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Hands on Linear Discriminants

Hands on LDAs - the Vehicle data set
The data set Vehicle is available in package mlbench. Load it and
explore its help page to grab a minimal understanding of the data and then
answer the following questions:

1 Obtain a random split of the data into two sub-sets using the
proportion 80%-20%. solution

2 Obtain a linear discriminant using the larger set. solution

3 Obtain the predictions of the obtained model on the smaller set. solution

4 Obtain a confusion matrix of the predictions and calculate the
respective accuracy. solution
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Hands on Linear Discriminants

Solutions to Exercise 1

Obtain a random split of the data into two sub-sets using the
proportion 80%-20%. solution

data(Vehicle,package="mlbench")
idx.tr <- sample(1:nrow(Vehicle),as.integer(0.8*nrow(Vehicle)))
tr <- Vehicle[idx.tr,]
ts <- Vehicle[-idx.tr,]

Go Back
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Hands on Linear Discriminants

Solutions to Exercise 2

Obtain a linear discriminant using the larger set.

library(MASS)
model <- lda(Class ~ .,tr)

Go Back
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Hands on Linear Discriminants

Solutions to Exercise 3

Obtain the predictions of the obtained model on the smaller set.

preds <- predict(model,ts)

Go Back
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Hands on Linear Discriminants

Solutions to Exercise 4

Obtain a confusion matrix of the predictions and calculate the
respective accuracy.

cm <- table(preds$class,ts$Class)
acc <- sum(diag(cm))/sum(cm)
cat("The accuracy is ",round(acc*100,2),"%.\n")

## The accuracy is 30 %.
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Hands On SMVs

Hands on SVMs

The file Wine.Rdata contains 2 data frames with data about the
quality of “green” wines: i) redWine and ii) whiteWine. Each of
these data sets has information on a series of wine tasting sessions to
“green” wines (both red and white). For each wine sample several
physico-chemical properties of the wine sample together with a quality
score assigned by a committee of wine experts (variable quality).

1 Obtain and SVM for forecasting the quality of the red variant of
“green” wines solution

2 Split the data set in two parts: one with 70% of the samples and
the other with the remaining 30%. Obtain an SVM with the first
part and apply it to the second. What was the resulting mean
absolute error? solution

3 Using the round() function, round the predictions obtained in the
previous question to the nearest integer. Calculate the error rate
of the resulting integers when compared to the true values solution
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Hands On SMVs

Solutions to Exercise 1

Obtain and SVM for forecasting the quality of the red variant of
“green” wines

load("Wine.Rdata")
library(e1071)

s <- svm(quality ~ .,redWine)

Go back
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Hands On SMVs

Solutions to Exercise 2

Split the data set in two parts: one with 70% of the samples and
the other with the remaining 30%. Obtain an SVM with the first
part and apply it to the second. What was the resulting mean
absolute error?

xs <- sample(1:nrow(redWine),
as.integer(0.7*nrow(redWine)))

train <- redWine[xs,]
test <- redWine[-xs,]
s2 <- svm(quality ~.,train)
p2 <- predict(s2,test)
mae <- mean(abs(test$quality - p2))
mae

## [1] 0.4358064

Go back
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Hands On SMVs

Solutions to Exercise 3

Using the round() function, round the predictions obtained in the
previous question to the nearest integer. Calculate the error rate
of the resulting integers when compared to the true values

pi2 <- round(p2)
mc <- table(pi2,test$quality)
mc

##
## pi2 3 4 5 6 7 8
## 5 2 9 165 60 1 0
## 6 0 4 41 114 36 4
## 7 0 0 2 18 23 1
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Hands On SMVs

Solutions to Exercise 3 (cont.)

pi3 <- factor(pi2,levels=levels(factor(test$quality)))
mc2 <- table(pi3,test$quality)
mc2

##
## pi3 3 4 5 6 7 8
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 2 9 165 60 1 0
## 6 0 4 41 114 36 4
## 7 0 0 2 18 23 1
## 8 0 0 0 0 0 0

err <- 1-sum(diag(mc2))/sum(mc2)
err

## [1] 0.3708333

Is this as bad as it looks like?
Go back
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Hands on Linear Regression

