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Many real-world data-mining applications involve obtaining predictive models using datasets with strongly
imbalanced distributions of the target variable. Frequently, the least-common values of this target variable
are associated with events that are highly relevant for end users (e.g., fraud detection, unusual returns
on stock markets, anticipation of catastrophes, etc.). Moreover, the events may have different costs and
benefits, which, when associated with the rarity of some of them on the available training data, creates
serious problems to predictive modeling techniques. This article presents a survey of existing techniques for
handling these important applications of predictive analytics. Although most of the existing work addresses
classification tasks (nominal target variables), we also describe methods designed to handle similar problems
within regression tasks (numeric target variables). In this survey, we discuss the main challenges raised
by imbalanced domains, propose a definition of the problem, describe the main approaches to these tasks,
propose a taxonomy of the methods, summarize the conclusions of existing comparative studies as well as
some theoretical analyses of some methods, and refer to some related problems within predictive modeling.
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1. INTRODUCTION

Predictive modeling is a data analysis task whose goal is to build a model of an unknown
function Y = f (X1, X2, . . . , Xp), based on a training sample {〈xi, yi〉}n

i=1 with examples
of this function. Depending on the type of the variable Y , we face either a classification
task (nominal Y ) or a regression task (numeric Y ). Models are obtained through a
search process guided by the optimization of some criterion. The most frequent criteria
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are the error rate for classification and the mean-squared error for regression. For
some real-world applications, it is of key importance that the obtained models are par-
ticularly accurate at some sub-range of the domain of the target variable. Examples
include diagnosis of rare diseases and forecasting rare extreme returns in financial
markets, among many others. Frequently, these specific sub-ranges of the target vari-
able are poorly represented in the available training sample. In these cases, we face
what is usually known as a problem of imbalanced domains or imbalanced datasets.
Informally, in these domains, the cases that are more important for the user are rare
and few exist on the available training set. The combination of the specific preferences
of the user with the poor representation of these situations creates problems at several
levels. Namely, we typically need (i) special purpose evaluation metrics that are biased
towards the performance of the models on these rare cases, and, moreover, we need
means for (ii) making the learning algorithms focus on these rare events. Without ad-
dressing these two questions, models will tend to be biased to the most frequent (and
uninteresting for the user) cases, and the results of the “standard” evaluation metrics
will not capture the competence of the models on these rare cases.

The main contributions of this work are as follows: (i) provide a general definition
of the problem of imbalanced domains suitable for classification and regression tasks;
(ii) review the main performance assessment measures for classification and regres-
sion tasks under imbalanced domains; (iii) propose a taxonomy of existing approaches
to tackle the problem of imbalanced domains both for classification and regression
tasks; (iv) describe the most important techniques to address this problem; (v) summa-
rize the conclusions of some existing experimental comparisons; and (vi) review some
theoretical analyses of specific methods. Existing surveys address only the problem
of imbalanced domains for classification tasks (e.g., Kotsiantis et al. [2006], He and
Garcia [2009], and Sun et al. [2009]). Therefore, the coverage of performance assess-
ment measures and approaches to tackle both classification and regression tasks is an
innovative aspect of our article. Another key feature of our work is the proposal of a
broader taxonomy of methods for handling imbalanced domains. Our proposal extends
previous taxonomies by including post-processing strategies. Finally, the article also
includes a summary of the main conclusions of existing experimental comparisons of
approaches to these tasks as well as references to some theoretical analyses of specific
techniques.

The article is organized as follows. Section 2 defines the problem of imbalanced do-
mains and the type of existing approaches to address this problem. Section 3 describes
several evaluation metrics that are biased towards performance assessment on the
relevant cases in these domains. Section 4 provides a taxonomy of the approaches
to imbalanced domains, describing some of the most important techniques in each
category. In Section 5 we present some general conclusions of existing experimental
comparisons of different methods. Section 6 describes the main theoretical contribu-
tions for understanding the problem of imbalanced domains. Finally, Section 7 explores
some problems related with imbalanced domains and Section 8 concludes the article
also including a summary of recent trends and open research questions.

2. PROBLEM DEFINITION

As we have mentioned before, the problem of imbalanced domains occurs in the context
of predictive tasks where the goal is to obtain a good approximation of the unknown
function Y = f (X1, X2, . . . , Xp) that maps the values of a set of p predictor variables
into the values of a target variable. This approximation, h(X1, X2, . . . , Xp), is obtained
using a training dataset D = {〈xi, yi〉}n

i=1.
The problem of imbalanced domains can be informally described by the following two

assertions:
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(1) the user assigns more importance to the predictive performance of the obtained
approximation h(X1, X2, . . . , Xp) on a subset of the target variable domain;

(2) the cases that are more relevant for the user are poorly represented in the training
set, up to the point of leading to bad estimates of their conditional density by the
models.

The non-uniform importance mentioned in assertion (1) can occur in different forms,
namely, (i) by assigning different benefits to accurate predictions of the values of the
target variable, (ii) by having different costs associated with different types of predic-
tion errors, (iii) or by a mixture of both situations. This means that there is a strong
relationship between imbalanced problems and cost-sensitive learning (e.g., Elkan
[2001]). Both result from these non-uniform preference biases of the user. However, a
cost-sensitive problem may not be imbalanced if the cases that are more relevant are
sufficiently represented in the training data, that is, if assertion (2) is not true. This
means that an imbalanced problem always involves non-uniform costs/benefits, but the
opposite is not always true.

The quality of the information we have concerning the user domain preferences (item
(1) in the above list) is also of key importance, as it can have an impact on (i) the way we
evaluate and/or compare alternative models and (ii) the process used to influence the
learning process in order to obtain models that are “optimal” according to these user
preferences. This was termed by Weiss [2013] as the “problem-definition issue.” In one
extreme, the user may be able to provide information of the full utility function, u(ŷ, y),
that determines the value for the user of predicting ŷ for a true value of y. According
to Elkan [2001], this should be a positive value for accurate predictions (a benefit)
and a negative value for prediction errors (a cost). Having the full specification of this
function is the ideal setting. Unfortunately, this information is frequently difficult to
obtain in real-world applications, particularly for regression tasks where the target
variable has an infinite domain. A slightly less challenging task for the user is to
provide a simpler function that assigns a relevance score to each value of the target
variable domain. We will call this the relevance function, φ(), which is a function that
maps the values of the target variable into a range of importance, where 1 corresponds
to maximal importance and 0 to minimum relevance,

φ(Y ) : Y → [0, 1], (1)

where Y is the domain of the target variable Y . This is an easier function to be defined
by the user because, among other aspects, it only depends on one variable (y), while the
utility function depends on two variables (ŷ and y). Moreover, the definition of a utility
function requires that a non-negligible amount of domain information is available,
whereas for the relevance function less information is needed. In effect, the utility of
predicting a value ŷ for a true value of y depends on both the relevance of each of these
values but also on the associated loss [Torgo and Ribeiro 2007; Ribeiro 2011], that is,

u(ŷ, y) = g(φ(ŷ), φ(y), L(ŷ, y)), (2)

where L(ŷ, y) is typically the 0/1 loss for classification tasks or the squared error for
regression.

Finally, there are also applications where the available information is very informal,
e.g., “the class c is the more relevant for me.” This type of problem definition creates
serious limitations both in terms of procedures to evaluate the models but also in terms
of how to proceed to learn a model that takes this into consideration.

Let us assume the user has defined the function φ() that represents the importance
assigned to the target variable domain and has also defined a threshold tR that sets
the boundary above which the target variable values are relevant. It is important
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to highlight that this threshold is not used for declaring a class or range of values
irrelevant. It is used for understanding which target values the user considers normal
and which are the most relevant ones. Using this threshold, we can split the domain
of the target variable in two complementary subsets, YR ⊂ Y = {y ∈ Y : φ(y) > tR} and
YN = Y \YR. In this context, DR is the subset of the training samples D where y ∈ YR
and DN is the subset of the training sample with the normal (or less important) cases,
that is, DN = D\DR.

Using the above notation, we can provide a more formal definition of required condi-
tions for a predictive task to be considered an imbalanced problem:

(1) The non-uniform importance of the predictive performance of the models across
the domain of the target variable can result from:
(a) L(y, y) = L(x, x) �=⇒ u(y, y) = u(x, x), that is, accurate predictions may have

different benefits;
(b) L(y1, y2) = L(x1, x2) �=⇒ u(y1, y2) = u(x1, x2), that is, the cost of similar errors is

not uniform;
(c) a mixture of both situations

(2) |DR| 	 |DN|, that is, relevant values are poorly represented in the training set.

As we have mentioned, the problem of imbalanced domains is associated with a
mismatch between the importance assigned by the user to some predictions (1) and the
representativeness of the values involved in these predictions on the available training
sample (2). Still, it is important to stress that among the possible mismatches between
these two factors, only one type really leads to the so-called problem of imbalanced
domains. In effect, only when the more important cases are poorly represented in the
available data do we have a problem. It is this lack of representativeness that causes
(i) the “failure” of standard evaluation metrics, as they are biased towards average
performance and will not correctly assess the performance of the models on these rare
events, and (ii) the learning techniques to disregard these rare events due to their
small impact on the standard evaluation metrics that usually guide their learning
process or due to their lack of statistical significance. Other types of mismatch do not
have these consequences. If the user has a non-uniform preference bias but the data
distribution is balanced, then the second consequence does not occur, as the important
cases are sufficiently represented in the data, while the first consequence is not so
serious because the important cases are not rare and thus will have an impact on the
standard performance metrics.1 Moreover, if the user has a uniform preference over
the different types of predictions, then even if the data distribution is imbalanced this
is not a problem given the indifference of the user to where the errors occur.

Regarding the failure of traditional evaluation metrics, several solutions have been
proposed to address this problem and overcome existing difficulties, mainly for classi-
fication tasks. We will review these proposals in Section 3.

With respect to the inadequacy of the obtained models a large number of solutions
has also appeared in the literature. We propose a categorization of these approaches
that considers four types of strategies: (i) modifications on the learning algorithms,
(ii) changes on the data before the learning process takes place, (iii) transformations
applied to the predictions of the learned models, and, finally, (iv) hybrid strategies that
combine different types of strategies. These solutions will be reviewed in Section 4.

We will now illustrate the problem of imbalanced domains with two concrete exam-
ples: one in classification and another in regression.

For imbalanced classification we use the Glass dataset from the UCI Machine Learn-
ing Repository [Lichman2013]. This dataset contains 213 examples, and the target

1Though potentially not as exacerbated as one could wish.
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Fig. 1. Distribution of classes in glass dataset (bars) and relevance of each class (blue) inversely proportional
to the classes frequencies.

variable (TYPE) includes six different classes (1, 2, 3, 5, 6, and 7). Figure 1 displays the
bar chart with the frequencies of the classes. We have chosen this particular dataset to
highlight that the problem of imbalanced domains is very relevant and challenging in
the multiclass case. For illustration purposes, let us assume that the lowest the class
frequency, the highest the relevance for the users of this application. The figure also
shows the relevance scores (φ) of the classes, which were computed from the frequency
of each class. Suppose the user informs us that any class value with a relevance higher
than 0.5 is important. This would mean that examples of classes 3, 5, and 6 are im-
portant for the user, and the examples from the remaining classes are not so relevant.
The number of relevant cases (|DR|) would be 39, while the number of irrelevant cases
(|DN|) would be the remaining 174 cases. This means that the more relevant cases are
not very well represented in the training sample D. Applying a standard classification
algorithm to such a dataset would lead to models that would have unreliable estimates
of the conditional probability of the classes 3, 5, and 6, as they are very poorly repre-
sented in the available data. This would not be a problem if those were not the classes
that are more important to the user. Moreover, using a standard evaluation metric
(e.g., error rate) to compare alternative models for this dataset could eventually lead
the user to select a model that is not the best performing model on the classes that are
more relevant.

As an example of a regression task, we selected the Forest Fires dataset.2 This dataset
includes 2,831 examples. Figure 2 shows the distribution of the dataset target vari-
able,3 the relevance function φ() automatically determined (using a method proposed
in Ribeiro [2011] for cases where high relevance is associated with low frequency),
and a boxplot of the examples target variable distribution. If we use again a relevance
threshold of 0.5, then we would have |DR| = 489 and |DN| = 2342. Once again, a

2Available in the UBA R package http://www.dcc.fc.up.pt/∼rpribeiro/uba/.
3Approximated through a kernel density estimator.

ACM Computing Surveys, Vol. 49, No. 2, Article 31, Publication date: August 2016.

http://www.dcc.fc.up.pt/protect $elax sim $rpribeiro/uba/


31:6 P. Branco et al.

Fig. 2. Distribution of the burned area in forest fires dataset (black), relevance function automatically
estimated (blue), and boxplot of the examples distribution.

standard regression algorithm would have difficulties in performing well on the rare
extreme high values of the target, because of their rarity in the training set. Again,
this would be a problem given the established preference bias for this application, that
is, accuracy in the prediction of the biggest forest fires.

3. PERFORMANCE METRICS FOR IMBALANCED DOMAINS

This section describes existing approaches for performance assessment on imbalanced
problems. This is the most studied aspect of predictive modeling for these tasks. Nev-
ertheless, issues such as the error estimation procedure and the statistical tests used
on imbalanced domains are also extremely important and have been, so far, largely
neglected. These issues present challenges when considering imbalanced domains and
much research is still needed [Japkowicz 2013].

Obtaining a model from data can be seen as a search problem guided by an evalua-
tion criterion that establishes a preference ordering among different alternatives. The
main problem with imbalanced domains is the user preference towards the perfor-
mance on cases that are poorly represented in the available data sample. Standard
evaluation criteria tend to focus the evaluation of the models on the most frequent
cases, which is against the user preferences on these tasks. In fact, the use of tradi-
tional metrics in imbalanced domains can lead to sub-optimal classification models [He
and Garcia 2009; Weiss 2004; Kubat and Matwin 1997] and may produce misleading
conclusions since these measures are insensitive to skewed domains [Ranawana and
Palade 2006; Daskalaki et al. 2006]. As such, selecting proper evaluation metrics plays
a key role in the task of correctly handling data imbalance. Adequate metrics should
not only provide means to compare the models according to the user preferences but
also can be used to drive the learning of these models.

