
Predictive Analytics

L. Torgo

ltorgo@dal.ca

Faculty of Computer Science / Institute for Big Data Analytics
Dalhousie University

Mar, 2019

Introduction

What is Prediction?

Definition

Prediction (forecasting) is the ability to anticipate the future.
Prediction is possible if we assume that there is some regularity in
what we observe, i.e. if the observed events are not random.

Example

Medical Diagnosis: given an historical record containing the symptoms
observed in several patients and the respective diagnosis, try to
forecast the correct diagnosis for a new patient for which we know the
symptoms.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 2 / 167

Introduction

Prediction Models

Are obtained on the basis of the assumption that there is an
unknown mechanism that maps the characteristics of the
observations into conclusions/diagnoses. The goal of prediction
models is to discover this mechanism.

Going back to the medical diagnosis what we want is to know how
symptoms influence the diagnosis.

Have access to a data set with “examples” of this mapping, e.g.
this patient had symptoms x , y , z and the conclusion was that he
had disease p
Try to obtain, using the available data, an approximation of the
unknown function that maps the observation descriptors into the
conclusions, i.e. Prediction = f (Descriptors)

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 3 / 167

Introduction

“Entities” involved in Predictive Modelling

Descriptors of the observation:
set of variables that describe the properties (features, attributes)
of the cases in the data set
Target variable:
what we want to predict/conclude regards the observations
The goal is to obtain an approximation of the function
Y = f (X1,X ,2 , · · · ,Xp), where Y is the target variable and
X1,X ,2 , · · · ,Xp the variables describing the characteristics of the
cases.
It is assumed that Y is a variable whose values depend on the
values of the variables which describe the cases. We just do not
know how!
The goal of the modelling techniques is thus to obtain a good
approximation of the unknown function f ()

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 4 / 167

Introduction

How are the Models Used?

Predictive models have two main uses:

1 Prediction
use the obtained models to make predictions regards the target
variable of new cases given their descriptors.

2 Comprehensibility
use the models to better understand which are the factors that
influence the conclusions.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 5 / 167

Introduction Types of Prediction Problems

Types of Prediction Problems

Depending on the type of the target variable (Y) we may be facing
two different types of prediction models:

1 Classification Problems - the target variable Y is nominal
e.g. medical diagnosis - given the symptoms of a patient try to
predict the diagnosis

2 Regression Problems - the target variable Y is numeric
e.g. forecast the market value of a certain asset given its
characteristics

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 6 / 167

Introduction Types of Prediction Problems

Examples of Prediction Problems

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 5.1 3.5 1.4 0.2 setosa
 4.9 3.0 1.4 0.2 setosa
 7.0 3.2 4.7 1.4 versicolor
 6.4 3.2 4.5 1.5 versicolor
 6.8 3.0 5.5 2.1 virginica
 5.7 2.5 5.0 2.0 virginica

Species = f(Sepal.Length, ...)

Classification Task

 season size speed mxPH mnO2 Cl Chla ... a1
 winter small medium 8.00 9.8 60.800 50.0 ... 0.0
 spring small medium 8.35 8.0 57.750 1.3 ... 1.4
 autumn small medium 8.10 11.4 40.020 15.6 ... 3.3
 spring small medium 8.07 4.8 77.364 1.4 ... 3.1
 autumn small medium 8.06 9.0 55.350 10.5 ... 9.2
 winter small high 8.25 13.1 65.750 28.4 ... 15.1

a1 = f(season, size, ...)

Regression Task

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 7 / 167

Introduction Types of Models

Types of Prediction Models

There are many techniques that can be used to obtain prediction
models based on a data set.
Independently of the pros and cons of each alternative, all have
some key characteristics:

1 They assume a certain functional form for the unknown function f ()
2 Given this assumed form the methods try to obtain the best

possible model based on:
1 the given data set
2 a certain preference criterion that allows comparing the different

alternative model variants

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 8 / 167

Introduction Types of Models

Functional Forms of the Models

There are many variants. Examples include:
Mathematical formulae - e.g. linear discriminants
Logical approaches - e.g. classification or regression trees, rules
Probabilistic approaches - e.g. naive Bayes
Other approaches - e.g. neural networks, SVMs, etc.
Sets of models (ensembles) - e.g. random forests, adaBoost

These different approaches entail different compromises in terms
of:

Assumptions on the unknown form of dependency between the
target and the predictors
Computational complexity of the search problem
Flexibility in terms of being able to approximate different types of
functions
Interpretability of the resulting model
etc.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 9 / 167

Introduction Types of Models

Which Models or Model Variants to Use?

This question is often known as the Model Selection problem
The answer depends on the goals of the final user - i.e. the
Preference Biases of the user
Establishing which are the preference criteria for a given
prediction problem allows to compare and select different models
or variants of the same model

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 10 / 167

Regression Evaluation Metrics

Regression Metrics Regression Problems

Regression Problems

The setting

Given data set {< xi , yi >}Ni=1, where xi is a feature vector
< x1, x2, · · · , xp > and yi ∈ < is the value of the numeric variable
Y
There is an unknown function Y = f (x)

The approach

Assume a functional form hθ(x) for the unknown function f (),
where θ are a set of parameters
Assume a preference criterion over the space of possible
parameterizations of h()

Search for the “optimal” h() according to the criterion and the data
set

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 12 / 167

Regression Metrics Regression Problems

Preference Criteria
How to evaluate the performance of a regression model?

The Main Criteria

Prediction error
Computational complexity
Model interpretability

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 13 / 167

Regression Metrics Regression Problems

Measuring Regression Error
Mean Squared Error

Given a set of test cases Ntest we can obtain the predictions for
these cases using some regression model.
The Mean Squared Error (MSE) measures the average squared
deviation between the predictions and the true values.
In order to calculate the value of MSE we need to have both the
predicitons and the true values of the Ntest cases.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 14 / 167

Regression Metrics Regression Problems

Measuring Regression Error
Mean Squared Error (cont.)

If we have such information the MSE can be calculated as follows,

MSE =
1

Ntest

Ntest∑
i=1

(ŷi − yi)
2

where ŷi is the prediction of the model under evaluation for the
case i and yi the respective true target variable value.
Note that the MSE is measured in a unit that is squared of the
original variable scale. Because of the this is sometimes common
to use the Root Mean Squared Error (RMSE), defined as
RMSE =

√
MSE

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 15 / 167

Regression Metrics Regression Problems

Measuring Regression Error
Mean Absolute Error

The Mean Absolute Error (MAE) measures the average absolute
deviation between the predictions and the true values.
The value of the MAE can be calculated as follows,

MAE =
1

Ntest

Ntest∑
i=1

|ŷi − yi |

where ŷi is the prediction of the model under evaluation for the
case i and yi the respective true target variable value.
Note that the MAE is measured in the same unit as the original
variable scale.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 16 / 167

Regression Metrics Regression Problems

Relative Error Metrics

Relative error metrics are unit less which means that their scores
can be compared across different domains.
They are calculated by comparing the scores of the model under
evaluation against the scores of some baseline model.
The relative score is expected to be a value between 0 and 1, with
values nearer (or even above) 1 representing performances as
bad as the baseline model, which is usually chosen as something
too naive.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 17 / 167

Regression Metrics Regression Problems

Relative Error Metrics (cont.)

The most common baseline model is the constant model
consisting of predicting for all test cases the average target
variable value calculated in the training data.
The Normalized Mean Squared Error (NMSE) is given by,

NMSE =

∑Ntest
i=1 (ŷi − yi)

2∑Ntest
i=1 (ȳ − yi)2

The Normalized Mean Absolute Error (NMAE) is given by,

NMAE =

∑Ntest
i=1 |ŷi − yi |∑Ntest
i=1 |ȳ − yi |

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 18 / 167

Regression Metrics Regression Problems

Relative Error Metrics (cont.)

The Mean Average Percentage Error (MAPE) is given by,

MAPE =
1

Ntest

Ntest∑
i=1

|ŷi − yi |
yi

The Symmetric Mean Absolute Percentage Error (sMAPE) is
given by,

sMAPE =
1
n

Ntest∑
i=1

|ŷi − yi |
|ŷi |+ |yi |

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 19 / 167

Regression Metrics Regression Problems

Relative Error Metrics (cont.)

The Correlation between the predictions and the true values (ρŷ ,y)
is given by,

ρŷ ,y =

∑Ntest
i=1 (ŷi − ¯̂y)(yi − ȳ)√∑Ntest

i=1 (ŷi − ¯̂y)2
∑Ntest

i=1 (yi − ȳ)2

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 20 / 167

Regression Metrics Regression Problems

An Example in R

trueVals <- c(10.2,-3,5.4,3,-43,21,
32.4,10.4,-65,23)

preds <- c(13.1,-6,0.4,-1.3,-30,1.6,
3.9,16.2,-6,20.4)

mse <- mean((trueVals-preds)^2)
mse

[1] 493.991

rmse <- sqrt(mse)
rmse

[1] 22.22591

mae <- mean(abs(trueVals-preds))
mae

[1] 14.35

nmse <- sum((trueVals-preds)^2) /
sum((trueVals-mean(trueVals))^2)

nmse

[1] 0.5916071

nmae <- sum(abs(trueVals-preds)) /
sum(abs(trueVals-mean(trueVals)))

nmae

[1] 0.65633

mape <- mean(abs(trueVals-preds)/trueVals)
mape

[1] 0.290773

smape <- 1/length(preds) * sum(abs(preds - trueVals) /
(abs(preds)+abs(trueVals)))

smape

[1] 0.5250418

corr <- cor(trueVals,preds)
corr

[1] 0.6745381

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 21 / 167

Multiple Linear Regression

Multiple Linear Regression

Multiple Linear Regression

Multiple linear regression is probably the most used statistical
method
It is one of the many possible approaches to the multiple
regression problem where given a training data set
D = {〈xi , yi〉}ni=1 we want to obtain an approximation of the
unknown regression function f () that maps the predictors values
into a target continuous variable value.
In matrix notation we have D = X|Y, where X is a matrix n × p,
and Y is a matrix n × 1.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 23 / 167

Multiple Linear Regression

Multiple Linear Regression (cont.)

