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Abstract—Software developers frequently watch technical
videos and tutorials online as solutions to their problems.
However, the audiovisual explanations of the videos might also
claim more time from the developers than the text-only materials
(e.g., programming Q&A threads). Thus, pinpointing and sum-
marizing the relevant fragments from these videos could save the
developers valuable time and effort. In this paper, we propose
a novel technique – TechTube – that can be used to find video
segments that are relevant to a given technical task. TechTube
allows a developer to express the task as a natural language query.
To account for missing vocabularies in the query, TechTube
automatically reformulates the query using techniques based
on information retrieval. The reformulated query is matched
against a repository of online technical videos. The output from
TechTube is a sequence of relevant video segments that can be
useful to implement the task at hand. Unlike previous researches,
our approach splits the video by detecting silence in video
audio tracks. Experiments using 98 programming related search
queries show that our approach delivers the relevant videos
within the Top-5 results 93% of the time with a mean average
precision of 76%. We also find that TechTube can deliver the
most relevant section of a technical video with 67% precision
and 53% recall that outperforms the closely related existing
approach from the literature. Our developer study involving
16 participants reports that they found the video summaries
generated by TechTube very accurate, precise, concise, and very
useful for their programming tasks rather than the original
complete videos.

Keywords—Software engineering, Query Reformulation, Docu-
ment Information Retrieval, Text Similarity, Video Summarizing

I. INTRODUCTION

Studies suggest that software developers spend about 20%
of their development time in searching for programming
solutions on the Internet [1]. Besides programming Q&A
websites (e.g., Stack Overflow) and software repositories (e.g.,
GitHub, SourceForge), they frequently look for relevant online
technical videos. YouTube is one of the most popular websites
on the Internet that offers millions of high-quality technical
videos, including programming tutorials [2]. Video tutorials
capture the finer details of a programming task through au-
diovisual information, annotations, and also non-verbal cues.
Thus, programming video tutorials are often a better and
faster choice for the developers than the traditional text-only
resources (e.g., API documentation) [3]. However, these video
tutorials might also claim significant time and effort from the
developers during problem-solving. Unlike the programming
Q&A threads, programming videos might not be fully indexed
or well organized e.g., structured as explicit questions and
answers. They might also contain noisy, redundant information

that might be of little interest to the developers [4]. Thus,
the developers often attempt to find out the relevant sections
by skimming (i.e., forward and backward the video stream)
through the videos. However, skimming through a video is
often more time-consuming than scrolling through a regular
text-based website. Thus, pinpointing the relevant sections
within a technical video and guiding developers to these
sections has the potential to save their valuable time and effort.

There have been a few existing studies [4, 5, 6] that
attempt to extract important sections from online technical
videos. Adcock et al. [5] capture keywords from the slides
of a webcast using Optical Character Recognition (OCR) and
then help locate the important slides using text processing
and Information Retrieval methods (e.g., Lucene). Since their
approach heavily relies on OCR technology to collect the
textual contents, it could not perform well with low-quality
or noisy videos. Ponzanelli et al. [4] suggest relevant sections
from YouTube videos where they use textual contents from the
video frames containing code segments to split their videos.
Thus, their approach could fail to split the technical videos
that do not contain any code segments (e.g., tool installations,
webinars). Furthermore, their algorithms and heuristics that
are designed to detect the Java code might not be suitable for
other programming languages (e.g., Python).

In this paper, we propose a novel approach – TechTube –
that identifies the most relevant sections from a technical video
and delivers coherent, concise, and relevant video summaries
against a natural language query. TechTube allows a developer
to express a query, representing the task at hand, in natural
language. To account for missing terms and improve recall, our
approach automatically augments the query by reformulating
it with popular reformulation techniques (e.g., Rocchio [7]).
The reformulated query is then matched against a repository
of online technical videos. The repository can be populated
with videos from any available online site. The output from
TechTube is a sequence of relevant video segments (a.k.a.,
video summary) that can be useful to implement the task at
hand. Such a video summary can help the developers gather
sought information in less time and with reduced information
overload. Unlike Adcock et al., our approach does not rely
on OCR that could be subject to poor-quality or noisy videos.
TechTube differs also from Ponzanelli et al., as it does not
rely on code segments for video splitting and is not restricted
to Java-only programming videos. We implemented TechTube
as a web-based tool that is easy to integrate with any technical
video websites (e.g., YouTube).



We evaluate our approach that provides relevant video
summaries from technical videos in two ways: (a) empirical
evaluation (RQ1–RQ4) and (b) developer study (RQ5). First,
we select 98 programming related search queries from an
existing benchmark [8] and Stack Overflow Q&A website. We
manually build the ground truth (relevant videos plus relevant
video sections) for these queries by involving three graduate-
level, Software Engineering students. Then we use this ground
truth to evaluate how our approach performs in retrieving
the relevant technical videos. Our experiments show that
TechTube, 93% of the time, delivers the relevant videos within
the Top-5 results with a mean average precision of 76%. We
also evaluate the extracted video sections against the ground
truth and find that TechTube delivers the most relevant section
from a technical video with a precision of 67% and a recall of
53%, which outperforms the CodeTube approach [4] with 6%
higher precision, more than 200% higher recall, and 100%
higher F1-score. Second, to demonstrate the benefits of our
approach, we conduct a developer study in two phases. In the
first phase, we ask 16 participants (7 professional developers
+ 9 graduate level students) to perform six programming tasks
of three difficulty levels (easy, medium, hard) using TechTube.
In the second phase, we collect their comparative feedback
on the accuracy, preciseness, conciseness, and usefulness of
TechTube summaries against the similar original complete
videos. Most noticeably, all participants were able to suc-
cessfully implement their programming tasks using TechTube.
Furthermore, they found the summarized videos provided by
TechTube to be very accurate, precise, concise and very useful
according to a Likert scale (RQ5).