ACM Computing Surveys, Vol. 49, No. 2, Article 31, Publication date: August 2016.
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Table I. Metrics for Classification and Regression, Corresponding Sections, and Main Bibliographic References

Task type (Section) Main References

Classification(3.1)

Bradley [1997], Kubat et al. [1998], Provost et al. [1998], Drummond
and Holte [2000], Estabrooks and Japkowicz [2001], Ferri et al. [2005],
Davis and Goadrich [2006], Ranawana and Palade [2006], Cohen et al.
[2006], Wu et al. [2007], Weng and Poon [2008], Garcı́a et al. [2008],
Batuwita and Palade [2009], Garcı́a et al. [2009, 2010], Hand [2009],
Ferri et al. [2009], Sokolova and Lapalme [2009], Thai-Nghe et al.
[2011], Ferri et al. [2011a], and Batuwita and Palade [2012]

Regression (3.2)

Zellner [1986], Cain and Janssen [1995], Christoffersen and Diebold
[1997], Bi and Bennett [2003], Crone et al. [2005], Torgo [2005], Torgo
and Ribeiro [2007], Lee [2008], Torgo and Ribeiro [2009], Ribeiro
[2011], Hernández-Orallo [2013], and Branco [2014]

As we have mentioned, there are several ways of expressing the user preference
biases. In the case where we have the highest-quality information, in the form of a
utility function u(ŷ, y), the best way to evaluate the learned models would be by the
total utility of its predictions, given by

U =
ntest∑
i=1

u(ŷi, yi). (3)

When the full information on the operating context is not available, we have to resort
to other evaluation metrics. In this section, we provide an exhaustive description of
most of the metrics that have been used in the context of imbalanced domains problems.

We have organized the performance assessment measures into scalar (numeric) and
graphical-based (graphical or scalar based in graphical information) metrics. Scalar
metrics present the results in a more succinct way (a single number reflects the per-
formance of the learner) but also have drawbacks. If the user knows the deployment
setting of the learned model, then scalar metrics may be adequate. However, if the
deployment context is not known in advance, then the graphical-based metrics may
be more useful [Japkowicz 2013]. Graphical-based measures allow the visualization or
synthesis of the performance of an algorithm across all operating conditions. We must
also emphasize that using different evaluation metrics may lead to different conclu-
sions (e.g., Van Hulse et al. [2007]), which is problematic and reinforces the need for
finding suitable metrics that are capable of assessing correctly the user goals.

Table I summarizes the main references concerning performance assessment pro-
posals for imbalanced domains in classification and regression.

3.1. Metrics for Classification Tasks

Let us start with some notation. Consider a test set with n examples each belonging
to one of c ∈ C different classes. For each test case, xi, with a true target variable
value yi = f (xi), a classifier outputs a predicted class, ŷi = h(xi). This predicted class is
typically the class with highest estimated conditional probability, ŷi = argmaxy P̂(Y =
y | X = xi), but other decision thresholds (or decision rules, mostly for multiclass tasks)
can be used.4 Let I() be an indicator function that returns 1 if its argument is true
and 0 otherwise. Let nc = ∑n

i=1 I(yi = c) represent the total number of examples that
belongs to class c. The prior probability of class c can be estimated as p(Y = c) = nc

n .
The estimated conditional probability of example xi belonging to class c is given by
P̂(Y = c | X = xi) or, in a simplified way, P̂(c | xi).

4For crisp classifiers, we can assume that the probability is 1 for the predicted class and 0 for the remaining
classes.
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Table II. Confusion Matrix for a Two-Class Problem

Predicted Total

Positive Negative
(Y = +) (Y = −)

True
Positive (Y = +) TP=

n∑
i=1

I(yi = +)I(ŷi = +) FN = n+ − TP n+ =
n∑

i=1

I(yi = +)

Negative (Y = −) FP = n− − TN TN=
n∑

i=1

I(yi = −)I(ŷi = −) n− =
n∑

i=1

I(yi = −)

Total
n∑

i=1

I(ŷi = +)
n∑

i=1

I(ŷi = −) n

3.1.1. Scalar Metrics.

Two-Class Problems. Consider a binary classification task with a negative (Y = −)
and a positive class (Y = +). The confusion matrix for a two-class problem presents the
results obtained by a given classifier (cf. Table II). This table provides for each class
the instances that were correctly classified, that is, the number of True Positives (TP)
and True Negatives (TN), and the instances that were wrongly classified, that is, the
number of False Positives (FP) and False Negatives (FN).

Accuracy (cf. Equation (4)) and its complement error rate are the most frequently used
metrics for estimating the performance of learning systems in classification problems.
For two-class problems, accuracy can be defined as follows:

accuracy = TP + TN
TP + FN + TN + FP

. (4)

Considering a user preference bias towards the minority (positive) class examples,
accuracy is not suitable because the impact of the least-represented, but more impor-
tant, examples is reduced when compared to that of the majority class. For instance,
if we consider a problem where only 1% of the examples belong to the minority class,
a high accuracy of 99% is achievable by predicting the majority class for all examples.
Yet, all minority class examples, the rare and more interesting cases for the user, are
misclassified. This is worthless when the goal is the identification of the rare cases.

The metrics used in imbalanced domains must consider the user preferences and,
thus, should take into account the data distribution. To fulfill this goal, several per-
formance measures were proposed. From Table II, the following measures (cf. Equa-
tions (5)–(10)) can be obtained:

true positive rate (recall or sensitivity) : TPrate = TP
TP + FN

, (5)

true negative rate(specificity) : TNrate = TN
TN + FP

, (6)

false positive rate : FPrate = FP
TN + FP

, (7)

false negative rate : FNrate = FN
TP + FN

, (8)

positive predictive value (precision ) : PPvalue = TP
TP + FP

, (9)

negative predictive value : NPvalue = TN
TN + FN

. (10)

ACM Computing Surveys, Vol. 49, No. 2, Article 31, Publication date: August 2016.
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However, as some of these measures exhibit a tradeoff and it is impractical to simul-
taneously monitor several measures, new metrics have been developed, such as the
Fβ [Rijsbergen 1979], the geometric mean [Kubat et al. 1998], or the receiver operating
characteristic (ROC) curve [Egan 1975].

The Fβ is defined as a combination of both precision and recall, as follows:

Fβ = (1 + β)2 · recall · precision
β2 · precision + recall

, (11)

where β is a coefficient set by the user to adjust the relative importance of recall with
respect to precision (if β = 1 precision and recall have the same weight, large values of
β will increase the weight of recall while values less than 1 will give more importance
to precision). The majority of the articles that use Fβ for performance evaluation under
imbalanced domains adopt β = 1, which corresponds to giving the same importance to
precision and recall.

The Fβ is commonly used and is more informative than accuracy about the effec-
tiveness of a classifier on predicting correctly the cases that matter to the user (e.g.,
Estabrooks and Japkowicz [2001]). This metric value is high when both the recall (a
measure of completeness) and the precision (a measure of exactness) are high.

An also frequently used metric when dealing with imbalanced datasets is the geo-
metric mean (G-Mean), which is defined as follows:

G-Mean =
√

TP
TP + FN

× TN
TN + FP

=
√

sensitivity × speci f icity. (12)

G-Mean is an interesting measure because it computes the geometric mean of the
accuracies of the two classes, attempting to maximize them while obtaining good bal-
ance. This measure was developed specifically for assessing the performance under
imbalanced domains. However, with this formulation equal importance is given to both
classes. In order to focus the metric only on the positive class, a new version of G-Mean
was proposed. In this new formulation, specificity is replaced by precision.

Several other measures were proposed for dealing with some particular disadvan-
tages of the previously mentioned metrics. For instance, a metric called dominance
[Garcı́a et al. 2008] (cf. Equation (13)) was proposed to deal with the inability of G-
Mean to explain how each class contributes to the overall performance,

dominance = TPrate − TNrate. (13)

This measure ranges from −1 to +1. A value of +1 represents situations where perfect
accuracy is achieved on the minority (positive) class, but all cases of the majority class
are missed. A value of −1 corresponds to the opposite situation.

Another example is the index of balanced accuracy (IBA) [Garcı́a et al. 2009, 2010]
(cf. Equation (14)), which quantifies a tradeoff between an index of how balanced both
class accuracies are and a chosen unbiased measure of overall accuracy,

IBAα(M) = (1 + α · dominance)M, (14)

where (1 + α · dominance) is the weighting factor and M represents any performance
metric. IBAα(M) depends on two user-defined parameters: M and α. The first one, M,
is an assessment measure previously selected by the user, and the second one, α, will
give more or less importance to dominance.

Another interesting metric, named mean class-weighted accuracy (CWA), was pro-
posed by Cohen et al. [2006]. This metric tries to overcome the limitation of Fβ of not
taking into account the performance on the negative class. At the same time, it also

ACM Computing Surveys, Vol. 49, No. 2, Article 31, Publication date: August 2016.
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tries to deal with the drawback of G-Mean, which does not allow us to give more impor-
tance to the minority class. The CWA metric (cf. Equation (15)) tries to deal with both
problems by providing a mechanism for the user to define the weights to be used,

CWA = w · sensitivity + (1 − w) · specificity, (15)

with 0 ≤ w ≤ 1 as the user-defined weight of the positive class.
Other metrics created with similar objectives include optimized precision [Ranawana

and Palade 2006], adjusted geometric mean [Batuwita and Palade 2009, 2012], or
B42 [Thai-Nghe et al. 2011].

Multi-class Problems. Although most metrics were proposed for handling two-class
imbalanced tasks, some proposals also exist for the multi-class case.

Accuracy is among the metrics that were extended for multi-class problems. Equa-
tion (16) presents the definition of accuracy for multi-class tasks as an average of the
accuracy of each class. However, for the reasons that we have already mentioned, this
is not an appropriate choice for imbalanced domains,

accuracy =
∑n

i=1 I(yi = ŷi)
n

. (16)

The extension to multi-class of the precision and recall concepts is not an easy task.
Several ways of accomplishing this were proposed in the literature. If we focus on a
single class c, then Equations (17) and (18) provide the recall and precision for that
class, respectively. Equation (19) represents the corresponding Fβ score,

recall(c) =
n∑

i=1

I(yi = c)I(ŷi = c)
nc

, (17)

precision(c) =
∑n

i=1 I(yi = c)I(ŷi = c)∑n
i=1 I(ŷi = c)

, (18)

Fβ(c) = (1 + β)2 · recall(c) · precision(c)
β2 · precision(c) + recall(c)

. (19)

However, using recall(c) and precision(c) in multi-class problems is not a practical
solution. If we consider a problem with 5 classes, then we would obtain 10 different
scores (a precision and a recall value for each class). In this case, it is not easy to
compare the performance of different classifiers. In order to obtain a single aggregated
value for precision or recall in a certain test set, two main strategies can be used:
micro or macro averaging, which we will represent through the use of indexes μ and
M, respectively. Equations (20) to (22) provide the definitions of precision and recall
considering both micro (μ) and macro (M) averaging strategies,

Recμ = Precμ =
∑n

i=1 I(yi = ŷi)
n

, (20)

RecM =
∑

c ∈ C
recall(c)
|C| , (21)

PrecM =
∑

c ∈ C
precision(c)
|C| . (22)

We must highlight that macro-averaging measures assign an equal weight to all
existing classes, while for micro-averaging-based metrics more importance is assigned

ACM Computing Surveys, Vol. 49, No. 2, Article 31, Publication date: August 2016.



A Survey of Predictive Modeling on Imbalanced Domains 31:11

to classes with higher frequencies. Therefore, micro-averaging measures are usually
considered unsuitable for imbalanced domains because of the mismatch between the
examples distribution and the relevance φ() assigned by the user.

Regarding the Fβ measure, several different proposals were made to provide an
extension for multi-class problems. Equation (23), proposed by Ferri et al. [2009],
averages the Fβ values obtained for each class,

MFβ =
∑

c ∈C
Fβ(c)

|C| . (23)

Two other proposals regarding an extension of Fβ to multi-class tasks exist: one
using the micro averaged values of recall and precision and a similar one that uses the
macro averaged values [Sokolova and Lapalme 2009]. Equations (24) and (25) show
these definitions,

MFβμ = (1 + β2) · Precμ · Recμ

β2 · Precμ + Recμ

, (24)

MFβM = (1 + β2) · PrecM · RecM

β2 · PrecM + RecM
. (25)

The macro-averaged accuracy (MAvA), presented by Ferri et al. [2009], is obtained
with an arithmetic average over the recall of each class as follows:

MAvA =
∑

c ∈C
recall(c)
|C| . (26)

The MAvA measure assigns equal weights to the existing classes. Sun et al. [2006]
presented the MAvG metric, a generalization of the G-Mean for more than two classes
(cf. Equation (27)). The MAvG is the geometric average of the recall score in each class,

MAvG = |C|
√∏

c ∈ C

recall(c). (27)

Finally, we highlight that the CW A measure (cf. Equation (15)) presented for two-
class problems was generalized for multi-class problems [Cohen et al. 2006] as follows:

CWA =
∑
c ∈C

wc · recall(c), (28)

where 0 ≤ wc ≤ 1 and
∑

c ∈ C
wc = 1. In this case, it is the user responsibility to specify

the weights wc assigned to each class.
Although some effort has been made regarding scalar metrics for multi-class evalua-

tion, there is still a big gap regarding assessment measures for multi-class imbalanced
domains. This is still an open problem, with only few solutions proposed and presenting
more challenges than binary classification.

