using textual, structural, and semantic features (SentiStrength) (1,109 bug reports)

NB 74.00% 85.40% 79.30% 81.10% 67.50% 73.70% 77.40% 76.80% 76.60%
LR 76.00% 82.80% 79.20% 79.40% 71.70% 75.30% 77.60% 77.50% 77.40%
J48 76.20% 82.50% 79.20% 79.20% 72.20% 75.60% 77.70% 77.50% 77.50%
RF 78.70% 82.60% 80.60% 80.20% 75.80% 77.90% 79.40% 79.40% 79.30%

XGB 77.70% 82.27% 79.86% 79.86% 74.49% 76.99% 78.73% 78.54% 78.48%

Using structural and textual features (1,990 bug reports)
NB 74.20% 85.20% 79.30% 82.10% 69.50% 75.30% 78.10% 77.50% 77.30%
LR 78.80% 84.80% 81.70% 83.10% 76.60% 79.70% 80.90% 80.80% 80.70%
J48 81.30% 83.20% 82.20% 82.30% 80.30% 81.30% 81.80% 81.80% 81.80%
RF 82.90% 84.90% 83.90% 84.10% 82.00% 83.00% 83.50% 83.50% 83.50%

XGB 81.85% 83.95% 82.80% 83.22% 80.73% 81.86% 82.53% 82.36% 82.34%
Using structural and semantic features (1,990 bug reports)

NB 73.50% 85.90% 79.30% 82.50% 68.20% 74.70% 78.00% 77.20% 77.00%
LR 79.30% 83.70% 81.40% 82.30% 77.50% 79.80% 80.70% 80.70% 80.60%
J48 79.70% 85.50% 82.50% 83.90% 77.60% 80.60% 81.80% 81.60% 81.60%
RF 82.50% 83.30% 82.90% 82.70% 81.80% 82.20% 82.60% 82.60% 82.60%

XGB 82.81% 84.64% 83.66% 84.08% 81.96% 82.94% 83.43% 83.32% 83.30%
Using structural, textual, and semantic features (1,990 bug reports)

NB 74.50% 85.80% 79.70% 82.70% 69.70% 75.70% 78.50% 77.90% 77.70%
LR 80.40% 85.10% 82.70% 83.70% 78.60% 81.10% 82.00% 81.90% 81.90%
J48 80.90% 82.10% 81.50% 81.30% 80.00% 80.60% 81.10% 81.10% 81.10%
RF 82.70% 85.50% 84.10% 84.60% 81.50% 83.00% 83.60% 83.60% 83.60%

XGB 82.90% 84.94% 83.87% 84.24% 81.95% 83.03% 83.56% 83.47% 83.46%

NB = Naive Bayes, LR = Logistic Regression, RF = RandomForest, XGB = Extreme Gradient Boosting,
P = Precision, R = Recall, F = F1-score, Emboldened = The highest metric among the five techniques

four classification models when all three types of feature (e.g., structural, textual,
semantic) were combined (e.g., 80.30% precision, and 80.30% recall).

We repeat our experiments with the sentiment features collected by SentiStrength

tool [57] (Section 3.5), and Table 5 summarizes our classification results of repro-

Title Suppressed Due to Excessive Length 25

ducible and non-reproducible bug reports. We found that our core findings on
sentiment features did not change and SentiStrenth was found to be comparable
to Stanford CoreNLP with respect to our dataset and trained models.

While our original dataset (576 non-reproducible + 533 reproducible) is imbal-
anced, we also repeat our experiment with a balanced dataset using RandomForest,
the best-performing algorithm, as shown above. Our model achieves 81.40% preci-
sion and 81.40% recall with the balanced dataset, which are only 1% higher than
those with the original dataset (e.g., 1,109 bug reports). Thus, the data imbalance
might have only negligible impacts upon our core findings.

We also repeat our experiments with an extended dataset of 1,990 bug reports
(i.e., 1,009 non-reproducible + 981 reproducible). The details on dataset construc-
tion can be found in Section 3.1. Table 5 summarizes our experiment details. We
found that the precision and recall measures of each model improved consistently
with the extended dataset. For example, XGBoost model achieved 83.56% preci-
sion and 83.47% recall with this dataset. However, RandomForest model achieved
the maximum of 83.60% precision and 83.60% recall when all three types of fea-
tures – structural, textual, and semantic – were considered. Furthermore, we also
note that the semantic features (e.g., sentiment) marginally improved the model
performances when they were combined with the structural (e.g., presence of at-
tachment) and textual features (e.g., title readability), which indicates the benefit
of semantic features in the bug report classification task and thus also supports
an earlier finding [30].

All these findings above clearly suggest that (a) non-reproducible and repro-
ducible bug reports are different in their structural, textual, and semantic features,
and (b) they can be separated using machine learning models with a high accuracy.

(c) Interpretation of the classification between non-reproducible and

reproducible bugs: Our classification models were able to separate the non-
reproducible bugs from the reproducible bugs where they used several structural,
textual, and semantic features from the bug reports. In this section, we further
investigate how these features might have helped our machine learning models
classify the bug reports.

We use SHAP [40], a popular model interpretation framework, to interpret
the classification results of our models. The SHAP value is the average marginal
contribution of a feature (towards the model’s prediction) across all possible com-
bination of features [11]. It indicates whether a feature value can increase a model’s
prediction over a random baseline or not [40]. In our experiment, we perform a
binary classification where bug reproducibility was considered as the positive class
and non-reproducibility as the negative class. That is, our models attempt to pre-
dict the bug reproducibility by default. Thus, a positive SHAP value indicates an
increase in our models’ prediction towards bug reproducibility (i.e., positive class)
whereas a negative SHAP value indicates an increase in the prediction towards bug
non-reproducibility (i.e., negative class). Figures 5, 6, 7, 8, 9, 10, and 11 summarize
our analysis using SHAP values as follows.