A regression model rD(.) can be seen as a function that transforms
a vector of values of the predictors, x, into a real number, Y . This
model is an approximation of the unknown f () function.
Regression models assume the following relationship,
yi = r(β,xi) + εi , where r(β,xi) is a regression model with
parameters β and εi are observation errors.
The goal of a learning method is to obtain the model parameters β
that minimize a certain preference criterion.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 24 / 167

Multiple Linear Regression

Multiple Linear Regression (cont.)

In the case of multiple linear regression the functional form that is
assumed is the following:

Y = β0 + β1 · X1 + · · ·+ βp · Xp

The goal is to find the vector of parameters β that minimizes the
sum of the squared errors∑n

i=1(yi − (β0 + β1 · X1 + · · ·+ βp · Xp))2

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 25 / 167

Multiple Linear Regression

Implementation of Multiple Linear Regression

The minimization of the squared error leads to solving what are
usually known as the normal equations,
(XT · X) · β = XT · Y
This can be solved through matrix inversion
β = (XT · X)−1 · XT · Y
Matrix inversion may suffer from numerical instabilities when the
matrices are singular.
A better alternative is to use Singular Value Decomposition (SVD),
which may be used to solve equations of the form A · X = b

Press,W.; Teukolsky,S.; Vetterling,W. and Flannery,B. (1992) : Numerical Recipes in C.

Cambridge University Press.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 26 / 167

Multiple Linear Regression

Multiple Linear Regression
Pros and Cons

Well-known and over-studied topic with many variants of this
simple methodology (e.g. Drapper and Smith, 1981)
Simple and effective approach when the “linearity” assumption is
adequate to the data.
Form of the model is intuitive - a set of additive effects of each
variable towards the prediction
Computationally very efficient
Too strong assumptions on the shape of the unknown regression
function

Drapper and Smith (1981): Applied Regression Analysis, 2nd edition. Wiley Series in Probability

and Mathematical Statistics.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 27 / 167

Multiple Linear Regression

Obtaining Multiple Linear Regression Models in R

library(DMwR2)
data(algae)
algae <- algae[-c(62,199),] # the 2 incomplete samples
clean.algae <- knnImputation(algae) # lm() does not handle NAs!
la1 <- lm(a1 ~ .,clean.algae[,1:12])
la1

##
Call:
lm(formula = a1 ~ ., data = clean.algae[, 1:12])
##
Coefficients:
(Intercept) seasonspring seasonsummer seasonwinter sizemedium
42.942055 3.726978 0.747597 3.692955 3.263728
sizesmall speedlow speedmedium mxPH mnO2
9.682140 3.922084 0.246764 -3.589118 1.052636
Cl NO3 NH4 oPO4 PO4
-0.040172 -1.511235 0.001634 -0.005435 -0.052241
Chla
-0.088022

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 28 / 167

Multiple Linear Regression

Obtaining Multiple Linear Regression Models in R
(cont.)
summary(la1)

##
Call:
lm(formula = a1 ~ ., data = clean.algae[, 1:12])
##
Residuals:
Min 1Q Median 3Q Max
-37.679 -11.893 -2.567 7.410 62.190
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.942055 24.010879 1.788 0.07537 .
seasonspring 3.726978 4.137741 0.901 0.36892
seasonsummer 0.747597 4.020711 0.186 0.85270
seasonwinter 3.692955 3.865391 0.955 0.34065
sizemedium 3.263728 3.802051 0.858 0.39179
sizesmall 9.682140 4.179971 2.316 0.02166 *
speedlow 3.922084 4.706315 0.833 0.40573
speedmedium 0.246764 3.241874 0.076 0.93941
mxPH -3.589118 2.703528 -1.328 0.18598
mnO2 1.052636 0.705018 1.493 0.13715
Cl -0.040172 0.033661 -1.193 0.23426
NO3 -1.511235 0.551339 -2.741 0.00674 **
NH4 0.001634 0.001003 1.628 0.10516
oPO4 -0.005435 0.039884 -0.136 0.89177
PO4 -0.052241 0.030755 -1.699 0.09109 .
Chla -0.088022 0.079998 -1.100 0.27265

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 17.65 on 182 degrees of freedom
Multiple R-squared: 0.3731,Adjusted R-squared: 0.3215
F-statistic: 7.223 on 15 and 182 DF, p-value: 2.444e-12

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 29 / 167

Multiple Linear Regression

The Diagnostic Information of the summary() Call

Distribution of the residuals (errors) of the model - should have
mean zero and should be normally distributed and as small as
possible
Estimate of each coefficient and respective standard error
Test of the hypothesis that each coefficient is null, i.e. H0 : βi = 0

Uses a t-test
Calculates a t-value as βi/sβi

Presents a column (Pr(>t)) with the level at which the hypothesis is
rejected. A value of 0.0001 would mean that we are 99.99%
confident that the coefficient is not null
Coefficients for which we can reject the hypothesis are tagged with
a symbol

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 30 / 167

Multiple Linear Regression

The Diagnostic Information of the summary() Call
(cont.)

We are also given the R2 coefficients (multiple and adjusted).
These coefficients indicate the degree of fit of the model to the
data, i.e. the proportion of variance explained by the model.
Values near 1 (100%) are better. The adjusted coefficient is more
demanding as it takes into account the size of the model
Finally, there is also a test of the hypothesis that there is no
dependence of the target variable on the predictors, i.e.
H0 : β1 = β2 = · · · = βp = 0. The F -statistic is used with this
purpose. R provides the confidence level at which we are sure to
reject this hypothesis. A p-level of 0.0001 means that we are
99.99% confident that the hypothesis is not true.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 31 / 167

Multiple Linear Regression

Simplifying the Linear Model
final.la1 <- step(la1)

summary(final.la1)

##
Call:
lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[,
1:12])
##
Residuals:
Min 1Q Median 3Q Max
-28.874 -12.732 -3.741 8.424 62.926
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 57.28555 20.96132 2.733 0.00687 **
sizemedium 2.80050 3.40190 0.823 0.41141
sizesmall 10.40636 3.82243 2.722 0.00708 **
mxPH -3.97076 2.48204 -1.600 0.11130
Cl -0.05227 0.03165 -1.651 0.10028
NO3 -0.89529 0.35148 -2.547 0.01165 *
PO4 -0.05911 0.01117 -5.291 3.32e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 17.5 on 191 degrees of freedom
Multiple R-squared: 0.3527,Adjusted R-squared: 0.3324
F-statistic: 17.35 on 6 and 191 DF, p-value: 5.554e-16

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 32 / 167

Multiple Linear Regression

Using the Models for Prediction

clean.test.algae <- knnImputation(test.algae,
k = 10, distData = clean.algae[, 1:11])

preds <- predict(final.la1,clean.test.algae)
mean((preds-algae.sols$a1)^2)

[1] 296.0934

But there are no negative algae
frequencies!...

plot(algae.sols$a1,preds,main='Errors Scaterplot',
ylab='Predicted Values',xlab='True Values')

abline(0,1,col='red',lty=2)

●

●

●●

● ●
●

● ●

●

●

●

●● ●

●

●

●

●●

●●

●
●

●
●

●

●

●●
●

●

● ●

●
● ● ●

●● ●

●●●

●

●

●
●

●

●
●

●

●
●

●

●

●● ●● ●

●
●●

●

●●

●●

●
●

●

●

●

●

●

●
●

● ●

●●

● ●

●

● ●
●
●
●

●● ●
●

●
●

● ●
●
● ●

●●

●

●

●

●

●● ●●
● ●

●

● ●
●● ●

●
●

●

●
●

●

●

●●

●

●

●●
●●●

●

●

●
●●

0 20 40 60 80

−
60

−
40

−
20

0
20

40

Errors Scaterplot

True Values

P
re

di
ct

ed
 V

al
ue

s

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 33 / 167

Hands on Linear Regression

Hands on Linear Regression - the Boston data set
The data set Boston is available in package MASS. Load it and explore
its help page to grab a minimal understanding of the data and then answer
the following questions:

1 Obtain a random split of the data into two sub-sets using the
proportion 70%-30%.

2 Obtain a multiple linear regression model using the larger set.
3 Check the diagnostic information provided for the model.
4 Obtain the predictions of the obtained model on the smaller set.
5 Obtain the mean squared error of these predictions and also an error

scatter plot.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 34 / 167

Support Vector Machines

Support Vector Machines (SVMs)

A Bit of History...

SVM’s were introduced in 1992 at the COLT-92 conference
They gave origin to a new class of algorithms named kernel
machines
Since then there has been a growing interest on these methods
More information may be obtained at
www.kernel-machines.org

A good reference on SVMs:
N. Cristianini and J. Shawe-Taylor: An introduction to Support
Vector Machines. Cambridge University Press, 2000.
SVMs have been applied with success in a wide range of areas
like: bio-informatics, text mining, hand-written character
recognition, etc.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 36 / 167

www.kernel-machines.org

Support Vector Machines (SVMs) The Basic Idea

Two Linearly Separable Classes

b

w

Class , y= +1

Class , y = −1

X2

X1

Obtain a linear separation of the cases (binary classification
problems)
Very simple and effective for linearly separable problems
Most real-world problems are not linearly separable!

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 37 / 167

Support Vector Machines (SVMs) The Basic Idea

The Basic Idea of SVMs

Map the original data into a new space of variables with very high
dimension.
Use a linear approximation on this new input space.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 38 / 167

Support Vector Machines (SVMs) The Basic Idea

The Idea in a Figure

Map the original data into a new (higher dimension) coordinates
system where the classes are linearly separable

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 39 / 167

Support Vector Machines (SVMs) The Separating Hyperplane

Maximum Margin Hyperplane

Class , y= +1

Class , y = −1

X2

X1

Class , y= +1

Class , y = −1

X2

X1

There is an infinite number of
hyperplanes separating the two
classes!
Which one should we choose?!
We want the one that ensures a better
classification accuracy on unseen data
SVMs approach this problem by
searching for the maximum margin
hyperplane

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 40 / 167

Support Vector Machines (SVMs) The Separating Hyperplane

The Support Vectors

Class , y= +1

Class , y = −1

X2

X1

H1

H2

All cases that fall on the hyperplanes H1
and H2 are called the support vectors.

Removing all other cases would not
change the solution!

