Predictive Analytics

L. Torgo

ltorgo@knoyda.com KNOYDA, Know Your Data!

Jul, 2019

Introduction

What is Prediction?

Definition

- Prediction (forecasting) is the ability to anticipate the future.
- Prediction is possible if we assume that there is some regularity in what we observe, i.e. if the observed events are not random.

Example

Medical Diagnosis: given an historical record containing the symptoms observed in several patients and the respective diagnosis, try to forecast the correct diagnosis for a new patient for which we know the symptoms.

Prediction Models

- Are obtained on the basis of the assumption that there is an unknown mechanism that maps the characteristics of the observations into conclusions/diagnoses. The goal of prediction models is to discover this mechanism.
 - Going back to the medical diagnosis what we want is to know how symptoms influence the diagnosis.
- Have access to a data set with "examples" of this mapping, e.g. this patient had symptoms x, y, z and the conclusion was that he had disease p
- Try to obtain, using the available data, an approximation of the unknown function that maps the observation descriptors into the conclusions, i.e. *Prediction* = f(*Descriptors*)

"Entities" involved in Predictive Modelling

 Descriptors of the observation: set of variables that describe the properties (features, attributes) of the cases in the data set

```
Target variable:
```

what we want to predict/conclude regards the observations

- The goal is to obtain an approximation of the function
 Y = f(X₁, X₂, ···, X_p), where Y is the target variable and
 X₁, X₂, ···, X_p the variables describing the characteristics of the cases.
- It is assumed that Y is a variable whose values depend on the values of the variables which describe the cases. We just do not know how!
- The goal of the modelling techniques is thus to obtain a good approximation of the unknown function f()

How are the Models Used?

Predictive models have two main uses:

1 Prediction

use the obtained models to make predictions regards the target variable of new cases given their descriptors.

2 Comprehensibility

use the models to better understand which are the factors that influence the conclusions.

					ŢΡ		
© L.Torgo (KNOYDA)	Predictive	Analytics		Jul, 2019	5 / 119		
	Introduction	Types of Prediction F	Problems				
Types of Prediction Problems							

- Depending on the type of the target variable (Y) we may be facing two different types of prediction models:
 - Classification Problems the target variable Y is nominal e.g. medical diagnosis - given the symptoms of a patient try to predict the diagnosis
 - 2 Regression Problems the target variable Y is numeric e.g. forecast the market value of a certain asset given its characteristics

Examples of Prediction Problems

- Classification
 - A marketing department of a bank stores information on previous telephone contacts with its costumers for selling new products.
 - For each client a series of personal information is stored together with the results of the last contact (if it bought or not the product).
 - The goal of this application is to obtain a predictive model that can forecast whether a client will buy or not a new product before the phone contact takes place.

Case ID	age	job	marital	education	default	balance	housing	loan	У
1	30	unemployed	married	primary	no	1787	no	no	no
2	33	services	married	secondary	no	4789	yes	yes	no
3	35	management	single	tertiary	no	1350	yes	no	no
4	30	management	married	tertiary	no	1476	yes	yes	no
5	59	blue-collar	married	secondary	no	0	yes	no	no
6	35	management	single	tertiary	no	747	no	no	no

Regression

On the previous car insurance data try to forecast the normalized losses of a car based on its characteristics.

© L.Torgo (KNOYDA)	Predictive Analytics			Jul, 2019	7 / 119		
	Introduction	Types of Models					

Types of Prediction Models

- There are many techniques that can be used to obtain prediction models based on a data set.
- Independently of the pros and cons of each alternative, all have some key characteristics:
 - They assume a certain functional form for the unknown function f()
 Given this assumed form the methods try to obtain the best
 - possible model based on:
 - 1 the given data set
 - 2 a certain preference criterion that allows comparing the different alternative model variants

Functional Forms of the Models

There are many variants. Examples include:

- Mathematical formulae e.g. linear discriminants
- Logical approaches e.g. classification or regression trees, rules
- Probabilistic approaches e.g. naive Bayes
- Other approaches e.g. neural networks, SVMs, etc.
- Sets of models (ensembles) e.g. random forests, adaBoost
- These different approaches entail different compromises in terms of:
 - Assumptions on the unknown form of dependency between the target and the predictors
 - Computational complexity of the search problem
 - Flexibility in terms of being able to approximate different types of functions
 - Interpretability of the resulting model
 - etc.