Fig. 5 shows the importance of each feature using a bee swarm plot from our
RandomForest model. The bee swarm plot visualizes the SHAP value of a feature
from each of the training instances on the x-axis and then sorts all features on
the y-axis according to their sum of SHAP values. In our dataset, we encode
a boolean response into a number and represent false as 0 and true as 1. Our
plot indicates a low feature value with blue color and a high feature value with red

26 Mohammad M. Rahman et al.

Fig. 5: Feature importance using bee swarm plot (RandomForest model)

color. Thus, the false response and small numerical values are represented with blue
color whereas the true response and large numerical values are represented with
red color. We see that reporterIsAssignee is the most important feature according
to our RandomForest model. Interestingly, the same feature has been reported as
the most important by both the XGBoost model (Fig. 6) and Logistic Regression
model (Fig. 7). That is, whether a bug has been assigned to its original reporter
is an important predictor of its reproducibility. We note that this feature with
true response leads to positive SHAP values in all three plots, which indicates an
increased prediction towards bug reproducibility. We also analyze our dataset for
further insights on this. We found that 43.52% of our 533 reproducible bug reports
were assigned to their reporters whereas the same statistic is only 3.47% for the
non-reproducible bug reports. Thus, the bug reports assigned to their original
reporters (or developers with the knowledge of similar bugs) are more likely to be
reproducible than those from the others. This observation can be explained in two
ways. First, they could reproduce the bugs since they were the ones who observed
the manifestation of the bugs and knew the detailed contexts in which the bugs
appeared. Second, the working knowledge from the project (e.g., bug fixing) might
have equipped them with better insights to reproduce a reported bug.

We also analyze the next most important features – doesBlock, hasAttachment,
and isDependent– from each of our three bee swarm plots (Figures 5, 6, 7). We
see that their true responses are likely to increase our model’s prediction towards
bug reproducibility. We further investigate these features and found that (a) 51%
of the reproducible bug reports have at least one attachment, (b) 46% of them
block one or more bugs, and (c) 21% of them depend on other bug reports from
the bug-tracking system. On the other hand, 29% of the non-reproducible bug
reports have attachments, 16% of them block other bugs, and only 5% of them
depend on the other bugs respectively, which are significantly lower. Thus, the

Title Suppressed Due to Excessive Length 27

Fig. 6: Feature importance using bee swarm plot (XGBoost model)

Fig. 7: Feature importance using bee swarm plot (Logistic Regression model)

presence of attachments, blocked bugs, or dependencies might be an indication
of bug reproducibility. Our RQ7 (Section 4.7) also explores the connected bugs
to determine if they provide rich information that can help improve the non-
reproducible bugs. While an attachment can offer complementary information,

28 Mohammad M. Rahman et al.

Table 6: Feature Comparison between Reproducible & Non-Reproducible Bugs

Feature Reproducible Non-Reproducible

Bug ID 1468131 1574842
component Layout DOM: Security
priority P2 P5

severity normal normal
IsDependent false false
numberOfDepends 0 0
doesBlock true false
numberOfBlocked 3 0
reporterIsAssignee false false
hasCC true false
numberOfCC 2 0
hasAttachment true false
numberOfAttachment 2 0
titleReadability 27.16 34.24
descReadability 151.88 130.65
positiveCount 0 0
negativeCount 0 0
neutralCount 1 1

Fig. 8: Features importance using waterfall plot (RandomForest model)

the blocked bugs and dependencies could provide additional, actionable insights
to reproduce a bug.

To verify the above findings, we further analyze one reproducible bug (ID
#1468131) and one non-reproducible bug (ID #1574842) from Firefox Core com-
ponent using waterfall (e.g., Figures 8, 10) and force plots (e.g., Figures 9, 11).
Waterfall and force plots illustrate how different features contribute to classify
an instance into the positive class. In our experiment, we consider reproducible

as the positive class. From Fig. 8, we see that the presence of attachments and

Title Suppressed Due to Excessive Length 29

Fig. 9: Feature importance using force plot (RandomForest model)

blocked bugs plays a significant role by pushing our model’s prediction for the
example bug (ID #1468131) towards reproducible bug. According to the Table 6,
this bug has two attachments and blocked three other bugs, which confirms our
observation from Fig. 8. We also note that the absence of dependencies (i.e., isDe-

pendent=false, numberOfDepends=0) and the assignee not being the reporter (i.e.,
reporterIsAssignee=false) attempt to decrease our model’s prediction towards bug
reproducibility, as shown by their negative SHAP values. The force plot in Fig. 9
also illustrates how several features (e.g., numberOfAttachment, numberOfBlocked)
increase our model’s prediction towards bug reproducibility (i.e., positive class)
whereas the others (e.g., reporterIsAssignee) decrease the prediction and thus push
the prediction towards bug non-reproducibility. All these findings also align with
our observations from the three bee swarm plots above (Figures 5, 7, 6). From
Fig. 10, we see that the absence of blocked bugs, dependencies, attachments, and
the reporter not being the assignee (see details in Table 6) prevent the second
example bug (ID #1574842) from being classified as reproducible and push the
model’s prediction towards non-reproducibility. As shown in Table 6, this bug is
originally non-reproducible. The force plot in Fig. 11 also reinforces the same idea.
All these findings based on empirical evidence suggest a connection between the
presence of these items (e.g., attachments, blocked bugs, dependencies) and the
reproducibility of a software bug. We also notice that reproducible bugs are likely
to have a high priority.

While the above analysis focuses on structural features, we also investigate
the role of textual and semantic features in the bug report classification. From the
Figures 5, 6, 8, 9, 10, and 11 above, we see that the readability of title or description
texts is an important feature for classification. In particular, the high readability of
title texts (i.e., titleReadability) often leads to increased model prediction towards
reproducible bug. On the other hand, the readability of description texts has a
mixed impact on the classification according to our plots. We also perform further
manual analysis on our dataset to investigate this readability aspect. We found that
the reproducible bug reports might require marginally higher reading grade-level3

than non-reproducible bug reports to understand the concepts. That is, they are
slightly more difficult to read and comprehend. During our manual analysis, the
texts from non-reproducible bug reports were found to be generic, vague, and they
did not provide enough technical information to reproduce the bugs. On the other
hand, the reproducible bug reports often contained both regular texts and various
structured/technical entities (e.g., stack traces, program elements, diffs), which
were useful to reproduce a bug. It should be noted that we used traditional tools
[45] to measure the readability of contents from bug reports. Since these traditional
tools were originally designed for regular texts, they could be less than ideal for
determining the readability of bug reports containing structured/technical entities
(e.g., stack traces). Thus, the reproducible bug reports might have been considered

3 https://bit.ly/3rZnUwL

30 Mohammad M. Rahman et al.

Fig. 10: Feature importance using waterfall plot (Logistic Regression model)

Fig. 11: Feature importance using force plot (Logistic Regression model)

as less readable than the non-reproducible ones. From Figures 10, 11, we also see
that semantic features (e.g., positive count, neutral count) have a limited impact
on model prediction, which can be confirmed by Figures 5 and 6.