Thus, our paper makes the following contributions:
(a) A novel approach to identify the most relevant section of

a technical video to a given natural language query.
(b) Comprehensive evaluation of the approach using 98

search queries, comparison with a closely related ap-
proach from the state of the art [4] and a developer study
involving 16 participants.

(c) A replication package [9] of our approach – TechTube –
for the replication and third-party reuse.

II. BACKGROUND

This section introduces key concepts used in the paper.
Audio segmenting techniques attempt to identify the change
points within an audio file that could be useful for various
applications such as monitoring and summarizing a group
meeting, and indexing a broadcast news [10, 11, 12]. One
of these techniques is metric-based audio segmentation. The
technique identifies the maximum distance between two neigh-
bouring windows and captures a speaker’s silence. Then it
segments the audio file using the timestamp of the silence [10].
We use this speaker’s silence-based method for audio/video
segmenting in our approach (Section III-A1).

Query Reformulation: To find relevant code examples,
developers often use typical queries in the form of natural
language texts. Bajracharya and Lopes [13] report that only
12% of these queries lead to relevant results due to vocabulary

mismatch problems [14, 15]. Existing researches [16, 17, 18]
show that the developers reformulate their issued queries on
their own around 33%-73% of the time. However, they can
make mistakes during this reformulation and thus it can cost
more time and efforts [18]. Automated query reformulation
aids the developers to save their time and efforts. Adding
keywords from a relevant previous result may help the devel-
opers mitigate such issues [19]. There have been a number
of query expansion techniques using information retrieval
methods [20]. We use pseudo-relevance feedback and Term
Frequency (TF) [21] to reformulate a query in TechTube,
which has been widely used to expand the search queries [22].
In particular, we carefully select the most frequent keywords
from the audio contents of technical videos and reformulate
a query at hand for retrieving the relevant videos and video
summaries (Section III-B2).

Text Similarity: Text similarity measures are popular
among the researchers and developers due to their high effec-
tiveness in various tasks such as text classification, document
clustering, and text summarization [23, 24]. There have been
many text-similarity approaches, such as string-based simi-
larity, character-based similarity, corpus-based similarity, and
term-based similarity [23]. In our proposed TechTube engine,
we offer text similarity support using both the traditional
cosine similarity measure [25, 26] as well as more advanced
BM25 algorithm [27]. Cosine similarity computes the cosine
value of the angle between two vectorized texts [25, 26].
BM25 algorithm is based on an adaptation of the popular
Inverse Document Frequency (IDF) algorithm [28]. Both algo-
rithms use the vectorized representation of the textual contents
in input query and the target documents (that are subject to
search) to compute the similarity (Section III-B3).

III. TECHTUBE

Figure 1 shows the schematic diagram of TechTube, our
technical video summarization framework. The framework is
composed of an offline component and an online component.
The offline component is used to download and preprocess
technical videos from online resources. The online component
offers a search and summarization engine of the downloaded
videos to a developer. We describe the two components below.

A. TechTube Offline Component

We use TechTube offline component to download tech-
nical videos and their metadata from online resources. We
preprocess the videos into informative and isolated video
segments. The video segments and their metadata are stored
in a database. TechTube online component uses the database
to present the summarized video segments to the developer.

The Video Audio Processor module preprocesses a down-
loaded video as follows: (1) Audio Chunking: we segment the
audio into different chunks. (2) Text Extraction: we extract the
speech text for each of those segmented chunks.

1) Video Chunking: The input to this step is a downloaded
video. The output is a list of video chunks, i.e., sequence
of contiguous video frames. One of the practical features
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Figure 1. The schematic diagram of our proposed TechTube framework

of each tutorial video is the lecturer’s voice; the descriptive
support for the image frames playing sequentially. Human uses
prosody to stress and highlight speech points: silences are an
essential prosody feature. Speakers, often, put a long silence
when they change the subject or underline a very relevant
point. TechTube uses speaker’s silences, the prosody element,
to segment utterances. To detect pauses in audio, TechTube
uses the amplitude in a given audio file. An amplitude value
less than a given threshold is considered silence. Given that
different video files can be recorded in different settings, their
amplitudes can differ from each other. For example, a speaker
can have background music, while another may not have
any such background music during recording. Therefore, we
dynamically determine the silence per video file as follows.
We compute the amplitude of each frame from the audio of
a video. We compute the average of the amplitudes. If, for
a given frame, the amplitude value drops below the average
amplitude value across the frames, we consider that as a
silence/pause. Based on the above detection of silence in
the audio, we can then segment an audio file into multiple
chunks. That means, two consecutive chunks are separated
by a pause/silence. We create a timestamp for each chunk
to specify the starting time and finishing time of the chunks
based on their time of play on the video. For video chunking,
the TechTube framework currently supports a cross-platform
application called FFMPEG [29]. The tool is used to extract
the audio and video parts out of an input video file. To detect
silences in the audio, TechTube currently uses PyDub [30].

2) Speech Recognition: The input to this step is a video
chunk with its associated audio. The output is a transcribed
text out of the audio. TechTube currently uses the Google
speech recognition engine [31] to write the speech of each
audio chunk into a .txt file for similarity comparison and
further usages. We select the Google speech engine because
it is a continuous speech recognition engine, it is speaker-
independent, plus it scales up to millions of videos. In our
manual evaluation of the transcribe texts, we found that the
recognition accuracy of the engine was 90% (average).

B. TechTube Online Component

The online component offers an interface to a developer
to search the downloaded videos using a natural language
query. Given as input a textual query related to a technical
task, TechTube uses a query reformulation method to find

the appropriate videos by mining their metadata, such as tags
and video descriptions (if applicable). TechTube measures the
similarity rate of the reformulated query and the extracted
speech texts using the text-similarity algorithms. For each
of the top query results, TechTube then shows the relevant
fragment of the video in a summarized interface. Specifically,
the online component is composed of four modules:

1) Input Query Processor provides a search box where the
developer can input a textual query,

2) Query Reformulation Engine automatically expands the
input query to make it more nuanced and accurate,

3) Search Engine Module matches the reformulated query
against the preprocessed videos in the database,

4) Relevant Segment Highlighter picks the top five videos
and produces a summarized version of those videos by
highlighting video segments relating to the input query.