3.1.2. Graphical-Based Metrics.

Two-Class Problems. Two popular tools used in imbalanced domains are the receiver
operating characteristics (ROC) curve (cf. Figure 3) and the corresponding area under
the ROC curve (AUC) [Metz 1978]. Provost et al. [1998] proposed ROC and AUC as
alternatives to accuracy. The ROC curve allows the visualization of the relative tradeoff
between benefits (TPrate) and costs (FPrate). The performance of a classifier for a certain
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Fig. 3. ROC curve of three classifiers: A, B, and random.

distribution is represented by a single point in the ROC space. A ROC curve consists
of several points, each one corresponding to a different value of a decision/threshold
parameter used for classifying an example as belonging to the positive class.

However, comparing several models through ROC curves is not an easy task unless
one of the curves dominates all the others [Provost and Fawcett 1997]. Moreover, ROC
curves do not provide a single-value performance score, which motivates the use of
AUC. The AUC allows the evaluation of the best model on average. Still, it is not
biased towards the minority class. The area under the ROC curve (AUC) is given by a
definite integral. Several ways exist to evaluate the AUC, with the trapezoidal method
being the most widely used. This method obtains the value of AUC through the use of
trapezoids built with linear interpolation of the ROC curve points.

Another interesting property of the AUC regards the equivalence between the AUC
and the probability that, given two randomly chosen examples, one from each class,
the classifier will rank the positive example higher than the negative [Fawcett 2006].
This is also known as the Wilcoxon test of ranks. Using this property, the AUC can be
determined by the following equation:

AUC(c, c′) =
∑n

i=1 I(yi = c)
∑n

t=1 I(yt = c′)L(P̂(c | xi), P̂(c | xt))
nc · nc′

, (29)

where c and c′ are the two classes of the problem and L is a function defined as follows:

L(x, y) =
{1 if x > y

0.5 if x = y
0 if x < y

. (30)

AUC has become a very popular metric in the context of imbalanced domains. How-
ever, one of the problems that affects AUC concerns the crossing of ROC curves, which
may produce misleading estimates. This issue results from using a single metric for
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summarizing a ROC curve. Another important problem of AUC, highlighted by Hand
[2009], regards the existence of variations in the evaluation of AUC depending on the
classifier used. This is a more serious problem because this means that the AUC eval-
uates different classifiers through the use of different measures. Hand [2009] showed
that the evaluation provided by AUC can be misleading but has also proposed an
alternative for allowing fairer comparisons: the H-measure. The H-measure is a stan-
dardized measure of the expected minimum loss obtained for a given cost distribution
defined between the two classes of the problem. Hand [2009] proposes the use of a
beta(x; 2, 2) distribution for representing the cost. The advantages pointed for using
this distribution are twofold: It allows a general comparison of the results obtained
by different researchers, and it gives less weight to the more extreme values of cost.
Although the coherence of AUC was questioned by Hand, a possible coherent interpre-
tation for this measure was also presented by Ferri et al. [2011b]. Despite the fact that
it has been surrounded with some controversy, the AUC is still one of the most used
measures under imbalanced domains. To provide a better adaptation of this metric to
these domains, several AUC variants were proposed for two-class problems.

A version of the AUC that incorporates probabilities is Prob AUC [Ferri et al. 2005],
defined in Equation (31). The Prob AUC tries to overcome the problem of the AUC mea-
sure, which only considers the ranking of the examples disregarding the probabilities
associated with them,

Prob AUC(c, c′) =
∑n

i=1
I(yi=c)P̂(c |xi )

nc
− ∑n

i=1
I(yi=c′)P̂(c′ | xi )

nc′
+ 1

2
. (31)

The Scored AUC, presented by Wu et al. [2007], is a measure similar to Prob AUC
that also includes probabilities in its definition (cf. Equation (32)). This variant has
also the goal of obtaining a score more robust to variations in the rankings that occur
because of small changes in the probabilities.

Scored AUC(c, c′) =
∑n

i=1 I(yi = c)
∑n

t=1 I(yt = c′)L(P̂(c | xi)P̂(c | xt)) · (P̂(c | xi) − P̂(c′ | xt))
nc · nc′

. (32)

A weighted version of the AUC, WAUC, was proposed by Weng and Poon [2008] for
dealing with imbalanced datasets. This new measure assumes that the area near the
top of the graph is more relevant. Therefore, instead of summing the areas to obtain
the AUC giving the same importance to all, WAUC progressively assigns more weight
to the areas closer to the top of the ROC curve.

Precision-recall curves (PR curves) are recommended for highly skewed domains
where ROC curves may provide an excessively optimistic view of the perfor-
mance [Davis and Goadrich 2006]. PR curves have the recall and precision rates repre-
sented on the axes. A strong relation between PR and ROC curves was found by Davis
and Goadrich [2006]. Figure 4 shows both curves for the imbalanced hepatitis dataset.5
The results displayed were obtained with an SVM model considering the minority class
as the relevant one.

Another relevant tool for two-class problems are the cost curves (Figure 5) that were
introduced by Drummond and Holte [2000]. In these curves, the performance (i.e.,
the expected cost normalized to [0, 1]) is represented in the y-axis. The x-axis (also
normalized to [0, 1]) displays the probability cost function, which is defined as follows:

PCF(+) = p(+)C(−|+)
p(+)C(−|+) + p(+)C(+|−)

, (33)

5This dataset is available in the UCI repository (https://archive.ics.uci.edu/ml/datasets/Hepatitis).
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Fig. 4. Precision-recall curve and ROC curve for the hepatitis dataset.

Fig. 5. Example of a cost curve.

where p(c1) represents the probability of a given class c1 and C(c1|c2) represents the
cost of misclassifying an example of a class c2 as being of class c1. There is a relation of
duality between ROC and cost curves. In fact, a point in the ROC space is represented by
a line in the cost space, and a line on ROC space is represented by a point in cost space.

Brier curves [Ferri et al. 2011a] are a graphical representation that can be used with
probabilistic binary classifiers that try to overcome an optimistic view of performance
provided by cost curves. Brier curves and cost curves are complementary in the sense
that these two curves used together are able to condense most of the information
relative to a classifier performance.
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Multi-class Problems. Dealing with multi-class problems using graphical-based met-
rics is a much more complex task. A possible way for obtaining ROC curves with c
different classes is to use the one-vs.-all strategy. In this method, each class is consid-
ered as the positive class at a time and all the other classes are joined as the negative
class. However, as the number of classes increases, the complexity of constructing the
ROC curve grows exponentially. For the simpler case of three classes, a ROC surface
was proposed [Mossman 1999].

The AUC was also adapted to multi-class problems (e.g., Ferri et al. [2009]). Several
proposals exist to accomplish this adaptation (cf. Equations (34) to (39)), each one
making different assumptions. AUC of each class against the rest using the uniform
class distribution (AUNU) and AUC of each class against the rest using the a priori
class distribution (AUNP) use the approach one vs. all to compute the AUC of a
|C|-class problem, transforming it into |C| two-class problems. Each one of the classes
is considered the positive class and all the others are aggregated into one negative
class. In AUNU, classes are assumed to be uniformly distributed, and in AUNP the
prior probability of each class is taken into account. AU1U and AU1P compute the
AUC of all pairs of classes, which corresponds to |C|(|C| − 1) two-class problems.
The first measure considers that the classes are uniformly distributed and the latter
incorporates the prior probability of the classes. Finally, Scored AUC and Prob AUC
were also extended to a multi-class setting through the metrics called SAUC (cf.
Equation (38)) and PAUC (cf. Equation (39)), respectively. These two variants also
consider all the combinations of pairs of classes (|C|(|C| − 1)),

AUNU =
∑

c ∈ C
AUC(c, restc)

|C| , (34)

where restc is the aggregation of all the problem classes with the exception of class c,

AUNP =
∑
c∈C

p(c) · AUC(c, restc), (35)

AU1U =
∑

c ∈ C

∑
c′ ∈ C\{c} AUC(c, c′)

|C|(|C| − 1)
, (36)

AU1P =
∑

c ∈ C

∑
c′ ∈ C\{c} p(c) · AUC(c, c′)

|C|(|C| − 1)
, (37)

SAUC =
∑

c ∈ C

∑
c′ ∈ C\{c} Scored AUC(c, c′)

|C|(|C| − 1)
, (38)

PAUC =
∑

c ∈ C

∑
c′ ∈ C\{c} Prob AUC(c, c′)

|C|(|C| − 1)
. (39)

Comparative studies involving some of the metrics proposed for the multi-class
imbalanced context (e.g., Alejo et al. [2013] and Sánchez-Crisostomo et al. [2014])
concluded that these metrics do not always reflect correctly the performance in the
minority/majority classes. This means that these metrics may not be reliable when
assessing the performance in multi-class problems.

3.2. Metrics for Regression Tasks

3.2.1. Scalar Metrics. A very small effort has been made regarding evaluation metrics
for regression tasks in imbalanced domains. Performance measures commonly used
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in regression, such as Mean Squared Error (MSE) and Mean Absolute Error (MAE)6

(cf. Equations (40) and (41)) are not adequate to these specific problems. These mea-
sures assume a uniform relevance of the target variable domain and evaluate only the
magnitude of the error,

MSE = 1
n

n∑
i=1

(yi − ŷi)2, (40)

MAE = 1
n

n∑
i=1

|yi − ŷi|. (41)

Although the magnitude of the numeric error is important, for tasks with imbalanced
domains of the target variable, the metrics should also be sensitive to the errors location
within the target variable domain, because, as in classification tasks, users of these
domains are frequently biased to the performance on poorly represented values of
the target. This means that the error magnitude must have a differentiated impact
depending on the values of the target domain where the error occurs.

In the area of finance, several attempts have been made for considering differentiated
prediction costs through the proposal of asymmetric loss functions [Zellner 1986; Cain
and Janssen 1995; Christoffersen and Diebold 1996, 1997; Crone et al. 2005; Granger
1999; Lee 2008]. However, the proposed solutions, such as LIN-LIN or QUAD-EXP
error metrics, all suffer from the same problem: They can only distinguish between
over- and under-predictions. Therefore, they are still unsuitable for addressing the
problem of imbalanced domains with a user preference bias towards some specific
ranges of values.

Another alternative is the concept of utility-based regression [Ribeiro 2011; Torgo
and Ribeiro 2007]. This concept is based on the assumption that the user assigns a
non-uniform relevance to the values of the target variable domain. In this context,
the usefulness of a prediction depends on both the numeric error of the prediction
(which is provided by a certain loss function L(ŷ, y)) and the relevance (importance) of
the predicted ŷ and true y values. As within classification tasks, we have a problem
of imbalanced domains if the user assigns more importance to predictions involving
values of the target variable that are rare (i.e., poorly represented in the training
sample). The proposed framework for utility-based regression provides means for easy
specification of a utility function, u(ŷ, y), for regression tasks. This means that we can
use this framework to evaluate and/or compare models using the total utility of their
predictions as indicated in Equation (3).

This utility-based framework was also used by Torgo and Ribeiro [2009] and Ribeiro
[2011] to derive the notions of precision and recall for regression in tasks with non-
uniform relevance of the target values. Based on this previous work, Branco [2014]
proposed the following measures of precision and recall for regression:

precision =
∑

φ(ŷi )>tR
(1 + u(ŷi, yi))∑

φ(ŷi )>tR
(1 + φ(ŷi))

, (42)

recall =
∑

φ(yi )>tR
(1 + u(ŷi, yi))∑

φ(yi )>tR
(1 + φ(yi))

, (43)

where φ(yi) is the relevance associated with the true value yi, φ(ŷi) is the relevance
of the predicted value ŷi, tR is a user-defined threshold signalling the cases that are

6Also known as Mean Absolute Deviation (MAD).
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Fig. 6. RROC curve of three models: A, B, and C.

relevant for the user, and u(ŷi, yi) is the utility of making the prediction ŷi for the true
value yi, normalized to [−1, 1].

3.2.2. Graphical-Based Metrics. Following the efforts made within classification, some
attempts were made to adapt the existing notion of ROC curves to regression tasks.
One of these attempts is the ROC space for regression (RROC space) [Hernández-Orallo
2013], which is motivated by the asymmetric loss often present on regression applica-
tions where both over-estimations and under-estimations entail different costs. RROC
space is defined by plotting the total over-estimation and under-estimation on the x-
axis and y-axis, respectively (cf. Figure 6). RROC curves are obtained when the notion
of shift is used, which allows us to adjust the model to an asymmetric operating con-
dition by adding or subtracting a constant to the predictions. The notion of dominance
can also be assessed by plotting the curves of different regression models, similarly to
ROC curves in classification problems. Other evaluation metrics were explored, such
as the Area Over the RROC curve (AOC), which was shown to be equivalent to the error
variance. In spite of the relevance of this approach, it only distinguishes over from
under predictions.

Another relevant effort towards the adaptation of the concept of ROC curves to re-
gression tasks was made by Bi and Bennett [2003] with the proposal of Regression
Error Characteristic (REC) curves that provide a graphical representation of the cu-
mulative distribution function (cdf) of the error of a model. These curves plot the error
tolerance and the accuracy of a regression function that is defined as the percentage
of points predicted within a given tolerance ε. REC curves illustrate the predictive
performance of a model across the range of possible errors (cf. Figure 7). The Area Over
the Curve (AOC) can also be evaluated and is a biased estimate of the expected error of
a model [Bi and Bennett 2003]. REC curves, although interesting, are still not sensitive
to the error location across the target variable domain.
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Fig. 7. REC curve of three models: A, B, and C.

Fig. 8. An example of the REC surface.