We also repeat our investigations using machine learning models trained with
the extended dataset of 1,990 bug reports (1,009 non-reproducible + 981 repro-
ducible). Figures 14, 15, and 16 summarize our investigation details. We see that
our findings about structural (e.g., reporterIsAssignee, hasAttachment) and textual
features (e.g., titleReadability) hold with the extended dataset, which increases the
confidence in our results and also indicates that our core findings might be gener-
alizable. Furthermore, the semantic features (e.g., positiveCount) were also found
to be less important than the others.

(d) Statistical analysis of the model features. In the above section, we
attempt to differentiate between reproducible and non-reproducible bug reports
using their structural, textual, and semantic features. Towards this end, we first
classify the bug reports using five machine learning models and then identify the
important model features using their SHAP values. To gain further insights re-
garding these features, we perform detailed statistical analysis using significance
tests. In particular, we investigate whether these features have significant impact

Title Suppressed Due to Excessive Length 31

Table 7: Impact of Model Features on Bug Reproducibility

Model Feature χ2 DF p-value Critical χ2

component 58.64 31 0.002*** 44.99
priority 44.69 5 1.67e-08*** 11.07
severity 66.11 7 8.99e-12*** 14.07
reporterIsAssignee 250.66 1 2.2e-16*** 3.84
hasAttachment 51.71 1 6.43e-13*** 3.84
isDependent 61.62 1 4.16e-15*** 3.84
doesBlock 119.16 1 2.2e-16*** 3.84
hasCC 38.02 1 7.01e-10*** 3.84

Fig. 12: Box plot of model features – (a) number of attachments, (b) number of
dependent bugs, (c) number of blocked bugs, and (d) number of cc members.

R=Reproducible, NR=Non-reproducible

on bug reproducibility and their distributions are significantly different across the
two types of bug reports. Tables 7, 8, and Fig. 12 summarize our statistical analysis
of the model features.

We select eight categorical features from our models and analyze their impact
on bug reproducibility using χ2-test. Table 7 presents our test details for each
of these categorical features where the reproducibility status (e.g., reproducible,
non-reproducible) is our dependent variable. We see that each categorical feature
including the important ones from our SHAP-based analysis has a significant im-
pact on bug reproducibility. For example, according to χ2-test, reporterIsAssignee

feature has a significant impact on the reproducibility of bug reports. The critical
χ2 value for a feature with 1 degree of freedom and a significance level of 0.05
is 3.84. The test involving reporterIsAssignee feature returns a χ2 value of 250.66,
which is 65 times higher than the critical value and thus indicates a significant
impact on the dependent variable (i.e., reproducibility). Similarly, the other cate-
gorical features – hasAttachment, isDependent, and doesBlock – have 13, 16, and 31
times higher χ2 values than their corresponding critical values, which also indicates
their significant impact on bug reproducibility.

32 Mohammad M. Rahman et al.

Table 8: Difference of Feature Distribution between Reproducible and
Non-Reproducible Bug Reports

Model Feature t DF p-value Cohen’s d

numberOfAttachment 7.33 907.51 4.93e-13** 0.45 (small)
numberOfDepends 5.06 590.01 5.51e-07* 0.32 (small)
numberOfBlocked 8.19 686.57 1.25e-15** 0.51 (medium)
numberOfCC 4.23 834.09 2.63e-05* 0.26 (small)
titleReadability 2.27 1,091.90 0.02 0.14 (negligible)
descReadability 0.29 1,044 0.77 0.02 (negligible)
positiveCount -1.25 1,099.40 0.21 0.07 (negligible)

While the categorical features have significant impact, we also collect four
relevant numerical features – numberOfAttachment, numberOfDepends, numberOf-

Blocked, and numberOfCC, and analyze their distribution using box plots. From
Fig. 12-(a), we see that at least 50% of the reproducible bug reports have more
than one attachment whereas such a statistic is only 25% for the non-reproducible
bug reports. In Table 8, we also perform statistical significance tests using t-test

and Cohen’s d. According to an existing study [26], non-parametric statistical tests
(e.g., Mann-Whitney Wilcoxon) might provide false-positive outcome for large
sample sizes (e.g., 576 non-reproducible + 533 reproducible) and thus parametric
tests should be preferred. Our Shapiro-Wilk test [51] with each of these numeric
features indicates that they are normally distributed (i.e., p-value=2.2e-16). We
thus perform a parametric test namely t-test to determine the significance of our
features. We find that the number of attachments is significantly higher with a
small effect size (i.e., p-value<0.05, d=0.45) in the reproducible bug reports than
that in non-reproducible bug reports. The distributions of numberOfDepends, num-

berOfBlocked, and numberOfCC features in the two types of bug reports are not
clearly separable, as shown in Fig. 12-(b), (c), and (d) respectively. However, ac-
cording to our statistical tests in Table 8, their distributions are significantly dif-
ferent with a small to medium effect size. That is, the distribution of important
features are indeed different between the two types of bug reports. Thus, to a
large extent, our statistical analysis supports and complements the findings from
the SHAP-based investigation above.

We also perform statistical tests on textual and semantic features such as
titleReadability, descReadability, and positiveCount. As shown in Table 8, the read-
ability of title is significantly different between the two types of bug reports, but
the effect size is negligible. We also do not find any significant difference in descrip-
tion readability or sentiment between the two types of bug reports. These features
were also not found to be important according to our SHAP-based analysis. Thus,
our statistical analysis align with the findings from the SHAP-based analysis.

(e) Actionable insights from the model interpretation: The above analysis
provides several actionable insights. First, according to our empirical evidence,
the bug reports submitted by the individuals involved in a software project are
more likely to be reproducible than those from the others. That means, while
collecting additional information from a reporter is important, finding the right
person having relevant experience might be even essential to reproduce a bug. For
example, the submitter of a bug report could be assigned to the bug whenever it
is feasible (e.g., contributing member in a project). This finding underscores the

Title Suppressed Due to Excessive Length 33

necessity of effective bug triage operation, which aligns with our earlier suggestion
on finding the experts based on our developer study (RQ5, Section 4.5).