We describe the four modules below.
1) Input Textual Technical Query: TechTube allows a de-

veloper to describe a technical task using natural language
in a search box. One of the main parts of search tasks
that impact the relevancy rate of the results is the generated
search query. A well-dictated non-noisy rich query leads to
gaining more accurate outcomes. Due to this issue, TechTube
uses a necessary query cleaning and pre-processing method
for text normalization, which is a combination of stemming,
lemmatization, and stopword removal [19].

2) Query Reformulation Engine: The textual description of
a task (i.e., the query) provided by a developer may not contain
all the necessary keywords to describe the task properly. To
address this problem, TechTube reformulates the query using a
standard query expansion technique – Rocchio’s expansion [7].
TechTube uses the technique as follows. Each downloaded
video in our database contains metadata (e.g., title, tags, de-
scription) besides their subtitles (using auto-generated subtitles
from YouTube) and audio speech that explain its discussion
topics. Our approach first captures pseudo-relevance feedback
[32] on a developer’s query by executing the query against all
the available videos. We pick the topmost retrieved videos
from the query results. The underlying idea is that these
somewhat relevant videos might contain essential keywords
that could complement the developer’s free-form query.

TechTube then finds all the keywords in the feedback videos
that we collected using the TechTube offline component. To
get the keywords, TechTube first preprocesses the video texts



using standard natural language processing (e.g., stopword
removal, lemmatization) and then picks the most frequent
keywords from these feedback videos. These keywords are
then used to expand/reformulate the search query issued by
the developer. A similar approach has been adopted by many
relevant studies from the literature [22, 33, 34].

3) Search Engine Module: This module is responsible for
two tasks. First, it detects four most relevant videos given as
input the reformulated query. Second, for each returned rele-
vant video, the module further detects chunks in the video that
are relevant to the query. The search engine module utilizes
Apache Lucene [35]. We picked Apache Lucene because it
is a popular open-source search engine software library and
it is regularly used in state of the art query reformulation
research in Software Engineering (see [36]). To compute the
similarity between the input query and a video, TechTube
takes into account the speech text of the video. TechTube
produces a vectorized representation of the input query and the
speech text. To produce the vectors, TechTube applies standard
text normalization approaches, such as stopword removal and
lemmatization. The search module now offers two similarity
metrics to compute the similarity between the input query and
the speech text: Cosine Similarity [28] and BM25 [27]. Upon
computation of the similarity, TechTube sorts the videos by the
similarity values. TechTube takes the top four videos with the
most similarity values. For each of the four videos, TechTube
then computes the similarity between the input query and each
chunk in the video.

4) Relevant Segment Highlighter: At this stage, for each
relevant video identified by the Search Engine Module,
TechTube has several, non-contiguous, sequences of similar
chunks. To ensure a coherent and smooth documentation
experience from the video given the input query, TechTube
needs to combine similar chunks. However, it may happen
that two very small relevant chunks are separated by a pause.
In such cases, the chunks may be relevant, but they cannot
provide a coherent experience. Therefore, to elect the most rel-
evant video fragment (i.e., non-contiguous chunks sequence),
TechTube uses the Longest Common Subsequences (a.k.a.,
LCS) [37] strategy. Figure 2 explains the strategy as follows.
The black bars are relevant video chunks. The white bars are
less relevant video chunks and the spaces between sequences
denote pauses in the audio. Each bar denotes a video chunk.
The length of a bar corresponds to its similarity to the input
query, i.e., a longer bar is more relevant. To produce a coherent
representation of the relevant video chunks out of an input
video, TechTube starts with the first video chunk that is similar
to the query. To reduce noise, TechTube only considers a video
chunk with a similarity higher than a threshold (half similarity
of the highest similar chunk). TechTube then proceeds to the
next video chunk. If the chunk is relevant, it is included. If
several consecutive chunks are found to be relevant, they form
a sequence. This approach stops when a chunk is found to have
a pause, or it is relevant less than the threshold. For example,
in Figure 2, the first LCS has a total of seven consecutive
video chunks. The second LCS has a total of six consecutive

video chunks. To offer a uniform and coherent documentation
experience out of the video, TechTube picks all the video
chunks between LCS1 and LCS2 (i.e., all including the pauses
in between). Using this same approach, the two consecutive
relevant video chunks after LCS2 are not included, because
they are significantly smaller in length than the previous two
longest common subsequences (i.e., 7 for LCS1 and 6 for
LCS2). We apply this process to each of the five selected
videos. Each video automatically starts at the beginning of
the first LCS in the video. Upon the finish of the first LCS,
the user is taken to the second LCS of the video. If a user
wants to watch the original videos, they can ignore the timing
of the video and start the video manually from the beginning
time or any other time.

Chunks

Maximum
Similarity

Half of the 
Highest Similarity

LCS1 LCS2

Relevant FragmentStart Time End Time

Figure 2. TechTube Relevant Fragment Identification

IV. EXPERIMENTS

We evaluate TechTube in two different ways: (1) by means
of an empirical evaluation and (2) by a user study, a case
study, involving 16 developers. The first empirical evaluation
focuses on TechTube’s effectiveness to retrieve relevant videos
and to produce meaningful video summaries. In particular,
we examine the roles of three TechTube components, namely
– retrieval technique used in the Search Engine Module
(e.g., Apache Lucene), video splitting method, and query
reformulation mechanism. In a second step, we conduct a
user study involving 16 professional developers and investigate
whether TechTube provides relevant, concise, useful video
summaries against their search queries. Overall, we address
the five research questions. While RQ1 to RQ4 deal with our
empirical evaluation, RQ5 deals with the developer study.

