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ABSTRACT
Deep learning practitioners are often interested in improving their
model accuracy rather than the interpretability of their models.
As a result, deep learning applications are inherently complex in
their structures. They also need to continuously evolve in terms of
code changes and model updates. Given these confounding factors,
there is a great chance of violating the recommended programming
practices by the developers in their deep learning applications. In
particular, the code quality might be negatively affected due to their
drive for the higher model performance. Unfortunately, the code
quality of deep learning applications has rarely been studied to
date. In this paper, we conduct an empirical study to investigate
the distribution of code smells in deep learning applications. To
this end, we perform a comparative analysis between deep learning
and traditional open-source applications collected from GitHub.
We have several major findings. First, long lambda expression, long
ternary conditional expression, and complex container comprehension
smells are frequently found in deep learning projects. That is, deep
learning code involves more complex or longer expressions than the
traditional code does. Second, the number of code smells increases
across the releases of deep learning applications. Third, we found
that there is a co-existence between code smells and software bugs
in the studied deep learning code, which confirms our conjecture
on the degraded code quality of deep learning applications.
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1 INTRODUCTION
Deep Learning (DL) is a type of machine learning that uses artificial
neural network with multiple hidden layers. It has been found to
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be highly effective in several application domains including im-
age recognition, speech recognition, computer games, and natural
language understanding. The rise of open source DL frameworks
has contributed to the democratization of deep learning technol-
ogy. Thanks to scripting-based libraries such as Tensorflow and
Pytorch, DL practitioners are now capable of developing functional
prototypes quickly and experimenting with them. However, such
prototypes mostly consist of glue code that patches together the
program identifiers, external libraries, data processing functions
and training algorithms [22]. That is, due to heterogeneous com-
ponents and dependencies, the correctness of deep learning code
might often be traded with its code quality. Such a choice might
turn the deep learning code into complex software applications that
are hard to comprehend, debug or even to enhance in the long run.

Sculley et al. [22] examined the long-term maintenance costs
of machine learning (ML)-based software systems at Google and
reported that ML-based systems encounter all the maintenance
issues of traditional software systems. However, they noted that
ML-based software systems suffer from an additional set of issues
that arise from their statistical and data-driven nature. There have
been a few earlier works that examined software bugs in deep
learning frameworks [13] and analysed the software engineering
practices followed by DL practitioners [1]. They suggest that poor
coding practices and quick solutions often result in low-quality code
containing various code smells. The presence of code smells within
the software systems might incidentally degrade their quality and
performance, and thus hinder their maintenance and evolution.
While there have been a number of studies on the code quality of
traditional software systems and a few on ML-based systems, to
date, no investigation has been performed on the code quality of
DL-based software systems.

In this paper, we conduct an empirical study on the quality
of deep learning code using 118 open-source software systems.
We first determine the prevalence and trends of code smells in
the DL code, and then contrast them with the code smells from
traditional software code. We also show that the amount of code
smells increases in the DL applications across releases, and that code
smells and software bugs often co-exist within the deep learning
code. To the best of our knowledge, this is the first study that
investigates the code quality of DL-based software systems. Our
study answers three research questions as follows.

RQ1: Does deep learning code smell like the traditional
software code?
We collect a total of 59 deep learning systems and 59 traditional
software systems from GitHub. We determine the distribution of 10
code smells in the deep learning systems, and then compare them
with the smells from the traditional systems. We found no statisti-
cally significant difference between the code smell occurrences in
deep learning projects and that in the traditional ones. When types
of smells were considered, we found that Long Lambda Function,
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Long Ternary Conditional Expression and Complex Container Com-
prehension are more frequent within the deep learning code than
within the traditional source code.

RQ2:What is the global trend of code smells in deep learn-
ing projects over multiple releases?
We investigate the trend of code smells found in the deep learning
projects over time. We detect the code smells from each of their
releases and then analyse the changes in smell instances across
the releases. Our analysis suggests that the number of code smells
increases across the releases in the deep learning applications.

RQ3: Is there a co-existence between code smells and soft-
ware bugs in deep learning applications?
We analyse 37,951 commits from 59 deep learning projects to de-
termine the co-existence between code smells and software bugs
within DL code.We first separate the bug-fixing commits using their
labels and extract the files that were changed to fix the bugs. Then
we determine whether these changed files contain code smells in
our deep learning applications.We found that 62.84% of the changed
files overlap with the smelly code. Furthermore, frequent smells
(e.g., Long Ternary Conditional Expression, Long Parameter List)
co-exist with the software bugs more often than the others. We also
analysed the time spent for fixing the buggy code. We found that
the buggy code from the DL applications needs more time to fix
when it is smelly than when it is odorless.

2 BACKGROUND
In this section, we present the phases and challenges of DL-based
software systems as well as the code smells analyzed in our study.