To address this problem, Regression Error Characteristic Surfaces (RECS) [Torgo
2005] were proposed. These surfaces incorporate an additional dimension into REC
curves representing the cumulative distribution of the target variable. RECS show
how the errors corresponding to a certain point of the REC curve are distributed across
the range of the target variable (cf. Figure 8). This tool allows us to study the behavior
of alternative models for certain specific values of the target variable. By zooming on
specific regions of REC surfaces, we can carry out two types of analysis that are highly
relevant for some application domains. The first involves checking how certain values
of prediction error are distributed across the domain of the target variable, which tells
us where errors are more frequent. The second type of analysis involves inspecting the
type of errors a model has on a certain range of the target variable that is of particular
interest to us, which is very relevant for imbalanced domains.
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4. STRATEGIES FOR HANDLING IMBALANCED DOMAINS

Imbalanced domains raise significant challenges when building predictive models. The
scarce representation of the most important cases leads to models that tend to be
more focused on the normal examples, neglecting the rare events. Several strategies
have been developed to address this problem, mainly in a classification setting. Even
when considering solely the existing solutions for classification tasks, these are mostly
biased towards binary classification. Proposals exist specifically for the multiclass case
but in a much lower number. The effectiveness and applicability of these strategies
depends on the information the user is able to provide on his preference biases—the
“problem-definition issue” [Weiss 2013] mentioned in Section 2. We propose to group the
existing approaches to learn under imbalanced domains into the following four main
categories:

—Data Pre-processing;
—Special-purpose Learning Methods;
—Prediction Post-processing;
—Hybrid Methods.

Data pre-processing approaches include solutions that pre-process the given imbal-
anced dataset, changing the data distribution to make standard algorithms focus on
the cases that are more relevant for the user. These methods have the following ad-
vantages: (i) They can be applied with any existing learning tool, and (ii) the chosen
models are biased to the goals of the user (because the data distribution was previously
changed to match these goals), and thus it is expected that the models are more inter-
pretable in terms of these goals. The main inconvenient of this strategy is that it may
be difficult to relate the modifications in the data distribution with the information
provided by the user concerning the preference biases. This means that mapping the
given data distribution into an optimal new distribution according to the user goals is
typically not easy.

Special-purpose learning methods comprise solutions that change the existing algo-
rithms to be able to learn from imbalanced data. The following are important advan-
tages: (i) The user goals are incorporated directly into the models, and (ii) it is expected
that the models obtained this way are more comprehensible to the user. The main dis-
advantages of these approaches are as follows: (i) The user is restricted to the learning
algorithms that have been modified to be able to optimize his goals or has to develop
new algorithms for the task; (ii) if the target loss function changes, the model must
be relearned, and, moreover, it may be necessary to introduce further modifications in
the algorithm, which may not be straightforward; (iii) it requires a deep knowledge of
the learning algorithms implementations; and (iv) it may not be easy to translate the
user preferences into a suitable loss function that can be incorporated into the learning
process.

Prediction post-processing approaches use the original dataset and a standard learn-
ing algorithm, only manipulating the predictions of the models according to the user
preferences and the imbalance of the data. As advantages, we can enumerate that:
(i) It is not necessary to be aware of the user preference biases at learning time; (ii) the
obtained model can, in the future, be applied to different deployment scenarios (i.e.,
different loss functions), without the need of re-learning the models or even keeping
the training data available; and (iii) any standard learning tool can be used. However,
these methods also have some drawbacks: (i) The models do not reflect the user pref-
erences and (ii) the models interpretability may be jeopardized as they were obtained
optimizing a loss function that is not in accordance with the user preference bias at
deployment time.
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Table III. Main Advantages and Disadvantages of Each Type of Strategy for Imbalanced Domains

Strategy Advantages Disadvantages

Data
Pre-processing

� can be applied to any learning
tool

� the chosen models are biased to
the goals of the user

� models more interpretable
according to the user goals

� difficulty of relating the
modifications in the data
distribution and the user
preferences

Special-purpose
Learning Methods

� user goals are incorporated
directly into the models

� models obtained are more
comprehensible to the user

� user is restricted in his choice of
the learning algorithms that
have been modified to be able to
optimize his goals

� models must be relearned if the
target loss function changes

� changes in the loss function may
require further modifications in
the algorithm

� requires a deep knowledge of the
learning algorithms
implementations

� not easy to map the user
specification of his preferences
into a loss function

Prediction
Post-processing

� it is not necessary to be aware of
the user preferences biases at
learning time

� the obtained model can, in the
future, be applied to different
deployment scenarios without
the need of re-learning the
models or even keeping the
training data available

� any standard learning tool can be
used

� the models do not reflect the user
preferences

� models interpretability may be
jeopardized as they were
obtained optimizing a loss
function that is not in accordance
with the user preference bias

Fig. 9. Main strategies for handling imbalanced domains.

Table III shows a summary of the main advantages and disadvantages of each type
of strategy. Figure 9 provides a general overview of the main approaches within these
strategies, which will be reviewed in Sections 4.1, 4.2, and 4.3, including solutions
for both classification and regression tasks. Hybrid solutions will be addressed in
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Section 4.4. Hybrid methods combine approaches of different strategies trying to take
advantage of their best characteristics.

4.1. Data Pre-Processing

Pre-processing strategies consist of methods of using the available dataset in a way
that is more in accordance with the user preference biases. This means that instead
of applying a learning algorithm directly to the provided training sample, we will first
somehow pre-process this data according to the goals of the user. Any standard learning
algorithm can then be applied to the pre-processed dataset.

Existing data pre-processing approaches can be grouped into two main types:

—distribution change: change the data distribution with the goal of addressing the
issue of the poor representativeness of the more relevant cases; and

—weighting the data space: modify the training set distribution using information
concerning misclassification costs, such that the learned model avoids costly errors.

Table IV summarizes the main bibliographic references for data pre-processing strat-
egy approaches.

4.1.1. Distribution Change. Applying a method that changes the data distribution to ob-
tain a more balanced one is an effective solution to the imbalance problem [Estabrooks
et al. 2004; Batuwita and Palade 2010a; Fernández et al. 2008, 2010].

However, changing the data distribution may not be as easy as expected. Deciding
what the optimal distribution is for some user preference biases is not straightforward,
even in cases where a complete specification of the utility function, u(ŷ, y), is available.
A frequently used approach consists of trying to balance the data distribution (e.g.,
make the classes have the same frequency). However, for some classifiers such as C4.5,
Ripper, or Naive Bayes, it was proved that a perfectly balanced distribution does not
always provide optimal results [Weiss and Provost 2003]. In this context, some solutions
were proposed to find the right amount of change in the distribution to be applied for
a dataset [Weiss and Provost 2003; Chawla et al. 2005, 2008]. For the case of extreme
class imbalance, where the number of normal examples (DN) is much larger than the
number of rare examples (DR), other class balancing methods are recommended such as
2:1 or 3:1 (majority:minority) [Khoshgoftaar et al. 2007]. These results were obtained
based on experiments with 11 different types of classifiers.

For binary classification problems, changing the class distribution of the training
data may improve classifiers performance on an imbalanced context because there is a
connection with non-uniform misclassification costs. This equivalence between the two
concepts of altering the data distribution and the misclassification cost ratio is well
known and was first pointed out by Breiman et al. [1984]. However, as mentioned by
Weiss [2013], this equivalence does not hold in many real-world situations due to some
of its assumptions on data availability.

The existing approaches for changing the data distribution can be of three types:
stratified sampling, synthesizing new data, or combinations of the previous methods.
Stratified sampling includes strategies that remove and/or add examples to the original
dataset. These are based on a diverse set of techniques, such as random under-/over-
sampling, distance methods, data cleaning approaches, clustering algorithms, or evo-
lutionary algorithms. Approaches that synthesize new data differ because they involve
the generation of new artificially generated examples that are added to the original
dataset. Finally, it is also possible to combine the previously described approaches. We
now briefly describe the most significant techniques for changing the data distribution.

Two of the most simple approaches for data sampling that can be applied are under-
and over-sampling. The first one removes data from the original dataset, reducing the
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Table IV. Pre-Processing Strategy Approaches, Corresponding Sections, and Main Bibliographic References

Approaches (Section) Main References

Distribution
Change
(4.1.1)

Stratified Sampling

Random Under/
Over-sampling

Chawla et al. [2002], Chang et al. [2003],
Drummond and Holte [2003], Chen et al.
[2004], Estabrooks et al. [2004], Tao et al.
[2006], Wang and Yao [2009], Seiffert
et al. [2010], Wallace et al. [2011], and
Torgo et al. [2013]

Distance Based Chyi [2003], Mani and Zhang [2003], and
Błaszczyński and Stefanowski [2015]

Data Cleaning
Based

Kubat and Matwin [1997], Laurikkala
[2001], Batista et al. [2004], and
Naganjaneyulu and Kuppa [2013]

Recognition Based

Japkowicz [2000], Chawla et al. [2004],
Raskutti and Kowalczyk [2004], Lee and
Cho [2006], Zhuang and Dai [2006a,
2006b], Bellinger et al. [2012], and Wagstaff
et al. [2013]

Cluster Based
Jo and Japkowicz [2004], Cohen et al.
[2006], Yen and Lee [2006, 2009], and
Sobhani et al. [2014]

Evolutionary
Sampling

Del Castillo and Serrano [2004], Garcı́a
et al. [2006], Doucette and Heywood [2008],
Drown et al. [2009], Garcı́a and Herrera
[2009], Maheshwari et al. [2011], Garcı́a
et al. [2012], Yong [2012], and Galar et al.
[2013]

Synthesizing New Data

Lee [1999, 2000], Chawla et al. [2002,
2003], Batista et al. [2004], Han et al.
[2005], Liu et al. [2007], He et al. [2008],
Bunkhumpornpat et al. [2009], Hu et al.
[2009], Wang and Yao [2009], Menardi and
Torelli [2010], Maciejewski and
Stefanowski [2011], Zhang et al. [2011],
Barua et al. [2012], Bunkhumpornpat
et al. [2012], Martı́nez-Garcı́a et al. [2012],
Ramentol et al. [2012a, 2012b], Verbiest
et al. [2012], Nakamura et al. [2013], Torgo
et al. [2013], Gao et al. [2014], Li et al.
[2014], Zhang and Li [2014], Bellinger et al.
[2015], and Sáez et al. [2015]

Combination of Methods

Liu et al. [2006], Mease et al. [2007], Li
et al. [2008], Stefanowski and Wilk [2008],
Chen et al. [2010], Jeatrakul et al. [2010],
Napierał et al. [2010], Songwattanasiri and
Sinapiromsaran [2010], Bunkhumpornpat
et al. [2011], Vasu and Ravi [2011], Sharma
et al. [2012], Yang and Gao [2012], and Ng
et al. [2014]

Weighting the Data Space
(4.1.2)

Zadrozny et al. [2003]

sample size, while the second one adds data, increasing the sample size. In random
under-sampling, a random set of majority class examples are discarded. This may
eliminate useful examples leading to a worse performance. Oppositely, in random over-
sampling, a random set of copies of minority class examples is added to the data.
This may increase the likelihood of overfitting, especially for higher over-sampling
rates [Chawla et al. 2002; Drummond and Holte 2003]. Moreover, it may decrease the
classifier performance and increase the computational effort.
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Random under-sampling was also used in the context of ensembles. Namely, it was
combined with boosting [Seiffert et al. 2010] and bagging [Chang et al. 2003; Tao
et al. 2006; Wang and Yao 2009; Wallace et al. 2011] and was applied to both classes
in random forests in a method named Balanced Random Forest (BRF) [Chen et al.
2004]. An interesting theoretically based motivation was provided in Wallace et al.
[2011] for using bagging with balanced bootstrap samples obtained through random
under-sampling. This theoretical approach is further explored in Section 6.

For regression tasks, Torgo et al. [2013] perform random under-sampling of the
common values as a strategy for addressing the imbalance problem. This method uses
a relevance function and a user defined threshold to determine which are the common
and uninteresting values that should be under-sampled.

Despite the potential of randomly selecting examples, under- and over-sampling
strategies can also be carried out by other, more informed, methods. For instance, under-
sampling can be accomplished through the use of distance evaluations [Chyi 2003;
Mani and Zhang 2003]. These approaches perform under-sampling based on a certain
distance criterion that determines which are the examples from the majority class to
include in the training set. Several proposals exist, ranging between the extreme cases
of selecting the majority class examples that are closer to the minority class examples,
or choosing the negative examples with the farthest distance to the positive examples.
These strategies are very time consuming, which is a major disadvantage, especially
when dealing with large datasets.

Under-sampling can also be achieved through data cleaning methods. The main goal
of these methods is to identify possibly noisy examples or overlapping regions and then
decide on the removal of examples. One of those methods uses Tomek links [Tomek
1976], which consist of points that are each other’s closest neighbors but do not share
the same class label. This method allows for two options: only remove Tomek links
examples belonging to the majority class or eliminate Tomek links examples of both
classes [Batista et al. 2004]. The notion of the Condensed Nearest Neighbour Rule
(CNN) [Hart 1968] was also applied to perform under-sampling [Kubat and Matwin
1997]. CNN is used to find a subset of examples consistent with the training set, that
is, a subset that correctly classifies the training examples using a 1-nearest-neighbor
classifier. The CNN and Tomek links methods were combined in this order by Kubat
and Matwin [1997] in a strategy called One-Sided-Selection (OSS) and in the reverse
order in a proposal of Batista et al. [2004].

Recognition-based methods as one-class learning or autoencoders offer the possibility
to perform the most extreme type of under-sampling where all the examples from the
minority class are removed. In this type of approach, and contrary to discrimination-
based inductive learning, the model is learned using only examples of one class, and no
counterexamples are included. This lack of examples from the other class(es) is the key
distinguishing feature between recognition-based and discrimination-based learning.

