
Basic Concepts of the R Language

L. Torgo

ltorgo@dal.ca

Faculty of Computer Science / Institute for Big Data Analytics
Dalhousie University

Jan, 2020

Basic Interaction

Basic interaction with the R console

The most common form of interaction with R is through the
command line at the console

User types a command
Presses the ENTER key
R “returns” the answer

It is also possible to store a sequence of commands in a file
(typically with the .R extension) and then ask R to execute all
commands in the file

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 2 / 35

Basic Interaction

Basic interaction with the R console (2)

We may also use the console as a simple calculator

1 + 3/5 * 6^2

[1] 22.6

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 3 / 35

Basic Interaction

Basic interaction with the R console (3)

We may also take advantage of the many functions available in R

rnorm(5, mean = 30, sd = 10)

[1] 28.100 4.092 29.904 10.611 23.599

function composition example
mean(sample(1:1000, 30))

[1] 530.3

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 4 / 35

Basic Interaction

Basic interaction with the R console (4)

We may produce plots

plot(sample(1:10, 5), sample(1:10, 5),
main = "Drawing 5 random points",
xlab = "X", ylab = "Y")

●

●

●

●

●

2 4 6 8 10

2
4

6
8

Drawing 5 random points

X

Y

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 5 / 35

Variables and Objects

The notion of Variable

In R, data are stored in variables.
A variable is a “place” with a name used to store information

Different types of objects (e.g. numbers, text, data tables, graphs,
etc.).

The assignment is the operation that allows us to store an object
on a variable
Later we may use the content stored in a variable using its name.

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 6 / 35

Variables and Objects

Basic data types

R objects may store a diverse type of information.

R basic data types

Numbers: e.g. 5, 6.3, 10.344, -2.3, -7
Strings : e.g. "hello", "it is sunny", "my name is Ana"
Note: one the of the most frequent errors - confusing names of
variables with text values (i.e. strings)! hello is the name of a
variable, whilst "hello" is a string.
Logical values: TRUE, FALSE
Note: R is case-sensitive!
TRUE is a logical value; true is the name of a variable.

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 7 / 35

Variables and Objects The Assignment Operation

The assignment - 1

The assignment operator “<-” allows to store some content on a
variable

vat <- 0.2

The above stores the number 0.2 on a variable named vat

Afterwards we may use the value stored on the variable using its
name

priceVAT <- 240 * (1 + vat)

This new example stores the value 288 (= 240 × (1 + 0.2)) on the
variable priceVAT

We may thus put expressions on the right-side of an assignment

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 8 / 35

Variables and Objects The Assignment Operation

The assignement - 2

What goes on in an assignment?

1 Calculate the result of the expression on the right-side of the
assignment (e.g. a numerical expression, a function call, etc.)

2 Store the result of the calculation in the variable indicated on the
left side

In this context, what do you think it is the value of x after the
following operations?

k <- 10
g <- k/2
x <- g * 2

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 9 / 35

Variables and Objects The Assignment Operation

Still the variables...

We may check the value stored in a variable at any time by typing
its name followed by hitting the ENTER key

x <- 23^3
x

[1] 12167

The ^ signal is the exponentiation operator
The odd [1] will be explained soon...
And now a common mistake!

x <- true

Error: object ’true’ not found

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 10 / 35

Variables and Objects The Assignment Operation

A last note on the assignment operation...

It is important to be aware that the assignment is destructive
If we assign some content to a variable and this variable was
storing another content, this latter value is “lost”,

x <- 23
x

[1] 23

x <- 4
x

[1] 4

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 11 / 35

Vectors

Vectors

Vectors are a type of R objects that can store sets of values of the
same base type
- e.g. the prices of an article sold in several stores
Everytime some set of data has something in common and are of
the same type, it may make sense to store them as a vector
A vector is another example of a content that we may store in a R
variable

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 12 / 35

Vectors

Vectors (2)

Let us create a vector with the set of prices of a product across 5
different stores

prices <- c(32.4, 35.4, 30.2, 35, 31.99)
prices

[1] 32.40 35.40 30.20 35.00 31.99

Note that on the right side of the assignment we have a call to the
function c() using as arguments a set of 5 prices
The function c() creates a vector containing the values received
as arguments

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 13 / 35

Vectors

Vectors (3)

The function c() allows us to associate names to the set
members. In the above example we could associate the name of
the store with each price,

prices <- c(worten = 32.4, fnac = 35.4, mediaMkt = 30.2,
radioPop = 35, pixmania = 31.99)

prices

worten fnac mediaMkt radioPop pixmania
32.40 35.40 30.20 35.00 31.99

This makes the vector meaning more clear and will also facilitate
the access to the data as we will see.