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 41 / 167

Support Vector Machines (SVMs) The Separating Hyperplane

The Optimal Hyperplane

SVMs use quadratic optimization algorithms to find the optimal
hyperplane that maximizes the margin that separates the cases
from the 2 classes
Namely, these methods are used to find a solution to the following
equation,

LD =
n∑

i=1

αi −
1
2

n∑
i,j

αiαjyiyj(xi · xj)

Subject to :

αi ≥ 0∑
i

αiyi = 0

In the found solution, the αi ’s > 0 correspond to the support
vectors that represent the optimal solution

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 42 / 167

Support Vector Machines (SVMs) The Problem of Linear Separability

Recap

Most real world problems are not linearly separable
SVMs solve this by “moving” into a extended input space where
classes are already linearly separable
This means the maximum margin hyperplane needs to be found
on this new very high dimension space

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 43 / 167

Support Vector Machines (SVMs) The Problem of Linear Separability

The Kernel trick

The solution to the optimization equation involves dot products
that are computationally heavy on high-dimensional spaces
It was demonstrated that the result of these complex calculations
is equivalent to the result of applying certain functions (the kernel
functions) in the space of the original variables.

The Kernel Trick
Instead of calculating the dot products in a high dimensional space,
take advantage of the proof that K (x, z) = φ(x) · φ(z) and simply
replace the complex dot products by these simpler and efficient
calculations

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 44 / 167

Support Vector Machines (SVMs) The Problem of Linear Separability

Summary of the SVMs Method

As problems are usually non-linear on the original feature space,
move into a high-dimension space where linear separability is
possible
Find the optimal separating hyperplane on this new space using
quadratic optimization algorithms
Avoid the heavy computational costs of the dot products using the
kernel trick

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 45 / 167

Support Vector Machines (SVMs) Multiple Classes

How to handle more than 2 classes?

Solve several binary classification tasks
Essentially find the support vectors that separate each class from
all others

The Algorithm

Given a m classes task
Obtain m SVM classifiers, one for each class
Given a test case assign it to the class whose separating
hyperplane is more distant from the test case

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 46 / 167

Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R
The package e1071

library(e1071)
data(Glass,package='mlbench')
tr <- Glass[1:200,]
ts <- Glass[201:214,]
s <- svm(Type ~ .,tr)
predict(s,ts)

201 202 203 204 205 206 207 208 209 210 211 212 213 214
7 2 7 7 7 7 7 2 7 7 7 7 7 7
Levels: 1 2 3 5 6 7

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 47 / 167

Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R (2)
The package e1071

ps <- predict(s,ts)
table(ps,ts$Type)

##
ps 1 2 3 5 6 7
1 0 0 0 0 0 0
2 0 0 0 0 0 2
3 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 12

mc <- table(ps,ts$Type)
error <- 100*(1-sum(diag(mc))/sum(mc))
error

[1] 14.28571

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 48 / 167

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression

Vapnik (1995) proposed the notion of ε support vector regression
The goal in ε-SV Regression is to find a function f (x) that has at
most ε deviation from the given training cases
In other words we do not care about errors smaller than ε

V. Vapnik (1995). The Nature of Statistical Learning Theory. Springer.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 49 / 167

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

ε-SV Regression uses the following error metric,

|ξ|ε =

{
0 if |ξ| ≤ ε
|ξ| − ε otherwise

x

x
x x

x x x x

x x

x 0

−ε

−ε

+ε

+ε

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 50 / 167

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

The theoretical development of this idea leads to the following
optimization problem,

Minimize :
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i)

Subject to :

yi −w · x− b ≤ ε+ ξi
w · x + b − yi ≤ ε+ ξ∗i
ξi , ξ

∗
i ≥ 0

where C corresponds to the cost to pay for each violation of the
error limit ε

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 51 / 167

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

As within classification we use the kernel trick to map a non-linear
problem into a high dimensional space where we solve the same
quadratic optimization problem as in the linear case
In summary, by the use of the |ξ|ε loss function we reach a very
similar optimization problem to find the support vectors of any
non-linear regression problem.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 52 / 167

Support Vector Machines (SVMs) SVMs for Regression

SVMs for regression in R

library(e1071)
data(Boston,package='MASS')
set.seed(1234)
sp <- sample(1:nrow(Boston),354)
tr <- Boston[sp,]
ts <- Boston[-sp,]
s <- svm(medv ~ .,tr,cost=10,epsilon=0.02)
preds <- predict(s,ts)
mean((ts$medv-preds)^2)

[1] 13.82111

plot(ts$medv,preds,main='Errors Scaterplot',
ylab='Predictions',xlab='True')

abline(0,1,col='red',lty=2)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

10 20 30 40 50

10
20

30
40

50

Errors Scaterplot

True

P
re

di
ct

io
ns

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 53 / 167

Hands On SMVs

Hands on SVMs

The file Wine.Rdata contains 2 data frames with data about the
quality of “green” wines: i) redWine and ii) whiteWine. Each of
these data sets has information on a series of wine tasting sessions to
“green” wines (both red and white). For each wine sample several
physico-chemical properties of the wine sample together with a quality
score assigned by a committee of wine experts (variable quality).

1 Obtain and SVM for forecasting the quality of the red variant of
“green” wines

2 Split the data set in two parts: one with 70% of the samples and
the other with the remaining 30%. Obtain an SVM with the first
part and apply it to the second. What was the resulting mean
absolute error?

3 Using the round() function, round the predictions obtained in the
previous question to the nearest integer. Calculate the error rate
of the resulting integers when compared to the true values

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 54 / 167

k -Nearest Neighbors

k-Nearest Neighbors

k Nearest Neighbors

The k-nearest neighbor method was first described in the early
1950s.
This method is computationally intensive with large data sets and
it did not enjoy lots of popularity because of this.
With the advent of cheap computing power its popularity has
increased a lot because it is a very simple and effective method
that can easily handle both classification and regression problems.
k-nearest neighbors can be seen as methods that learn by
analogy - i.e. they are based on the notion of similarity between
cases.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 56 / 167

k-Nearest Neighbors

k Nearest Neighbors (cont.)

The Basic Idea

If we are given a new test case x for which we want a prediction
1 search in the training set for the most similar cases (the nearest

neighbors) to x
2 use the outcomes of these cases to obtain the prediction for x

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 57 / 167

k-Nearest Neighbors

k Nearest Neighbors
Main Characteristics

The k-nearest neighbors are known as lazy learners as they do
not learn any model of the data
Learning in k-nearest neighbors consists simply in storing the
training data

Variants here include storing in data structures that provide efficient
querying of the nearest neighbors

They do not make any assumption on the unknown functional form
we are trying to approximate, which means that with sufficient
data they are applicable to any problem
They usually achieve good results but...

They require a proper distance metric to be defined - issues like
normalization, irrelevant variables, unknown values, etc., may have
a strong impact on their performance

They have fast training time, but slow prediction time

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 58 / 167

k-Nearest Neighbors Distance Functions

The Notion of Similarity

The key issue on kNN is the notion of similarity
This notion is strongly related with the notion of distance between
observations
Distances among observations in a data set can be used to find
the neighbors of a test case

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 59 / 167

k-Nearest Neighbors Distance Functions

How to Calculate the Distance between 2 Cases?

The notion of distance is related to the differences between the
values on the variables describing the cases

ID Income Sex Position Age
1 2500 f manager 35
2 2750 f manager 30
3 4550 m director 50

Case 1 is “closer” to case 2 than to 3

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 60 / 167

k-Nearest Neighbors Distance Functions

The Euclidean Distance Function

d(x,y) =

√√√√ p∑
i=1

(xi − yi)2

where xi is the value of case x on variable i

Example

Given two cases x =< 3,5,1 > and y =< 12,5.4,−3 > their
Euclidean distance is given by

d(x,y) =
√

(3− 12)2 + (5− 5.4)2 + (1− (−3))2 = 9.85697

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 61 / 167

k-Nearest Neighbors Distance Functions

A Generalization - the Minkowski distance

d(x,y) =

(p∑
i=1

|xi − yi |r
)1/r

where if

r = 1 we have what is known as the Manhattan distance (or
L1-norm)
r = 2 we have the Euclidean distance
etc.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 62 / 167

k-Nearest Neighbors Distance Functions

Potential Problems with Distance Calculation

In domains where cases are described by many variables several
problems may arise that may distort the notion of distance between
any two cases.

Different scales of variables
Different importance of variables
Different types of data (e.g. both numeric and nominal variables,
etc.)
etc.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 63 / 167

k-Nearest Neighbors Distance Functions

Heterogeneous Distance Functions

How to calculate the distance between two cases described by
variables with different type (e.g. numeric and nominal variables)?
A possible solution,

d(x,y) =

p∑
i=1

δi(xi , yi)

emque,

δi(v1, v2) =

1 if i is nominal e v1 6= v2
0 if i is nominal e v1 = v2
|v1−v2|
range(i) if i is numeric

The distance between < 2500, f, director, 35 > and < 2750, f, director,
30 > would be given by |2500−2750|

range(Salary) + 0 + 0 + |35−30|
range(Age)

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 64 / 167

k-Nearest Neighbors k Nearest Neighbors Classification

1-Nearest Neighbor Classifier

Method

Search for the training case most similar to the test case
Predict for the test case the class of this nearest neighbor

Very simple method
May suffer with the presence of outliers
Frequently achieves good results

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 65 / 167

k-Nearest Neighbors k Nearest Neighbors Classification

k-Nearest Neighbor Classifier

Use the k nearest neighbors to obtain the classification of the test
case
Namely, the majority class on the k neighbors is the prediction of
the mehtod
What should be the value of k?

Frequent values are 3, 5 and 7
Odd numbers to avoid draws!
It can be estimated experimentally

Global estimation searches for the ideal k for a given data set
Local estimation methods try to estimate the ideal k for each test
case (computationally very demanding!)