RQ1. How does TechTube perform in (a) retrieving the rel-
evant technical videos against textual queries, and (b)
identifying the most relevant sections from the videos?

RQ2. How does Apache Lucene perform in retrieving the
relevant videos? Is its use justified?

RQ3. Is the use of silence-based video splitting justified?
RQ4. Does the query reformulation improve the retrieval (a)

of relevant video and (b) relevant fragment of a video?
RQ5. Does TechTube deliver relevant, concise, useful video

contents against the developers’ queries?

A. Experimental Dataset

We collect a total of 98 natural language queries related to
Online Repository (e.g. Github) maintenance, Java and Python
programming tasks for our experiments due to their popularity



among developers. The queries related to Java programming
were taken from an existing benchmark [8] whereas the rest of
the queries were extracted from the top-scored Q&A threads
of Stack Overflow considering the post topic as the query.
We then populate our database by downloading 400 technical
videos from YouTube that were retrieved using the keywords
from these 98 queries and that looked relevant to the queries
at the first glance. Our inclusion criteria were: (1) each video
was longer than three minutes (three minutes videos can be
considered as a video summary), and (2) the video contained
English speech track. Since some of our queries were similar
in the concept, we could use multiple queries against one
video, so we extract 98 videos out of 400 videos to have one
video per query. The human filtering of the videos leads our
experimental dataset to contain different types of videos by the
aspect of time duration, different visual options (low quality
frames, high quality frames, slide presentation frames, code
development frames and etc.) and the videos that provides
multiple topics in one video. We also collect the metadata (e.g.,
tags, title, description) and the subtitles (i.e., textual narrations
generated automatically by YouTube) for each of the videos
for our experiments. We construct a ground truth (i.e., relevant
videos plus segmented relevant video sections) database for the
98 queries as follows. We first segment each video manually.
Then three software engineering graduate students who do
not have any clues about the approach manually analyzed the
videos and the segments to assess their relevancy to the 98
queries. They first labelled 10 videos and consult together to
have a similar taste of labelling and then they labelled their
share of videos. About 50 man-hours were spent to construct
the ground-truth. We use this ground truth database to answer
RQ1 – RQ4.

Our experimental dataset and replication package can be
found online [9] for the replication and third-party reuse.

B. RQ1: Performance of TechTube in Retrieving Relevant
Video and Relevant Video Segments

First, we evaluate the performance of TechTube to retrieve
relevant videos given for an input query. We compute the
similarity of the relevant videos using the BM25 metric in
TechTube search engine module. Second, we evaluate the
performance of TechTube to retrieve relevant video segments
from a video and compare the output with CodeTube [4], a
closely related existing approach.

We run each of our 98 queries against TechTube. For each
query, we pick the top-5 results by keeping their ranks as
returned by TechTube. For each query, we then compare
the results against our ground truth database using three
performance metrics – Hit@K, MAP and MRR. Table I reports
the results. Once relevant videos are retrieved, we also extract
the relevant video sections (a.k.a., video summary) using both
approaches (i.e. TechTube and CodeTube). We compare the
relevant video segments of each approach against our ground
truth database by computing three other metrics –precision,
recall, and F-score. Fig. 3 reports the obtained results.

Table I
TECHTUBE’S PERFORMANCE IN VIDEO RETRIEVAL

Performance Metric Top-1 Top-3 Top-5
Top-K Accuracy/Hit@K 64.28% 90.81% 92.85%
Mean Reciprocal Rank (MRR) - - 0.76
Mean Average Precision@K (MAP) - - 76.13%

Figure 3. TechTube’s Performance in the retrieval of relevant video sections

From Table I, we see that TechTube retrieves the relevant
videos for 93% of the 98 search queries within their Top-5
result. The mean average precision is 76%. That is, TechTube
retrieves a relevant technical video for 9 out of 10 queries. It
also achieves a mean reciprocal rank of 0.76, which indicates
that, on average, the most relevant videos can be found at
the first or second position within the ranked retrieved results.
Table I shows that TechTube delivers the most relevant videos
at the topmost position (i.e., Hit@1) for 64% of the queries.

Based on Fig.3, on average, TechTube can identify the
most relevant video fragments for a search query with a
precision of 67%, a recall of 53% and an F-score of 50% while
CodeTube [4] can identify the most relevant video section
for a search query with a precision of 64%, a recall of 17%
and an F-score of 25%. In total, our approach – TechTube –
outperformes the CodeTube approach by 6% higher precision,
230% higher recall, and 100% higher F1-Score. Table II shows
the detail of the comparison between TechTube and CodeTube
approaches against a variety of videos such as videos related
to Java programming, Python programming and videos with
long duration (i.e. more than 15 minutes) and the videos with
duration of less than 15 minutes. On Table II we see that,
TechTube delivers relevant sections for the Python related
video tutorials with 62% precision which outperforms the
CodeTube approach by 13% higher precision, 180% higher
recall, and 140% higher F1-score. Due to the use of Java
based filtering and the use of island parser to find the Java
constructors, CodeTube provides a weaker performance on
Python related video tutorials.

On the same table, we see that TechTube deals better with
the videos with duration time of more than 15 minutes than
CodeTube. On this type of videos, TechTube provides almost
40% higher precision, 500% higher recall, and 250% higher
F1-score. Because these long videos have a high number of
dissimilar video frames, CodeTube’s island parser fails in iden-
tifying code segments and creates many irrelevant segments,
which is likely the reason behind its poor performance.