2.1 DL-based Software Systems : Phases and
Challenges

Over the last few years, Deep Learning (DL) has shown impressive
performance in various application domains such as image process-
ing, speech recognition, and natural language understanding [8].
DL models have high learning capacity that allows them to capture
increasingly complex patterns directly from data without the need
of handcrafted feature engineering [12]. Traditionally, software
systems are constructed deductively by writing down the rules
that govern the behavior of the system as program code. However,
with deep learning, these rules are inferred from training data and
they are generated inductively. Here, we present the main steps of
DL-based software development.

Data Collection and Preprocessing : DL practitioners first
collect a representative dataset that captures the knowledge needed
to perform a task. The dataset is pre-processed with numerical
encoding that makes it suitable for the numerical optimization-
based learning. Then the dataset is divided into three different
subsets: training dataset, validation dataset, and testing dataset.

Model Construction: After analysing the dataset, DL practi-
tioners design and configure their DL model by choosing the ar-
chitecture, setting up the initial hyper-parameters, and selecting
the mathematical components such as activation functions, loss
functions, and gradient-based optimizers. At this step, they also
consider requirements (e.g., target performance metrics), data com-
plexities, and the guidelines from DL research works that addressed
similar problems earlier.

Model Fitting: Once the data and model architectures are ini-
tialized, the training process starts and gradually updates the model
parameters with the goal of minimizing the empirical loss estimated
on the training dataset. In layman’s terms, the training step sys-
tematically evolves the software decision logic towards effectively
performing a target task (e.g., recognizing a human face).

Hyper-parameters Tuning: To optimize the learning process,
hyper-parameters are often tuned by evaluating the models trained
on them. DL practioners use different search strategies (e.g., grid-
search, random search) for their hyper-parameter optimization.

Model Evaluation: Once the training step is over, the best-
fit model needs to be tested on the testing dataset. The testing
dataset remains unseen to the model during both training and
tuning phases. The goal is to check whether the trained model
performs well against the future-like data or not.

The high learning capacity of the DL models comes with an
intensive-engineering process that involves data and configura-
tion management before the training. Thus, although many of the
required software components (e.g., ready-to-use routines) are pro-
vided by the DL libraries and frameworks, the development of a
DL-based systemwarrants substantial coding and rigorous software
engineering practices.Without rigorous engineering, DL-based soft-
ware systems could quickly turn into the systems that are hard to
maintain, debug and enhance due to unpaid technical debts. Sculley
et al. [21] highlight two common software design anti-patterns
found in the DL-based systems as follows.

Pipeline Jungle: The unstructured data processing pipelines
that deal with multiple sources and perform different transforma-
tions (e.g., formatting, joins) might become overly convoluted and
hard to maintain over time.

Glue Code: The use of DL libraries introduces a large amount
of glue code in the deep learning applications. Glue code is often
written to construct the arguments and to configure the general-
purpose components required for the task at hand. Mature DL
systems might contain about 5% DL code that includes param-
eterized calls to generic libraries and about 95% glue code that
transforms the entries to be plugged into the ready-to-use routines.

We believe that the emergence of these high-level anti-patterns
above is a logical consequence of the poor coding practices in DL-
based software projects. DL practitioners might not be totally aware
of the spread of these anti-patterns in their DL code, which could
be costly in the long run.

In this paper, we examine the code of deep learning projects
written in Python and look for occurrences of poor coding practices.
More specifically, we investigate the occurrences and impact of 10
Python code smells described in Section 2.2.

2.2 Code Smells
In software engineering, the term code smell was first coined by
Kent Beck [11], to describe symptoms in the source code of an ap-
plication that indicate poor design or implementation choices [24].
These smells do not prevent the program from working. However,
they are a violation of the best practices that may increase the risk
of software bugs or failures in the future.

Our study is based on an existing Python-based tool named
Pysmell [27]. We consider 10 code smells for our study, as were con-
sidered by Chen et al. [6]. To determine thresholds for code smells,
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Figure 1: Schematic diagram of the empirical study -(a) Subject system collection and filtration, (b) Code smell detection, and
(c) Code smell-bug co-existence analysis

we use an experience-based strategy where the thresholds are de-
fined by 101 experienced developers with 4-10 years of experience.
They are also active contributors on popular python projects from
GitHub.We select five code smells that are related to object-oriented
programming and another five code smells that were defined by
Chen et al. [6] from their analysis of bad coding patterns in real
world python systems. Below is the list of the 10 selected code
smells.

Long Parameter List (LPL) [10]: A method or a function that
has a large number of parameters.

Long Method (LM) [10]: A method or a function that is ex-
tremely long.

Long Scope Chaining (LSC) [10]: A method or a function that
has a deep nested closure.

Large Class (LC) [10]: A class that has a large number of source
code lines.

Long Message Chain (LMC) [4]: An expression for accessing
an object using the dot operators through a long sequence of at-
tributes or method calls.

Long Base Class List (LBCL) [6]: When a class extends too
many base classes due to the multiple inheritances that Python
language supports, it makes code hard to understand.

Long Lambda Function (LLF) [6]: An anonymous function
that is extremely long and complex in terms of conditions and
parameters.

LongTernaryConditional Expression (LTCE) [6]: A ternary
conditional expression that is extremely long.