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 66 / 167

k-Nearest Neighbors k Nearest Neighbors Classification

k-nearest neighbors in R

Package class contains function knn()

library(class)
set.seed(1234)
sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nn3 <- knn(tr[,-5],ts[,-5],tr[,5],k=3)
(mtrx <- table(nn3,ts$Species))

##
nn3 setosa versicolor virginica
setosa 12 0 0
versicolor 0 20 1
virginica 0 1 16

(err <- 1-sum(diag(mtrx))/sum(mtrx))

[1] 0.04

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 67 / 167

k-Nearest Neighbors k Nearest Neighbors Classification

k-nearest neighbors in R - 2

Package DMwR2 has a wrapper function with a “standard”
interface,

library(class)
library(DMwR2)
set.seed(1234)
sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nn3 <- kNN(Species ~ .,tr,ts,k=3,stand=TRUE)
(mtrx <- table(nn3,ts$Species))

##
nn3 setosa versicolor virginica
setosa 12 0 0
versicolor 0 20 3
virginica 0 1 14

(err <- 1-sum(diag(mtrx))/sum(mtrx))

[1] 0.08

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 68 / 167

k-Nearest Neighbors k Nearest Neighbors Classification

Trying to find the “ideal” value of k in R

trials <- c(1,3,5,7,11,13,15)
nreps <- 10
res <- matrix(NA,nrow=length(trials),ncol=2)
for(k in seq_along(trials)) {

errs <- rep(0,nreps)
for(r in 1:nreps) {

sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
nn3 <- kNN(Species ~ .,tr,ts,k=trials[k],norm=TRUE)
mtrx <- table(nn3,ts$Species)
errs[r] <- 1-sum(diag(mtrx))/sum(mtrx)

}
res[k,] <- c(mean(errs),sd(errs))

}
dimnames(res) <- list(paste('k',trials,sep='='),c('avg','std'))
res

avg std
k=1 0.082 0.02741
k=3 0.050 0.02708
k=5 0.056 0.01265
k=7 0.052 0.03676
k=11 0.040 0.02108
k=13 0.046 0.02503
k=15 0.070 0.02539

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 69 / 167

k-Nearest Neighbors k Nearest Neighbors Regression

k-Nearest Neighbor Regression

Method

Search for the training case most similar to the test case
Predict for the test case the average of the target variable values
of the neighbors

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 70 / 167

k-Nearest Neighbors k Nearest Neighbors Regression

k-nearest neighbors regression in R

Package caret has a function that to obtain these models

library(caret)
data(Boston,package="MASS")
set.seed(1234)
sp <- sample(1:506,354)
tr <- Boston[sp,]
ts <- Boston[-sp,]
tgt <- which(colnames(Boston) == "medv")
nn3 <- knnreg(tr[,-tgt],tr[,tgt],k=3)
pnn3 <- predict(nn3,ts[,-tgt])
(mse <- mean((pnn3-ts[,tgt])^2))

[1] 44.93

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 71 / 167

Tree-based Models

Tree-based Models

Tree-based Models

Tree-based models (both classification and regression trees) are
models that provide as result a model based on logical tests on
the input variables
These models can be seen as a partitioning of the input space
defined by the input variables
This partitioning is defined based on carefully chosen logical tests
on these variables
Within each partition all cases are assigned the same prediction
(either a class label or a numeric value)
Tree-based models are known by their (i) computational efficiency;
(ii) interpretable models; (iii) embedded variable selection; (iv)
embedded handling of unknown variable values and (v) few
assumptions on the unknown function being approximated

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 73 / 167

Tree-based Models

An Example of Trees Partitioning

Example of a Regression Tree

x2 < 3.1

x1 < 3.4

x2 < 6.1

x1 >= 6.6

x2 >= 3.1

x1 >= 3.4

x2 >= 6.1

x1 < 6.6

y = 3.6
n=20 100%

y = 0.75
n=2 10%

y = 4
n=18 90%

y = 2.2
n=6 30%

y = 4.8
n=12 60%

y = 3.8
n=7 35%

y = 2.3
n=3 15%

y = 4.9
n=4 20%

y = 6.3
n=5 25%

y = 0.75

y = 2.2

y = 2.3y = 4.9

y = 6.3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

4

6

8

2 4 6 8
x1

x2

Partitioning of the Predictors' Space

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 74 / 167

Tree-based Models

An Example of a Classification Tree

Cell.siz = 1,2

Cell.sha = 1,2

Cell.siz = 3,4,5,6,7,8,9,10

Cell.sha = 3,4,5,6,7,8,9,10

Cell.siz = 1,2

Cell.sha = 1,2

Cell.siz = 3,4,5,6,7,8,9,10

Cell.sha = 3,4,5,6,7,8,9,10

benign
458 241

100%

benign
417 12

61%

malignan
41 229

39%

benign
18 5
3%

malignan
23 224

35%

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 75 / 167

Tree-based Models

An Example of a Regression Tree

rm < 6.9

lstat >= 14

crim >= 7 dis >= 1.4

rm < 6.5

rm < 7.4

crim >= 7.4 ptratio >= 18

rm >= 6.9

lstat < 14

crim < 7 dis < 1.4

rm >= 6.5

rm >= 7.4

crim < 7.4 ptratio < 18

23
n=506 100%

20
n=430 85%

15
n=175 35%

12
n=74 15%

17
n=101 20%

23
n=255 50%

23
n=250 49%

22
n=195 39%

27
n=55 11%

46
n=5 1%

37
n=76 15%

32
n=46 9%

14
n=3 1%

33
n=43 8%

45
n=30 6%

33
n=3 1%

46
n=27 5%

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 76 / 167

Tree-based Models

Tree-based Models

Most tree-based models are binary trees with logical tests on each
node
Tests on numerical predictors take the form xi < α, with α ∈ <
Tests on nominal predictors take the form xj ∈ {v1, · · · , vm}
Each path from the top (root) node till a leaf can be seen as a
logical condition defining a region of the predictors space.
All observations “falling” on a leaf will get the same prediction

the majority class of the training cases in that leaf for classification
trees
the average value of the target variable for regression trees

The prediction for a new test case is easily obtained by following a
path from the root till a leaf according to the case predictors values

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 77 / 167

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm

1: function RECURSIVEPARTITIONING(D)
Input : D, a sample of cases, {〈xi,1, · · · , xi,p, yi〉}Ntrain

i=1
Output : t , a tree node

2: if <TERMINATION CRITERION> then
3: Return a leaf node with the majority class in D
4: else
5: t ← new tree node
6: t .split ← <FIND THE BEST PREDICTORS TEST>
7: t .leftNode← RecursivePartitioning(x ∈ D : x � t .split)
8: t .rightNode← RecursivePartitioning(x ∈ D : x 2 t .split)
9: Return the node t

10: end if
11: end function

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 78 / 167

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm - an example

Weather Temp. Humidity Wind Decision
rain 26 high 15 dontPlay
rain 35 normal 102 dontPlay
overcast 27 high 99 Play
overcast 26 normal 97 Play
rain 12 high 120 Play
overcast 21 normal 74 Play
sun 30 normal 89 dontPlay
sun 19 high 111 dontPlay
sun 14 normal 81 Play
overcast 10 normal 70 Play
rain 11 normal 95 Play
rain 15 high 94 Play
sun 19 high 41 dontPlay
sun 35 normal 38 dontPlay
rain 29 high 79 dontPlay
rain 26 normal 75 dontPlay
overcast 30 high 108 Play
overcast 30 normal 16 Play
rain 33 high 96 Play
overcast 30 normal 13 Play
sun 32 normal 55 dontPlay
sun 11 high 108 dontPlay
sun 33 normal 103 Play
overcast 14 normal 32 Play
rain 28 normal 44 Play
rain 21 high 84 Play
sun 29 high 105 dontPlay
sun 15 normal 63 dontPlay

Weather

{rain}

Weather Temp Humidity Wind Decision

rain 26 high 15 dontPlay

rain 35 normal 102 dontPlay

rain 12 high 120 Play

rain 11 normal 95 Play

rain 15 high 94 Play

rain 29 high 79 dontPlay

rain 26 normal 75 dontPlay

rain 33 high 96 Play

rain 28 normal 44 Play

rain 21 high 84 Play

Weather Temp Humidity Wind Decision

overcast 27 high 99 Play

overcast 26 normal 97 Play

overcast 21 normal 74 Play

overcast 10 normal 70 Play

overcast 30 high 108 Play

overcast 30 normal 16 Play

overcast 30 normal 13 Play

overcast 14 normal 32 Play

sun 30 normal 89 dontPlay

sun 19 high 111 dontPlay

sun 14 normal 81 Play

sun 19 high 41 dontPlay

sun 35 normal 38 dontPlay

sun 32 normal 55 dontPlay

sun 11 high 108 dontPlay

sun 33 normal 103 Play

sun 29 high 105 dontPlay

sun 15 normal 63 dontPlay

{overcast, sun}

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 79 / 167

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm (cont.)

Key Issues of the RP Algorithm

When to stop growing the tree - termination criterion
Which value to put on the leaves
How to find the best split test

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 80 / 167

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm (cont.)

When to Stop?

Too large trees tend to overfit the training data and will perform badly
on new data - a question of reliability of error estimates

Which value?
Should be the value that better represents the cases in the leaves

What are the good tests?

A test is good if it is able to split the cases of sample in such a way that
they form partitions that are “purer” than the parent node

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 81 / 167

Tree-based Models Building a tree-based model

Classification vs Regression Trees

They are both grown using the Recursive Partitioning algorithm
The main difference lies on the used preference criterion
This criterion has impact on:

The way the best test for each node is selected
The way the tree avoids over fitting the training sample

Classification trees typically use criteria related to error rate (e.g.
the Gini index, the Gain ratio, entropy, etc.)
Regression trees typically use the least squares error criterion

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 82 / 167

Tree-based Models Selecting the best splits

How to Evaluate a Test in Classification Trees?
Gini Impurity

The Gini index of a data set D where each example belongs to
one of c classes is given by,

Gini(D) = 1−
c∑

i=1

p2
i

where pi is the probability of class i usually estimated with the
observed frequency on the training data
If the data set is split on a logical test T then the resulting Gini
index is given by,

GiniT (D) =
|DT |
|D|

Gini(DT) +
|D¬T |
|D|

Gini(D¬T)

In this context the reduction in impurity given by T is,

∆GiniT (D) = Gini(D)−GiniT (D)

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 83 / 167

Tree-based Models Selecting the best splits

Gini Impurity - an example

Weather Temp Humidity Wind Decision
rain 26 high 15 dontPlay
rain 35 normal 102 dontPlay
rain 12 high 120 jogar
rain 11 normal 95 jogar
rain 15 high 94 jogar
rain 29 high 79 dontPlay
rain 26 normal 75 dontPlay
rain 33 high 96 jogar
rain 28 normal 44 jogar
rain 21 high 84 jogar
overcast 27 high 99 jogar
overcast 26 normal 97 jogar
overcast 21 normal 74 jogar
overcast 10 normal 70 jogar
overcast 30 high 108 jogar
overcast 30 normal 16 jogar
overcast 30 normal 13 jogar
overcast 14 normal 32 jogar
sunny 30 normal 89 dontPlay
sunny 19 high 111 dontPlay
sunny 14 normal 81 jogar
sunny 19 high 41 dontPlay
sunny 35 normal 38 dontPlay
sunny 32 normal 55 dontPlay
sunny 11 high 108 dontPlay
sunny 33 normal 103 jogar
sunny 29 high 105 dontPlay
sunny 15 normal 63 dontPlay