			<u> </u>	Ч,
© L.Torgo (KNOYDA)	Predictive Analytics		Jul, 2019	9/119
	Introduction	Types of Models		

Which Models or Model Variants to Use?

- This question is often known as the Model Selection problem
- The answer depends on the goals of the final user i.e. the Preference Biases of the user
- Establishing which are the preference criteria for a given prediction problem allows to compare and select different models or variants of the same model

- ----

Evaluation Metrics

Evaluation Metrics Classification Problems

Classification Problems

The setting

- Given data set $\{\langle \mathbf{x}_i, y_i \rangle\}_{i=1}^N$, where \mathbf{x}_i is a feature vector $\langle x_1, x_2, \cdots, x_p \rangle$ and $\mathbf{y}_i \in \mathcal{Y}$ is the value of the nominal variable \mathbf{Y}
- There is an unknown function $Y = f(\mathbf{x})$

The approach

- Assume a functional form $h_{\theta}(\mathbf{x})$ for the unknown function f(), where θ are a set of parameters
- Assume a preference criterion over the space of possible parameterizations of h()
- Search for the "optimal" h() according to the criterion and the data set

- Given a set of test cases *N*_{test} we can obtain the predictions for these cases using some classification model.
- The *Error Rate* $(L_{0/1})$ measures the proportion of these predictions that are incorrect.
- In order to calculate the error rate we need to obtain the information on the true class values of the N_{test} cases.

 Given a test set for which we know the true class the error rate can be calculated as follows,

$$L_{0/1} = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} I(\hat{h_{\theta}}(\mathbf{x}_i), y_i)$$

where I() is an indicator function such that I(x, y) = 0 if x = y and 1 otherwise; and $\hat{h}_{\theta}(\mathbf{x}_i)$ is the prediction of the model being evaluated for the test case *i* that has as true class the value y_i .

Confusion Matrices

- A square nc × nc matrix, where nc is the number of class values of the problem
- The matrix contains the number of times each pair (ObservedClass,PredictedClass) occurred when testing a classification model on a set of cases

			Pred.	
		<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃
v	<i>C</i> ₁	<i>n</i> _{c1,c1}	<i>n_{c1,c2}</i>	<i>n_{c1,c3}</i>
ġĊ	<i>C</i> ₂	п _{с2,с1}	n_{c_2,c_2}	n_{c_2,c_3}
U	<i>C</i> 3	п _{сз,с1}	n_{c_3,c_2}	<i>n_c</i> ₃ , <i>c</i> ₃

The error rate can be calculated from the information on this taple

© L.Torgo (KNOYDA)	Predictive Analytics		Jul, 2019	9 15/119
	Evaluation Metrics	Classification Proble	ms	
An Example in D				

```
An Example in R
```

```
trueVals <- c("cl","cl","c2","c1","c3","c1","c2","c3","c2","c3")
preds <- c("cl","c2","c1","c3","c3","c1","c1","c3","c1","c2")
confMatrix <- table(trueVals,preds)
confMatrix

## preds
## trueVals cl c2 c3
## c1 2 1 1
## c2 3 0 0
## c3 0 1 2

errorRate <- 1-sum(diag(confMatrix))/sum(confMatrix)
errorRate
## [1] 0.6</pre>
```

Cost-Sensitive Applications

- In the error rate one assumes that all errors and correct predictions have the same value
- This may not be adequate for some applications

Coot/boxofit Matricoo					Pred.	
Cost/benefit Matrices				<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3
Table where each entry specifies the	-	<i>i</i>	<i>C</i> ₁	<i>B</i> _{1,1}	$C_{1,2}$	$C_{1,3}$
cost (negative benefit) or benefit of) QC	<i>C</i> ₂	$C_{2,1}$	$B_{2,2}$	$C_{2,3}$
each type of prediction	_	0	<i>C</i> 3	<i>C</i> _{3,1}	<i>C</i> _{3,2}	<i>B</i> _{3,3}

Models are then evaluated by the total balance of their predictions, i.e. the sum of the benefits minus the costs.