Hands on Linear Regression - the Boston data set
The data set Boston is available in package MASS. Load it and explore
its help page to grab a minimal understanding of the data and then answer
the following questions:

1 Obtain a random split of the data into two sub-sets using the
proportion 70%-30%. solution

2 Obtain a multiple linear regression model using the larger set. solution

3 Check the diagnostic information provided for the model. solution

4 Obtain the predictions of the obtained model on the smaller set. solution

5 Obtain the mean squared error of these predictions and also an error
scatter plot. solution
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Hands on Linear Regression

Solutions to Exercise 1

Obtain a random split of the data into two sub-sets using the
proportion 70%-30%. solution

data(Boston,package="MASS")
idx.tr <- sample(1:nrow(Boston),as.integer(0.7*nrow(Boston)))
tr <- Boston[idx.tr,]
ts <- Boston[-idx.tr,]

Go Back
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Hands on Linear Regression

Solutions to Exercise 2

Obtain a multiple linear regression model using the larger set.

model <- lm(medv ~ ., tr)

Go Back
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Hands on Linear Regression

Solutions to Exercise 3

Check the diagnostic information provided for the model.
summary(model)

##
## Call:
## lm(formula = medv ~ ., data = tr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.776 -2.371 -0.664 1.906 25.349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.53e+01 5.93e+00 4.27 2.6e-05 ***
## crim -6.74e-02 3.91e-02 -1.73 0.08534 .
## zn 4.96e-02 1.50e-02 3.29 0.00109 **
## indus 5.14e-04 6.43e-02 0.01 0.99364
## chas 3.28e+00 9.18e-01 3.57 0.00041 ***
## nox -1.09e+01 4.07e+00 -2.67 0.00793 **
## rm 4.71e+00 4.96e-01 9.50 < 2e-16 ***
## age -3.91e-02 1.45e-02 -2.69 0.00749 **
## dis -1.60e+00 2.22e-01 -7.18 4.4e-12 ***
## rad 2.38e-01 7.48e-02 3.18 0.00162 **
## tax -1.34e-02 4.15e-03 -3.22 0.00140 **
## ptratio -8.23e-01 1.40e-01 -5.89 9.4e-09 ***
## black 1.39e-02 3.19e-03 4.34 1.9e-05 ***
## lstat -3.93e-01 5.46e-02 -7.19 4.1e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.25 on 340 degrees of freedom
## Multiple R-squared: 0.783,Adjusted R-squared: 0.775
## F-statistic: 94.5 on 13 and 340 DF, p-value: <2e-16

Go Back
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Hands on Linear Regression

Solutions to Exercise 4

Obtain the predictions of the obtained model on the smaller set.

preds <- predict(model,ts)

Go Back
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Hands on Linear Regression

Solutions to Exercise 5

Obtain the mean squared error of these predictions and also an
error scatter plot.

mse <- mean((preds-ts$medv)^2)
cat("The mean squared error is ",round(mse*100,2),"\n")

## The mean squared error is 6203
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Hands on Linear Regression

Solutions to Exercise 5 (cont.)

Obtain the mean squared error of these predictions and also an
error scatter plot.

library(ggplot2)
ggplot(data.frame(Predictions=preds,Trues=ts$medv),aes(x=Predictions,y=Trues)) +

geom_point() + geom_smooth(method='loess') +
geom_abline(slope=1, intercept=0,color="red") + ggtitle("The Errors Scatter Plot")
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Hands on Tree-based Models

Hands on Tree-based Models - the Wines data
File Wine.Rdata contains two data frames with data on green wine
quality: (i) redWine and (ii) whiteWine. Each of these data sets contains
a series of tests with green wines (red and white). For each of these tests
the values of several physicochemical variables together with a quality
score assigned by wine experts (column quality).