Table II
TECHTUBE’S PERFORMANCE IN VIDEO SECTION RETRIEVAL

Approach Videos Precision Recall F1-Score

TechTube

all 67.46% 53.44% 50.47%
Java 71.53% 50.68% 48.12%

Python 62.68% 54.74% 51.31%
more than 15 minutes 39.21% 49.00% 35.94%
less than 15 minutes 74.43% 54.53% 54.05%

CodeTube

all 63.42% 16.85% 25.23%
Java 69.50% 19.32% 27.99%

Python 55.78% 14.00% 21.87%
more than 15 minutes 28.82% 8.22% 10.80%
less than 15 minutes 71.96% 18.98% 28.80%

TechTube analyzes the speech and audio of the videos files
and measures the textual similarities. In contrast, CodeTube
relies on the visual features (e.g., video frames, OCR extracted
content and etc.) of the videos. Accordingly, our approach
performs better in variety of video types with weak visual
features (e.g., low quality video, zooming in and zooming out
of a frame, scrolling and etc).

Summary of RQ1: TechTube can retrieve relevant technical
videos for 93% of the queries with 76% precision. It also
can deliver the relevant sections from these videos (a.k.a.,
video summary) with 67% precision which is 6% higher than
CodeTube, 53% recall which is more than 200% higher than
CodeTube, and 50% F1-Score which is 100% higher than the
CodeTube approach.

C. RQ2: Impact of Video Search Engine in TechTube

TechTube employs a search engine module (Step 3, Fig.
1) accepting as input a natural language query and returning
relevant videos. We use two different methods – ad hoc and
Apache Lucene – for retrieving the videos where each video
document is represented with its metadata (e.g., tags) and
subtitles collected from YouTube. The ad hoc method relies
on cosine similarity algorithm [26] whereas Lucene employs
a sophisticated Information Retrieval technique called BM25
[27]. We experiment with both search engines – ad hoc and
Lucene, and compare their performance in the relevant video
retrieval using three performance metrics – Hit@K, MAP and
MRR. Table III summarizes our comparative analysis. We thus
answer RQ2 as follows.

Table III
ROLE OF SEARCH ENGINE IN RELEVANT VIDEO RETRIEVAL

Technique Document Hit@1 Hit@3 Hit@5 MAP MRR

Ad-hoc
ST 62.24% 78.57% 82.65% 70.76% 0.71
T 62.24% 88.77% 91.83% 75.03% .75

{ST + T} 63.26% 73.46% 80.61% 69.51% 0.70

Lucene
ST 63.26% 78.57% 82.65% 72.02% 0.72
T 53.06% 77.55% 78.57% 64.2% 0.64

{ST + T} 64.28% 90.81% 92.85% 76.14% 0.76
ST = Subtitles, T = Tags

Table III, shows that both search engines –ad hoc and
Lucene– perform well in retrieving the relevant videos. We
represent each video document as different combinations of its
tags and subtitles and then investigate how these two search
engines can retrieve the relevant technical videos.

When subtitles are used as a proxy to video document, both
search engines achieve about 83% Hit@5 with ≈72% mean
average precision, which are promising. Subtitles capture the
discussed topics of a video in details that can be analysed
to determine the relevance. When tags are used as a proxy
to video document, the ad hoc method achieves 17% higher
Hit@5, MAP and MRR than those of Lucene. Since tags
contain only a few keywords, they are better suited for the
ad hoc keyword search than the Lucene. However, when both
subtitles and tags are combined and used as a proxy to video
document, Apache Lucene achieves the best performance in
retrieving the relevant videos. The BM25-based search engine
(a.k.a., Lucene) delivers relevant videos for 93% of the search
queries with 76% mean average precision and 0.76 mean
reciprocal rank, which are highly promising. Such findings
justify our choice of using Lucene as the search engine
of TechTube. It also should be noted that TechTube is not
restricted to Lucene and thus can be easily extended with other
available search engines (e.g., YouTube search API, Indri).

Summary of RQ2: Apache Lucene achieves 93% Hit@5
with 76% precision in retrieving the relevant technical videos
and outperforms an ad-hoc method, which justifies our
choice of using Lucene as the search engine.

Ad-hoc search engine deals with the only metadata files
(i.e., Video Tags) better than the subtitle files, and combine
tags and subtitle files. The ad-hoc search engine finds the
relevant video 92% of the time, within the Top-5 retrieved
videos as results with a mean average precision of 75%. The
ad-hoc reciprocal rank is 0.75, which means that the ad-hoc
search engine finds the most relevant video as the first or sec-
ond retrieved results. The same table presents that the Lucene
search engine and ad-hoc search engines retrieve the video
with similar accuracy while using only subtitle files. Hence
the ad-hoc technique provides 6% higher average precision
and reciprocal rank. TableIII presents that the Lucene search
engine improves the best setup of the ad-hoc search engine
for 1% in Top-5 accuracy, 1% Mean Average Precision@5
and 0.01 Mean Reciprocal Rank@5.

D. RQ3: Speaker’s Silence as the Video Splitting Method

One of the major aspects of TechTube is its video splitting
mechanism. The video chunking step (Section III-A1) divides
each video into multiple sections, which is essential to identify
the relevant video sections. We employ two video splitting
methods –speaker’s silence and subtitle sentence. The silence-
based method splits a video into multiple sections based on
the speaker’s silence as explained in Section III. Following
silence detection, we run Google Speech Recognition Engine
[31] to convert the vocal (and non vocal) sound into the textual
contents. We also split the videos using their subtitles collected
from YouTube. The subtitle sentence-based method splits each
video using the duration of each sentence from these video
subtitles. We experiment with these two splitting methods
and determine the performance of TechTube in retrieving



the relevant video sections using three performance metrics
– precision, recall, and F1-score. Fig. 4 summarizes our
comparative analysis.