Gini(D) = 1 −
((16

16 + 12

)2
+

(12

16 + 12

)2
)

= 0.49

GiniWeather∈{rain}(D) =
10

28
· Gini(DWeather∈{rain})

+
18

28
· Gini(DWeather /∈{rain})

=0.489

Gini(DWeather∈{rain}) = 1 −
((4

4 + 6

)2
+

(6

4 + 6

)2
)

= 0.48

Gini(DWeather /∈{rain}) = 1 −
((8

8 + 10

)2
+

(10

8 + 10

)2
)

= 0.49

∆GiniWeather∈{rain}(D) = 0.49 − 0.489 = 0.001

Calculate the value of ∆GiniWeather∈{overcast}(D)

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 84 / 167

Tree-based Models Selecting the best splits

Which Tests are Tried?
Numeric Predictors

Given a set of data D and a continuous variable A let VA,D be the
set of values of A occurring in D
Start by ordering the set VA,D

Evaluate all tests A < x where x takes as values all mid-points
between every successive value in the ordered set

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 85 / 167

Tree-based Models Selecting the best splits

Numeric Predictors - an example

Given the unsorted values of Temp:
26 35 27 26 12 21 30 19 14 10 11 15 19 35 29 26 30 30 33 30 32
11 33 14 28 21 29 15
Start by ordering them:
10 11 11 12 14 14 15 15 19 19 21 21 26 26 26 27 28 29 29 30 30
30 30 32 33 33 35 35
Then try (i.e. evaluate) all tests in between each value:

Temp < 10.5
Temp < 11.5
Temp < 13
Temp < 14.5
etc.

Choose the test with the best score to be the best test in variable
Temp

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 86 / 167

Tree-based Models Selecting the best splits

Which Tests are Tried?
Nominal Predictors

Given a set of data D and a nominal variable A let VA,D be the set
of values of A occurring in D
Evaluate all possible combinations of subset of values in VA,D

Note that there are some optimizations that reduce the
computational complexity of this search

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 87 / 167

Tree-based Models Selecting the best splits

Nominal Predictors - an example

Given the values of Weather:
rain, overcast, sunny
Try (i.e. evaluate) all subsets of these values:

Weather ∈ {rain}
Weather ∈ {overcast}
Weather ∈ {sunny}

Choose the test with the best score to be the best test in variable
Weather

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 88 / 167

Tree-based Models Selecting the best splits

How to Evaluate a Test in Regression Trees?
Least Squares Regression Trees

Regression trees are usually grown by trying to minimize the
sum of the squared errors, leading to Least Squares Regression
Trees
According to the LS (Least Squares) criterion the error of the
cases D in a node of the tree is given by,

Err(D) =
1
|D|

∑
〈xi ,yi 〉∈D

(yi − k)2

where D is the sample of cases in a node t , |D| is the cardinality of
this set and k is a constant used to represent the cases in the
node
It can be easily proven that the constant k that minimizes this error
is the average target variable value of the cases in the node

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 89 / 167

Tree-based Models Selecting the best splits

Least Squares Regression Trees

Any logical test T divides the cases D of a node in two partitions,
DT and D¬T . The resulting pooled error is given by,

ErrT (D) =
|DT |
|D|
× Err(DT) +

|D¬T |
|D|

× Err(D¬T)

where |DT |/|D| (|D¬T |/|D|) is the proportion of cases going to the
left (right) branch of the node containing the cases D
We can estimate the value of the split test T by the respective
error reduction,

∆ErrT (D) = Err(D)− ErrT (D)

Finding the best split test for a node involves evaluating all
possible tests for this node using the above equations

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 90 / 167

Tree-based Models Selecting the best splits

Least Squares Regression Trees (cont.)

For continuous variables this requires a sorting operation on the
values of this variable occurring in the node
After this sorting, a fast incremental algorithm (Torgo, 1999) can
be used to find the best cut-point value for the test
With respect to nominal variables, Breiman and colleagues (1984)
have proved a theorem that avoids trying all possible
combinations of values, reducing the computational complexity of
this task from O(2v−1 − 1) to O(v − 1), where v is the number of
values of the nominal variable

Breiman et al. (1984): Classification and Regression Trees

Torgo L. (1999): Inductive learning of tree-based regression models. PhD thesis, Department of

Computer Science, Faculty of Sciences, University of Porto.

Torgo,L. (2011) : Regression Trees. In Encyclopedia of Machine Learning, C.Sammut and

G.I.Webb (Eds.). Pages 842–845, Springer.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 91 / 167

Tree-based Models When to Stop Growing the Trees

Deciding when to stop growing the trees

The scores discussed before keep improving as we grow the tree
At an extreme, an overly large tree, will perfectly fit the given
training data (i.e. all cases are correctly predicted by the tree)
Such huge trees are said to be overfitting the training data and will
most probably perform badly on a new set of data (a test set), as
they have captured spurious characteristics of the training data

T
re

e
E

r r
or

Tree Size

Measured on
training data

Measured on
test (new) data

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 92 / 167

Tree-based Models When to Stop Growing the Trees

Deciding when to stop growing the trees - 2

As we go down in the tree the decisions on the tests are made on
smaller and smaller sets, and thus potentially less reliable
decisions are made
The standard procedure in tree learning is to grow an overly large
tree and then use some statistical procedure to prune unreliable
branches from this tree. The goal of this procedure is to try to
obtain reliable estimates of the error of the tree. This procedure is
usually called post-prunning a tree.
An alternative procedure (not so frequently used) is to decide
during tree growth when to stop. This is usually called
pre-prunning.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 93 / 167

Tree-based Models When to Stop Growing the Trees

(Post-)Pruning a Tree
Cost-complexity and Error-complexity Pruning

Grown and overly large tree
Generate a sequence of sub-trees

Error-complexity criterion for regression trees
Cost-complexity criterion for classification trees

Use cross validation to estimate the error of these trees
Use the x-SE rule to select the best sub-tree

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 94 / 167

Tree-based Models When to Stop Growing the Trees

Classification and Regression Trees in R
The package rpart

Package rpart implements most of the ideas of the system
CART that was described in the book “Classification and
Regression Trees” by Breiman and colleagues
This system is able to obtain classification and regression trees.
For classification trees it uses the Gini score to grow the trees and
it uses Cost-Complexity post-pruning to avoid over fitting
For regression trees it uses the least squares error criterion and it
uses Error-Complexity post-pruning to avoid over fitting
On package DMwR2 you may find function rpartXse() that
grows and prunes a tree in a way similar to CART using the above
infra-structure

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 95 / 167

Tree-based Models When to Stop Growing the Trees

Illustration using a classification task - Glass

library(DMwR2)
library(rpart.plot)
data(Glass,package='mlbench')
ac <- rpartXse(Type ~ .,Glass)
prp(ac,type=4,extra=101)

Ba < 0.34

Al < 1.4

Ca < 10 Mg >= 2.3

 >= 0.34

 >= 1.4

 >= 10 < 2.3

2
70 76 17 13 9 29

100%

2
69 75 17 12 9 3

86%

1
63 31 13 1 3 2

53%

1
63 21 13 0 2 2

47%

2
0 10 0 1 1 0

6%

2
6 44 4 11 6 1

34%

2
6 41 4 0 1 0

24%

5
0 3 0 11 5 1

9%

7
1 1 0 1 0 26

14%

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 96 / 167

Tree-based Models When to Stop Growing the Trees

How to use the trees for Predicting?

tr <- Glass[1:200,]
ts <- Glass[201:214,]
ac <- rpartXse(Type ~ .,tr)
predict(ac,ts)

1 2 3 5 6 7
201 0 0.0000000 0.0000000 0.09090909 0 0.9090909
202 0 0.3636364 0.6363636 0.00000000 0 0.0000000
203 0 0.0000000 0.0000000 0.09090909 0 0.9090909
204 0 0.0000000 0.0000000 0.09090909 0 0.9090909
205 0 0.0000000 0.0000000 0.09090909 0 0.9090909
206 0 0.0000000 0.0000000 0.09090909 0 0.9090909
207 0 0.0000000 0.0000000 0.09090909 0 0.9090909
208 0 0.0000000 0.0000000 0.09090909 0 0.9090909
209 0 0.0000000 0.0000000 0.09090909 0 0.9090909
210 0 0.0000000 0.0000000 0.09090909 0 0.9090909
211 0 0.0000000 0.0000000 0.09090909 0 0.9090909
212 0 0.0000000 0.0000000 0.09090909 0 0.9090909
213 0 0.0000000 0.0000000 0.09090909 0 0.9090909
214 0 0.0000000 0.0000000 0.09090909 0 0.9090909

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 97 / 167

Tree-based Models When to Stop Growing the Trees

How to use the trees for Predicting? (cont.)

predict(ac,ts,type='class')

201 202 203 204 205 206 207 208 209 210 211 212 213 214
7 3 7 7 7 7 7 7 7 7 7 7 7 7
Levels: 1 2 3 5 6 7

ps <- predict(ac,ts,type='class')
table(ps,ts$Type)

##
ps 1 2 3 5 6 7
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 1
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 13

mc <- table(ps,ts$Type)
err <- 100*(1-sum(diag(mc))/sum(mc))
err

[1] 7.142857

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 98 / 167

Tree-based Models When to Stop Growing the Trees

Illustration using a regression task
Forecasting Algae a1

library(DMwR2)
library(rpart.plot)
data(algae)
d <- algae[,1:12]
ar <- rpartXse(a1 ~ .,d)

prp(ar,type=4,extra=101)

PO4 >= 44

Cl >= 7.2

 < 44

 < 7.2

17
n=200 100%

8.9
n=148 74%

7.5
n=143 72%

50
n=5 2%

40
n=52 26%

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 99 / 167

Tree-based Models When to Stop Growing the Trees

How to use the trees for Predicting?

tr <- d[1:150,]
ts <- d[151:200,]
ar <- rpartXse(a1 ~ .,tr)
preds <- predict(ar,ts)
mae <- mean(abs(preds-ts$a1))
mae

[1] 12.27911

cr <- cor(preds,ts$a1)
cr

[1] 0.512407

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 100 / 167

Hands on Tree-based Models

Hands on Tree-based Models - the Wines data
File Wine.Rdata contains two data frames with data on green wine
quality: (i) redWine and (ii) whiteWine. Each of these data sets contains
a series of tests with green wines (red and white). For each of these tests
the values of several physicochemical variables together with a quality
score assigned by wine experts (column quality).