Complex Container Comprehension (CCC) [6]: One-line
comprehension list, set or dictionary that contains a large number
of clauses and filter expressions.

Multiply-Nested Container (MNC) [6] a container (including
set, list, tuple, dict) that is deeply nested.

3 METHODOLOGY
Fig. 1 shows the schematic diagram of our empirical study. It has
three major steps. First, deep learning-based and traditional soft-
ware systems are carefully selected from GitHub for the study
(Fig. 1-(a)). Each of the software systems (a.k.a., repositories) is
pre-processed and prepared for code smell detection. Second, we
detect code smells using PySmell tool from each of the releases
of DL-based and traditional systems (Fig. 1-(b)). Third, we collect
bug-fixing commits and their changed source files to determine
the co-existence between code smells and software bugs (Fig. 1-(c)).
The following subsections discuss these steps in details.

3.1 Subject System Collection & Filtration
System Collection: We attempt to contrast between DL-based
and traditional software systems in terms of their code quality (e.g.,
presence of code smells). Thus, we need to collect both types of
systems for our study. In order to collect deep learning systems, we
perform keyword search with GitHub Search API [9]. In particu-
lar, we choose a set of popular keywords related to various deep
learning technology and frameworks as follows.
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Figure 2: (a) Distribution of SLOC, and (b) Commits in the selected DL-based subject systems

Deep-learning, deep-neural-network, neural-network, CNN,
RNN, convolutional neural network, recurrent neural network,
Caffe, Keras, Tensorflow, Theano, tflearn, Paddle incubator-
mxnet and Torch

We also limit our search to Python-based systems since Python
is the most widely used programming language in the DL-based
applications to date [2]. The search retrieves a total of 285 DL-based
repositories with at least 57 commits each. In order to select the
traditional software systems, we reuse the benchmark of Chen et al.
[6]. The benchmark provides a total of 106 popular repositories
with at least 1000 stars each.

System Filtration: The previous step provides a total of 391
(285 DL-based + 106 traditional) software systems. However, all of
them might not be appropriate for our study. We thus manually
check each of these systems and discard the inappropriate ones
such as tutorials and non-popular projects. Out of 285 reposito-
ries, 139 repositories were tutorials, which left us with 146 real
deep learning repositories. We also carefully select popular and
mature DL projects from them by employing maturity and popu-
larity metrics (e.g., issue count, commit count, contributor count,
fork count, stars). We retain only such repositories that have at
least four releases each, and discard the rest. Thus, we ended up
with a total of 59 DL-based software systems. Out of 106 traditional
software systems, we found that 25 systems do not exist any more,
which leaves us with 81 traditional systems. However, we randomly
choose 59 of them for the study, which ensures a parity in size
with our DL-based systems. Thus, we ended up with a total of 118
DL-based and traditional software systems for our empirical study.

System Clustering: While 118 subject systems were selected
above, we attempt to better understand them by analysing their
SLOC (Source Line of Code) and number of commits. We first cal-
culate the SLOC of each system using Radon [7], a Python-based
tool, where only Python files are considered. Then we categorize
the subject systems into three clusters – small, medium and large –
using KBinsDiscretizer [20] from Scikit-Learn library [19]. KBins-
Discretizer accepts number of clusters as a parameter and provides
balanced clusters using quantile strategy. According to Brown [3],
a project is considered small if it has SLOC<= 10𝐾 , medium if
it has SLOC<= 100𝐾 and large if it has SLOC> 10𝑀 . However,
since our DL-based systems were not big enough, we adapt these
thresholds for our study. In particular, we consider a system small

when SLOC<= 4𝐾 , medium when SLOC<= 15𝐾 and large when
SLOC> 15𝐾 . Fig. 2 shows the (a) distribution of SLOC and (b) num-
ber of commits/system in 59 DL-based subject systems. We see
that DL-based systems are mostly small or medium. The largest
DL-based system has a total SLOC of ≈90K. These clusters are later
used for answering RQ1 (Section 4.1).

We also analyze the releases of our deep learning subject systems.
We found that the median number of release is 10, i.e., 50% of the
DL-based systems have more than 10 releases. For the sake of our
analysis, we thus divide the release history of each project into 10
major releases, which involves the merging of actual releases. The
systems having less than 10 releases are kept as is. Table 2 shows
the number of deep learning systems from three different clusters
across 10 releases.

3.2 Code Smell Detection
Our smell detection strategy is based on PySmell [27] as discussed
in section 2. To perform our study, we adapted the PySmell code
available on GitHub to meet the needs of our project. The code
takes as input a folder that contains all the projects under study,
and then detects different types of smells from each of the source
files. PySmell is a metric-based tool that detects code smells using
rules and thresholds. It marks an entity (e.g., class, function) smelly
whenever the entity activates any of the predefined rules designed
for the smell types. Finally, we capture the code smell occurrences
for each smell type against different granularity of program entities
– class, function, line. We employ several code level metrics [6] for
smell detection as follows: PAR: number of parameters; MLOC:
method/function lines of code;DOC: depth of closure;CLOC: class
lines of code; LMC: length of message chain; NBC: number of base
classes; NOO: number of operators and operands; NOC: number
of characters; NOL: number of lines; NOFF: number of for clauses
and filter expressions; LEC: length of element chain; DNC: depth
of nested container; and NCT: number of container types.
Since PySmell’s rules are configurable, we use appropriate thresh-
olds to configure these rules that are derived from the work expe-
rience of expert Python developers[6]. Such a strategy has been
adopted by earlier studies for smell detection[16].