Table IV
EVALUATION OF SILENCE-BASED SEGMENTED SPEECH AGAINST THE

SUBTITLE-BASED SEGMENTED SPEECH

Segmenting Technique Metric Mean Median Q1 Q3

Silence-Based
Precision 68.39% 0.95 0.29 1.0
Recall 45.48% 0.39 0.12 0.80
F-score 45.21% 0.49 0.21 0.70

Subtitle-Based
Precision 63.82% 0.99 0.11 1.0
Recall 30.1% 0.12 0.01 0.57
F-score 29.63% 0.19 0.02 0.58

Figure 4. Comparison between silence-based video splitting and subtitle-
based video splitting for the retrieval of relevant video sections

From Fig. 4, we see that the TechTube, on average, re-
trieves relevant fragments from the technical videos with 68%
precision when silence-based splitting method is used. On the
contrary, such a precision is about 64% with the subtitle-based
splitting method, which is comparatively lower. However,
TechTube achieves 51% higher recall and 53% higher F1-
score in retrieving relevant video sections with the silence-
based method than that with the subtitle-based method.

From the box plots in Fig. 4, we also notice that the
mean and median measures for silence-based method are
comparatively higher than those for subtitle-based method.

All these findings above justify our choice of using speaker’s
silence as the video splitting method of TechTube.

Summary of RQ3: TechTube achieves 7% higher precision
and 51% higher recall with silence-based method than those
with subtitle-based method, which justifies our choice of
using speaker’s silence as the video splitting mechanism.

Unlike prior technique, line-by-line segmenting the subtitle
on average finds the relevant fragment of the videos by a mean
precision of 64%, median of 0.99, recall of 30%, and an F-
score of 29%. The comparison between the two mentioned
segmenting techniques reports that the silence-based segment-
ing technique, on average, improves the mean precision, recall,
and F-score for 4%, 15%, and 16%, respectively.

Table V
ROLE OF SEARCH QUERIES IN RELEVANT VIDEO RETRIEVAL

Engine Query Hit@1 Hit@3 Hit@5 MAP MRR

Lucene Baseline 59.18% 84.69% 89.79% 0.72 0.72
Reformulated 64.28% 90.81% 92.85% 0.76 0.76

Ad-hoc Baseline 54.08% 70.41% 78.57% 0.61 0.61
Reformulated 62.24% 88.77% 91.83% 0.75 0.75

E. RQ4: Benefits of the Query Reformulation Method

TechTube accepts free-form user queries that might not
always perform well. To improve results, TechTube employs
a query reformulation engine (Section III-B2) that comple-
ments these queries with important keywords from the video
speeches. In particular, we select the most frequent keywords
from the speeches of relevance feedback videos for query
expansion (details in Section III-B2). They might have a better
chance of identifying the relevant technical videos and the
relevant sections from these videos. In our experiment, we
investigate whether such a query reformulation improves the
TechTube’s performance or not. We thus experiment with two
types of queries – free-form, user provided queries (a.k.a.,
baseline queries) and reformulated queries, and determine how
our approach – TechTube – performs in retrieving the relevant
videos and relevant sections from them. We use Hit@K, MAP
and MRR to evaluate the retrieval of relevant videos whereas
precision, recall and F-score are used to evaluate the retrieval
of relevant sections from the videos. Table V and Figures 5,
6 summarize our comparative analysis.

Figure 5. Comparison between baseline and reformulated search queries in
the relevant video retrieval

RQ4 (a)-Impact of Query Reformulation in the Retrieval
of Relevant Videos: From Table V, we see that TechTube,
using the baseline query, retrieves the relevant videos 90% of
the time within the Top-5 results with a mean average precision
of 72% and a mean reciprocal rank of 0.72. However, it
performs even higher with the reformulated search query. Our
approach delivers the relevant videos 93% of the time within
the Top-5 results when reformulated search queries are used
with Apache Lucene. It provides these relevant videos with a
mean average precision of 76%, and a mean reciprocal rank
of 0.76, which are 5% higher. Furthermore, the reformulated
queries achieve 7% higher Hit@3 than the baseline queries in
retrieving the relevant videos. We also notice that reformulated
queries outperform the baseline queries when ad hoc search
engine is used. From Fig. 5, we also see that the reformulated
queries outperform the baseline queries for various Hit@K



measures when they are executed with Apache Lucene. All
these findings clearly suggest that query reformulation has a
positive impact on the TechTube’s performance.

Table VI
EVALUATION OF REFORMULATED QUERY AGAINST THE BASELINE QUERY

FOR RELEVANT SECTION RETRIEVAL

Query Type Metric Mean Median Q1 Q3

BaseLine Query
Precision 67.73% 0.94 0.27 1.0
Recall 46.42% 0.40 0.13 0.83
F-score 46.14% 0.50 0.22 0.70

Reformulated Query
Precision 67.46% 0.82 0.33 1.0
Recall 53.44% 0.50 0.20 0.95
F-score 50.47% 0.53 0.28 0.74

Figure 6. Comparison between baseline query and reformulated query in the
retrieval of relevant video sections

RQ4 (b)-Impact of Query Reformulation in the Re-
trieval of Relevant Video Fragments: Figure 6 shows the
comparison between baseline query and reformulated query
in delivering the relevant sections from the technical videos.
We see that TechTube, on average, achieves 67% precision
with both baseline and reformulated queries. That is, ≈70%
of the retrieved video sections overlap with the ground truth.
However, our approach achieves 15% higher recall and 9%
higher F1-score with the reformulated query than with the
baseline query.

All these findings above suggest that query reformulation
mechanism improves TechTube’s performance in retrieving the
relevant sections from the technical videos.

Summary of RQ4: Query reformulation complements the
free-form, user provided search queries and improves Tech-
Tube’s performance in the retrieval of relevant technical
videos and relevant video sections from them, which justifies
our choice of using the query reformulation.