1 Build a regression tree for the white wines data set
2 Obtain a graph of the obtained regression tree
3 Apply the tree to the data used to obtain the model and calculate the

mean squared error of the predictions
4 Split the data set in two parts: 70% of the tests and the remaining

30%. Using the larger part to obtain a regression tree and apply it to
the other part. Calculate again the mean squared error. Compare with
the previous scores and comment.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 101 / 167

Model Ensembles
and Random Forests

Model Ensembles and Random Forests Motivation

Model Ensembles

What?

Ensembles are collections of models that are used together to
address a certain prediction problem

Why? (Diettrich, 2002)

For complex problems it is hard to find a model that “explains” all
observed data.
Averaging over a set of models typically leads to significantly
better results.

Dietterich, T. G. (2002). Ensemble Learning. In The Handbook of Brain Theory and
Neural Networks, Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The MIT Press,
2002. 405-408.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 103 / 167

Model Ensembles and Random Forests Motivation

The Bias-Variance Decomposition of Prediction Error

The prediction error of a model can be split in two main
components: the bias and the variance components

The bias component is the part of the error that is due to the poor
ability of the model to fit the seen data
The variance component has to do with the sensibility of the
model to the given training data

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 104 / 167

Model Ensembles and Random Forests Motivation

The Bias-Variance Decomposition of Prediction Error

Decreasing the bias by adjusting more to the training sample will
most probably lead to a higher variance - the over-fitting
phenomenon
Decreasing the variance by being less sensitive to the given
training data will most probably have as consequence a higher
bias
In summary: there is a well-known bias-variance trade-off in
learning a prediction model

Ensembles are able to reduce both components of the error

Their approach consist on applying the same algorithm to different
samples of the data and use the resulting models in a voting schema

to obtain predictions for new cases

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 105 / 167

Model Ensembles and Random Forests Random Forests

Random Forests (Breiman, 2001)

Random Forests put the ideas of sampling the cases and
sampling the predictors, together in a single method

Random Forests combine the ideas of bagging together with the
idea of random selection of predictors

Random Forests consist of sets of tree-based models where each
tree is obtained from a bootstrap sample of the original data and
uses some form of random selection of variables during tree
growth

Breiman, L. (2001): "Random Forests". Machine Learning 45 (1): 5—32.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 106 / 167

Model Ensembles and Random Forests Random Forests

Random Forests - the algorithm

For each of the k models

Draw a random sample with replacement to obtain the training set
Grow a classification or regression tree

On each node of the tree choose the best split from a randomly
selected subset m of the predictors

The trees are fully grown, i.e. no pruning is carried out

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 107 / 167

Model Ensembles and Random Forests Random Forests

Random Forests in R
The package randomForest

library(randomForest)
data(Boston,package="MASS")
samp <- sample(1:nrow(Boston),354)
tr <- Boston[samp,]
ts <- Boston[-samp,]
m <- randomForest(medv ~ ., tr)
ps <- predict(m,ts)
mean(abs(ts$medv-ps))

[1] 2.378855

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 108 / 167

Model Ensembles and Random Forests Random Forests

A classification example

data(Glass,package='mlbench')
set.seed(1234)
sp <- sample(1:nrow(Glass),150)
tr <- Glass[sp,]
ts <- Glass[-sp,]
m <- randomForest(Type ~ ., tr,ntree=3000)
ps <- predict(m,ts)
table(ps,ts$Type)

##
ps 1 2 3 5 6 7
1 13 5 3 0 0 1
2 2 18 0 3 0 2
3 0 0 1 0 0 0
5 0 0 0 4 0 0
6 0 1 0 0 3 0
7 0 0 0 0 0 8

mc <- table(ps,ts$Type)
err <- 100*(1-sum(diag(mc))/sum(mc))
err

[1] 26.5625

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 109 / 167

Model Ensembles and Random Forests Random Forests

Other Uses of Random Forests
Variable Importance

data(Boston,package='MASS')
library(randomForest)
m <- randomForest(medv ~ ., Boston,

importance=T)
importance(m)

%IncMSE IncNodePurity
crim 16.001604 2511.3914
zn 2.719681 184.4274
indus 11.992644 2501.0269
chas 4.496731 208.3667
nox 18.440180 2702.4705
rm 37.873226 13288.7533
age 11.793865 1198.7370
dis 17.957678 2423.8487
rad 7.259293 320.4829
tax 14.721102 1157.0856
ptratio 15.715445 2716.8744
black 11.498495 826.2531
lstat 29.172401 11871.6578

varImpPlot(m,main="Feature Relevance Scores")

zn
chas
rad
black
age
indus
tax
ptratio
crim
dis
nox
lstat
rm

●

●

●

●

●

●

●

●

●

●

●

●

●

5 15 25 35
%IncMSE

zn
chas
rad
black
tax
age
dis
indus
crim
nox
ptratio
lstat
rm

●

●

●

●

●

●

●

●

●

●

●

●

●

0 4000 10000
IncNodePurity

Feature Relevance Scores

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 110 / 167

Hands on Random Forests

Hands on Linear Regression and Random Forests
the Algae data set

Load in the data set algae from package DMwR2 and answer the
following questions:

1 How would you obtain a random forest to forecast the value of
alga a4

2 Repeat the previous exercise but now using a linear regression
model. Try to simplify the model using the step() function.

3 Obtain the predictions of the two previous models for the data
used to obtain them. Draw a scatterplot comparing these
predictions

4 The data frame named test.algae contains a test set with
some extra 140 water samples for which we want predictions. Use
the previous two models to obtain predictions for a4 on these new
samples. Check what happened to the test cases with NA’s. Fill-in
the NA’s on the test set and repeat the experiment.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 111 / 167

Evaluation Methodologies
and Comparison of Models

Performance Estimation

Performance Estimation

The setting

Predictive task: unknown function Y = f (x) that maps the values
of a set of predictors into a target variable value (can be a
classification or a regression problem)
A (training) data set {< xi , yi >}Ni=1, with known values of this
mapping
Performance evaluation criterion(a) - metric(s) of predictive
performance (e.g. error rate or mean squared error)
How to obtain a reliable estimates of the predictive performance
of any solutions we consider to solve the task using the available
data set?

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 113 / 167

Performance Estimation Resubstituition estimates

Reliability of Estimates
Resubstitution estimates

Given that we have a data set one possible way to obtain an
estimate of the performance of a model is to evaluate it on this
data set
This leads to what is known as a resubstitution estimate of the
prediction error
These estimates are unreliable and should not be used as they
tend to be over-optimistic!

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 114 / 167

Performance Estimation Resubstituition estimates

Reliability of Estimates
Resubstitution estimates (2)

Why are they unreliable?
Models are obtained with the goal of optimizing the selected
prediction error statistic on the given data set
In this context it is expected that they get good scores!
The given data set is just a sample of the unknown distribution of
the problem being tackled
What we would like is to have the performance of the model on this
distribution
As this is usually impossible the best we can do is to evaluate the
model on new samples of this distribution

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 115 / 167

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation

Main Goal of Performance Estimation
Obtain a reliable estimate of the expected prediction error of a model
on the unknown data distribution

In order to be reliable it should be based on evaluation on unseen
cases - a test set

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 116 / 167

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (2)

Ideally we want to repeat the testing several times
This way we can collect a series of scores and provide as our
estimate the average of these scores, together with the standard
error of this estimate
In summary:

calculate the sample mean prediction error on the repetitions as an
estimate of the true population mean prediction error
complement this sample mean with the standard error of this
estimate

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 117 / 167

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (3)

The golden rule of Performance Estimation:

The data used for evaluating (or comparing) any models cannot
be seen during model development.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 118 / 167

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (4)

An experimental methodology should:
Allow obtaining several prediction error scores of a model,
E1,E2, · · · ,Ek
Such that we can calculate a sample mean prediction error

E =
1
k

k∑
i=1

Ei

And also the respective standard error of this estimate

SE(E) =
sE√

k

where sE is the sample standard deviation of E measured as√
1

k−1

∑k
i=1(Ei − E)2

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 119 / 167

The Holdout Method

The Holdout Method and Random Subsampling

The holdout method consists on randomly dividing the available
data sample in two sub-sets - one used for training the model;
and the other for testing/evaluating it

A frequently used proportion is 70% for training and 30% for testing

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 120 / 167

The Holdout Method

The Holdout Method (2)

If we have a small data sample there is the danger of either having
a too small test set (unreliable estimates as a consequence), or
removing too much data from the training set (worse model than
what could be obtained with the available data)
We only get one prediction error score - no average score nor
standard error
If we have a very large data sample this is actually the preferred
evaluation method

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 121 / 167

The Holdout Method

Random Subsampling

The Random Subsampling method is a variation of holdout
method and it simply consists of repeating the holdout process
several times by randomly selecting the train and test partitions

Has the same problems as the holdout with the exception that we
already get several scores and thus can calculate means and
standard errors
If the available data sample is too large the repetitions may be too
demanding in computation terms

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 122 / 167

The Holdout Method

The Holdout method in R

library(DMwR2)
set.seed(1234)
data(Boston,package='MASS')
random selection of the holdout
trPerc <- 0.7
sp <- sample(1:nrow(Boston),as.integer(trPerc*nrow(Boston)))
division in two samples
tr <- Boston[sp,]
ts <- Boston[-sp,]
obtaining the model and respective predictions on the test set
m <- rpartXse(medv ~.,tr)
p <- predict(m,ts)
evaluation
mean((ts$medv-p)^2)

[1] 22.1313

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 123 / 167

Cross Validation

The k-fold Cross Validation Method

The idea of k-fold Cross Validation (CV) is similar to random
subsampling
It essentially consists of k repetitions of training on part of the data
and then test on the remaining
The diference lies on the way the partitions are obtained

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 124 / 167

Cross Validation

The k-fold Cross Validation Method (cont.)