One-class learning tries to set up boundaries that surround the majority class con-
cept. This method starts by measuring the similarity between the majority class and
an object. Classification is then performed using a threshold on the obtained similarity
score. One-class learning methods have the disadvantage of requiring the tuning of the
threshold imposed on the similarity. In fact, this is a sensitive issue because if we choose
a too-narrow threshold, then the majority class examples are disregarded. However,
too-wide thresholds may lead to including examples from the minority class. Therefore,
establishing an efficient threshold is vital with this method. Also, some learners actu-
ally need examples from more than one class and are unable to adapt to this method.
Despite all these possible disadvantages, recognition-based learning algorithms have
been shown to provide good prediction performance in most domains. Developments
made in this context include one-class SVMs (e.g., Schölkopf et al. [2001], Manevitz and
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Yousef [2002], Raskutti and Kowalczyk [2004], Zhuang and Dai [2006a, 2006b], and
Lee and Cho [2006]) and the use of an autoencoder (or autoassociator) (e.g., Japkowicz
et al. [1995] and Japkowicz [2000]).

An innovative recognition based-method for large datasets was proposed by Wagstaff
et al. [2013] that aims at both facilitating the discovery of novel observations and at
providing an explanation for the detected cases. This is achieved through an incremen-
tal Singular Value Decomposition (SVD) method that allows the selection of examples
with high novelty which is measured by reconstruction error.

Imbalanced domains can influence the performance and the efficiency of clustering
algorithms [Xuan et al. 2013]. However, due to their flexibility, several approaches ap-
peared for dealing with imbalanced datasets using clustering methods. For instance,
the cluster-based over-sampling (CBO) algorithm proposed by Jo and Japkowicz [2004]
addresses both the imbalance problem and the problem of small disjuncts. Small dis-
juncts are subclusters of a certain class that have a low coverage, that is, classify
only few examples [Holte et al. 1989]. CBO consists of clustering the training data of
each class separately with the k-means technique and then performing random over-
sampling in each cluster. All majority class clusters are over-sampled until they reach
the cardinality of the largest cluster of this class. Then the minority class clusters are
over-sampled until both classes are balanced, maintaining all minority class subclus-
ters with the same number of examples. Several other proposals based on clustering
techniques exist (e.g., Yen and Lee [2006, 2009] and Cohen et al. [2006]). Recently,
clustering techniques were also combined with ensembles [Sobhani et al. 2014]. This
proposal starts by clustering the majority class examples. Then, several classifiers are
trained in balanced datasets that use all the minority class examples and at least
one majority class example from each previously determined cluster. A majority voting
scheme is used to obtain the final class label.

Another approach for data sampling concerns the use of Evolutionary Algorithms
(EA). These algorithms started to be applied to imbalanced domains as a strategy
to perform under-sampling through a prototype selection (PS) procedure (e.g., Garcı́a
et al. [2006] and Garcı́a and Herrera [2009]).

Garcı́a et al. [2006] made one of the first contributions with a new evolutionary
method proposed for balancing the dataset. The presented method uses a new fitness
function designed to perform a prototype selection process. Some proposals have also
emerged in the area of heuristics and metrics for improving several genetic program-
ming classifiers performance in imbalanced domains [Doucette and Heywood 2008].

However, EA have been used for more than under-sampling. More recently, Genetic
Algorithms (GA) and clustering techniques were combined to perform both under- and
over-sampling [Maheshwari et al. 2011; Yong 2012]. Evolutionary under-sampling has
also been combined with boosting [Galar et al. 2013].

Another important approach for dealing with the imbalance problem as a pre-
processing step is the generation of new synthetic data. Several methods exist for
building new synthetic examples. Most of the proposals are focused on classification
tasks. Synthesizing new data has several known advantages [Chawla et al. 2002;
Menardi and Torelli 2010], namely: (i) It reduces the risk of overfitting, which is in-
troduced when replicas of the examples are inserted in the training set, and (ii) it
improves the ability of generalization, which was compromised by the over-sampling
methods. The methods for synthesizing new data can be organized into two groups:
(i) one that introduces perturbations and (ii) another that uses interpolation of exist-
ing examples.

Lee [1999] proposed an over-sampling method that produces noisy replicates of the
rare cases while keeping the majority class unchanged. The synthetic examples are
generated by adding normally distributed noise to the minority class examples. This
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simple strategy was tested with success, and a new version was developed by Lee
[2000]. This new approach generates, for a given dataset, multiple versions of training
sets with added noise. Then, an average of multiple model estimates is obtained.

Recently, Bellinger et al. [2015] proposed a new method for generating synthetic
sample named DEnoising Autoencoder-based Generative Oversampling (DEAGO).
This proposal is based on the capabilities of recontruction of denoising autoencoders
[Vincent et al. 2010]. The denoising autoencoders are neural networks that are able to
reconstruct at the output layer clean versions of the network input. DEAGO generates
synthetic samples with Gaussian noise added that are then used as input of the denois-
ing autoencoders. This proposal was evaluated for the gamma-ray spectral domain.

Another framework, named Random Over Sampling Examples (ROSE), for dealing
with the problem of imbalanced classification was presented by Menardi and Torelli
[2010] based on a smoothed bootstrap re-sampling technique. ROSE generates a more
balanced and completely new dataset from the given training set combining over- and
under-sampling. One observation is drawn from the training set by giving the same
probability to both existing classes. A new example is generated in the neighborhood of
this observation, using a width for the neighborhood determined by a chosen smoothing
matrix.

Zhang and Li [2014] use a random-walk-based approach as an over-sampling strategy
to generate new examples from the minority class. This approach allows the extension
of the classification border.

A famous method that uses interpolation is the synthetic minority over-sampling
technique (SMOTE) [Chawla et al. 2002]. SMOTE over-samples the minority class
by generating new synthetic data. This technique is then combined with a certain
percentage of random under-sampling of the majority class that depends on a user-
defined parameter. Artificial data are created using an interpolation strategy that
introduces a new example along the line segment joining a seed example and one of
its k minority class nearest neighbors. The number of minority class neighbors (k) is
another user-defined parameter. For each minority class example, a certain number of
examples is generated according to a predefined over-sampling percentage.

The SMOTE algorithm has been applied with several different classifiers and was
also integrated with boosting [Chawla et al. 2003] and bagging [Wang and Yao 2009].

Nevertheless, SMOTE generates synthetic examples with the positive class label,
disregarding the negative class examples that may lead to overgeneralization [Yen and
Lee 2006; Maciejewski and Stefanowski 2011; Yen and Lee 2009]. This strategy may be
especially problematic in the case of highly skewed class distributions where the minor-
ity class examples are very sparse, thus resulting in a greater chance of class mixture.

Some of the drawbacks identified in the SMOTE algorithm motivated the appear-
ance of several variants of this method. We can identify three main types of vari-
ants: (i) application of some pre- or post-processing before or after the use of SMOTE,
(ii) applying SMOTE only in some selected regions of the input space, or (iii) introducing
small modifications to the SMOTE algorithm. Most of the first type of SMOTE variants
start by applying the SMOTE algorithm and, afterwards, use a post-processing mecha-
nism for removing some data. Examples of this type of approach include the following:
SMOTE and Tomek Links (SMOTE+Tomek) [Batista et al. 2004], SMOTE and Edited
Nearest Neighbors (SMOTE+ENN) [Batista et al. 2004], SMOTE and Fuzzy Rough Set
Theory (SMOTE+FRST) [Ramentol et al. 2012b] or SMOTE and Rough Sets Theory
(SMOTE+RSB) [Ramentol et al. 2012a]. An exception is the Fuzzy Rough Imbalanced
Prototype Selection (FRIPS) [Verbiest et al. 2012] method, which pre-processes the
dataset before applying the SMOTE algorithm. The second type of SMOTE variants
only generates synthetic examples in specific regions that are considered useful for
the learning algorithms. As the notion of what is a good region is not straightforward,
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several strategies were developed. Some of these variants focus the synthesizing effort
on the borders between classes while others try to find which are the harder-to-learn
instances and concentrate on these ones. Examples of these approaches are as follows:
Borderline-SMOTE [Han et al. 2005], Adaptive Synthetic (ADASYN) [He et al. 2008],
Modified Synthetic Minority Oversampling Technique (MSMOTE) [Hu et al. 2009], Ma-
jority Weighted Minority Oversampling TEchnique (MWMOTE) [Barua et al. 2012],
and SMOTE inspired by the theory of fractal interpolation (FSMOTE) [Zhang et al.
2011], among others. Regarding the last type of SMOTE variants, some modifications
are introduced in the way SMOTE generates the synthetic examples. For instance,
the synthetic examples may be generated closer or further apart from a seed depend-
ing on some measure. The following proposals are examples within this group: Safe-
Level-SMOTE [Bunkhumpornpat et al. 2009], Safe Level Graph [Bunkhumpornpat
and Subpaiboonkit 2013], Local Neighbourhood Extension of SMOTE (LN-SMOTE)
[Maciejewski and Stefanowski 2011], and Density-based synthetic minority over-
sampling technique (DBSMOTE) [Bunkhumpornpat et al. 2012].

For regression problems, only one method for generating new synthetic data was
proposed. Torgo et al. [2013] have adapted the SMOTE algorithm to regression tasks.
Three key components of the SMOTE algorithm required adaptation for regression:
(i) how to define which are the relevant observations and the “normal” cases, (ii) how to
generate the new synthetic examples (i.e., over-sampling), and (iii) how to determine
the value of the target variable in the synthetic examples. Regarding the first issue, a
relevance function and a user-specified threshold were used to define DR and DN sets.
The observations in DR are over-sampled, while cases in DN are under-sampled. For the
generation of new synthetic examples the same interpolation method used in SMOTE
for classification was applied. Finally, the target value of each synthetic example was
calculated as a weighted average of the target variable values of the two seed examples.
The weights were calculated as an inverse function of the distance of the generated
case to each of the two seed examples.

Finally, several other interesting methods have appeared that combine some of
the previous techniques [Stefanowski and Wilk 2008; Bunkhumpornpat et al. 2011;
Songwattanasiri and Sinapiromsaran 2010; Yang and Gao 2012]. For instance,
Jeatrakul et al. [2010] presents a method that uses Complementary Neural Networks
(CMTNN) to perform under-sampling and combines it with SMOTE. The combina-
tion of strategies was also applied to ensembles (e.g., Liu et al. [2006], Mease et al.
[2007], and Chen et al. [2010]). An interesting approach that combines clustering with
recognition-based methods was proposed by Sharma et al. [2012]. This method starts
by applying a clustering algorithm and then, in each determined cluster, a one-class
learner is trained. The final model is obtained by combining the predictions of all the
one-class learners trained.

Some attention has also been given to SVMs, leading to proposals such as the one
of Kang and Cho [2006], where an ensemble of under-sampled SVMs is presented.
Multiple different training sets are built by sampling examples from the majority class
and combining them with the minority class examples. Each training set is used for
training an individual SVM classifier. The ensemble is produced by aggregating the
outputs of all individual classifiers. Another similar approach is the EnSVM [Liu et al.
2006], which adopts a rebalance strategy combining the over-sampling strategy of the
SMOTE algorithm and under-sampling to form a number of new training sets while
using all the positive examples. Then, an ensemble of SVMs is built.

Several ensembles have been adapted and combined with approaches for changing
the data distribution to better tackle the problem of imbalanced domains. Essentially,
for every type of ensemble, some attempt has been made. For a more complete review
on ensembles for the class imbalance problem, see Galar et al. [2012].
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Table V. Special-Purpose Learning Methods, Corresponding Section, and Main Bibliographic References

Strategy type (Section) Main References

Special-Purpose Learning Methods
(4.2)

Joshi et al. [2001], Barandela et al. [2003], Maloof
[2003], Ribeiro and Torgo [2003], Tan et al. [2003],
Torgo and Ribeiro [2003], Wu and Chang [2003],
Akbani et al. [2004], Chen et al. [2004], Huang
et al. [2004], Wu and Chang [2005], Imam et al.
[2006], Tang and Zhang [2006], Zhou and Liu
[2006], Alejo et al. [2007], Sun et al. [2007],
Cieslak and Chawla [2008], Li et al. [2009], Song
et al. [2009], Tang et al. [2009], Batuwita and
Palade [2010b], Liu et al. [2010], Wang and
Japkowicz [2010], Hwang et al. [2011], Oh [2011],
Ribeiro [2011], Cieslak et al. [2012], Rodrı́guez et
al. [2012], Weiguo et al. [2012], Xiao et al. [2012],
Cao et al. [2013], and Castro and de Pádua Braga
[2013]

4.1.2. Weighting the Data Space. The strategy of weighting the data space is a way of
implementing cost-sensitive learning and thus can be an effective method for handling
imbalanced domains when information on the costs of errors is available. In fact,
misclassification costs are applied to the given dataset with the goal of selecting the best
training distribution. Essentially, this method is based on the fact that changing the
original sampling distribution by multiplying each case by a factor that is proportional
to its importance (relative cost) allows any standard learner to accomplish expected
cost minimization on the original distribution. Although it is a simple technique and
easy to apply, it also has some drawbacks. There is a risk of model overfitting and it is
also possible that the real cost values are unavailable, which can introduce the extra
difficulty of exploring effective cost setups.

This approach has a strong theoretical foundation, building on the Translation Theo-
rem derived by Zadrozny et al. [2003]. Namely, to obtain a modified distribution biased
towards the costly classes, the training set distribution is modified with regards to
misclassification costs.

Zadrozny et al. [2003] presented two different ways of accomplishing this conversion:
in a transparent box or in a black box way. In the first, the weights are provided to
the classifier, while for the second a careful sub-sampling is performed according to the
same weights. The first approach cannot be applied to an arbitrary learner, while the
second one results in severe overfitting if sampling with replacement is used. Thus, to
overcome the drawbacks of the latter approach, the authors have presented a method
called cost-proportionate rejection sampling which accepts each example in the input
sample with probability proportional to its associated weight.