Table 1 presents the strategies and the metrics’ thresholds that
were used to detect the code smells. All metrics and thresholds used
in our empirical study were taken from an earlier work [6].
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Table 1: Experience-based thresholds and strategies used by
smell type via Chen et al. [6] study

Code Smell Metric Thresh. Strategy
LPL PAR 5 (PAR, HigherThan)
LM MLOC 38 (MLOC, HigherThan)
LSC DOC 3 (DOC, HigherThan)
LC CLOC 29 (CLOC, HigherThan)
LMC LMC 5 (LMC, HigherThan)
LBCL NBC 3 (NBC, HigherThan)

LLF
NOC
PAR
NOO

48
3
7

(NOC, HigherThan)
and ((PAR, HigherThan)
or (NOO, HigherThan))

LTCE NOC
NOL

54
3

(NOC, HigherThan)
or (NOL, HigherThan)

CCC
NOC
NOFF
NOO

62
3
8

((NOC, HigherThan)
and (NOO, HigherThan))
or (NOFF, HigherThan)

MNC
LEC
DNC
NCT

3
3
2

(LEC, HigherThan)
or ((DNC, HigherThan)
and (NCT, HigherThan))

As shown in Fig. 1-(b), there are three steps in our smell detection
process. First, we clone the repositories of both traditional and DL
projects’ GitHub repositories. Then, we run the Pysmell tool on
them to detect the code smells that occurred in the files of the cloned
software projects. This allows us to compare the distribution of
Python code smells between traditional and DL projects. In a second
step, we restore all the versions of each of the projects collected
in the previous step (1-(b)). Then, we run the Pysmell tool on each
release version of each project to analyse the trend of code smells
over releases. In the third step, we restore the code to its status
before applying a bug fixing commit. Then, we execute the Pysmell
tool on each file that has been changed by an identified bug fixing
commit in order to study the relationship between bugs and code
smells in DL-based software projects.

3.3 Experimental Data Analysis
Detecting Bug-Fixing and Bug-Inducing Commits: Since we
attempt to determine the potential correlation between code smells
and software bugs, we need to detect the bug-fixing and bug-
inducing commits from version control history. In order to detect
the bug-fixing commits, we employ a keyword search-based ap-
proach. In particular, we use a list of keywords for the search – {bug,
fix, wrong, error, fail, problem, patch}, as were used by Rosen et al.
[18]. If a commit log contains one of these keywords, we consider
it as a bug-fixing commit. Once a bug-fixing commit is detected, we
use the SZZ algorithm [23] to identify the bug-inducing commits
from the version history that introduced the bug.

Co-existence betweenCode Smells and Bugs:We determine
the co-existence between code smells and software bugs by investi-
gating how the bug-inducing code overlaps with the smelly code.
First, we identify the files that were changed later to fix the bugs
(i.e., bug-inducing files) and that also contain one or more code
smells. Second, we calculate the percentage of occurrences for each
smell type in these smelly, bug-inducing files. Our goal was to iden-
tify the most frequent code smells that co-exist with the bugs in

the deep learning applications. Third, we analyze the distribution
of the number of bug fixing commits with respect to smelly files
and smell-free files.

Time spent to fix a bug that co-exists with code smells: To
evaluate the cost of code smells in productivity, we compare the time
taken to fix bugs when the files contain code smells and when they
do not. We compute bug-fix time by measuring the time interval
between the bug-introducing changes and their corresponding fixes
[14]. We use Mann-Whitney Wilcoxon test to compare bug-fix time
and examine the negative impact of the code smells on bug-fixing
and developer productivity.

4 STUDY FINDINGS AND DISCUSSIONS
In this section, we present the results of our study in details, and
answer three research questions as follows.

4.1 RQ1: Does Deep Learning Code smell like
the Traditional Software Code?

In this section, we determine the distribution of code smells in
both deep learning and traditional software systems, and compare
their distributions. We calculate the occurrences of code smells
across different dimensions (e.g., project type, smell type) and then
compare the DL-based systems with the traditional systems.

Smell Occurrences by Project Type: We compare DL-based
systems with traditional systems in terms of their code smell den-
sity. First, we calculate the number of code smells in each project,
and then divide them with their number of source code lines (a.k.a.,
SLOC). Fig. 3 shows the comparison between DL-based and tradi-
tional systems using box plots where normalized smell occurrences
per source code line are considered. We perform non-parametric
Mann-Whitney Wilcoxon tests, and found that there is no signifi-
cant difference (i.e., p-value 0.117 > 0.05) between DL-based code
and traditional code in terms of their code smell density.