TechTube retrieves the relevant fragment of the videos to
a given baseline query with a precision of 67% compare to
the ground truth. Furthermore, Using baseline search query
in video relevant fragment retrieval, TechTube, on average,
provides the retrieved video summary with a recall of 46%
and an F-score of 46% as well. Besides the performance
of TechTube for baseline search queries, our approach, on

average, retrieves the video relevant fragment to a reformulated
search query with a precision of 46%, a recall of 53%, and
an F-score of 50%. The comparison between the results of
the metrics for both types of search queries reports that the
TechTube approach performs better while uses reformulated
search queries. Despite the same precision and higher median
of the retrieved fragments for the baseline search queries,
reformulating the search queries using the Term Frequency
method on average improves the recall of the retrieved relevant
fragments for 7%, and also improves the F-score of the
retrieved fragments for 4%.

F. RQ5: Evaluation of TechTube with Developer Study

To evaluate the effectiveness of TechTube to assist devel-
opers in real-world development tasks, we conducted a user
study. A total of 16 developers participated in the study. Each
developer completed six different programming tasks using
TechTube. We manually checked each completed task for
accuracy. After completing the tasks, each user was invited
to provide their feedback on their overall experience of using
TechTube. Besides, in the second phase of the study we
campare the summarized videos against the original videos
using an online survey. In the remainder of the section, we
briefly explain the study setting and the results.

TechTube Setup: We create a web-based prototype of
TechTube that users can access from online. We download
almost 500 video tutorials related to six programming tasks
(Table VII) from YouTube. We then pre-process those videos
using TechTube offline component.

Participants: We recruit 16 developers with more than one
year of programming experience in one or more of the fol-
lowing languages: Python, Java, C#, Javascript, and PHP. All
of these languages are among the most popular programming
languages in Stack Overflow, one of the most popular Q&A
sites for developers. This variety of programming languages
also ensures that we can reliably determine the effectiveness
of TechTube across developers of diverse expertise. Out of the
16 participants, nine were graduate students and seven were
professional developers. The professional developers are found
via the online site Freelancer.com. We contact all developers
directly (e.g. via email and chat) and explain the whole study
in details.

Table VII
PROGRAMMING TASKS SELECTED FOR THE DEVELOPER STUDY

Level Task ID Task Description

Easy Task 1 Create a Binary calculator for two decimal input numbers
Task 2 Create a program to scan QR codes

Moderate Task 3 Create a program to find the broken links in an HTML webpage
Task 4 Create a program to send emails

Hard Task 5 Create a program for a client and a server to communicate over a socket
Task 6 Create a program to measure the similarity between two texts using Cosine

Similarity

Study Setup: We choose six tasks (see Table VII) based on
two criteria. First, five programming languages were chosen to
suit the expertise of the study participants: Python, Java, C#,
PHP and Javascript. Second, The difficulty level of the tasks
should vary whereas the tasks should not be tedious and should
not require a long time (e.g., more than 30 minutes). In the



first phase, we perform a pilot study to determine the difficulty
level and the average implementation time of the tasks. Each of
these tasks takes from 20 to 30 minutes to complete. To obtain
comparable results, we provide each participant with a pre-
configured virtual machines (VM) equipped with TechTube
and the required tooling to implement their tasks (e.g., IDE).
The virtual machine records all activities of a developer. Based
on these VMs and their recorded videos, we identify the search
queries issued by the developers for each of the tasks. Besides
the queries, we also identify the video summaries generated
for them and what they used as guides in the completion
of the tasks. In the second phase, we aim to evaluate the
relevance of the video summaries (generated by TechTube)
against the developer queries issued during their tasks. We
thus extract the frequently used queries for each task and
the frequently retrieved video summaries for them to conduct
an online survey. Since almost all of our participants have
more than one-year programming experience in Python, we
collect the queries related to Python programming tasks. In our
survey, we provide the frequently used queries for each task
(e.g., Table VIII) and the corresponding summarized videos
from the TechTube and the original video from YouTube. We
then ask the participants to compare the accuracy, preciseness,
conciseness and usefulness of each video summary against the
original video by answering several questions.

Table VIII
SEARCH QUERIES COLLECTED FROM THE DEVELOPER STUDY

Task Search Query

Task 1 How to create a simple calculator in python?
How to convert decimal numbers to binary numbers in python?

Task 2 How to create a QR code scanner program in python?

Task 3 How to extract the links from an Html webpage in python?
How to send an Http request to a link and get the response in python?

Task 4 How to send emails to contact in python?
Task 5 How to create a socket and client-server communication sending and receiving data

in python?

Task 6 How to convert words to the vectors in python?
How to compare two texts with Cosine Similarity?

Study Findings: All of 16 programmers successfully per-
formed the assigned tasks and developed them. Based on the
provided screen videos, we find that each task implementation
took an average of 26 minutes. We use a Likert scale of 1
to 10 to capture a participant’s responses on the accuracy,
preciseness, conciseness and usefulness of a video summary.
Figure 7 presents the average and median of participants’
responses to each question in the second phase of the study.
From Figure 7, we see that, on average, participants find the
summarized videos accurate and relevant to the search queries.
Furthermore, with a comparison between the original videos
and the summarized videos, on average, they find the video
summaries to be precise and concise enough and useful for
implementing their programming tasks. A follow up survey
with the developers reveals that they find the video summaries
to be the most useful. For example, P20 (i.e., participant
number 20) commented that: “TechTube is an amazing tool;
I was able to navigate and develop the codes.” P15 also
commented that: “The summarized videos are handy because
of removing the irrelevant information thoroughly for solving
the problem.” The participants also find the usage of video

Figure 7. Developers’ responses on the relevant video summaries generated
by TechTube

summaries to be an easier and faster method to solve a prob-
lem. For example, P15 commented that “watching multiple
summarized videos discussing a topic is easier and faster to
find the solutions rather than using the available resources
on the Internet (e.g., forums, YouTube).” . the participants also
made several suggestions to extend TechTube for it to become
even more useful for example, P2 suggested: “TechTube needs
to gather related Stack Overflow posts and code snippets as
an enhancement.”.

Summary of RQ5: The user study involving 16 developers
shows that TechTube can assist developers effectively in
completing diverse coding and technical tasks. Each partici-
pant was able to complete the coding tasks assigned to them
using TechTube. The participants found the relevant video
summaries from TechTube useful to complete their tasks.