Second, the inclusion of attachment, blocked bugs, and dependencies is likely
to improve the chance of a bug report being reproducible since they might offer
complementary information. In practice, these linked bugs might be detected and
recorded manually by the developers long after the submission of a bug. However,
if they can be automatically detected and included in the bug report during its
submission, the bug might have a better chance of being reproducible. In our next
research question–RQ7, we further analyze the linked bug reports to determine if
they actually contain meaningful information (e.g., screenshots, fixed code) that
could provide the missing details for bug reproduction.

Third, the readability of the title field has an important impact on model per-
formance according to our plots (e.g., Figures 7, 8). The high value of readability
might help classify a bug report as reproducible. However, this high readability
value indicates that one needs high reading grade-levels4 to understand the re-
producible bug reports. That is, the reproducibility of a bug might require more
technical specifications in its bug report rather than generic, natural language
texts. In other words, the reproducible bug reports could contain such technical
texts that are easy to understand for the experts but difficult for both novice de-
velopers and non-technical users. Thus, to ensure a better communication between
the bug reporters (e.g., non-technical users) and the software developers, we need
appropriate tools that can help write such bug reports that are not only easy-to-
understand but also contain the necessary technical details for bug reproduction.

Summary of RQ6: Our RandomForest model was able to classify the reproducible
and non-reproducible bug reports with 83.60% precision and 83.60% recall using
a combination of 12 structural, 2 textual, and 3 semantic features. According
to our findings, (a) bug reports submitted by contributing members of a project
are more likely to be reproducible than from the others, and (b) the presence of
attachments, blocked bugs, or dependencies in a bug report often improves its chance
of being reproducible. All these findings underscore the necessity of novel tools
that can help (a) triage the bugs more efficiently, (b) detect the linked bugs more
accurately, and (b) improve the readability of contents in a bug report.

4.7 RQ7: Can we automatically detect bug reports connected to a
non-reproducible bug and leverage them to support its reproducibility?

Our analysis using the Grounded Theory method and a developer survey shows
that non-reproducible bug reports often lack critical pieces of information. They
need to be complemented with relevant information (RQ5). Our analysis using
machine learning models also suggests that the presence of connected bugs in
a bug report could increase its chance of being reproducible (RQ6). However,
connections between existing bugs and non-reproducible ones are established by
human developers over a long period of time. Automatic establishment of these
connections during the submission of a bug report can equip the developers with
complementary information during bug reproduction. We thus design a technique

4 https://bit.ly/3rZnUwL

34 Mohammad M. Rahman et al.

to automatically detect the connected bug reports to a given bug using Information
Retrieval algorithms. Furthermore, we manually analyze 93 bug reports connected
to 71 non-reproducible bugs to gain further insights.

(a) Automatically detecting bug reports connected to non-reproducible

bugs. Connected bug reports are marked by human developers as either depends

on or blocked by the non-reproducible bugs. That is, these bug reports might have
some textual or semantic relevance with the non-reproducible bug reports, which
can be leveraged using a traditional approach such as Information Retrieval (IR).
We thus adapt an existing IR-based technique [68] to detect the connected bug
reports from our corpus. Ye et al. [68] first use a combination of textual and se-
mantic similarities to recommend relevant API documentation for a given query.
Yang et al. [67] also use a combination of textual and semantic similarities to
detect duplicates of a given bug report. Similarly, we apply a combination of tex-
tual and semantic similarities to detect the bug reports that are connected to a
non-reproducible bug report. First, we calculate textual similarity between any
two bug reports using BM25 algorithm [54], a popular, vector-space model-based
technique from Apache Lucene library [6]. Textual similarity methods are often
limited due to vocabulary mismatch problem [28]. We thus also calculate the se-
mantic similarity between any two bug reports using their word embedding vectors
and cosine distance measure where the embeddings were learned by FastText al-
gorithm [17] from our corpus. We use the default parameters from both BM25
and FastText algorithms for our similarity calculation. Finally, we rank each of
the candidate bug reports by combining their textual and semantic similarities
against a non-reproducible bug report. Then the top K bug reports (e.g., K=10)
from the ranked list are recommended as potentially connected bug reports.

To evaluate our adapted technique, we construct a corpus of 526 bug reports
(274 non-reproducible + 252 connected). The details on corpus creation are dis-
cussed in Section 3.1. We apply standard natural language preprocessing (e.g.,
stop word removal, token splitting, lower casing) to each corpus document (a.k.a.,
bug report) and then index them using Apache Lucene indexer [6]. We also use
three types of queries from each non-reproducible bug report – title, description,
and title + description. We execute each of these queries using Apache Lucene, col-
lect the top K documents (1≤K≤1000), re-rank them based on their textual and
semantic similarities with a search query (a.k.a., non-reproducible bug report),
and then compare the ranked results with ground truth for evaluation. We also
use a standard set of performance metrics such as Hit@K, Mean Average Preci-
sion (MAP), and Mean Reciprocal Rank (MRR) that are frequently used in the
relevant literature [58, 71, 62].

Table 9 summarizes the performance details of our adapted IR-based tech-
nique. We see that BM25-based textual similarity was able to achieve 64% Hit@5
and 74% Hit@10 with Eclipse system, which are moderately high according to
relevant literature [61, 71, 34]. However, the algorithm achieved a 31% Hit@10
with Firefox system, which is comparatively low. Word Embedding (WE)-based
semantic similarity also worked well with Eclipse but not with Firefox system. For
example, it achieved 77% Hit@10 with 35% MAP and 0.38 MRR in detecting the
bug reports connected to non-reproducible bug reports from Eclipse. On the other
hand, these metrics were 26%, 10%, and 0.12 respectively for the Firefox system.
When both textual and semantic similarities were combined, we also noticed a
significant performance increase with Eclipse but not with Firefox. For example,