4.2. Special-Purpose Learning Methods

The approaches at this level consist of solutions that modify existing algorithms to
provide a better fit to the user preferences. The task of developing a solution based
on algorithm modifications is not an easy one. It requires a deep knowledge of both
the learning algorithm and also of the user preference biases. In order to perform a
modification on a selected algorithm, it is essential to understand why it fails when the
distribution does not match the user preferences. Moreover, any adaptation requires
information on the full utility function, which is frequently hard to obtain. On the
other hand, these methods have the advantage of being very effective in the contexts
for which they were designed.

Existing solutions for dealing with imbalanced domains at the learning level are fo-
cused on the introduction of modifications in the algorithm preference criterion. Table V
summarizes the main bibliographic references for this type of approach.
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The incorporation of benefits and/or costs (negative benefits) in existing algo-
rithms, as a way to express the utility of different predictions, is one of the known
approaches to cope with imbalanced domains. This includes the well-known cost-
sensitive algorithms for classification tasks that directly incorporate costs in the learn-
ing process. In this case, the goal of the prediction task is to minimize expected cost,
knowing that misclassified examples may have different costs.

The research literature includes several works describing the adaptation of differ-
ent classifiers in order to make them cost-sensitive. For decision trees, the impact of
the incorporation of costs under imbalanced domains was addressed by Maloof [2003].
Regarding support vector machines, several ways of integrating costs have been con-
sidered, such as assigning different penalties to false negatives and positives [Akbani
et al. 2004] or including a weighted attribute strategy [Yuanhong et al. 2009], among
others [Weiguo et al. 2012]. Regarding neural networks, the possibility of making them
cost-sensitive has also been considered (e.g., Zhou and Liu [2006], Alejo et al. [2007],
and Oh [2011]). A Cost-Sensitive Multilayer Perceptron (CSMLP) algorithm was pro-
posed by Castro and de Pádua Braga [2013] for asymmetrical learning of Multilayer
perceptrons (MLP) via a modified (backpropagation) weight update rule. Cao et al.
[2013] present a framework for improving the performance of cost-sensitive neural
networks that uses Particle Swarm Optimization (PSO) for optimizing misclassifica-
tion cost, feature subset, and intrinsic structure parameters. Alejo et al. [2007] propose
two strategies for dealing with imbalanced domains using radial basis function (RBF)
neural networks that include a cost function in the training phase.

Ensembles have also been considered in the cost-sensitive framework to handle
imbalanced domains. Several ensemble methods have been successfully adapted to
include costs during the learning phase. However, boosting was the most extensively
explored. Adaptive Boosting (AdaBoost) is the most representative algorithm of the
boosting family. When the target class is imbalanced, AdaBoost biases the learning
(through the weights) towards the majority class, as it contributes more to the overall
accuracy. Several proposals appeared which modify AdaBoost weight update process
by incorporating cost items so examples from different classes are treated unequally.
Important proposals in the context of imbalanced domains are RareBoost [Joshi et al.
2001]; AdaC1, AdaC2, and AdaC3 [Sun et al. 2007]; and BABoost [Song et al. 2009].
All of them modify the AdaBoost algorithm by introducing costs in the used weight
updating formula. These proposals differ in how they modify the update rule. Wang
and Japkowicz [2010] proposes an ensemble of SVMs with asymmetric misclassification
costs. The proposed system works by modifying the base classifier (SVM) using costs
and uses boosting as the combination scheme. Random Forests have also been adapted
to better cope with imbalanced domains undergoing a cost-sensitive transformation.
Chen et al. [2004] proposes a method called Weighted Random Forest (WRF) for dealing
with highly imbalanced domains based on the Random Forest algorithm. WRF strategy
operates by assigning a higher misclassification cost to the minority class. For an
extensive review on ensembles for handling class imbalance see Galar et al. [2012].

Several other solutions exist that also modify the preference criteria of the algorithms
while not relying directly on the definition of a cost/cost-benefit matrix. Regarding
SVMs, several proposals try to bias the algorithm so the hyperplane is further away
from the positive class, because the skew associated with imbalanced datasets pushes
the hyperplane closer to the positive class. Wu and Chang [2003] accomplish this
with an algorithm that changes the kernel function. Fuzzy Support Vector Machines
for Class Imbalance Learning (FSVM-CIL) was a method proposed by Batuwita and
Palade [2010b]. This algorithm is based on an SVM variant for handling the problem
of outliers and noise called Fuzzy SVM (FSVM) [Lin and Wang 2002] and improves it

ACM Computing Surveys, Vol. 49, No. 2, Article 31, Publication date: August 2016.



A Survey of Predictive Modeling on Imbalanced Domains 31:29

for also dealing with imbalanced datasets. Potential Support Vector Machine (P-SVM)
[Mangasarian and Wild 2001] differs from standard SVM learners by defining a new
objective function and constraints. An improved P-SVM algorithm [Li et al. 2009] was
proposed to better cope with imbalanced datasets.

k-Nearest Neighbors (k-NN) learners were also adapted to cope with the imbalance
problem. Barandela et al. [2003] present a weighted distance function to be used in
the classification phase of k-NN without changing the class distribution. This method
assigns different weights to the respective classes and not to the individual prototypes.
Since more weight is given to the majority class, the distance to minority class examples
becomes much lower than the distance to examples from the majority class. This biases
the learner to find their nearest neighbor among examples of the minority class.

A new decision tree algorithm—Class Confidence Proportion Decision Tree
(CCPDT)—was proposed by Liu et al. [2010]. CCPDT is robust and insensitive to class
distribution and generates rules that are statistically significant. The algorithm adopts
a new proposed measure, called Class Confidence Proportion (CCP), which forms the
basis of CCPDT. CCP measure is embedded in the information gain and used as the
splitting criterion. In this algorithm, a new approach, using a Fisher exact test to prune
branches of the tree that are not statistically significant, is presented.

Hellinger distance was introduced as a decision tree splitting criterion to build
Hellinger Distance Decision Trees (HDDT) [Cieslak and Chawla 2008]. This pro-
posal was shown to be insensitive towards class imbalanced domains. More recently,
Cieslak et al. [2012] recommended the use of bagged HDDTs as the preferred method
for dealing with imbalanced domains when using decision trees.

For regression tasks, some works have addressed the problem of imbalanced domains
by changing the splitting criterion of regression trees (e.g., Torgo and Ribeiro [2003]
and Ribeiro and Torgo [2003]).

The Kernel Boundary Alignment algorithm (KBA) is proposed in Wu and Chang
[2005]. This method adjusts the boundary towards the majority class by modifying the
kernel matrix generated by a kernel function according to the imbalanced domain.

An ensemble method for learning over multi-class imbalanced datasets, named en-
semble Knowledge for Imbalance Sample Sets (eKISS), was proposed by Tan et al.
[2003]. This algorithm was specifically designed to increase classifiers sensitivity with-
out losing the corresponding specificity. The eKISS approach combines the rules of the
base classifiers to generate new classifiers for final decision making.

Recently, more sophisticated approaches were proposed as the Dynamic Classifier
Ensemble method for Imbalanced Data (DCEID), presented by Xiao et al. [2012].
DCEID combines dynamic ensemble learning with cost-sensitive learning and is able
to adaptively select the more appropriate ensemble approach.

For regression problems, one work exists that is able to tackle the problem of imbal-
anced domains through a utility-based algorithm. The utility-based Rules (ubaRules)
approach was proposed by Ribeiro [2011]. ubaRules is a utility-based regression rule
ensemble system designed for obtaining models biased according to a specific utility
function. The system main goal is to obtain accurate and interpretable predictions in
the context of regression problems with non-uniform utility. It consists of two main
steps: generation of different regression trees, which are converted to rule ensembles,
and selection of the best rules to include in the final ensemble. An utility function is
used as criterion at several stages of the algorithm.

4.3. Prediction Post-Processing

For dealing with imbalanced domains at the post-processing level, we will consider two
main types of solutions:
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Table VI. Post-Processing Strategy Approaches, Corresponding Sections,
and Main Bibliographic References

Approaches (Section) Main References
Threshold Method Maloof [2003], Weiss [2004], and
(4.3.1) Hernández-Orallo et al. [2012]
Cost-sensitive Post-processing
(4.3.2)

Hernández-Orallo [2012, 2014]

—threshold method: uses the ranking provided by a score that expresses the degree
to which an example is a member of a class to produce several learners by varying
the threshold for class membership;

—cost-sensitive post-processing: associates costs to prediction errors and mini-
mizes the expected cost.

Table VI summarizes the main bibliographic references of post-processing strategy
approaches.

4.3.1. Threshold Method. Some classifiers are named soft classifiers because they pro-
vide a score which expresses the degree to which an example is a member of a class.
Together with a threshold, this score can be used to generate other classifiers. This can
be accomplished by varying the threshold for an example belonging to a class [Weiss
2004]. A study of this method [Maloof 2003] concluded that the operations of moving
the decision threshold, applying a sampling strategy, and adjusting the cost matrix
produce classifiers with the same performance.

The proposal of Hernández-Orallo et al. [2012] explores several threshold choice
methods and provides an interesting interpretation for a diversity of performance
metrics. The threshold choice methods are categorized according to the operating con-
ditions. Guidelines are provided regarding the performance metric that should be used
based on the information available on the threshold choice method.

4.3.2. Cost-Sensitive Post-Processing. Several methods exist for making models cost-
sensitive in a post hoc manner. This technique was mainly explored in classification
tasks and aims at changing the model predictions for making it cost-sensitive (e.g.,
Domingos [1999] and Sinha and May [2004]). This means that this technique could po-
tentially be applicable to imbalanced domains. However, to the best of our knowledge,
these methods have never been applied or evaluated on these tasks.

In regression, introducing costs at a post-processing level has only recently been
proposed [Bansal et al. 2008; Zhao et al. 2011]. It is an issue still under-explored
with few limited solutions. Similarly to what happens in classification, no progress
has yet been made for evaluating these solutions in imbalanced domains. However,
one interesting proposal called reframing [Hernández-Orallo 2012, 2014] was recently
presented. Although not developed specifically for imbalanced domains, this framework
aims at adjusting the predictions of a previously built model to different deployment
contexts. Therefore, it is also potentially suitable for being applied to the problem of
imbalanced domains. The notion of reframing was established as the process of applying
a previously built model to a new operating context by the proper transformation of
inputs, outputs, and patterns. The reframing framework acts at a post-processing level,
changing the obtained predictions by adapting them to a different distribution.

The reframing method essentially consists of two steps:

—the conversion of any traditional crisp regression model with one parameter into
a soft regression model with two parameters, seen as a normal conditional density
estimator (NCDE), by the use of enrichment methods;
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Table VII. Hybrid Strategies, Corresponding Sections,
and Main Bibliographic References

Strategy type (Section) Main References

Hybrid Strategies
(4.4)

Estabrooks and Japkowicz [2001],
Kotsiantis and Pintelas [2003],
Estabrooks et al. [2004], Phua et al.
[2004], Yoon and Kwek [2005], Ertekin et
al. [2007a, 2007b], Zhu and Hovy [2007],
Liu et al. [2009], Ghasemi et al. [2011a,
2011b], Ertekin [2013], Mi [2013], and
Barnab-Lortie et al. [2015]

—the reframing of an enriched soft regression model to new contexts by an instance-
dependent optimization of the expected loss derived from the conditional normal
distribution.

4.4. Hybrid Methods

In recent years, several methods involving the combination of some of the basic ap-
proaches described in the previous sections have appeared in the research literature.
Due to their characteristics, these methods can be seen as hybrid methods to handle
imbalanced domains. They try to capitalize on some of the main advantages of the
different approaches we have described previously.

Existing hybrid approaches combine the use of pre-processing approaches with
special-purpose learning algorithms. Table VII summarizes the main bibliographic
references concerning these hybrid strategies.

One of the first hybrid strategies was presented by Estabrooks and Japkowicz [2001]
and Estabrooks et al. [2004]. The motivation for this proposal is related to the fact that
a perfectly balanced data may not be optimal and that the right amount of over-/under-
sample to apply is difficult to determine. To overcome these difficulties, a mixture-of-
experts framework was proposed in an architecture with three levels: a classifier level,
an expert level, and an output level. The system has two experts in the expert level:
an under-sampling expert and an over-sampling expert. The architecture incorporates
10 classifiers on the over-sampling expert and another 10 classifiers on the under-
sampling expert. All these classifiers are trained in datasets sampled at different
rates of over- and under-sampling, respectively. At the classifier level, an elimination
strategy is applied for removing the learners that are considered unreliable according
to a predefined test. Then, a combination scheme is applied both at the expert and
output levels. These combination schemes use the following simple heuristic: If one of
the classifiers decides that the example is positive, then so does the expert, and if one
of the two experts decides that the example is positive, then so does the output level.
This strategy is clearly heavily biased towards the minority (positive) class.

A different idea involving sampling and the combination of different learners was
proposed by Kotsiantis and Pintelas [2003]. The proposed approach uses a facilitator
agent and three learning agents, each one with its own learning system. The facilitator
starts by filtering the features of the dataset. The filtered data are then passed to
the three learning agents. Each learning agent samples the dataset, learns using the
respective system (Naive Bayes, C4.5, and 5-NN), and then returns the predictions
for each instance back to the facilitator agent. Finally, the facilitator makes the final
prediction according to majority voting.

In the proposal of Phua et al. [2004], sampling is performed and, afterwards, stacking
and boosting are used together. The applied sampling strategy partitions the dataset
into 11 new datasets that include all the minority class examples and a portion of
the majority class examples. The proposed system uses three different learners (Naive
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Bayes, C4.5, and a back-propagation classifier), each one processing the 11 partitions
of the data. Bagging is used to combine the classifiers trained by the same algorithm.
Then stacking is used to combine the multiple classifiers generated by the different
algorithms identifying the best mix of classifiers.