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 14 / 35

Vectors

Vectors (4)

Besides being more clear, the
use of names is also
recommended as R will take
advantage of these names in
several situations.
An example is in the creation
of graphs with the data:

barplot(prices)
worten fnac mediaMkt radioPop pixmania

0
5

10
15

20
25

30
35

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 15 / 35

Indexing Basic indexing

Basic Indexing

When we have objects containing several values (e.g. vectors) we
may want to access some of the values individually.
That is the main purpose of indexing: access a subset of the
values stored in a variable
In mathematics we use indices. For instance, x3 usually
represents the 3rd element in a set of values x .
In R the idea is similar:

prices <- c(worten=32.4,fnac=35.4,
mediaMkt=30.2,radioPop=35,pixmania=31.99)

prices[3]

mediaMkt
30.2

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 16 / 35

Indexing Basic indexing

Basic Indexing (2)

We may also use the vector position names to facilitate indexing
prices <- c(worten=32.4,fnac=35.4,

mediaMkt=30.2,radioPop=35,pixmania=31.99)
prices["worten"]

worten
32.4

Please note that worten appears between quotation marks. This
is essencial otherwise we would have an error! Why?
Because without quotation marks R interprets worten as a
variable name and tries to use its value. As it does not exists it
complains,
prices[worten]

Error: object ’worten’ not found

Read and interpret error messages is one of the key competences
we should practice.

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 17 / 35

Indexing Vectors of indices

Vectors of indices

Using vectors as indices we may access more than one vector
position at the same time

prices <- c(worten=32.4,fnac=35.4,
mediaMkt=30.2,radioPop=35,pixmania=31.99)

prices[c(2,4)]

fnac radioPop
35.4 35.0

We are thus accessing positions 2 and 4 of vector prices
The same applies for vectors of names

prices[c("worten", "pixmania")]

worten pixmania
32.40 31.99

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 18 / 35

Indexing Vectors of indices

Vectors of indices (2)

We may also use logical conditions to “query” the data!

prices[prices > 35]

fnac
35.4

The idea is that the result of the query are the values in the vector
prices for which the logical condition is true
Logical conditions can be as complex as we want using several
logical operators available in R.
What do you think the following instruction produces as result?

prices[prices > mean(prices)]

fnac radioPop
35.4 35.0

Please note that this another example of function composition!
© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 19 / 35

Vectorization

Vectorization of operations

The great majority of R functions and operations can be applied to
sets of values (e.g vectors)
Suppose we want to know the prices after VAT in our vector
prices

vat <- 0.23
(1+vat)*prices

worten fnac mediaMkt radioPop pixmania
39.8520 43.5420 37.1460 43.0500 39.3477

Notice that we have multiplied a number (1.2) by a set of numbers!
The result is another set of numbers that are the result of the
multiplication of each number by 1.2

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 20 / 35

Vectorization

Vectorization of operations (2)

Although it does not make a lot of sense, notice this other example
of vectorization,

sqrt(prices)

worten fnac mediaMkt radioPop pixmania
5.692100 5.949790 5.495453 5.916080 5.655970

By applying the function sqrt() to a vector instead of a single
number we get as result a vector with the same size, resulting
from applying the function to each individual member of the given
vector.

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 21 / 35

Vectorization

Vectorization of operations (3)

We can do similar things with two sets of numbers
Suppose you have the prices of the product on the same stores in
another city,

prices2 <- c(worten=32.5,fnac=34.6,mediaMkt=32,
radioPop=34.4,pixmania=32.1)

prices2

worten fnac mediaMkt radioPop pixmania
32.5 34.6 32.0 34.4 32.1

What are the average prices on each store over the two cities?

(prices+prices2)/2

worten fnac mediaMkt radioPop pixmania
32.450 35.000 31.100 34.700 32.045

Notice how we have summed two vectors!
© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 22 / 35

Vectorization

Logical conditions involving vectors

Logical conditions involving vectors are another example of
vectorization
prices > 35

worten fnac mediaMkt radioPop pixmania
FALSE TRUE FALSE FALSE FALSE

prices is a set of 5 numbers. We are comparing these 5
numbers with one number (35). As before the result is a vector
with the results of each comparison. Sometimes the condition is
true, others it is false.
Now we can fully understand what is going on on a statement like
prices[prices > 35]. The result of this indexing expression
is to return the positions where the condition is true, i.e. this is a
vector of Boolean values as you may confirm above.