Title Suppressed Due to Excessive Length 35

Table 9: Detection of Bug Reports Connected to Non-Reproducible Bugs

System Dataset Technique Query Hit@1 Hit@5 Hit@10 MRR MAP

Eclipse 22

BM25
T 9.09% 63.64% 72.73% 0.36 32.16%
D 0.00% 63.64% 63.64% 0.30 27.90%
T+D 0.00% 72.73% 81.82% 0.34 30.63%

WE
T 22.73% 59.09% 77.27% 0.38 34.80%
D 0.00% 54.55% 54.55% 0.22 19.84%
T+D 0.00% 50.00% 63.64% 0.26 22.47%

BM25+WE
T 22.73% 63.64% 72.73% 0.42 37.32%
D 0.00% 59.09% 77.27% 0.25 22.33%
T+D 0.00% 63.64% 86.36% 0.31 26.73%

Firefox 252

BM25
T 1.19% 21.83% 31.35% 0.12 10.61%
D 0.00% 10.71% 13.89% 0.06 5.31%
T+D 0.00% 13.49% 18.65% 0.08 6.51%

WE
T 3.57% 19.44% 25.79% 0.12 10.07%
D 0.00% 6.35% 11.51% 0.04 3.64%
T+D 0.00% 9.52% 12.70% 0.06 4.88%

BM25+WE
T 2.38% 20.64% 31.35% 0.12 10.97%
D 0.00% 9.92% 14.68% 0.05 4.71%
T+D 0.00% 12.30% 18.25% 0.07 5.84%

WE = Word Embedding-based semantic similarity, T = Title, D = Description, Emboldened = The
highest performance metric with each system

the combined algorithm (i.e., BM25+WE) achieved a maximum of 86% Hit@10,
37% MAP and 0.42 MRR with Eclipse system, which are promising. Unfortu-
nately, its performance did not improve with Firefox system. We also analyze the
effectiveness of three types of queries to detect the connected bug reports against
a non-reproducible bug report. As shown in Table 9, title was found to be the
most effective as a search query for both Eclipse and Firefox systems. However, a
combination of title and description (as a query) also achieved the highest Hit@10
for both BM25 and BM25+WE algorithms with Eclipse, which was interesting.

One might argue about the size of our dataset from Eclipse and Firefox systems
and might use it to explain the performance differences above. To address this con-
cern, we randomly sampled 10 cases from Eclipse and 10 cases from Firefox, and
manually analyzed them for further insights. We found that the connected bug
reports from Eclipse are more similar to their corresponding non-reproducible bug
reports than those from Firefox system. In particular, we noticed the presence of
similar keywords or the same program elements in their report titles. On the other
hand, Firefox was more likely to attach complementary items (e.g., screenshot,
commit diffs) to its bug reports. Our adapted technique did not use these com-
plementary items, which might explain the low performance with Firefox above.
Inclusion of these complementary items requires more work and possibly sophisti-
cated approaches, which could be a scope for future work.

(b) Manual analysis of the bug reports connected to non-reproducible

bugs. In bug tracking systems (e.g., Bugzilla), non-reproducible bug reports are of-
ten connected to existing bugs. While our designed technique automatically detects
the connected bug reports to non-reproducible bugs, we further manually analyze
the connected reports. Our underlying idea was to determine whether these bug
reports had the potential to support the reproducibility of non-reproducible bugs.
We thus select 71 non-reproducible bugs from our dataset and their 93 connected
bugs (i.e., excluding duplicate ones) from the bug tracking history. Our selection
process has been described in Section 3.1.

36 Mohammad M. Rahman et al.

Table 10: Items of Interest from the Connected Bug Reports

Key Description

isFixed Indicates whether the connected bugs are fixed or not.
isSameTopic Indicates whether a non-reproducible bug report and its con-

nected reports discuss the same or similar topics.
containsS2R Indicates whether any of the connected bug reports contains step

to reproduce or not.
containsProgramElement Indicates whether any of the connected bug reports contains ex-

plicit reference to faulty program elements or not.
containsStackTraces Indicates whether any of the connected bug reports contains stack

traces or not.
containsAttachment Indicates whether any of the connected bug reports contains any

attachment (e.g., screenshot, videos, tests, code) or not.
containsFixes Contains a fix patch.

Fig. 13: Presence or absence of structured items in the connected bug reports

We were interested to find out whether the connected bugs could be a source of
complementary information for the non-reproducible bugs or not. We thus analyze
the connected bug reports and look for meaningful information. Several structured
items such as steps to reproduce, stack traces, program elements, and attachments
have been reported to contain meaningful, non-trivial information [61, 62, 65]. We
thus carefully analyze the 93 bug reports that are connected to 71 non-reproducible
bugs, and detect the presence or absence of the structured items in these reports.
Table 10 provides a brief overview of all the items of interest from the connected
bug reports. We discuss our statistical findings from the analysis as follows.

Fig. 13 shows the presence of various structured items in the bug reports that
are connected to our non-reproducible bugs. We see that 44 out of our 71 bugs
(59%) are connected to highly similar, existing bugs (i.e., deal with similar prob-
lems or topics). More interestingly, 39 of them (55%) are connected to bugs that
are fixed. We also further analyze the metadata and found that 33 of these 39 bugs
(i.e., 85%) were submitted to the bug tracking system before the submission of
non-reproducible bug reports. That means, the discussions from these connected
bugs could have been a source of valuable insights for the non-reproducible bugs.
We also see that a limited number of connected reports (e.g., 7%–11%) contain
stack traces or steps to reproduce their bugs, which aligns with earlier findings
from the literature [20, 21]. However, 37% of the connected bug reports contain

Title Suppressed Due to Excessive Length 37

one or more faulty code elements (e.g., class names, method names) and 49% of
them attach various complementary items (e.g., screenshots, tests, videos, memory
dumps). Furthermore, we found that the existing bug reports connected to 41%
of the non-reproducible bugs contain the fix patches (i.e., solution code) from the
bug reporters, which could provide potential clues for reproduction and solution.

We also further analyze the attached items to determine whether they can
complement the non-reproducible bug reports. We found that almost 100% of the
bug reports that have an attachment contains bug-fix patches (e.g., solution code).
We also found code review comments (e.g., Gerrit reviews) for ≈50% of the cases.
Furthermore, the attachments contain screenshot, program workflow, and steps
to reproduce the bugs. All these items can be a great source of complementary
information for improving the non-reproducible bugs.