Figure 3: Smell occurrences in DL and traditional projects

Finding 1: There is no statistically significant difference be-
tween deep learning code and traditional code in terms of their
code smell occurrences.

Smell Occurrences by Project Size: Although the above anal-
ysis shows no difference between DL-based and traditional systems
in code smell density, we further extend our comparative analysis
by considering both type and size of the systems. We calculate
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Table 2: Number of small, medium and large DL-based projects across 10 releases

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Small Projects 18 18 18 18 18 14 12 11 11 9

Medium Projects 19 19 19 19 19 17 16 15 14 14

Large Projects 22 22 22 22 22 18 16 14 12 11

the occurrence of code smells in each of the projects from small,
medium and large clusters, and compare the smells/project between
DL-based and traditional projects. Fig. 4 shows our comparative
analysis across three sizes (or clusters). We see that the number
of code smells per project increases when the size of the project
increases for both DL-based and traditional projects. Such a trend
is consistent with the earlier findings with traditional systems [15].
However, we found two noticeable differences in the density of
code smells between deep learning and traditional software projects
when we consider the size. First, the number of code smells in the
small DL projects is significantly higher than that of small tradi-
tional projects. Second, the number of code smells in the large DL
projects is significantly lower than that of the large traditional sys-
tems. We perform Mann-Whitney Wilcoxon tests in both cases, and
found p-values 0.0002 and 1.19e-05 respectively that are less than
0.05 and thus indicate the statistical significance.

Finding 2: The number of code smells per project increases with
the increase in project size for both deep learning and traditional
software projects. However, small DL-based projects contain
more code smells than that of small traditional projects. On the
contrary, large DL-projects contain comparatively less smells
than that of large traditional software projects.

Complementary Manual Analysis:Wemanually analyse the
source code of 30 deep learning projects and 30 traditional projects,
and derive several meaningful insights. First, the core deep learning
code that involves data pre-processing and model training tends to
be smelly. Once the code is built, DL systems tend to get larger and
mature by including more features for various application domains.
In other words, the large DL projects tend to have a mix of core
deep learning code and traditional source code. Such a mixture
of heterogeneous code is often encapsulated and its functionality
is exposed through a simple endpoint. Such a workaround might
explain the comparatively less number of code smells in the large
DL-based software systems (Fig. 4).

Smell Occurrences by Smell Type:While our above analyses
show interesting findings, we further contrast the code smell distri-
butions between DL-based and traditional subject systems in terms
of code smell types. In particular, we perform statistical significance
tests on these distributions across 10 different code smell types, and
then collect the p-values fromMann-WhitneyWilcoxon tests. Table
3 shows the p-values from our tests across project size and code
smell type. Given the comparison and p-values from the Table 3, we
also divide the code smells into three groups as follows – Group-I:
smells that occur both in DL-based and in traditional software sys-
tems with no statistically significant difference, Group-II: smells

Figure 4: Smell occurrences by project type and project size
(small, medium and large)

that occur more in the DL-based systems than in the traditional
systems, and Group-III: smells that occur more in the traditional
systems than in the DL-based systems. Then we further investigate
the prevalence and distribution of code smells across these groups.

Group-I: Large Class, Long Method and Long Scope Chaining:
Based on a significance threshold of 0.05, we found three python
code smells – Large Class (LC), Long Method (LM) and Long Scope
Chaining (LSC) – from Table 3 for which DL systems and traditional
systems have no statistically significant difference in their smell
densities. From Fig. 5-(a), we see that these code smells have similar
variances across both project types. These smells are often a result
of poor coding practices by the developers. Thus, they might be
invariant of the type of the subject systems.

Group-II: Complex Container Comprehension, Long Ternary Con-
ditional Expression, and Long Lambda Function: From Table 3, we
found three other code smells that occur more frequently within
the DL code than in the traditional code. From Fig. 5-(b), we also
see that their code smell distributions are significantly different
in terms of median and variance. We thus manually analyse these
three code smells for further insights as follows.

ComplexContainerComprehension (CCC):Container com-
prehension is a quick solution for constructing one-line Python
objects (e.g., list, set, dict). One-line statements often become com-
plex and hard to comprehend when more and more clauses and
filter expressions are added. DL developers often choose a one-line
statement to build a sequence of arguments, which results in a long-
expression. They use the hard-coded sequences to initialize a list of
possible hyper-parameters since these values are often found in the
DLwhite papers and books. Besides, comprehensions are constructs
that allow the containers to be built from other containers. Thus,
the developer often use CC to reformat the data structure of a set of
values, which makes it suitable as arguments for configuring other
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Table 3: Mann-Whitney test and Cliff’s Delta results between DL and Traditional Projects for each Smell Type in Total without
splitting projects by size and for each size of projects.