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 125 / 167

Cross Validation

Leave One Out Cross Validation Method (LOOCV)

Similar idea to k-fold Cross Validation (CV) but in this case on
each iteration a single case is left out of the training set
This means it is essentially equivalent to n-fold CV, where n is the
size of the available data set

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 126 / 167

Bootstrap

The Bootstrap Method

Train a model on a random sample of size n with replacement
from the original data set (of size n)

Sampling with replacement means that after a case is randomly
drawn from the data set, it is “put back on the sampling bag”
This means that several cases will appear more than once on the
training data
On average only 63.2% of all cases will be on the training set

Test the model on the cases that were not used on the training set
Repeat this process many times (typically around 200)
The average of the scores on these repetitions is known as the ε0
bootstrap estimate
The .632 bootstrap estimate is obtained by .368× εr + .632× ε0,
where εr is the resubstitution estimate

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 127 / 167

Bootstrap

Bootstrap in R

data(Boston,package='MASS')
nreps <- 200
scores <- vector("numeric",length=nreps)
n <- nrow(Boston)
set.seed(1234)
for(i in 1:nreps) {

random sample with replacement
sp <- sample(n,n,replace=TRUE)
data splitting
tr <- Boston[sp,]
ts <- Boston[-sp,]
model learning and prediction
m <- lm(medv ~.,tr)
p <- predict(m,ts)
evaluation
scores[i] <- mean((ts$medv-p)^2)

}
calculating means and standard errors
summary(scores)

Min. 1st Qu. Median Mean 3rd Qu. Max.
16.37 21.70 24.20 24.56 26.47 48.82

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 128 / 167

The Infra-Structure of package performanceEstimation

The Infra-Structure of package
performanceEstimation

The package performanceEstimation provides a set of functions
that can be used to carry out comparative experiments of different
models on different predictive tasks
This infra-structure can be applied to any model/task/evaluation
metric
Installation:

Official release (from CRAN repositories):
install.packages("performanceEstimation")

Development release (from Github):
library(devtools) # You need to install this package before!
install_github("ltorgo/performanceEstimation",ref="develop")

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 129 / 167

The Infra-Structure of package performanceEstimation

The Infra-Structure of package
performanceEstimation

The main function of the package is
performanceEstimation()

It has 3 arguments:
1 The predictive tasks to use in the comparison
2 The models to be compared
3 The estimation task to be carried out

The function implements a wide range of experimental
methodologies including all we have discussed

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 130 / 167

The Infra-Structure of package performanceEstimation

A Simple Example

Suppose we want to estimate the mean squared error of
regression trees in a certain regression task using cross validation

library(performanceEstimation)
library(DMwR2)
data(Boston,package='MASS')
res <- performanceEstimation(

PredTask(medv ~ .,Boston),
Workflow("standardWF",learner="rpartXse"),
EstimationTask(metrics="mse",method=CV(nReps=1,nFolds=10)))

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 131 / 167

The Infra-Structure of package performanceEstimation

A Simple Example (2)

summary(res)

##
== Summary of a Cross Validation Performance Estimation Experiment ==
##
Task for estimating mse using
1 x 10 - Fold Cross Validation
Run with seed = 1234
##
* Predictive Tasks :: Boston.medv
* Workflows :: rpartXse
##
-> Task: Boston.medv
*Workflow: rpartXse
mse
avg 21.02393
std 10.15683
med 19.02955
iqr 12.91203
min 9.40574
max 40.72403
invalid 0.00000

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 132 / 167

The Infra-Structure of package performanceEstimation

A Simple Example (3)

plot(res)

Boston.medv

10

20

30

40

m
se

rpartX
se

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 133 / 167

The Infra-Structure of package performanceEstimation Predictive Tasks

Predictive Tasks

Objects of class PredTask describing a predictive task
Classification
Regression
Time series forecasting

Created with the constructor with the same name
data(iris)
PredTask(Species ~ ., iris)

Prediction Task Object:
Task Name :: iris.Species
Task Type :: classification
Target Feature :: Species
Formula :: Species ~ .
Task Data Source :: iris

PredTask(Species ~ ., iris,"IrisDS",copy=TRUE)

Prediction Task Object:
Task Name :: IrisDS
Task Type :: classification
Target Feature :: Species
Formula :: Species ~ .
Task Data Source :: internal 150x5 data frame.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 134 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Workflows

Objects of class Workflow describing an approach to a predictive
task

Standard Workflows
Function standardWF for classification and regression
Function timeseriesWF for time series forecasting

User-defined Workflows

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 135 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks

library(e1071)
Workflow("standardWF",learner="svm",learner.pars=list(cost=10,gamma=0.1))

Workflow Object:
Workflow ID :: svm
Workflow Function :: standardWF
Parameter values:
learner -> svm
learner.pars -> cost=10 gamma=0.1

“standardWF” can be omitted ...
Workflow(learner="svm",learner.pars=list(cost=5))

Workflow Object:
Workflow ID :: svm
Workflow Function :: standardWF
Parameter values:
learner -> svm
learner.pars -> cost=5

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 136 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks (cont.)

Main parameters of the constructor:
Learning stage

learner - which function is used to obtain the model for the training
data
learner.pars - list with the parameter settings to pass to the
learner

Prediction stage
predictor - function used to obtain the predictions (defaults to
predict())
predictor.pars - list with the parameter settings to pass to the
predictor

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 137 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks (cont.)

Main parameters of the constructor (cont.):
Data pre-processing

pre - vector with function names to be applied to the training and test
sets before learning
pre.pars - list with the parameter settings to pass to the functions

Predictions post-processing
post - vector with function names to be applied to the predictions
post.pars - list with the parameter settings to pass to the functions

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 138 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks (cont.)

data(algae,package="DMwR2")
res <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],"A1"),
Workflow(learner="lm",pre="centralImp",post="onlyPos"),
EstimationTask("mse",method=CV()) # defaults to 1x10-fold CV

)

##
##
PERFORMANCE ESTIMATION USING CROSS VALIDATION
##
** PREDICTIVE TASK :: A1
##
++ MODEL/WORKFLOW :: lm
Task for estimating mse using
1 x 10 - Fold Cross Validation
Run with seed = 1234
Iteration :**********

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 139 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Evaluating Variants of Workflows
Function workflowVariants()

Sometimes you want to evaluate different parameter variants of the
same workflow - that is the goal of function workflowVariants(). It
produces a vector of Workflow objects without having to specify all of
them.

library(e1071)
data(Boston,package="MASS")
res2 <- performanceEstimation(

PredTask(medv ~ .,Boston),
workflowVariants(learner="svm",

learner.pars=list(cost=1:5,gamma=c(0.1,0.01))),
EstimationTask(metrics="mse",method=CV()))

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 140 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Evaluating Variants of Workflows (cont.)
summary(res2)

##
== Summary of a Cross Validation Performance Estimation Experiment ==
##
Task for estimating mse using
1 x 10 - Fold Cross Validation
Run with seed = 1234
##
* Predictive Tasks :: Boston.medv
* Workflows :: svm.v1, svm.v2, svm.v3, svm.v4, svm.v5, svm.v6, svm.v7, svm.v8, svm.v9, svm.v10
##
-> Task: Boston.medv
*Workflow: svm.v1
mse
avg 14.80685
std 10.15295
med 12.27015
iqr 11.87737
min 5.35198
max 38.39681
invalid 0.00000
##
*Workflow: svm.v2
mse
avg 11.995178
std 7.908371
med 8.359433
iqr 11.626306
min 4.842848
max 28.480351
invalid 0.000000
##
*Workflow: svm.v3
mse
avg 11.045068
std 7.014775
med 7.185975
iqr 10.693513
min 4.421629
max 24.199194
invalid 0.000000
##
*Workflow: svm.v4
mse
avg 10.773223
std 6.684297
med 7.147570
iqr 10.088544
min 4.364334
max 23.082813
invalid 0.000000
##
*Workflow: svm.v5
mse
avg 10.650186
std 6.489002
med 7.406310
iqr 9.664462
min 4.304427
max 22.870107
invalid 0.000000
##
*Workflow: svm.v6
mse
avg 18.832056
std 11.033421
med 16.086489
iqr 15.678784
min 6.716207
max 40.813201
invalid 0.000000
##
*Workflow: svm.v7
mse
avg 16.530852
std 10.333326
med 13.753694
iqr 14.738903
min 6.144193
max 37.115054
invalid 0.000000
##
*Workflow: svm.v8
mse
avg 15.483001
std 10.027918
med 12.141047
iqr 13.340164
min 6.020978
max 35.789052
invalid 0.000000
##
*Workflow: svm.v9
mse
avg 14.988977
std 9.923290
med 11.289272
iqr 12.788812
min 6.101292
max 34.914317
invalid 0.000000
##
*Workflow: svm.v10
mse
avg 14.598540
std 9.777895
med 10.957707
iqr 12.188397
min 6.069622
max 33.883953
invalid 0.000000

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 141 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Exploring the Results

getWorkflow("svm.v1",res2)

Workflow Object:
Workflow ID :: svm.v1
Workflow Function :: standardWF
Parameter values:
learner.pars -> cost=1 gamma=0.1
learner -> svm

topPerformers(res2)

$Boston.medv
Workflow Estimate
mse svm.v5 10.65

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 142 / 167

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Visualizing the Results

plot(res2)

Boston.medv

●

10

20

30

40

m
se

svm
.v1

svm
.v2

svm
.v3

svm
.v4

svm
.v5

svm
.v6

svm
.v7

svm
.v8

svm
.v9

svm
.v10

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 143 / 167

The Infra-Structure of package performanceEstimation Estimation Tasks

Estimation Tasks

Objects of class EstimationTask describing the estimation task
Main parameters of the constructor

metrics - vector with names of performance metrics
method - object of class EstimationMethod describing the method
used to obtain the estimates

EstimationTask(metrics=c("F","rec","prec"),method=Bootstrap(nReps=100))

Task for estimating F,rec,prec using
100 repetitions of e0 Bootstrap experiment
Run with seed = 1234

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 144 / 167

The Infra-Structure of package performanceEstimation Estimation Tasks

Performance Metrics

Many classification and regression metrics are available
Check the help page of functions classificationMetrics and
regressionMetrics

User can provide a function that implements any other metric
she/he wishes to use