One can wonder why the non-reproducible bugs above are still non-reproducible
despite having their connected bugs. Based on our investigation, we found that
100% of these connected bugs were manually recorded long after the submission
or even after the resolution (or labeling) of the non-reproducible bugs (under our
investigation). Automatic identification of these connected bugs and their inclusion
during the submission of a bug report thus can equip the software developers with
more information to reproduce the reported bug. Our IR-based technique is a step
towards that direction.

Summary of RQ7: About 20% (i.e., 71 out of 350) non-reproducible bugs are
connected to one or more earlier bugs from the bug tracking system. Our IR-based
technique was able to detect the connected bug reports from Eclipse and Firefox
with 31%–86% accuracy when only top 10 results were considered, which has the
potential to encourage more tools and techniques to support bug reproducibility.
According to our manual analysis, the connected bugs often contain a wealth
of information such as fix patches, screenshots, test cases, stack traces, program
elements, and program workflow, which have high potential to complement the
non-reproducible bug reports.

5 Threats to Validity

5.1 Threats to Internal Validity

Threats to internal validity relate to experimental errors and biases [69]. Our key
factors behind bug non-reproducibility were derived from a qualitative study (Sec-
tion 3.2), which could be a source of subjective bias. However, our identified factors
were validated by a group of 13 professional developers with an agreement level
of 70%–90% (RQ2). Hence, such a threat might be mitigated. Developers might
sometimes use WORKSFORME tag loosely or inconsistently, which might intro-
duce some noise in our dataset [38]. However, since we carefully analyse each of
the 576 bug reports and finally summarize our findings, the impacts of such noise
might not be significant.

Incorrect classification of bug reports by our trained models could be a threat
to our feature analysis (RQ6). However, we selected the best-performing models
(e.g., 80.30% precision, 80.30% recall, RandomForest) for our analysis. Further-
more, we observe similar patterns across three trained models (e.g., RandomForest,

38 Mohammad M. Rahman et al.

XGBoost, Logistic Regression), which cross-validates our findings on feature im-
portance. We also repeat our experiments using an extended dataset of 1,990 bug
reports and achieve a maximum of 83.60% precision and 83.60% recall in our bug
report classification (Table 5). Thus, the impact of model classification errors (e.g.,
≈16%) upon our feature analysis might be negligible.

5.2 Threats to External Validity

Threats to external validity relate to generalizability of our findings [69]. We analyse
576 bug reports from two open source systems (Firefox and Eclipse), which might
not be representatives for the proprietary software systems. However, our findings
align with that of an earlier study [38] performed using a different dataset (open
source + proprietary) (RQ3), which possibly indicates the generalizability of our
study findings. Furthermore, we used a total of 533 reproducible bug reports (250
from Firefox + 283 from Eclipse) for this study (RQ7). Thus, we analyzed a total
of 1,109 bug reports from two popular software systems to derive our findings
reported in this work. Furthermore, we repeated our analysis using a total of
1,990 bug reports and came up with similar findings (Table 5).

5.3 Threats to Conclusion Validity

The observations from our developer study and our conclusions drawn from them
could be a source of threat to conclusion validity [48]. In particular, there could
be a few unseen variables behind the non-reproducibility of bugs (e.g., developer’s
inexperience, technical infeasibility), which might have been overlooked acciden-
tally. However, we share our dataset [1] publicly for third-party replication and
reuse. In the replication package [1], we also include our analysis data of 93 bug
reports that are connected to 71 non-reproducible bugs (RQ7).

6 Related Work

There have been several studies that analyse the characteristics of a good bug
report [16] or classify the software bugs from open source systems [56, 42]. Many
studies attempt to predict which bugs get fixed [31, 30], re-assigned [32, 66] or
re-opened [72]. A few studies also investigate how bugs are coordinated among
various stakeholders (e.g., software testers, users, developers) [15, 60] and how
the misclassification of bugs affects the bug prediction task [33]. Unfortunately,
to date, only little research has been done to better understand what makes the
reported bugs non-reproducible or how to improve their reproducibility during the
report submission.

Joorabchi et al. [38] first identify six major causes that might explain the
non-reproducibility of software bugs (e.g., Inter-bug dependencies, environmental
differences). While their work is a source of inspiration, it does not provide action-
able insights on how to detect or improve the non-reproducible bugs during their
submission. Their findings were also not validated by the developers.

Title Suppressed Due to Excessive Length 39

Fan et al. [27] analyse five different dimensions related to software bugs (e.g.,
bug report texts, reporter’s experience, developer-reporter collaborations) and
classify valid and invalid bug reports using machine learning. Although their work
is related to ours, all of their adopted features might not be appropriate to char-
acterize the non-reproducible bugs. Furthermore, non-reproducibility of the bugs
might always not mean that they are invalid bugs.

Vyas et al. [60] analyse social and human aspects of a bug reproduction process
with an ethnographic study. Since their findings focus on human collaboration
dynamics, they might also not be enough to properly explain the complex technical
aspect of a bug reproduction process.

Unlike many earlier studies above, we conduct an extensive qualitative study
with Grounded Theory method [29] using 576 bugs reports from Firefox and
Eclipse systems, identify 11 key factors behind bug non-reproducibility, and then
validate our major findings with 13 professional developers from the industry (e.g.,
Mozilla). We not only (1) capture how the professional developers cope with non-
reproducible bugs but also (2) offer a list of actionable insights by combining infor-
mation from multiple analyses (empirical study, developer study), which makes our
work novel. Furthermore, we (3) explain the differences between reproducible and
non-reproducible bugs using machine learning and a model interpretation frame-
work (e.g., SHAP [40]) (RQ6), and (4) suggest how to improve the reproducibility
of a bug report through an additional manual analysis of linked bugs (RQ7). Our
findings are also generalizable (RQ3) and the datasets are publicly available for
replication and third-party reuse [1].

Recently, several studies [25, 35, 64, 36] have proposed techniques to explain
machine learning models, especially designed for software defect prediction, which
are relevant to our work. Dam et al. [25] first discuss the necessity of explainable
machine learning models in the context of software engineering tasks. They suggest
that explainable models are essential to gain the trust of software practitioners.
Wattanakriengkrai et al. [64] later propose a line-level defect prediction model that
adopts a model-agnostic interpretation framework namely LIME [50]. Jiarpakdee
et al. [35] conducted an empirical study where they evaluate three model-agnostic
defect prediction techniques. Jiarpakdee et al. [36] recently also conduct a survey
where they capture the software practitioners’ perceptions about several model
interpretation frameworks (e.g., ANOVA, LIME). While these studies are a source
of our inspiration, we interpret the models predicting reproducibility of a bug
report rather than the defective source code. To the best of our knowledge, no
previous studies attempt to interpret the machine learning models predicting bug
reproducibility, which indicates the novelty of our work. As a result, our work has
the potential to encourage more explainable tools and techniques that can support
bug reproducibility.