Other approaches combine pre-processing techniques with bagging and boosting, si-
multaneously, composing an ensemble of ensembles. EasyEnsemble and BalanceCas-
cade algorithms [Liu et al. 2009] are examples of this type of approach. Both algorithms
use bagging as the main ensemble method and use AdaBoost for training each bag.
As for the pre-processing technique, both construct balanced bags by randomly under-
sampling examples from the majority class. In EasyEnsemble algorithm all AdaBoost
iterations can be performed simultaneously because each AdaBoost ensemble uses a
previously determined subset of the data. All the generated classifiers are combined
for a final solution. On the other hand, in the BalanceCascade algorithm, after the
AdaBoost learning, the majority examples correctly classified with higher confidence
are discarded from further iterations.

Wang [2008] presents an approach that combines the SMOTE algorithm with Biased-
SVM [Veropoulos et al. 1999]. The proposed approach applies the Biased-SVM in the
imbalanced data and stores the obtained support vectors from both classes. Then
SMOTE is used to over-sample the support vectors with two alternatives: using only
the obtained support vectors or using the entire minority class. A final classification is
obtained with the new data using the biased-SVM.

Active learning is a semi-supervised strategy in which the learning algorithm is able
to interactively obtain information from the user. Although this method is traditionally
used with unlabelled data, it can also be applied when all class labels are known. In
this case, the active learning strategy provides the ability of actively selecting the
best, that is, the most informative, examples to learn from. Active Learning by itself
is a technique that is able to deal with moderate imbalanced distributions. However,
when a more severe imbalance occurs in the data, special techniques developed for
active learning that incorporate a preference towards the least represented and more
relevant cases (DR) should be used [Attenberg and Ertekin 2013].

Several approaches for imbalanced domains based on active learning have been
proposed [Ertekin et al. 2007a, 2007b; Zhu and Hovy 2007; Ertekin 2013]. These ap-
proaches are concentrated on SVM learning systems and are based on the fact that, for
these types of learners, the most informative examples are the ones closest to the hyper-
plane. This property is used to guide under-sampling by selecting the most informative
examples, that is, choosing the examples closer to the hyperplane.

More recent developments try to combine active learning with other techniques to
further improve the learner’s performance. Ertekin [2013] presents a novel adaptive
over-sampling algorithm named Virtual Instances Resampling Technique Using Active
Learning (VIRTUAL), which combines the benefits of over-sampling and active learn-
ing. Contrary to traditional sampling methods, which are applied before the training
stage, VIRTUAL generates synthetic examples for the minority class during the train-
ing process. Therefore, the need for a separate pre-processing step is discarded. In
the context of learning with SVMs, VIRTUAL outperforms competitive over-sampling
techniques both in terms of generalization performance and computational complex-
ity. Mi [2013] developed a method that combines SMOTE and active learning with
SVMs.

Some efforts have also been made for integrating active learning with other clas-
sifiers. Hu [2012] proposed an active learning method for imbalance data using the
Localized Generalization Error Model (L-GEM) of radial basis function neural net-
works (RBFNN).
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Ghasemi et al. [2011a, 2011b] presented a new approach that also uses active learn-
ing methods but only requires examples from the majority class. In these works several
scoring functions for selecting the most informative examples were experimented.

A proposal considering the integration of active learning and one-class classifiers
was also presented by Barnab-Lortie et al. [2015].

Still, we must highlight that, overall, active learning-based methods tend to show a
degradation in performance as the imbalance of the domain increases [Attenberg and
Ertekin 2013].

Finally, a strategy using a clustering method based on class purity maximization is
proposed by Yoon and Kwek [2005]. This method generates clusters of pure majority
class examples and non-pure clusters based on the improvement of the clusters class
purity. When the clusters are formed, all minority class examples are added to the
non-pure clusters and a decision tree is built for each cluster. An unlabelled example
is clustered according to the same algorithm. If it falls on a non-pure cluster, then the
decision tree committee votes the prediction, but if it falls on a pure majority class
cluster, then the final prediction is the majority class. If the committee votes for a
majority class prediction, then that will be the final prediction. On the other hand, if it
is a minority class prediction, then the example will be submitted to a final classifier
that is constructed using a neural network.

5. STUDIES ON THE EFFECTIVENESS OF THE METHODS

The task of evaluating and comparing all the proposed solutions for handling the
problem of imbalanced domains is not simple. First, there is a huge amount of proposals
to deal with imbalanced domains. Second, the impact of the strategies on different
learning algorithms is not uniform (e.g., Van Hulse et al. [2007]), meaning that any
conclusions are frequently algorithm dependent. Finally, there is also the issue of
assessing the impact in performance of different levels of imbalance in the domain and
of different dataset characteristics such as separability of data or the training set size.

The main questions that we would like to answer regarding the performance assess-
ment under imbalanced domains are as follows:

—Which data characteristics contribute to further hinder the performance under im-
balanced domains?

—Can we find approaches that generally provide the best improvement in the perfor-
mance for these domains?

—Is the performance of the used learning algorithms affected in different degrees
under imbalanced domains?

—How does the different degree of imbalance in the data distribution affects the
performance?

Japkowicz and Stephen [2002] conducted one of the first studies to address these
questions in a classification setting. This work appeared in an early stage of the devel-
opment of these approaches, and therefore only five strategies were compared (random
under-/over-sampling, under-/over-sampling at random but focused in parts of the in-
put space far/close to the decision boundary, and, finally, change the misclassification
costs of the classes). Unfortunately, most of the conclusions of this article were based
on comparisons of the error rate as the performance assessment measure, which is an
unsuitable measure for these domains. The main conclusions were the following:

—When using decision trees:
—the impact of the imbalanced domain increases as the data separability decreases;
—by increasing the training set size, the impact of the imbalance in the domain is

reduced;
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—the imbalance of the domain is only a problem when small disjuncts are present
in the data;

—over-sampling generally outperforms under-sampling;
—changing the misclassification cost of the classes generally performs better than

random or focused over-sampling.
—Decision trees were found to be the classifier most sensitive to the problem of im-

balanced domains; multi-layer perceptrons came next, showing less sensitivity; and,
finally, support vector machines are identified as showing no sensitivity at all to this
problem.

Batista et al. [2004] highlighted the importance of the contribution of other factors,
such as small sample size and class overlap, in the performance degradation when
learning under imbalanced datasets. This work uses only decision trees and compares
10 pre-processing strategies using AUC. In general, it is concluded that over-sampling-
based strategies have more advantages than under-sampling.

The results obtained in the two previously mentioned works do not always agree with
other works on this issue where over-sampling is reported to be ineffective when using
decision trees (e.g., Drummond and Holte [2003]). In fact, random under-sampling is
nowadays generally considered as one of the most efficient approaches to deal with
imbalanced domains.

More recently, a new experimental design was proposed [Batista et al. 2012; Prati
et al. 2014] to overcome the difficulty in assessing the capability of recovering from the
losses in performance caused by imbalance. One of the main conclusion of this work is
in agreement with the previously mentioned articles regarding the poor sensitivity of
support vector machines to the imbalance in the domain. These were found to be the
classifiers least affected by imbalanced domains, only presenting some sensitivity to
the most severely imbalanced domains.

The authors used real datasets, and for each dataset several training set distributions
were generated with the same number of examples and different degrees of imbalance.
The performance loss was measured relatively to the perfectly balanced distribution
using the following metric,

L = B− I
B

, (44)

where B represents the performance on the perfectly balanced distribution and I the
performance obtained on the imbalanced distribution. The AUC was the metric selected
for these experiments.

For all degrees of imbalance in the distribution some degradation in performance
was observed. As expected, this is more pronounced at higher levels of imbalance. In
this study, the following five strategies were analyzed: random over-sampling, SMOTE,
borderline-SMOTE, ADASYN, and Metacost. One of the main conclusions for highly
imbalanced domains (1/99, 5/95, and 10/90) is the general failure of all considered
strategies. SMOTE was found not to be so competitive as expected when compared
to random over-sampling. Moreover, the results obtained for borderline-SMOTE and
ADASYN did not show a clear advantage compared to standard SMOTE. Regarding
Metacost, its performance was also quite poor when compared to the other strategies
considered in the study.

López et al. [2013] compared three types of classifiers (SVM, decision tree, and
k-NN) on 66 datasets using the AUC metric. The approaches tested were clustered
into the following: pre-processing (SMOTE, SMOTE+ENN, borderline-SMOTE, safe-
level-SMOTE, ADASYN, Selective Pre-processing of Imbalanced Data (SPIDER2)
[Napierała et al. 2010], and DBSMOTE), cost-sensitive learning (Weighted-Classifier,
which simply introduces weights on the training set, Metacost, and the cost-sensitive
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classifier from the Weka environment), and ensemble-based techniques (AdaBoost-M1,
AdaC2, RusBoost, smoteBagging, and EasyEnsemble).

The main conclusions from this study were as follows:

—regarding pre-processing strategies, SMOTE and SMOTE+ENN are the best per-
formers; Borderline-SMOTE and ADASYN also present a robust performance on
average;

—for the tested cost-sensitive learning methods, Metacost and Weighted-Classifier
were the ones that presented the best performance;

—SmoteBagging was the best ensemble method tested; RusBoost and EasyEnsemble
also performed well;

—For decision trees and k-NN, the best performing strategy was smoteBagging, while
for SVMs SMOTE obtained the best performance closely followed by the remaining
evaluated pre-processing strategies.

We must highlight that some results in López et al. [2013] disagree with the ones
presented by Batista et al. [2012], in particular, with respect to the Metacost approach.
Another problem with these two latter works is the fact that both dropped from evalu-
ation the random under-sampling method which was shown to be quite competitive in
other studies.

Recently, Stefanowski [2016] studied the impact of several data characteristics in
the performance of both learning algorithms and pre-processing strategies. These data
characteristics, called data difficulty factors, include the class overlap problem, the
existence of small disjuncts, and some characteristics of the minority class examples.
Stefanowski [2016] proposes a categorization of the minority class cases with respect
to their local characteristics into the following four types: safe, borderline, rare, and
outliers. Then, Stefanowski [2016] studies the relation between the dominant type of
minority examples in a dataset and both the performance obtained by several learning
algorithms and pre-processing strategies.

As a final remark, we stress that in all these cases, only binary classification tasks
have been considered, and usually only one measure is used to assess the performance.
This entails some limitations in the conclusions. I particular, it was shown that different
assessment measures may provide different evaluation results (e.g., Van Hulse et al.
[2007]). Moreover, these articles always assumed that the best is to perfectly balance
the distribution that has also been shown not to be the most favorable setting in terms
of performance (e.g., Weiss and Provost [2003] and Khoshgoftaar et al. [2007]).

6. THEORETICAL ADVANCES

The problem of imbalanced domains is a relevant problem with important applications
in a wide range of fields. The scientific community has been producing several ap-
proaches to this problem as we have surveyed in the previous sections. These proposals
typically solve the problem in a particular domain or on a small set of tasks. However,
many of the developed techniques fail under different imbalanced problems. An impor-
tant question that arises then is as follows: Why and when will a particular technique
developed for the problem of imbalanced domains fail or succeed? The reasons behind
this unstable behavior are not understood, and we believe that only with more effort
regarding the theoretical foundations of imbalanced domains we will be able to answer
this question. The lack of a theoretical understanding of the problem is holding back
the evolution of the solutions.

In spite of its relevance, the fact is that only a few theoretical contributions have
been produced by the research community. While the range of approaches for handling
imbalanced problems is increasing, the work on the theoretical foundations of the
problem is scarce. We consider that one of the reasons for this is related to the lack of
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a precise definition of the problem, one that includes the diversity of applications of
imbalanced domains.

The lack of a precise definition of the problem frequently leads to some misconcep-
tions being widely spread throughout the scientific community. One example is the
equivalence between sampling methods and misclassification costs. This connection
was first established by Breiman et al. [1984]. However, for real-world applications,
Weiss [2013] has shown that the equivalence frequently does not hold. Consider, for
instance, a binary classification problem with 1,100 examples and an imbalanced do-
main with a class distribution of 10:1. This means that the positive class consists of
100 examples and the negative class is formed by 1,000 cases. Let us set the cost of
false negatives to 10 and the cost of false positives to 1. In this case, we have, the-
oretically, a situation of equivalence between the definition of misclassification costs
and a balanced domain. A balanced domain could be obtained by under-sampling the
negative class (multiplying it by 1

10 ) or by over-sampling the minority class (multiply-
ing it by 10). However, when performing under-sampling, potentially useful data may
be discarded and, when performing over-sampling, there is the risk of overfitting if
replicas are introduced. The equivalence would only hold if new minority class exam-
ples were available from the original distribution. Even the generation of synthetic
examples from the minority class would not be sufficient to hold the equivalence be-
cause these new examples are not drawn from the original distribution and are only
approximations of that distribution. This means that the equivalence would only hold
in real-world scenarios if new minority class examples were available for training. But,
if this was possible, then the problem of imbalanced domains would not exist, because
extra new data would be available as needed.

Regarding further theoretical contributions, we must highlight that this equivalence
was further explored by Elkan [2001]. A theorem was proved, for binary classification
tasks, that established a general formula regarding how to resample the negative class
examples to obtain optimal cost-sensitive decisions using a standard non-cost-sensitive
learning algorithm. In spite of being more general, this formulation also suffers from
the problems mentioned above on real-world applications.

A theoretical analysis of imbalance was presented by Wallace et al. [2011] and used to
support a new proposal for tackling the problem of imbalanced domains. The analysis
tries to answer a question raised by several researchers (e.g., Van Hulse et al. [2007])
and that is still not well understood: Why does under-sampling often presents a better
performance when compared to other, sometimes more complex, techniques? The fact
is that, empirically, under-sampling tends to outperform other approaches (ranging
from simple random over-sampling to the generation of new synthetic examples). Still,
several problems exist with random under-sampling strategy: It involves discarding
potentially relevant information, and it is a high-variance strategy. It is exactly by
focusing on the latter problem that Wallace et al. [2011] proposed their solution: The
use of bagging because it is a variance-reduction technique. The authors present a
theoretical analysis and are able to establish the necessary and sufficient conditions
for obtaining a suboptimal separator of the positive and negative distributions. Among
other results, the authors show that, by increasing the degree of imbalance, there is a
decrease in the probability of a weighted empirical cost minimization being effective.
The theoretical framework developed justifies that, in the majority of imbalanced do-
mains, the use of bagging with classifiers induced over balanced bootstrap sets is the
best option.