				<u> </u>	ΞÞ
© L.1	Forgo (KNOYDA)	Predictive	e Analytics	Jul, 2019	17 / 119

Classification Problems

Evaluation Metrics

An Example in R

```
trueVals <- c("c1", "c1", "c2", "c1", "c3", "c1", "c2", "c3", "c2", "c3")
preds <- c("c1", "c2", "c1", "c3", "c3", "c1", "c1", "c3", "c1", "c2")
confMatrix <- table(trueVals,preds)</pre>
costMatrix <- matrix (c(10,-2,-4,-2,30,-3,-5,-6,12), ncol=3)
colnames(costMatrix) <- c("predC1", "predC2", "predC3")</pre>
rownames(costMatrix) <- c("obsC1", "obsC2", "obsC3")</pre>
costMatrix
## predC1 predC2 predC3
## obsC1 10 -2 -5
## obsC2 -2 30 -6
## obsC3 -4
                     -3
                              12
utilityPreds <- sum(confMatrix*costMatrix)</pre>
utilityPreds
## [1] 28
                                                                        ר<u>ן ו</u>
```

E.g. predicting outliers

- Problems with two classes
- One of the classes is much less frequent and it is also the most relevant

		Preds.				
		Pos	Neg			
JS.	Pos	True Positives (TP)	False Negatives (FN))			
ð	Neg	False Positives (FP)	True Negatives (TN)			

				Ĺ	ΠP.
© L.Torgo (KNOYDA)	Predictive	Analytics		Jul, 2019	19 / 119
	Evaluation Metrics	Classification Proble	ms		
Precision and Re	call				

 Precision - proportion of the signals (events) of the model that are correct

$$Prec = rac{TP}{TP + FP}$$

 Recall - proportion of the real events that are captured by the model

$$\textit{Rec} = rac{\textit{TP}}{\textit{TP} + \textit{FN}}$$

Preds.

Ν

FN

ΤN

Ρ

TP

FP

Ρ

Ν

SdC

Precision and Recall Examples

The F-Measure

Combining Precision and Recall into a single measure

- Sometimes it is useful to have a single measure e.g. optimization within a search procedure
- Maximizing one of them is easy at the cost of the other (it is easy to have 100% recall - always predict "P").
- What is difficult is to have both of them with high values
- The F-measure is a statistic that is based on the values of precision and recall and allows establishing a trade-off between the two using a user-defined parameter (β),

$$F_{eta} = rac{(eta^2+1)\cdot \textit{Prec}\cdot\textit{Rec}}{eta^2\cdot\textit{Prec}+\textit{Rec}}$$

where β controls the relative importance of *Prec* and *Rec*. If $\beta = 1$ then *F* is the harmonic mean between *Prec* and *Rec*; When $\beta \rightarrow 0$ the weight of *Rec* decreases. When $\beta \rightarrow \infty$ the weight of *Prec* decreases.

Regression Problems

The setting

- Given data set $\{\langle \mathbf{x}_i, y_i \rangle\}_{i=1}^N$, where \mathbf{x}_i is a feature vector $\langle x_1, x_2, \cdots, x_p \rangle$ and $y_i \in \Re$ is the value of the numeric variable \mathbf{Y}
- There is an unknown function $Y = f(\mathbf{x})$

The approach

- Assume a functional form $h_{\theta}(\mathbf{x})$ for the unknown function f(), where θ are a set of parameters
- Assume a preference criterion over the space of possible parameterizations of h()
- Search for the "optimal" h() according to the criterion and the data set
 © L.Torgo (KNOYDA)
 Predictive Analytics
 Jul, 2019
 23 / 119

- Given a set of test cases N_{test} we can obtain the predictions for these cases using some regression model.
- The Mean Squared Error (MSE) measures the average squared deviation between the predictions and the true values.
- In order to calculate the value of MSE we need to have both the predicitons and the true values of the N_{test} cases.

Measuring Regression Error

Mean Squared Error (cont.)

■ If we have such information the *MSE* can be calculated as follows,

$$MSE = rac{1}{N_{test}}\sum_{i=1}^{N_{test}}(\hat{y}_i - y_i)^2$$

where \hat{y}_i is the prediction of the model under evaluation for the case *i* and y_i the respective true target variable value.

■ Note that the *MSE* is measured in a unit that is squared of the original variable scale. Because of the this is sometimes common to use the *Root Mean Squared Error* (*RMSE*), defined as $RMSE = \sqrt{MSE}$

- The Mean Absolute Error (MAE) measures the average absolute deviation between the predictions and the true values.
- The value of the *MAE* can be calculated as follows,

$$MAE = rac{1}{N_{test}}\sum_{i=1}^{N_{test}} |\hat{y}_i - y_i|$$

where \hat{y}_i is the prediction of the model under evaluation for the case *i* and y_i the respective true target variable value.