7 Conclusion and Future Work

Non-reproducibility of software bugs is a major challenge for the developers since
it prevents/delays the bug-fixing. Unfortunately, to date, only a little research has
been done to understand the non-reproducibility of bugs. In this paper, we conduct
an empirical study using 576 non-reproducible bug reports, and identify 11 key
factors behind bug non-reproducibility (e.g., bug duplication, bug intermittency,

40 Mohammad M. Rahman et al.

missing information, false-positive bugs). We not only validate our findings using
the feedback from 13 professional developers but also investigate how they cope
with non-reproducible bugs. Then we provide several actionable insights on how
to avoid non-reproducibility and/or improve reproducibility of the reported bugs.
We also explain the differences between reproducible and non-reproducible bug
reports using machine learning models and their interpretation framework (e.g.,
SHAP). Using a manual analysis, we demonstrate how the bugs connected to a non-
reproducible bug report can offer complementary information (e.g., attachments,
screenshots) for the bug reproduction. Finally, we also demonstrate how these
connected bug reports can be detected automatically using a traditional approach
such as Information Retrieval. By leveraging these insights and findings, future
work could focus on developing effective, explainable tools and technologies to
assist in the bug reproduction (e.g., sandbox for bug reproduction).

Acknowledgment

This work was supported by Fonds de Recherche du Quebec (FRQ), the Natural
Sciences and Engineering Research Council of Canada (NSERC), and Tenure-
track startup grant, Faculty of Computer Science, Dalhousie University, Canada.
We would also like to thank all the anonymous respondents to the survey.

Title Suppressed Due to Excessive Length 41

A Feature Importance from Models Trained with Extended Dataset

Fig. 14: Feature importance using bee swarm plot (XGBoost model)

Fig. 15: Feature importance using bee swarm plot (RandomForest model)

42 Mohammad M. Rahman et al.

Fig. 16: Feature importance using bee swarm plot (Logistic Regression model)

REFERENCES

1. ICSME 2020 replication package. URL https://github.com/masud-technope/
ICSME2020-Replication-Package.

2. WEKA Toolkit. URL http://www.cs.waikato.ac.nz/ml/weka.
3. Works for me. URL https://bit.ly/2M94cff.
4. Researcher posts facebook bug report to mark zuckerberg’s wall, 2013. URL https://

cnet.co/2PvIH9O.
5. Report: Software failure caused $1.7 trillion in financial losses in 2017, 2019. URL https:

//tek.io/2FBNl2i.
6. Apache Lucene Core, 2019. URL https://lucene.apache.org/core.
7. Doxygen, 2020. URL https://www.doxygen.nl/index.html.
8. Firefox profiler, 2020. URL https://profiler.firefox.com.
9. Pernosco, 2020. URL https://pernos.co/about/overview.

10. Srcml, 2020. URL https://www.srcml.org/.
11. Shapley values, 2021. URL https://christophm.github.io/interpretable-ml-book/

shapley.html.
12. M. Amoui, N. Kaushik, A. Al-Dabbagh, L. Tahvildari, S. Li, and W. Liu. Search-based

duplicate defect detection: An industrial experience. In Proc. MSR, pages 173–182, 2013.
13. L. An, M. Castelluccio, and F. Khomh. An empirical study of dll injection bugs in the

firefox ecosystem. EMSE, 24:1799–1822, 2019.
14. G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y. Guéhéneuc. Is it a bug or an

enhancement? a text-based approach to classify change requests. In Proc. CASCON,
page 15, 2008.

15. J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and omissions in
software repositories. In Proc. ICSE, pages 298–308, 2009.

16. N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann. What
makes a good bug report? In Proc. FSE, pages 308–318, 2008.

17. P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword
information. arXiv preprint arXiv:1607.04606, 2016.

18. Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

Title Suppressed Due to Excessive Length 43

19. S. Le Cessie and J. C. Van Houwelingen. Ridge estimators in logistic regression. JSTOR,
41(1):191–201, 1992.

20. O. Chaparro, J. M. Florez, and A Marcus. Using observed behavior to reformulate queries
during text retrieval-based bug localization. In Proc. ICSME, page to appear, 2017.

21. O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus, G. Bavota, and
V. Ng. Detecting missing information in bug descriptions. In Proc. ESEC/FSE, pages
396–407, 2017.

22. O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. Di Penta, D. Poshy-
vanyk, and V. Ng. Assessing the quality of the steps to reproduce in bug reports. In
Proc.ESEC/FSE, pages 86–96, 2019.

23. O. Chaparro, J. M. Florez, U. Singh, and A. Marcus. Reformulating queries for duplicate
bug report detection. In Proc. SANER, pages 218–229, 2019.

24. T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proc. SIGKDD,
page 785–794, 2016.

25. H. K. Dam, T. Tran, and A. Ghose. Explainable software analytics. In Proc. ICSE-C,
page 53–56, 2018.

26. M. W. Fagerland. t-tests, non-parametric tests, and large studies–a paradox of statistical
practice? BMC Med Res Methodol, 12(78), 2012.

27. Y. Fan, X. Xia, D.Lo, and A. E. Hassan. Chaff from the wheat: Characterizing and
determining valid bug reports. TSE, 2018.

28. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The Vocabulary Problem
in Human-system Communication. Commun. ACM, 30(11):964–971, 1987.

29. B. G. Glaser and A. L. Strauss. The discovery of grounded theory : strategies for qualitative
research. Chicago : Aldine Publishing, 1967.

30. A. Goyal and N. Sardana. Nrfixer: Sentiment based model for predicting the fixability of
non-reproducible bugs. e-Informatica, 11(1):103–116, 2017.

31. P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characterizing and predicting
which bugs get fixed: An empirical study of microsoft windows. In Proc. ICSE, pages
495–504, 2010.