V. THREATS TO VALIDITY

Internal validity threats relate to experimental errors. In
our empirical evaluation of the retrieval of relevant videos
and video segments, we compare the results against a ground
truth database that we created by taking inputs from three
human coders. To mitigate subjective bias, each ground truth
was consulted with all three coders. Each of these human
coders is a graduate student in Software Engineering. They
have the necessary programming background and expertise in
Python and Java to analyze the search queries and the videos.
We also mitigated the bias in the user study by asking each
participant to complete three programming tasks, where each
participant worked remotely without the assistance or support
from others. In addition, to mitigate the fatigue that may arise
during the study, we asked each participant to take sufficient
breaks between each task.

External validity threats relate to the generalization of
the obtained results. Our approach warrants audio in a video
to perform well with the natural language queries. We use
speaker’s silence to split the video (Section III-A1). Thus, our
approach might not be applicable for online technical videos
that either do not contain any audio or contain very little audio.



While the current implementation of TechTube uses technical
videos from YouTube, it can use the technical videos from any
online video repository. Another threat comes from our manual
selection of relevant videos for the experiment. Although we
carefully identify the relevant videos from a total of 400
videos, our selection might have some subjective bias due to
the use of multiple people in tagging the videos sections. We
have used the top StackOverflow posts titles as part of our
experimental search queries where number of them might be
edited by the posts authors to make them more understandable
for the responders leading to having more precise result for
our experiments.

VI. RELATED WORK

Research in Software Engineering to study video tutorials is
increasing with the use of videos to assist in programming or
technical tasks is gaining popularity in online forums. The
work of MacLeod et al. [3] is one of the first few that
investigated the reason for making video tutorials by the users.
By concentrating on the screencasts, they identified that the
video tutorials can be complementary resources for the text-
based resources (e.g., API documentations). Since the video
tutorials benefit from the audiovisual trait, they are useful
materials for sharing the knowledge between two developers.
MacLeod et al. [3] specified this feature as the key advantage
of the video tutorials rather than other written documents.
Their study motivates us to perform research on the technical
video tutorials. Escobar-Avila et al. [38] conduct a survey on
online learning preferences involving human subjects. They
report that most of their participants liked visual/auditory
resources (e.g., video tutorials) and preferred multiple small
videos rather than watching a long video. Thus, their work
motivates our work that reduces a long video tutorial into a
video summary by keeping only the essential sections.

Parra et al. [39] employ different approaches of video
tagging and classification and attempt to help the developers to
determine the relevance of a video tutorial in short amount of
time. On the other hand, we provide the video summary from
a long technical video so that the developers can determine
its relevance against their query without watching the whole
video. Adcock et al. [5] present an approach –TalkMiner– that
relies on OCR (i.e., Optical Character Recognition) to capture
keywords from the slides of a webcast. TalkMiner provides
the critical slides from the webcast using a combination of
OCR, text processing, and information retrieval methods (e.g.,
Lucene). However, the approach might not perform well with
poor-quality and noisy videos due to its high dependency on
the OCR technology. Thus, their work motivates us to leverage
another feature of the video (e.g., speech track) in identifying
the essential sections. Another study by Yadid and Yahav
[40] aims to extract the source code from the video tutorial
frames. They proposed an OCR-based approach mixed with
statistical language models to extract the code snippets from
the image frames. Despite the average precision between 80%
and 82%, their work covers just the specific videos related to
programming containing code snippets. Unlike our proposed

approach TechTube, their work could not perform on the
other type of technical video tutorials (e.g., tool installation,
webinars). Most recently, Ponzanelli et al. [4] focus on the
programming video tutorials. They proposed to identify the
relevant fragments of the video tutorials and segment the video
tutorials based on the video frames content with the corre-
sponding audio transcript. Unlike us, they use OCR to extract
the content of the video frames (e.g., code snippets). Similar to
us, they also use the audio transcript beside the frame contents
to classify the relevant fragments of the video. Given that
their approach relies on detecting code snippets in the video
tutorials, it can be limited to video tutorials that most contain
code snippets. Furthermore, their algorithms and heuristics that
are designed to detect the Java code might also not be suitable
for other programming languages (e.g., Python). The works
of Yadid and Yahav [40] and Ponzanelli et al. [4] motivate
us to create TechTube. Unlike the above techniques that are
only applicable to video tutorials containing code snippets,
TechTube is suitable for any technical videos that may or
may not contain code snippets. TechTube thus complements
the state of art research in software/technical video processing
and segmentation to assist in diverse tasks related to software
engineering.

VII. CONCLUSION AND FUTURE WORK

In this research, we propose a novel approach – TechTube –
that identifies the relevant sections of a technical video tutorial
to a search query and delivers them as a summarized coherent,
video fragment. TechTube gives developers the capability of
using natural language queries to retrieve the relevant sections.
To create a precise and concise fragment, TechTube reformu-
lates the query and matches it with technical videos available
in an online repository. TechTube uses a silence-based method
to better identify the relevant sections of a technical video
tutorial. Our evaluation of TechTube against 98 user-generated
search queries shows that TechTube can retrieve the relevant
video tutorials in 93% of the time. TechTube can also properly
highlight the relevant video segments in a video with a
precision of 67% and a recall of 53%. We compared TechTube
with a state of the art approach from the literature –CodeTube–
and found that TechTube outperforms this approach signifi-
cantly. We conducted a user study involving 16 developers to
evaluate the effectiveness of TechTube during the completion
of six development tasks. All study participants were able to
complete the development tasks using TechTube. They also
find the summarized videos precise and concise enough to
use them in implementing programming tasks. Our future work
will focus on extending TechTube to check for the efficiency of
different query retrieval techniques within the TechTube search
engine module and to study how TechTube can complement
traditional text-based software documentation resources.
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