Note that the MAE is measured in the same unit as the original variable scale.

LTP

```
Jul, 2019 26 / 119
```

Relative Error Metrics

- Relative error metrics are unit less which means that their scores can be compared across different domains.
- They are calculated by comparing the scores of the model under evaluation against the scores of some baseline model.
- The relative score is expected to be a value between 0 and 1, with values nearer (or even above) 1 representing performances as bad as the baseline model, which is usually chosen as something too naive.

- The most common baseline model is the constant model consisting of predicting for all test cases the average target variable value calculated in the training data.
- The Normalized Mean Squared Error (NMSE) is given by,

$$NMSE = \frac{\sum_{i=1}^{N_{test}} (\hat{y}_i - y_i)^2}{\sum_{i=1}^{N_{test}} (\bar{y} - y_i)^2}$$

■ The Normalized Mean Absolute Error (NMAE) is given by,

$$\textit{NMAE} = rac{\sum_{i=1}^{N_{test}} |\hat{y}_i - y_i|}{\sum_{i=1}^{N_{test}} |ar{y} - y_i|}$$

Relative Error Metrics (cont.)

■ The Mean Average Percentage Error (MAPE) is given by,

$$MAPE = rac{1}{N_{test}} \sum_{i=1}^{N_{test}} rac{|\hat{y}_i - y_i|}{y_i}$$

 The Symmetric Mean Absolute Percentage Error (sMAPE) is given by,

$$sMAPE = rac{1}{n}\sum_{i=1}^{N_{test}}rac{|\hat{y}_i - y_i|}{|\hat{y}_i| + |y_i|}$$

The *Correlation* between the predictions and the true values $(\rho_{\hat{y},y})$ is given by,

$$\rho_{\hat{y},y} = \frac{\sum_{i=1}^{N_{test}} (\hat{y}_i - \bar{\hat{y}}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N_{test}} (\hat{y}_i - \bar{\hat{y}})^2 \sum_{i=1}^{N_{test}} (y_i - \bar{y})^2}}$$

Evaluation Metrics Regression Problems

An Example in R

```
trueVals <- c(10.2,-3,5.4,3,-43,21,
                                                       nmae <- sum(abs(trueVals-preds)) /</pre>
               32.4,10.4,-65,23)
                                                                sum(abs(trueVals-mean(trueVals)))
preds <- c(13.1,-6,0.4,-1.3,-30,1.6,
                                                       nmae
            3.9,16.2,-6,20.4)
mse <- mean((trueVals-preds)^2)</pre>
                                                       ## [1] 0.65633
mse
                                                       mape <- mean(abs(trueVals-preds)/trueVals)</pre>
## [1] 493.991
                                                       mape
rmse <- sqrt(mse)</pre>
                                                       ## [1] 0.290773
rmse
                                                       smape <- 1/length(preds) * sum(abs(preds - trueVals) /</pre>
## [1] 22.22591
                                                                                  (abs(preds)+abs(trueVals)))
                                                       smape
mae <- mean(abs(trueVals-preds))</pre>
mae
                                                       ## [1] 0.5250418
## [1] 14.35
                                                       corr <- cor(trueVals, preds)</pre>
                                                       corr
nmse <- sum((trueVals-preds)^2) /</pre>
        sum((trueVals-mean(trueVals))^2)
                                                       ## [1] 0.6745381
nmse
                                                                                                     . . .
       © L.Torgo (KNOYDA)
                                              Predictive Analytics
                                                                                          Jul, 2019
                                                                                                      31 / 119
```

Linear Discriminant

The Linear Discriminant

The Idea

Search for linear combinations of the variables that better separate between the objects of the classes

The formalism for two classes - Fisher linear discriminant

Let \hat{C} the pooled sample covariance matrix

$$\hat{C} = \frac{1}{n_1 + n_2} \left(n_1 \hat{C}_1 + n_2 \hat{C}_2 \right)$$

where n_i is the number of training cases per class and \hat{C}_i are the $p \times p$ sample covariance matrices for each class. The sample covariance between two variables is given by

$$Cov(X,Y) = \frac{1}{n}\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})$$

© L.Torgo (KNOYDA)

Predictive Analytics

Linear Discriminant

The Linear Discriminant (cont.)

The formalism (cont.)