32. P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. ”not my bug!” and other
reasons for software bug report reassignments. In Proc. CSCW, pages 395–404, 2011.

33. Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s a feature: How misclas-
sification impacts bug prediction. In Proc. ICSE, pages 392–401, 2013.

34. A. Hindle and C. Onuczko. Preventing duplicate bug reports by continuously querying
bug reports. Empirical Softw. Engg., 24(2):902–936, 2019.

35. J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and J. Grundy. An empirical study of
model-agnostic techniques for defect prediction models. TSE, 2020.

36. J. Jiarpakdee, C. Tantithamthavorn, and J. Grundy. Practitioners’ perceptions of the
goals and visual explanations of defect prediction models. In Proc. MSR, pages 432–443,
2021.

37. G. H. John and P. Langley. Estimating continuous distributions in bayesian classifiers. In
Proc. UAI, page 338–345, 1995.

38. M. E. Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for me! characterizing non-
reproducible bug reports. In Proc. MSR, pages 62–71, 2014.

39. B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto. Sentiment
analysis for software engineering: How far can we go? In Proc. ICSE, pages 94–104, 2018.

40. S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Him-
melfarb, N. Bansal, and S. Lee. From local explanations to global understanding with
explainable ai for trees. Nature machine intelligence, 2(1):56–67, 2020.

41. W. Maalej and H. Nabil. Bug report, feature request, or simply praise? on automatically
classifying app reviews. In Proc. RE, pages 116–125, 2015.

42. M. Nayrolles and A. Hamou-Lhadj. Towards a classification of bugs to facilitate software
maintainability tasks. In Proc. SQUADE, pages 25–32, 2018.

43. R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush. Engineering record
and replay for deployability. In Proc. USENIX, pages 377–389, 2017.

44. C. Parnin and A. Orso. Are Automated Debugging Techniques Actually Helping Pro-
grammers? In Proc. ISSTA, pages 199–209, 2011.

45. L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton. Improving Low Quality
Stack Overflow Post Detection. In Proc. ICSME, pages 541–544, 2014.

44 Mohammad M. Rahman et al.

46. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.,
1993.

47. M. M. Rahman, C. K. Roy, and J. Collins. CORRECT: Code Reviewer Recommendation
Based on Cross-Project and Technology Experience. In Proc. ICSE, page to appear, 2016.

48. M. M. Rahman, C. K. Roy, and D. Lo. Automatic query reformulation for code search
using crowdsourced knowledge. EMSE, 24:1869–1924, 2019.

49. M. M. Rahman, F. Khomh, and M. Castelluccio. Why are some bugs non-reproducible?
an empirical investigation using data fusion. In Proc. ICSME, page 12, 2020.

50. M. T. Ribeiro, S. Singh, and C. Guestrin. ”why should i trust you?”: Explaining the
predictions of any classifier. In Proc. KDD, page 1135–1144, 2016.

51. J. P. Royston. An extension of shapiro and wilk’s w test for normality to large samples.
Journal of the Royal Statistical Society, 31(2):115–124, 1982.

52. A. Sarkar, P. C. Rigby, and B. Bartalos. Improving bug triaging with high confidence
predictions at ericsson. In Proc. ICSME, pages 81–91, 2019.

53. H. A. Shafiq and Z. Arshad. Automated debugging and bug fixing solutions : A systematic
literature review and classification. 2014.

54. Z Shi, J Keung, and Q Song. An Empirical Study of BM25 and BM25F Based Feature
Location Techniques. In Proc. InnoSWDev, pages 106–114, 2014.

55. R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive
deep models for semantic compositionality over a sentiment treebank. In Proc. EMNLP,
pages 1631–1642, 2013.

56. L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug characteristics in open source
software. EMSE, 19(6):1665–1705, 2014.

57. M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas. Sentiment strength de-
tection in short informal text. JASIST, 61(12):2544–2558, 2010.

58. P. Thongtanunam, R. G. Kula, N. Yoshida, H. Iida, and K. Matsumoto. Who Should
Review my Code ? In Proc. SANER, pages 141–150, 2015.

59. Y. Tian, C. Sun, and D. Lo. Improved duplicate bug report identification. In Proc. CSMR,
page 385–390, 2012.

60. D. Vyas, T. Fritz, and D. Shepherd. Bug reproduction: A collaborative practice within
software maintenance activities. In COOP, pages 189–207, 2014.

61. S. Wang and D. Lo. Version history, similar report, and structure: Putting them together
for improved bug localization. In Proc. ICPC, pages 53–63, 2014.

62. S. Wang and D. Lo. Amalgam+: Composing rich information sources for accurate bug
localization. JSEP, 28(10):921–942, 2016.

63. X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting duplicate bug
reports using natural language and execution information. Proc. ICSE, pages 461–470,
2008.

64. S. Wattanakriengkrai, P. Thongtanunam, C. Tantithamthavorn, H. Hata, and K. Mat-
sumoto. Predicting defective lines using a model-agnostic technique. TSE, 2020.

65. C. P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. Boosting bug-report-
oriented fault localization with segmentation and stack-trace analysis. In Proc. ICSME,
pages 181–190, 2014.

66. X. Xia, D. Lo, E. Shihab, and X. Wang. Automated bug report field reassignment and
refinement prediction. TSR, 65(3):1094–1113, 2016.

67. X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun. Combining word embedding with information
retrieval to recommend similar bug reports. In Proc. ISSRE, pages 127–137, 2016.

68. X Ye, H Shen, X Ma, R Bunescu, and C Liu. From Word Embeddings to Document
Similarities for Improved Information Retrieval in Software Engineering. In Proc. ICSE,
pages 404–415, 2016.

69. T. Yuan, D. Lo, and J. Lawall. Automated Construction of a Software-specific Word
Similarity Database. In Proc. CSMR-WCRE, pages 44–53, 2014.

70. Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W.G.J. Halfond. Recdroid:
Automatically reproducing android application crashes from bug reports. In Proc. ICSE,
pages 128–139, 2019.

71. J Zhou, H Zhang, and D Lo. Where Should the Bugs Be Fixed? - More Accurate Infor-
mation Retrieval-based Bug Localization Based on Bug Reports. In Proc. ICSE, 2012.

72. T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy. Characterizing and predicting
which bugs get reopened. In Proc. ICSE, pages 1074–1083, 2012.