More recently, Dal Pozzolo et al. [2015] also contributed theoretical advances re-
garding imbalanced domains. The focus of this work was also in the under-sampling
strategy. In this article, the authors study two aspects that are consequences of

ACM Computing Surveys, Vol. 49, No. 2, Article 31, Publication date: August 2016.



A Survey of Predictive Modeling on Imbalanced Domains 31:37

applying under-sampling: the potentially increase of variance (due to the reduction
in the number of examples) and the warping effect produced in the posterior data
distribution (due to the modification introduced in the prior probabilities). The first as-
pect may be addressed by averaging strategies to reduce the variability (as suggested
by Wallace et al. [2011]), while for the second issue it is necessary to calibrate the
probability of the new priors. Dal Pozzolo et al. [2015] analyze the interaction between
under-sampling and the ranking error of the posterior probability, and the following
formula was obtained:

β

(p + β(1 − p))2 >

√
vs

v
, (45)

where β is the under-sampling rate, p is the posterior probability of the testing point,
and v and vs are the variances of the classifier before and after sampling. If the formula
is satisfied, then under-sampling is effective. However, it is difficult to determine when
the condition holds because it implies knowing the posterior probability and requires
the estimation of the ratio of variances before and after under-sampling.

Still, this is a useful theoretical condition for understanding the under-sampling
technique and some of the results obtained when applying it. In fact, the inequality of
Equation (45) can explain why there are several contradictory results because it shows
that there is a dependency between a good effect of under-sampling and some task
related aspects (such as the degree of imbalance and the classifier variance).

In summary, it seems that the research community is finally understanding the im-
portance of studying the theoretical foundations of the problem of imbalance domains.
However, much remains to be done regarding theoretical foundations for this difficult
problem, and easy heuristic solutions keep appearing at a fast rate.

7. PROBLEMS THAT HINDER PREDICTIVE MODELING UNDER IMBALANCED DOMAINS

In this section, we describe some problems that frequently coexist with imbalanced do-
mains and further contribute to degrade the performance of predictive models. These
problems have been addressed mainly within a classification setting. Problems such as
small disjuncts, class overlap, and small sample size usually coexist with imbalanced
classification domains and are also identified as possible causes of classifiers perfor-
mance degradation [Weiss 2004; He and Garcia 2009; Sun et al. 2009; Stefanowski
2016].

We will briefly describe some works that address the relationship between imbal-
anced domains and the following problems: (i) class overlapping or class separability,
(ii) small sample size and lack of density in the training set, (iii) high dimensionality
of the dataset, (iv) noisy data, (v) small disjuncts, and (vi) data shift.

The overlap problem occurs when a given region of the data space contains an iden-
tical number of training cases of each class. In this situation, a learner will have an
increased difficulty in distinguishing between the classes present on the overlapping
region. Since the mid-2000s, some attention has been given to the relationship be-
tween these two problems [Prati et al. 2004a; Garcı́a et al. 2006]. The combination
of imbalanced domains with overlapping regions causes much more difficulties than
expected when considering their effects individually [Denil and Trappenberg 2010].
Recent works [Alejo Eleuterio et al. 2011; Alejo et al. 2013] presented combinations of
solutions for handling, simultaneously, both the class imbalance and the class overlap
problem.

The small sample problem is also related with imbalanced domains. In effect, having
too few examples from the minority class will prevent the learner from capturing their
characteristics and will hinder the generalization capability of the algorithm. The
relation between imbalanced domains and small sample problems was addressed by
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Japkowicz and Stephen [2002] and Jo and Japkowicz [2004], where it was highlighted
that minority class examples are easier to learn as their number increases.

The small sample problem may trigger problems such as rare cases [Weiss 2005],
which bring an additional difficulty to the learning system. Rare examples are ex-
tremely scarce cases that are difficult to detect and use for generalization. The small
sample problem may also be accompanied by a variable class distribution that may not
match the target distribution.

Some imbalanced domains have a high number of predictor variables. The main
challenge here is to adequately select features that contain the key information of
the problem. Feature selection is recommended [Wasikowski and Chen 2010] and is
also pointed as the solution for addressing the class imbalance problem [Mladenic and
Grobelnik 1999; Zheng et al. 2004; Chen and Wasikowski 2008; Van Der Putten and
Van Someren 2004; Forman 2003]. Several proposals exist for handling the imbalance
problem in conjunction with the high-dimensionality problem, all using a feature se-
lection strategy [Zheng et al. 2004; Del Castillo and Serrano 2004; Forman and Cohen
2004; Chu et al. 2010]. In imbalanced domains, noisy data have a greater impact on the
least-represented classes [Weiss 2004]. Recently, Seiffert et al. [2011] concluded that,
generally, class noise has a more significant impact on learners than imbalance. The
interaction between the levels of imbalance and noise is a relevant issue and the two
aspects should be studied together.

One of the most studied related problems is the problem of small disjuncts that is
associated to the imbalance in the subclusters of each class in the dataset [Japkowicz
2001; Jo and Japkowicz 2004]. When a subcluster has a low coverage, that is, it classi-
fies few examples, it is called small [Holte et al. 1989]. Small disjuncts are a problem
because the learners are typically biased towards classifying large disjuncts and there-
fore they will tend to overfit and misclassify the cases in the small disjuncts. Due to the
importance of these two problems, several works address the relation between the prob-
lem of small disjuncts and the class imbalance problem (e.g., Japkowicz [2003], Weiss
and Provost [2003], Jo and Japkowicz [2004], Pearson et al. [2003], Japkowicz [2001],
and Prati et al. [2004b]), although the connection between the two problems is not yet
well understood [Jo and Japkowicz 2004]. Weiss [2010] analyzes the impact of several
factors on small disjuncts and in the error distribution across disjuncts. Pruning was
not considered an effective strategy for dealing with small disjuncts in the presence of
class imbalance [Prati et al. 2004b; Weiss 2010]. Weiss [2010] also concluded that even
with a balanced dataset, errors tend to be concentrated towards the smaller disjuncts.
However, when there is class imbalance, the error concentration increases. Moreover,
the increase in the class imbalance also increases the error concentration. Thus, class
imbalance is partly responsible for the problem with small disjuncts, and artificially
balancing the data distribution causes a decrease in the error concentration.

The data shift problem has also deserved the attention of the research community.
The problem of data shift occurs when there is a difference in the distribution of
the train and test sets. The data shift occurs frequently, and it usually leads to a
small performance degradation. However, on imbalanced domains, severe performance
losses may happen caused by this problem. López et al. [2013] mentions two different
perspectives of this problem under imbalanced domains: intrinsic and induced data
shift. The first one regards shifts in the data distribution that are already present
in the data. This is an unexplored issue that still has no solution. As for induced
data shift, it is related with the evaluation techniques used that may introduce this
problem by themselves. Moreno-Torres et al. [2012] mentions that sample selection
bias may occur due to a non-uniform random selection and this may produce the data
shift problem. This may happen when using, for instance, the well known k-fold cross-
validation procedure. López et al. [2014] present a new validation procedure, named
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distribution optimally balanced stratified cross-validation, that tries to maintain the
data distribution across all the partitions, trying to avoid inducing data shift.

The co-occurrence of the problems we have mentioned with imbalanced domains
tends to further degrade the classifiers performance, and therefore this relationship
should not be ignored. We emphasize that these problems have been studied only in
the context of classification tasks. It would be important to generalize these studies to
regression tasks as these issues may also have a negative impact when happening in
conjunction with imbalanced domains in these contexts.

8. CONCLUSIONS

Imbalanced domains pose important challenges to existing approaches to predictive
modeling. In this article, we propose a formulation of the problem of predictive mod-
eling with imbalanced datasets, including both classification and regression tasks. We
present a survey of the state of the art solutions for obtaining and evaluating predic-
tive models for both classification and regression tasks. We propose a new taxonomy for
the existing approaches grouping them into (i) data pre-processing, (ii) special-purpose
learning methods, (iii) prediction post-processing, and (iv) hybrid strategies.

Since the mid-2000s, the problem of predictive modeling under imbalanced domains
has been focused on classification tasks. Existing proposals were developed specifically
for classification problems, and existing surveys presented this topic only from a clas-
sification perspective. More recently, the research community started to address this
problem within other contexts such as regression [Torgo et al. 2013], ordinal classifica-
tion [Pérez-Ortiz et al. 2014], multi-label classification [Charte et al. 2015b], association
rules mining [Luna et al. 2015], multi-instance learning [Wang et al. 2013b], and data
streams [Wang and Abraham 2015]. It is now recognized that imbalanced domains are
a broader and important problem posing relevant challenges in several contexts.

We present a summary of recent theoretical contributions on the study of imbalanced
domains. This is certainly one of the most important open problems in this area. The
relevance of the problem has pushed the community to provide an huge amount of
heuristic solutions. Still, it is necessary to understand why, when, and how they work,
and to achieve this we need further theoretical advances.

We briefly describe some problems that are strongly related with imbalanced do-
mains, highlighting works that explore the relationship of these other problems with
imbalance datasets. The issue of the coexistence of other problems that may hinder
the learners performance has been addressed solely for classification tasks, and this is
mostly an unexplored question for other tasks.

With the goal of understanding the current research directions in this area, we
identify a few recent trends:

—Wallace and Dahabreh [2012, 2014] have raised the issue of the reliability of proba-
bility estimates when using datasets with imbalanced domains. Although much was
done for other domains, this had never been considered for the case of imbalanced do-
mains. A proposal was presented for the assessment of this problem and an approach
for solving it was also provided.

—Recently, a few articles have appeared that focus their contribution on the theoretical
analysis of the properties of some approaches to imbalanced domains. This is a very
important issue because it will provide a better understanding of the many existing
approaches.

—Regarding performance assessment, the issue of correct experimental procedures
for obtaining reliable estimates on datasets with imbalanced domains was recently
raised [Japkowicz and Shah 2011; Raeder et al. 2012; López et al. 2014].
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—The study of the problem of imbalanced domains has been extended to other data-
mining tasks. This is the case of regression tasks (e.g., Torgo et al. [2013]), multi-class
tasks (e.g., Alejo et al. [2014] and Fernández-Baldera et al. [2015]), learning from data
streams (e.g., Ghazikhani et al. [2014] and Wang and Abraham [2015]), ordinal target
variables (e.g., Baccianella et al. [2009], Sánchez-Monedero et al. [2013], and Pérez-
Ortiz et al. [2014]), multi-label classification (e.g., Tahir et al. [2012] and Charte
et al. [2015a, 2015b]), multi-instance learning (e.g., Wang et al. [2013a, 2013b]), and
mining association rules (e.g., Mangat and Vig [2014], and Luna et al. [2015]).

Finally, in terms of the open research issues within imbalanced domain problems,
we consider the following to be the most relevant ones:

—Establishing the optimal way of translating the user preference biases into concrete
settings of the different approaches to the problem (e.g., what is the right amount of
under-sampling for some given user preferences?).

—More thorough and extensive experimental comparisons among the different ap-
proaches. Although some comparison studies exist, mainly for data pre-processing
strategies within a classification setting, not much exists involving comparisons
among the main different types of approaches (pre-processing, special-purpose learn-
ing methods, post-processing, and hybrid). Moreover, there is still no comparison of
the performance of the approaches across different task types (classification and
regression).

—Creating a repository of benchmark datasets for this problem. In fact, although sev-
eral open-access dataset repositories exist, no collection of problems with imbalanced
domains is currently available for the research community. This is an important is-
sue whose resolution could provide a common baseline for comparison of different
solutions in a fair and unified way [He and Ma 2013].

—Establishing what the adequate metrics are for evaluating and comparing different
methods of addressing imbalanced domain problems. Currently, different articles
select different metrics for comparing the methods, this being often the reason for
some contradictory results.

—Further theoretical analysis of the existing proposals needs to be carried out. The
knowledge about many of the existing approaches is still mostly based on collected
experimental evidence across some concrete datasets. Further understanding of the
properties, advantages, and limitations of the methods is necessary.

—Extension and/or development of approaches that can cope with other tasks apart
from binary classification. Most of the existing work on imbalanced domains is fo-
cused on binary classification tasks. Recent studies have shown that similar imbal-
ance problems exist in other tasks.
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Gilles Cohen, Mélanie Hilario, Hugo Sax, Stéphane Hugonnet, and Antoine Geissbuhler. 2006. Learning
from imbalanced data in surveillance of nosocomial infection. Artif. Intell. Med. 37, 1 (2006), 7–18.

Sven F. Crone, Stefan Lessmann, and Robert Stahlbock. 2005. Utility based data mining for time series
analysis: Cost-sensitive learning for neural network predictors. In Proceedings of the 1st International
Workshop on Utility-based Data Mining. ACM, New York, NY, 59–68.

ACM Computing Surveys, Vol. 49, No. 2, Article 31, Publication date: August 2016.



A Survey of Predictive Modeling on Imbalanced Domains 31:43

Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. 2015. When is undersampling effective in
unbalanced classification tasks? In Machine Learning and Knowledge Discovery in Databases. Springer,
200–215.

Sophia Daskalaki, Ioannis Kopanas, and Nikolaos M. Avouris. 2006. Evaluation of classifiers for an uneven
class distribution problem. Appl. Artif. Intell. 20, 5 (2006), 381–417.

Jesse Davis and Mark Goadrich. 2006. The relationship between Precision-Recall and ROC curves. In
ICML’06: Proc. of the 23rd Int. Conf. on Machine Learning (ACM ICPS). ACM, New York, NY, 233–
240.
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