Parameters evaluator and evaluator.pars of the
EstimationTask constructor

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 145 / 167

The Infra-Structure of package performanceEstimation Exploring the Results

Comparing Different Algorithms on the Same Task

library(randomForest)
library(e1071)
res3 <- performanceEstimation(

PredTask(medv ~ ., Boston),
workflowVariants("standardWF",

learner=c("rpartXse","svm","randomForest")),
EstimationTask(metrics="mse",method=CV(nReps=2,nFolds=5)))

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 146 / 167

The Infra-Structure of package performanceEstimation Exploring the Results

Some auxiliary functions

rankWorkflows(res3,3)

$Boston.medv
$Boston.medv$mse
Workflow Estimate
1 randomForest 10.95412
2 svm 14.89183
3 rpartXse 18.92990

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 147 / 167

The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot(res3)

Boston.medv

●

10

20

30

m
se

rpartX
se

svm

random
F

orest

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 148 / 167

The Infra-Structure of package performanceEstimation Exploring the Results

An example using Holdout and a classification task

data(Glass,package='mlbench')
res4 <- performanceEstimation(

PredTask(Type ~ ., Glass),
workflowVariants(learner="svm", # You may omit "standardWF" !

learner.pars=list(cost=c(1,10),
gamma=c(0.1,0.01))),

EstimationTask(metrics="err",method=Holdout(nReps=5,hldSz=0.3)))

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 149 / 167

The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot(res4)

Glass.Type

●

●

●

0.3

0.4

0.5

err

svm
.v1

svm
.v2

svm
.v3

svm
.v4

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Hold Out Performance Estimation Results

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 150 / 167

The Infra-Structure of package performanceEstimation Exploring the Results

An example involving more than one task

data(Glass,package='mlbench')
data(iris)
res5 <- performanceEstimation(

c(PredTask(Type ~ ., Glass),PredTask(Species ~.,iris)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),
gamma=c(0.1,0.01))),

workflowVariants(learner="rpartXse",
learner.pars=list(se=c(0,0.5,1)),
predictor.pars=list(type="class"))),

EstimationTask(metrics="err",method=CV(nReps=3)))

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 151 / 167

The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot(res5)

Glass.Type iris.Species

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

● ●

0.0

0.2

0.4

0.6

err

svm
.v1

svm
.v2

svm
.v3

svm
.v4

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

svm
.v1

svm
.v2

svm
.v3

svm
.v4

rpartX
se.v1

rpartX
se.v2

rpartX
se.v3

Alternative Workflows

D
is

tr
ib

ut
io

n
of

 S
ta

tis
tic

s
S

co
re

s

Cross Validation Performance Estimation Results

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 152 / 167

The Infra-Structure of package performanceEstimation Exploring the Results

The Results (2)

topPerformers(res5)

$Glass.Type
Workflow Estimate
err svm.v1 0.294
##
$iris.Species
Workflow Estimate
err svm.v2 0.04

topPerformer(res5,"err","Glass.Type")

Workflow Object:
Workflow ID :: svm.v1
Workflow Function :: standardWF
Parameter values:
learner.pars -> cost=1 gamma=0.1
learner -> svm

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 153 / 167

Hands on Performance Estimation

Hands on Performance Estimation
the Algae data set

Load in the data set algae and answer the following questions:

1 Estimate the MSE of a regression tree for forecasting alga a1 using
10-fold Cross validation.

2 Repeat the previous exercise this time trying some variants of random
forests. Check what are the characteristics of the best performing
variant.

3 Compare the results in terms of mean absolute error of the default
variants of a regression tree, a linear regression model and a random
forest, in the task of predicting alga a3. Use 2 repetitions of a 5-fold
Cross Validation experiment.

4 Carry out an experiment designed to select what are the best models
for each of the seven harmful algae. Use 10-fold Cross Validation. For
illustrative purposes consider only the default variants of regression
trees, linear regression and random forests.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 154 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

Are the Observed Differences Statistically Significant?

Statistical Hypothesis Testing

Test if some result is unlikely to have occurred by chance
The null hypothesis: there is no difference among a set of
alternative workflows
This hypothesis is rejected if the result of the test has a p-value
less than a certain selected threshold (typically 0.01 or 0.05, i.e.
99% or 95% confidence)

There are many statistical tests that could be used
The work by Demsar (2006) includes what are the current
recommendations for different experimental setups

J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1–30, 2006.

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 155 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

Paired Comparisons on a Task

Wilcoxon Signed Rank Test

The null hypothesis: the difference between the two workflows is
zero
This hypothesis is rejected if the result of the test has a p-value
less than a certain selected threshold (typically 0.01 or 0.05, i.e.
99% or 95% confidence)

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 156 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

A Simple Example

library(performanceEstimation)
library(DMwR2) # because of rpartXse
data(Boston,package="MASS")
res <- performanceEstimation(

PredTask(medv ~ .,Boston),
workflowVariants(learner="rpartXse",learner.pars=list(se=c(0,0.5,1))),
EstimationTask(metrics="mse",method=CV(nReps=3,nFolds=10)))

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 157 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

A Simple Example

pres <- pairedComparisons(res)

Warning in pairedComparisons(res): With less 2 tasks the Friedman,
Nemenyi and Bonferroni-Dunn tests are not calculated.

presmseWilcoxonSignedRank.test

, , Boston.medv
##
MedScore DiffMedScores p.value
rpartXse.v1 18.18101 NA NA
rpartXse.v2 19.54956 -1.36855309 0.5837571
rpartXse.v3 18.21299 -0.03198033 0.5027610

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 158 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

Which ones are significant at some level?

signifDiffs(pres,p.limit=0.05)

$mse
mseWilcoxonSignedRank.test
mseWilcoxonSignedRank.test$Boston.medv
MedScore DiffMedScores p.value
18.18101 NA NA
##
##
mset.test
mset.test$Boston.medv
AvgScore DiffAvgScores p.value
19.65952 NA NA

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 159 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

Paired Comparisons on a Multiple Tasks

Demsar (2006) recommended procedure

Step 1: Friedman test
Null hypothesis: all workflows are equivalent and so their rankings
across the tasks are equal

If this hypothesis is rejected then we can move to the second step
Paired comparisons among all pairs of workflows

Nemenyi post-hoc test
Null hypothesis: there is no significant difference among the ranks of
a certain pair of workflows

Paired comparisons against a baseline
Bonferroni-Dunn post-hoc test
Null hypothesis: there is no significant difference among the ranks of
a certain workflow and the baseline

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 160 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

An Example with Several Tasks

library(performanceEstimation)
library(e1071)
library(randomForest)
tgts <- 12:18
tasks <- c()
for(t in tgts)

tasks <- c(tasks,
PredTask(as.formula(paste(colnames(algae)[t],'~ .')),

algae[,c(1:11,t)],
paste0("algaA",t-11),
copy=TRUE))

res.algae <- performanceEstimation(
tasks,
workflowVariants(learner=c("svm","lm","randomForest"),

pre="knnImp"),
EstimationTask("mae",method=CV())
)

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 161 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

An Example with Several Tasks (cont.)

Can we reject the hypothesis that the workflows have the same
ranking across all tasks?

pres <- pairedComparisons(res.algae)
presmaeF.test

$chi
[1] 12.28571
##
$FF
[1] 43
##
$critVal
[1] 0.3574087
##
$rejNull
[1] TRUE

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 162 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

An Example with Several Tasks (cont.)

Are there any significant differences among the workflows?

presmaeNemenyi.test

$critDif
[1] 1.252761
##
$rkDifs
svm lm randomForest
svm 0.0000000 1.857143 0.7142857
lm 1.8571429 0.000000 1.1428571
randomForest 0.7142857 1.142857 0.0000000
##
$signifDifs
svm lm randomForest
svm FALSE TRUE FALSE
lm TRUE FALSE FALSE
randomForest FALSE FALSE FALSE

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 163 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

CD diagrams for the Nemenyi test

Average rank differences that are not statistically significant are
connected

CDdiagram.Nemenyi(pres)

svm

randomForestlm

Critical Difference = 1.3

4 3 2 1
Average Rank

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 164 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

An Example with Several Tasks (cont.)

Suppose “lm” was our baseline system and we wanted to check if the
other alternatives were able to improve over it on these tasks

pres <- pairedComparisons(res.algae,baseline="lm")
presmaeBonferroniDunn.test

$critDif
[1] 1.19808
##
$baseline
[1] "lm"
##
$rkDifs
svm randomForest
1.857143 1.142857
##
$signifDifs
svm randomForest
TRUE FALSE

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 165 / 167

Hands on Performance Estimation Testing the Statistical Significance of Differences

CD diagrams for the Bonferroni Dunn test

Are the average ranks of the other systems significantly better than the
one of “lm”?

CDdiagram.BD(pres)

svm

randomForestlm

Critical Difference = 1.2; Baseline = lm

4 3 2 1
Average Rank

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 166 / 167

Hands on Statistical Significance

Hands on Statistical Significance
Using the algae data set from package DMwR2 answer the following
questions

1 For the 7 different algae, choose a reasonable set of SVM variants
and estimate their MSE error.

2 Check if these alternatives are significantly better than the SVM with
the default parameter settings

3 Present the results of the previous question visually

© L.Torgo (Dalhousie University) Predictive Analytics Mar, 2019 167 / 167

	Introduction
	Types of Prediction Problems
	Types of Models

	Regression Metrics
	Regression Problems

	Multiple Linear Regression
	Hands on Linear Regression
	Support Vector Machines (SVMs)
	The Basic Idea
	The Separating Hyperplane
	The Problem of Linear Separability
	Multiple Classes
	SVMs em R
	SVMs for Regression

	Hands On SMVs
	k-Nearest Neighbors
	Distance Functions
	k Nearest Neighbors Classification
	k Nearest Neighbors Regression

	Tree-based Models
	Building a tree-based model
	Selecting the best splits
	When to Stop Growing the Trees

	Hands on Tree-based Models
	Model Ensembles and Random Forests
	Motivation
	Random Forests

	Hands on Random Forests
	Performance Estimation
	Resubstituition estimates
	Goals of Performance Estimation

	The Holdout Method
	Cross Validation
	Bootstrap
	The Infra-Structure of package performanceEstimation
	Predictive Tasks
	Workflows and Workflow Variants
	Estimation Tasks
	Exploring the Results

	Hands on Performance Estimation
	Testing the Statistical Significance of Differences

	Hands on Statistical Significance