The following is the score of the separation provided by a p-dimensional vector w,

$$S_{\mathbf{w}} = \frac{\mathbf{w}^T \hat{\mu_1} - \mathbf{w}^T \hat{\mu_2}}{\mathbf{w}^T \hat{C} \mathbf{w}}$$

Given this score the goal is to find the vector w that maximizes it. There is a solution for this maximization problem given by,

$$\hat{\mathbf{w}}_{\textit{lda}} = \hat{C}^{-1}(\hat{\mu_1} - \hat{\mu_2})$$

Canonical discriminant functions extend the idea for more than two classes

D

33 / 119

Jul, 2019

Canonical Discriminant Functions

Example

```
library(MASS)
data(iris)
lda(Species ~ ., iris)
## Call:
## lda(Species ~ ., data = iris)
##
## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3333 0.3333 0.3333
##
## Group means:

        ##
        Sepal.Length
        Sepal.Width
        Petal.Length
        Petal.Width

        ##
        setosa
        5.006
        3.428
        1.462
        0.246

        ##
        versicolor
        5.936
        2.770
        4.260
        1.326

        ##
        virginica
        6.588
        2.974
        5.552
        2.026

##
## Coefficients of linear discriminants:
## LD1 LD2
## Sepal.Length 0.8294 0.0241
## Sepal.Hength 0.0294 0.0241
## Sepal.Width 1.5345 2.1645
## Petal.Length -2.2012 -0.9319
## Petal.Width -2.8105 2.8392
##
## Proportion of trace:
## LD1 LD2
## 0.9912 0.0088
                                                                                                                                                                                                      Γi⊃
        © L.Torgo (KNOYDA)
                                                                                      Predictive Analytics
                                                                                                                                                                               Jul, 2019
                                                                                                                                                                                                       35 / 119
```

····**·**

Linear Discriminant

Using LDA for prediction in R

```
sp <- sample(1:150,100)</pre>
tr <- iris[sp,]</pre>
ts <- iris[-sp,]</pre>
l <- lda (Species ~ ., tr)</pre>
preds <- predict(l,ts)</pre>
(mtrx <- table(preds$class,ts$Species))</pre>
##
##
               setosa versicolor virginica
                 16 0
##
   setosa
                                    0
                               18
##
                   0
                                           0
   versicolor
##
    virginica
                     0
                                1
                                          15
(err <- 1-sum(diag(mtrx))/sum(mtrx))
```

[1] 0.02

I TP

Hands on LDAs - the Vehicle data set

The data set Vehicle is available in package **mlbench**. Load it and explore its help page to grab a minimal understanding of the data and then answer the following questions:

- 1 Obtain a random split of the data into two sub-sets using the proportion 80%-20%.
- 2 Obtain a linear discriminant using the larger set.
- 3 Obtain the predictions of the obtained model on the smaller set.
- 4 Obtain a confusion matrix of the predictions and calculate the respective accuracy.

		L	Ρ
© L.Torgo (KNOYDA)	Predictive Analytics	Jul, 2019	37 / 119

Multiple Linear Regression

Multiple Linear Regression

- Multiple linear regression is probably the most used statistical method
- It is one of the many possible approaches to the multiple regression problem where given a training data set
 D = { (x_i, y_i) }ⁿ_{i=1} we want to obtain an approximation of the unknown regression function f() that maps the predictors values into a target continuous variable value.
- In matrix notation we have $\mathbf{D} = \mathbf{X} | \mathbf{Y}$, where \mathbf{X} is a matrix $n \times p$, and \mathbf{Y} is a matrix $n \times 1$.

- A regression model r_D(.) can be seen as a function that transforms a vector of values of the predictors, x, into a real number, Y. This model is an approximation of the unknown f() function.
- Regression models assume the following relationship, $y_i = r(\beta, \mathbf{x}_i) + \epsilon_i$, where $r(\beta, \mathbf{x}_i)$ is a regression model with parameters β and ϵ_i are observation errors.
- The goal of a learning method is to obtain the model parameters β that minimize a certain preference criterion.

Multiple Linear Regression (cont.)