LC LM LSC MNC LTCE LPL LMC LLF LBCL CCC
p-value (Total) 0.06 0.43 0.36 5.44e-05 2.94e-12 1.22e-20 0.002 0.04 8.42e-08 0.02
p-value (Small) 0.26 0.05 0.02 0.33 1.73e-05 0.3 0.0005 0.005 0.425 0.035
p-value (Medium) 0.403 0.18 0.22 0.004 1.22e-06 0.01 6.4e-08 0.37 0.006 0.006
p-value (Large) 0.001 0.06 0.21 7.75e-06 5.40e-08 0.0001 9.29e-09 0.026 4.01e-07 0.02
Cliff’s Delta (Total) 0.17 0.02 0.04 0.41 0.73 0.31 0.82 0.18 0.45 0.23
Cliff’s Delta (Small) 0.08 0.32 0.27 0.07 0.76 0.1 0.47 0.43 0.02 0.34
Cliff’s Delta (Medium) 0.048 0.17 0.13 0.49 0.88 0.44 0.94 0.06 0.38 0.47
Cliff’s Delta (Large) 0.54 0.28 0.14 0.8 0.98 0.66 0.99 0.35 0.84 0.36

Figure 5: Smell Occurrences by Smell Type and by Project Type

DL routines. Hence, the longer the comprehension, the higher the
risk of turning into CCC smell.

Long Ternary Conditional Expression (LTCE): Ternary con-
ditional expression is a conditional variable assignment in one line
that makes the code compact. It allows conditional flows into the
code and replaces multiple if-else blocks with a single line of code.
However, excessive use of this expression could hurt the readability
of code. Besides, combination of multiple terms and expressions
(e.g., lambda expression) could make this conditional expression
unnecessarily complex. DL developers often use ternary conditional
operators either to execute a particular routine or to conditionally
assign a particular value to a configuration setting. This helps them
switch between DNN design and hyper-parameter tuning and de-
termine the impact of their different choices. Our study also reports
the high occurrences of LTCE in the DL projects.

Long Lambda Function (LLF): Lambda function is a single-
line function. While it is easy to define or use, the function could be
hard to manage and maintain when many complex operations are
involved. DL developers often choose lambda functions to carry out
data processing by creating anonymous function at run-time and
then by sending them to appropriate DL routines as parameters.
However, the function becomes long and complex when multiple
data elements are handled simultaneously by these routines.

Group-III: Long Base Class List, Long Message Chain, Long Pa-
rameter List and Multiply Nested Container: Using a significance
threshold of 0.05, we found four code smells from Table 3 that oc-
cur more frequently in the traditional code than in the DL code.

From Fig. 5-(c), we see that their distribution is comparatively lower
for the DL-based code. We thus analyse these four types of code
smells, and attempt to explain the findings as follows. First, two
smells – Long Base Class List (LBCL) and Long Message Chain
(LMC) – are mostly related to object-oriented programming (OOP),
which might explain their low occurrences in the Python-based
deep learning code. Due to the scripting nature of Python-code, DL
practitioners might not be interested to use the OOP paradigm of
Python language. Second, we also observe low occurrences of Long
Parameter List (LPL) and Multiply Nested Container (MNC) smells
in the deep learning code. These smells arise from the complexity
of the code that involves long parameter list and nested logic. Since
DL practitioners implement their applications using a data-driven
training process with ready-to-use routines from the libraries, the
odds of long parameter list and deep nested logic occuring is lower.

Finding 3: Long lambda expression (LLF), Long ternary condi-
tional expression (LTCE) and Complex container comprehen-
sion (CCC) smells are more frequent within the deep learning
code than in the traditional software code.

4.2 RQ2: What is the global trend of code
smells in deep learning projects over
multiple releases?

Although we have studied the distribution of code smells in DL ap-
plications and compared it with such distribution in the traditional
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applications, we also want to further analyse their prevalence over
time. We thus investigate the global trend of code smells exhibited
by deep learning projects over time. To perform this analysis, we
compute the density of code smells per version for each of the DL
projects. Then, we categorize each project into our pre-defined size-
based categories (i.e., small, medium and large). Then we plot the
smell occurrences over versions for each size-based category. Fig.
6 shows the global trends of code smell occurrence in our subject
systems.

From Fig. 6, we see that the smell occurrences have an increasing
trend. This can be explained intuitively by the increase in source
code size (SLOC) and complexity over the life cycle of the DL
projects. Our result is also consistent with previous findings on the
traditional projects [5]. However, most of the DL projects are new
projects that are yet to mature. Thus, the comparison with tradi-
tional systems in terms of evolution of code smells could be more
effective and more fair when these DL projects would reach similar
level of maturity. However, the increasing trend of DL code smells
suggest that DL practitioners might not have paid enough attention
to the quality of their code even after releasing several versions.
Thus, our findings confirm the need for early refactoring of code
smells by deep learning practitioners to avoid a costly maintenance
in the later releases.

Finding 4:The amount of code smells contained in deep learning
applications increases gradually over the subsequent releases of
the applications.

4.3 RQ3: Is there a co-existence between code
smells and software bugs in deep learning
applications?

We consider that code smells and software bugs co-exist if the bug-
fixing code overlaps with the code containing smells. In particular,
we detect the files that were changed to fix the bugs and that also
contain one or more code smells at the same time. We present our
analysis using several dimensions (e.g., overlap ratio, smell type)
as follows.