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 23 / 35

Matrices Basics

Matrices

As vectors, matrices can be used to store sets of values of the
same base type that are somehow related
Contrary to vectors, matrices “spread” the values over two
dimensions: rows and collumns
Let us go back to the prices at the stores in two cities. It would
make more sense to store them in a matrix, instead of two vectors
Columns could correspond to stores and rows to cities

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 24 / 35

Matrices Basics

Matrices (2)

Let us see how to create this matrix

prc <- matrix(c(32.40,35.40,30.20, 35.00, 31.99,
32.50, 34.60, 32.00, 34.40, 32.01),

nrow=2,ncol=5,byrow=TRUE)
prc

[,1] [,2] [,3] [,4] [,5]
[1,] 32.4 35.4 30.2 35.0 31.99
[2,] 32.5 34.6 32.0 34.4 32.01

The function matrix() can be used to create matrices
We have at least to provide the values and the number of columns
and rows

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 25 / 35

Matrices Basics

Matrices (3)

prc <- matrix(c(32.40,35.40,30.20, 35.00, 31.99,
32.50, 34.60, 32.00, 34.40, 32.01),

nrow=2,ncol=5,byrow=TRUE)
prc

[,1] [,2] [,3] [,4] [,5]
[1,] 32.4 35.4 30.2 35.0 31.99
[2,] 32.5 34.6 32.0 34.4 32.01

The parameter nrow indicates which is the number of rows while
the parameter ncol provides the number of columns
The parameter setting byrow=TRUE indicates that the values
should be “spread” by row, instead of the default which is by
column

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 26 / 35

Matrices Matrix indexing

Indexing matrices

As with vectors but this time with two dimensions
prc

[,1] [,2] [,3] [,4] [,5]
[1,] 32.4 35.4 30.2 35.0 31.99
[2,] 32.5 34.6 32.0 34.4 32.01

prc[2, 4]

[1] 34.4

We may also access a single column or row,

prc[1,]

[1] 32.40 35.40 30.20 35.00 31.99

prc[, 2]

[1] 35.4 34.6

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 27 / 35

Matrices Matrix indexing

Giving names to Rows and Columns

We may also give names to the two dimensions of matrices
colnames(prc) <- c("worten","fnac","mediaMkt","radioPop","pixmania")
rownames(prc) <- c("porto","lisboa")
prc

worten fnac mediaMkt radioPop pixmania
porto 32.4 35.4 30.2 35.0 31.99
lisboa 32.5 34.6 32.0 34.4 32.01

The functions colnames() and rownames() may be used to get
or set the names of the respective dimensions of the matrix
Names can also be used in indexing
prc["lisboa",]

worten fnac mediaMkt radioPop pixmania
32.50 34.60 32.00 34.40 32.01

prc["porto", "pixmania"]

[1] 31.99

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 28 / 35

Lists

Lists

Lists are ordered collections of other objects, known as the
components
List components do not have to be of the same type or size, which
turn lists into a highly flexible data structure.
List can be created as follows:
lst <- list(id=12323,name="John Smith",

grades=c(13.2,12.4,5.6))
lst

$id
[1] 12323
##
$name
[1] "John Smith"
##
$grades
[1] 13.2 12.4 5.6

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 29 / 35

Lists

Indexing Lists

To access the content of a component of a list we may use its
name,

lst$grades

[1] 13.2 12.4 5.6

We may access several components at the same time, resulting in
a sub-list

lst[c("name", "grades")]

$name
[1] "John Smith"
##
$grades
[1] 13.2 12.4 5.6

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 30 / 35

Data Frames

Data Frames

Data frames are the R data structure used to store data tables
As matrices they are bi-dimensional structures
In a data frame each row represents a case (observation) of some
phenomenon (e.g. a client, a product, a store, etc.)
Each column represents some information that is provided about
the entities (e.g. name, address, etc.)
Contrary to matrices, data frames may store information of
different data type

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 31 / 35

Data Frames Creating data frames

Create Data Frames

Usually data sets are already stored in some infrastructure
external to R (e.g. other software, a data base, a text file, the Web,
etc.)
Nevertheless, sometimes we may want to introduce the data
ourselves
We can do it in R as follows
stud <- data.frame(nrs=c("43534543","32456534"),

names=c("Ana","John"),
grades=c(13.4,7.2))

stud

nrs names grades
1 43534543 Ana 13.4
2 32456534 John 7.2

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 32 / 35

Data Frames Creating data frames

Create Data Frames (2)

If we have too many data to
introduce it is more practical to
add new information using a
spreadsheet like editor,

stud <- edit(stud)

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 33 / 35

Data Frames Indexing data frames

Querying the data

Data frames are visualized as a data table

stud

nrs names grades
1 43534543 Ana 13.4
2 32456534 John 7.2

Data can be accessed in a similar way as in matrices

stud[2,3]

[1] 7.2

stud[1,"names"]

[1] Ana
Levels: Ana John

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 34 / 35

Data Frames Indexing data frames

Querying the data (cont.)

Function subset() can be used to easily query the data set

subset(stud,grades > 13,names)

names
1 Ana

subset(stud,grades <= 9.5,c(nrs,names))

nrs names
2 32456534 John

© L.Torgo (Dalhousie University) Basic R Concepts Jan, 2020 35 / 35

	Basic Interaction
	Variables and Objects
	The Assignment Operation

	Vectors
	Indexing
	Basic indexing
	Vectors of indices

	Vectorization
	Matrices
	Basics
	Matrix indexing

	Lists
	Data Frames
	Creating data frames
	Indexing data frames