In the case of multiple linear regression the functional form that is assumed is the following:

 $Y = \beta_0 + \beta_1 \cdot X_1 + \dots + \beta_p \cdot X_p$

The goal is to find the vector of parameters β that minimizes the sum of the squared errors

 $\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 \cdot X_1 + \dots + \beta_p \cdot X_p))^2$

- Well-known and over-studied topic with many variants of this simple methodology (e.g. Drapper and Smith, 1981)
- Simple and effective approach when the "linearity" assumption is adequate to the data.
- Form of the model is intuitive a set of additive effects of each variable towards the prediction
- Computationally very efficient
- Too strong assumptions on the shape of the unknown regression function

Drapper and Smith (1981): Applied Regression Analysis, 2nd edition. Wiley Series in Probability and Mathematical Statistics.

ITP

Obtaining Multiple Linear Regression Models in R

```
library(DMwR2)
data(algae)
algae <- algae[-c(62,199),] # the 2 incomplete samples
clean.algae <- knnImputation(algae) # lm() does not handle NAs!
la1 <- lm(a1 ~ ., clean.algae[,1:12])</pre>
la1
##
## Call:
##
  lm(formula = a1 ~ ., data = clean.algae[, 1:12])
##
## Coefficients:
##
  (Intercept) seasonspring seasonsummer seasonwinter
                                                          sizemedium
##
     42.942055
                 3.726978 0.747597 3.692955
                                                             3.263728
##
     sizesmall
                   speedlow speedmedium
                                                  mxPH
                                                                 mnO2
                                               -3.589118
                   3.922084 0.246764
##
     9.682140
                                                            1.052636
##
           Cl
                        NO3
                                  NH4
                                                  oPO4
                                                                  PO4
                                              -0.005435
##
     -0.040172
                   -1.511235 0.001634
                                                            -0.052241
##
          Chla
##
     -0.088022
                                                              __.:::
    © L.Torgo (KNOYDA)
                             Predictive Analytics
                                                          Jul, 2019
                                                                  43 / 119
```

Multiple Linear Regression

Obtaining Multiple Linear Regression Models in R (cont.)

```
summary(la1)
##
## Call:
## lm(formula = a1 ~ ., data = clean.algae[, 1:12])
##
## Residuals:
## Min 10 Median 30 Max
## -37.679 -11.893 -2.567 7.410 62.190
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.942055 24.010879 1.788 0.07537
## seasonspring 3.726978 4.137741 0.901 0.36892
## seasonsummer 0.747597 4.020711 0.186 0.85270
## seasonwinter 3.692955 3.865391 0.955 0.34065
## sizemedium 3.263728 3.802051 0.858 0.39179
## sizesmall 9.682140
## speedlow 3.922084
                                  4.179971
4.706315
                                                2.316 0.02166 *
0.833 0.40573
## speedmedium 0.246764 3.241874 0.076 0.93941

        ## mxPH
        -3.589118
        2.703528
        -1.328
        0.18598

        ## mnO2
        1.052636
        0.705018
        1.493
        0.13715

        ## C1
        -0.040172
        0.033661
        -1.193
        0.23426

                    -0.040172
## Cl
                                    0.033661
                                                 -1.193
                                  0.551339 -2.741 0.00674
## NO3
                    -1.511235
## NH4
                    0.001634 0.001003 1.628 0.10516
## oPO4
                   -0.005435 0.039884 -0.136 0.89177
                   -0.052241 0.030755 -1.699 0.09109
## PO4
       © L.Torgo (KNOYDA)
                                                     Predictive Analytics
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Jul, 2019 44 / 119

The Diagnostic Information of the summary() Call

- Distribution of the residuals (errors) of the model should have mean zero and should be normally distributed and as small as possible
- Estimate of each coefficient and respective standard error
- **Test of the hypothesis that each coefficient is null, i.e.** $H0: \beta_i = 0$
 - Uses a t-test
 - **Calculates a t-value as** β_i / s_{β_i}
 - Presents a column (Pr(>t)) with the level at which the hypothesis is rejected. A value of 0.0001 would mean that we are 99.99% confident that the coefficient is not null
 - Coefficients for which we can reject the hypothesis are tagged with a symbol

		Į	<u>qī</u> .
© L.Torgo (KNOYDA)	Predictive Analytics	Jul, 2019	45 / 119

Multiple Linear Regression

The Diagnostic Information of the summary() Call (cont.)

- We are also given the R² coefficients (multiple and adjusted). These coefficients indicate the degree of fit of the model to the data, i.e. the proportion of variance explained by the model. Values near 1 (100%) are better. The adjusted coefficient is more demanding as it takes into account the size of the model
- Finally, there is also a test of the hypothesis that there is no dependence of the target variable on the predictors, i.e.
 H0: β₁ = β₂ = ··· = β_p = 0. The *F*-statistic is used with this purpose. R provides the confidence level at which we are sure to reject this hypothesis. A *p*-level of 0.0001 means that we are 99.99% confident that the hypothesis is not true.

Simplifying the Linear Model

final.la1 <- step(la1)</pre>