1 Build a regression tree for the white wines data set solution

2 Obtain a graph of the obtained regression tree solution

3 Apply the tree to the data used to obtain the model and calculate the
mean squared error of the predictions solution

4 Split the data set in two parts: 70% of the tests and the remaining
30%. Using the larger part to obtain a regression tree and apply it to
the other part. Calculate again the mean squared error. Compare with
the previous scores and comment. solution
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Hands on Tree-based Models

Solutions Exercise 1

Build a regression tree for the white wines data set

load("Wine.Rdata")
library(DMwR2)

ab <- rpartXse(quality ~ .,whiteWine)

Go back
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Hands on Tree-based Models

Solutions Exercise 2

Obtain a graph of the obtained regression tree

library(rpart.plot)
prp(ab,type=4,extra=101)
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Go back
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Hands on Tree-based Models

Solutions Exercise 3

Apply the tree to the data used to obtain the model and calculate
the mean squared error of the predictions

prevs <- predict(ab,whiteWine)
mse <- mean((whiteWine$quality - prevs)^2)
mse

## [1] 0.5382

Go back
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Hands on Tree-based Models

Solutions Exercise 4

Split the data set in two parts: 70% of the tests and the remaining
30%. Using the larger part to obtain a regression tree and apply it
to the other part. Calculate again the mean squared error.
Compare with the previous scores and comment.

xs <- sample(1:nrow(whiteWine),as.integer(0.7*nrow(whiteWine)))
train <- whiteWine[xs,]
test <- whiteWine[-xs,]
ab2 <- rpartXse(quality ~.,train)
prevs2 <- predict(ab2,test)
mse2 <- mean((test$quality - prevs2)^2)
c(before=mse,now=mse2)

## before now
## 0.5382229 0.6037395

Go back
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Hands on Random Forests

Hands on Linear Regression and Random Forests
the Algae data set

Load in the data set algae from package DMwR2 and answer the
following questions:

1 How would you obtain a random forest to forecast the value of
alga a4 solution

2 Repeat the previous exercise but now using a linear regression
model. Try to simplify the model using the step() function. solution

3 Obtain the predictions of the two previous models for the data
used to obtain them. Draw a scatterplot comparing these
predictions solution

4 The data frame named test.algae contains a test set with
some extra 140 water samples for which we want predictions. Use
the previous two models to obtain predictions for a4 on these new
samples. Check what happened to the test cases with NA’s. Fill-in
the NA’s on the test set and repeat the experiment. solution
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Hands on Random Forests

Solutions to Exercise 1

How would you obtain a random forest to forecast the value of
alga a4

library(randomForest)
library(DMwR2)
data(algae)
algae <- algae[-c(62,199),]
algae <- knnImputation(algae)
rf.a4 <- randomForest(a4 ~.,algae[,c(1:11,15)])

Go back
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Hands on Random Forests

Solutions to Exercise 2

Repeat the previous exercise but now using a linear regression
model. Try to simplify the model using the step() function.

lm.a4 <- lm(a4 ~ .,algae[,c(1:11,15)])

lm.a4 <- step(lm.a4)

lm.a4

##
## Call:
## lm(formula = a4 ~ mxPH + mnO2 + NO3 + NH4 + PO4, data = algae[,
## c(1:11, 15)])
##
## Coefficients:
## (Intercept) mxPH mnO2 NO3 NH4
## 25.155775 -2.564539 -0.307999 -0.466876 0.000932
## PO4
## 0.009314

Go back
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Hands on Random Forests

Solutions to Exercise 3

Obtain the predictions of the two previous models for the data
used to obtain them. Draw a scatterplot comparing these
predictions

psrf <- predict(rf.a4,algae)
pslm <- predict(lm.a4,algae)
plot(psrf,pslm,xlab="Random forest predictions",ylab="lm predictions")
abline(0,1,col="green")
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Hands on Random Forests

Solutions to Exercise 4

The data frame named test.algae contains a test set with
some extra 140 water samples for which we want predictions. Use
the previous two models to obtain predictions for a4 on these new
samples.

prevs.rf <- predict(rf.a4,test.algae)
prevs.lm <- predict(lm.a4,test.algae)
summary(prevs.rf)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.09421 0.83539 1.56449 2.12729 2.45076 21.66409 18

summary(prevs.lm) # notice the difference in the number of NA's. Why?

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -2.8201 0.5774 1.5603 2.2330 3.3549 28.6980 6
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Hands on Random Forests

Solutions to Exercise 4 (cont.)

test.algae <- knnImputation(test.algae,distData=algae[,1:11])
prevs.rf <- predict(rf.a4,test.algae)
prevs.lm <- predict(lm.a4,test.algae)
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