Table 4 shows the likelihood of co-existence with software bugs
for different types of code smells. Based on our analysis, we found
that, in DL-based software projects, 62.48% of the buggy files (i.e.
changed by a bug-fixing commit) contain at least one occurrence
of code smell.

Finding 5: About 62.48% of the bug-fixing files overlap with the
smelly code. Thus, code smells and software bugs are likely to
co-exist in the deep learning applications.

We also present the overlap ratio in more granular level by
computing the percentage of the smelly, buggy files per type of
smell (Table 4). We provide the percentage of smelly, buggy files
containing at least one occurrence of a particular smell. We found
that at least 40% of the smelly, buggy files contain LTCE, CCC , LM,
or LPL smells. On the other hand, the remaining smells (e.g., MNC,
LLF, LSC and LC) could be found in less than 10% of smelly and
buggy files.

Figure 7: Smell Occurrences in Buggy Commits

Moreover, we present Figure 7 that shows the number of code
smell occurrences for each of the eight smell types that partially
overlap with the bug-fixing code within the deep learning systems.
These substantial differences of total number of instances between
smell types reinforce our previous finding and confirm that four
code smells (LTCE, LM, LPL, CCC) frequently overlap with the
bug-fixing code, whereas the other code smells (LLF, LSC) do not
overlap much with the bug-fixing code.

Given our findings and analysis above, Long Ternary Conditional
Expression (LTCE), Complex Container Comprehension (CCC), and
Long Parameter List (LPL) are the types of code smells that could
more likely lead to software bugs or failures. In particular, two
Python-based smells –LTCE and CCC – bear more risks than other
Python-related code smells given our findings in the Fig. 4. Deep
learning developers often rely on advanced functionalities and the
grammatical flexibility of Python language for rapid development.
Unfortunately, such development practices turn the deep learning
code into complex structures (e.g., LTCE), which ultimately can
lead to software bugs and failures.

Our results heavily rely on the density distribution of various
code smells (e.g., Fig. 4) found in our subject systems. Thus, they
also reinforce the fact that the presence of code smells within the
systems might increase the chance of software bugs.

Finding 6 : Long Ternary Conditional Expression, Complex
Container Comprehension and Long Parameter List are more
associated with the software bugs than the other smells in deep
learning applications.

We also compare the number of bugs corrections that are per-
formed to either smelly and smell-free source code files. We analyze
the distribution of the number of bug fixing commits with respect
to smelly files and not-smelly ones (Figure 8). We found that files
containing at least one code smell have significantly higher number
of bug corrections throughout the project than the files that do not
contain any code smell. The Mann-Whitney Wilcoxon test yields a
significant p-value of 3.6𝑒 − 150 < 0.05 with a medium Cliff’s Delta
effect size (i.e., 0.28).

Finding 7: Smelly files tend to have more related bug fixing
commits than non-smelly files, which indicates that they might
be more prone to faults. It might also be the sign that bugs
occurring on smelly files require multiple fixes. In our future
work, we plan to investigate this hypothesis in more details.
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Figure 6: Trend of code smells in DL projects over time

Table 4: The Overlap Ratio Percentage between Buggy Files and Smelly Files by Code Smell Type

Code Smell LM LTCE LLF LSC LPL CCC MNC LC LMC LBCL
Overlap Ratio % 47.57 48.85 7.546 3.5144 47.5 43.14 6.25 7.27 0.094 0.23

Figure 8: Number of Bugs Correction per Buggy File and per
State of File (Smelly or not)

To gain further insights on the effort needed to fix the bugs in
both smelly and smell-free code, we compare the time spent to fix
buggy code containing code smells with the time spent to fix buggy
code without code smells. We found that fixing the code with code
smells takes significantly longer time than fixing the code without
any code smells. We perform Mann-Whitney Wilcoxon test and
obtained a significant p-value of 2.02𝑒 − 10 < 0.05. Furthermore,
Fig. 9 shows the distribution of time spent for fixing the buggy code.
We see that median bug-fix time for smelly code is significantly
higher than that of smell-free code. Based on the above analysis, we
find significant evidence that code smells might have a significant
impact on bug-fixing time in deep learning based systems.

Finding 8: The presence of code smells has a significant impact
on the bug-fixing time of deep learning applications. Time to
fix the bugs within smelly code is significantly higher than the
bug-fixing time of smell-free deep learning code.