```
summary(final.la1)
##
## Call:
## lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[,
##
       1:121)
##
## Residuals:
                1Q Median
                                ЗQ
##
    Min
                                         Max
## -28.874 -12.732 -3.741
                             8.424 62.926
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 57.28555 20.96132 2.733 0.00687 **
## sizemedium 2.80050 3.40190 0.823 0.41141
## sizemedium 2.80050
## sizesmall 10.40636
                          3.40190
3.82243
                                     2.722 0.00708 **
                           2.48204 -1.600 0.11130
## mxPH
               -3.97076
## Cl
               -0.05227
                          0.03165 -1.651 0.10028
               -0.89529
                            0.35148 -2.547 0.01165 *
## NO3
## PO4
               -0.05911
                            0.01117
                                     -5.291 3.32e-07 ***
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.5 on 191 degrees of freedom
## Multiple R-squared: 0.3527, Adjusted R-squared: 0.3324
## F-statistic: 17.35 on 6 and 191 DF, p-value: 5.554e-16
```

© L.Torgo (KNOYDA)

Predictive Analytics

Jul, 2019 47 / 119

Multiple Linear Regression

Using the Models for Prediction

clean.test.algae <- knnImputation(test.algae, k = 10, distData = clean.algae[, 1:11]) preds <- predict(final.la1,clean.test.algae) mean((preds-algae.sols\$a1)^2) ## [1] 296.0934

But there are no negative algae frequencies!...

Errors Scaterplot

Support Vector Machines

Support Vector Machines (SVMs)

A Bit of History...

- SVM's were introduced in 1992 at the COLT-92 conference
- They gave origin to a new class of algorithms named kernel machines
- Since then there has been a growing interest on these methods
- More information may be obtained at www.kernel-machines.org
- A good reference on SVMs:
 N. Cristianini and J. Shawe-Taylor: An introduction to Support Vector Machines. Cambridge University Press, 2000.
- SVMs have been applied with success in a wide range of areas like: bio-informatics, text mining, hand-written character recognition, etc.

Two Linearly Separable Classes

- Obtain a linear separation of the cases (binary classification problems)
- Very simple and effective for linearly separable problems
- Most real-world problems are not linearly separable!

- Map the original data into a new space of variables with very high dimension.
- Use a linear approximation on this new input space.

The Idea in a Figure

Map the original data into a new (higher dimension) coordinates system where the classes are linearly separable

Maximum Margin Hyperplane

- There is an infinite number of hyperplanes separating the two classes!
- Which one should we choose?!
- We want the one that ensures a better classification accuracy on unseen data
- SVMs approach this problem by searching for the maximum margin hyperplane

The Support Vectors

- All cases that fall on the hyperplanes H₁ and H₂ are called the support vectors.
- Removing all other cases would not change the solution!

				Ļ	ŢP.
© L.Torgo (KNOYDA)	Predictive	e Analytics		Jul, 2019	55 / 119
Support	Vector Machines (SVMs)	The Separating Hype	erplane		

The Optimal Hyperplane

- SVMs use quadratic optimization algorithms to find the optimal hyperplane that maximizes the margin that separates the cases from the 2 classes
- Namely, these methods are used to find a solution to the following equation,

$$L_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

Subject to :

$$\alpha_i \ge \mathbf{0}$$
$$\sum_i \alpha_i \mathbf{y}_i = \mathbf{0}$$

In the found solution, the α_i's > 0 correspond to the support vectors that represent the optimal solution

	Support Vector Machines (SVMs)	The Problem of Line	ar Separability	
Recap				
 Most real SVMs sol classes a This mean on this near on the near on	world problems are ve this by "moving" in re already linearly se ns the maximum man w very high dimensio	not linearly se nto a extende eparable rgin hyperplar on space	eparable d input space whe ne needs to be fou	ere Ind
			Į	ЧŢ.
© L.Torgo (KNOY	(DA) Predictiv	ve Analytics	Jul, 2019	57 / 119
	Support Vector Machines (SVMs)	The Problem of Line	ear Separability	
The Kernel	trick			

- The solution to the optimization equation involves dot products that are computationally heavy on high-dimensional spaces
- It was demonstrated that the result of these complex calculations is equivalent to the result of applying certain functions (the kernel functions) in the space of the original variables.

The Kernel Trick

Instead of calculating the dot products in a high dimensional space, take advantage of the proof that $K(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{z})$ and simply replace the complex dot products by these simpler and efficient calculations

Summary of the SVMs Method

- As problems are usually non-linear on the original feature space, move into a high-dimension space where linear separability is possible
- Find the optimal separating hyperplane on this new space using quadratic optimization algorithms
- Avoid the heavy computational costs of the dot products using the kernel trick

- Solve several binary classification tasks
- Essentially find the support vectors that separate each class from all others

Obtaining an SVM in R The package e1071