Figure 9: Time to Fix Bugs Distribution by Buggy Commit
when it is Smelly and when Not

5 RESEARCH IMPLICATIONS
In this section, we discuss several implications of our findings.

Smelly one-line long and complex statements: In the deep
learning code, decision logics are learned statistically from the data
rather than from complex control flows, nested loops and branches.
The DL practitioners might abuse the feature of one-line statements
including container comprehensions, ternary conditional operators,
and lambda functions with the intention of compacting the code.
Our analysis on the prevalence of code smells in the DL projects
shows that these one-line statements tend to be longer and involve
both complex conditions and sophisticated operations. These two
code smells are the most frequent in the DL code. To improve their
code quality, DL practitioners should avoid these quick solutions
and refactor these one-line statements by decomposing them into
manageable separate functions. Besides, the hard-coded long con-
tainers like lists or sets are also considered to be CCC code smells
since they hinder the code readability and comprehension. Thus,
the DL practitioners should also consider the separation of concerns
in their application by cutting off the initial configuration options
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from the code and adopt maintainable structured files like JSON or
XML that can be easily loaded as Python objects.

An increasing trend of code smells over versions: The in-
creasing trend of code smells in DL applications call for the de-
velopment of techniques and tools that can help DL practitioners
refactor their code and improve the code quality.

Co-existence between software bugs and code smells To
boost productivity, deep learning developers should become aware
of the costs of poor coding practices. It is important to be more
conscious about code smells and their peril rather than reaching
an non-manageable code state, where the only solution is to write
the code again from the scratch.

6 THREATS TO VALIDITY
We now describe the threats to the validity of our study.
Construct Validity threats concern the relation between theory
and observation. In our study, threats to the construct validity are
mainly due to measurement errors. We use the PySmell tool to
detect smells in both types of project (e.g., traditional and DL soft-
ware project). Relying on the outcome of PySmell tool may pose
a threat to validity. To mitigate the risk, we use the experience-
based strategy that relies on the thresholds pre-defined by active,
experienced python developers. Thus, our thresholds are possibly
more appropriate than the thresholds that are defined statistically
by analysing the traditional python projects. We are aware that our
results can be affected by the presence of false positives and false
negatives. However, Chen et al.[6] reported a precision above 82%
and a recall of 98% for the experience-based strategy, which are
acceptable performance, especially for the recall.
Internal Validity threats concern our selection of projects which
could have influenced the results. In our investigation, the search-
ing requests based on GitHub topics and keywords may pose an
internal threats to validity. However, we filter the projects using ma-
turity and popularity metrics such as issues count, commits count,
contributors count, forks count and stargazers count in order to
eliminate all the tutorials and the shared code snippets, and keep
only real engineered DL projects.
External Validity threats concern the possibility to generalize our
results. In our work, we focused only on python projects, which
may reduce the generalizability to all types of DL projects. How-
ever, it is important to mention that Python is the most popular
and most used programming language [2] in the DL community;
so our empirical study on the code quality of DL software projects
written in python can spawn useful insights on the software quality
of existing DL software systems.

7 RELATEDWORK
This section reports about recent research works, around the scope
of our work, dealing with the degree of software engineering prac-
tices adopted in DL applications and investigating the quality of
DL frameworks.

Software Engineering practices in DL applications Amer-
shi et al. [1] propose a survey of Software Engineering (SE) practices
for developing Artificial Intelligence (AI) systems. They interviewed
Microsoft developers to understand how they work on developing
AI applications. They asked the developers about the SE practices

that they have used for AI systems and the benefits obtained from
using the practices. Wan et al. [25] studied the features and impacts
of machine learning towards software development. They compare
various aspects of software engineering and work characteristics
in both the machine learning systems and non machine learning
software systems.

Investigating the quality of DL frameworks Islam et al. [13]
studied the characteristics of DL systems’ bugs (their types, root
causes and effects) through analyzing stack overflow posts and
popular framework’s issues. Another study related to deep learning
quality came from Zhang et al. [26] where they studied deep learn-
ing applications built on top of TensorFlow [17] by collecting their
program bugs from GitHub and Stack Overflow. They identified the
root causes and symptoms of the collected bugs. They also studied
the detection and localization challenges of these bugs.

To the best of our knowledge, the present work is the first empir-
ical study on deep learning that investigated the software quality
of open source DL final projects (i.e., DL application programs that
use DL frameworks and libraries) through mining their GitHub
software repositories.

8 CONCLUSIONS
In this paper, we perform a comparison of smells occurrences be-
tween traditional and deep learning applications. We analyze a total
of 118 repositories (59 deep learning + 59 traditional). We make the
following observations:
1) No significant difference: There is no statistically significant dif-
ference in the code smell occurrences between deep learning and
traditional software systems.
2) Prevalence of code smells in deep learning projects: The most fre-
quent smell types found are Long Ternary Conditional Expression,
Complex Container Comprehension, and Long Lambda Function.
3) Violations of the best practices: DL practitioners might not be
aware of the code smells in their code, which possibly explains the
increasing trend of smell occurrences across the software releases.
4) Code smells lead to bugs: Our findings confirm that the presence
of code smells may increase the chances of bugs occurrence.
Ours is the first work that extensively investigates the code qual-
ity of 59 open-source, deep learning applications. It can help the
researchers better understand the code quality and maintainability
of the deep learning applications that are likely to grow in the
coming years. Similarly, it can help the practitioners to calibrate
their development practices by detecting and refactoring their code
smells that are also likely to grow. Our replication package1 can
also be used for replication and third-party reuse.
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