```
library (e1071)
data(Glass, package='mlbench')
tr <- Glass[1:200,]</pre>
ts <- Glass[201:214,]
s <- svm(Type ~ .,tr)
predict(s,ts)
## 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  7 2 7 7 7
##
                     7 7 2 7 7 7
                                              7
                                                  7
## Levels: 1 2 3 5 6 7
```

ΙŢΡ © L.Torgo (KNOYDA) **Predictive Analytics** Jul, 2019 61 / 119

Support Vector Machines (SVMs)

SVMs em R

7

Obtaining an SVM in R (2) The package e1071

ps	<- F	red	ict	(s,	ts)			
tal	ble (p	s,t	s\$T	ype)			
##								
##	ps	1	2	3	5	6	7	
##	1	0	0	0	0	0	0	
##	2	0	0	0	0	0	2	
##	3	0	0	0	0	0	0	
##	5	0	0	0	0	0	0	
##	6	0	0	0	0	0	0	
##	7	0	0	0	0	0	12	
mc	<- t	abl	e (p	s,t	s\$T	ype	∋)	
er	ror <	- 1	00*	(1-	sum	(d :	iag	(mc))/ sum (mc))
er	ror						_	
##	[1]	14.	285	71				
	[-]		200	· -				
								<u>⊷.</u> !!

© L.Torgo (KNOYDA)

ε -SV Regression (cont.)

The theoretical development of this idea leads to the following optimization problem,

$$\begin{array}{l} \text{Minimize} : \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{l} (\xi_i + \xi_i^*) \\\\ \text{Subject to} : \begin{cases} y_i - \mathbf{w} \cdot \mathbf{x} - b & \leq \varepsilon + \xi_i \\ \mathbf{w} \cdot \mathbf{x} + b - y_i & \leq \varepsilon + \xi_i^* \\ \xi_i, \xi_i^* & \geq 0 \end{cases} \end{array}$$

where C corresponds to the cost to pay for each violation of the error limit ε

				Ļ	ŢP
© L.Torgo (KNOYDA)	Predictive	Analytics		Jul, 2019	65 / 119
Support Vec	tor Machines (SVMs)	SVMs for Regression	ı		
ε -SV Regression	(cont.)				

- As within classification we use the kernel trick to map a non-linear problem into a high dimensional space where we solve the same quadratic optimization problem as in the linear case
- In summary, by the use of the |ξ|_ε loss function we reach a very similar optimization problem to find the support vectors of any non-linear regression problem.

SVMs for regression in R

Hands On SMVs

Hands on SVMs

The file Wine.Rdata contains 2 data frames with data about the quality of "green" wines: i) redWine and ii) whiteWine. Each of these data sets has information on a series of wine tasting sessions to "green" wines (both red and white). For each wine sample several physico-chemical properties of the wine sample together with a quality score assigned by a committee of wine experts (variable quality).

- Obtain and SVM for forecasting the quality of the red variant of "green" wines
- 2 Split the data set in two parts: one with 70% of the samples and the other with the remaining 30%. Obtain an SVM with the first part and apply it to the second. What was the resulting mean absolute error?
- 3 Using the round () function, round the predictions obtained in the previous question to the nearest integer. Calculate the error rate of the resulting integers when compared to the true values $\underline{I}, \underline{i}$ P

Hands on Linear Regression - the Boston data set

The data set Boston is available in package **MASS**. Load it and explore its help page to grab a minimal understanding of the data and then answer the following questions:

- 1 Obtain a random split of the data into two sub-sets using the proportion 70%-30%.
- 2 Obtain a multiple linear regression model using the larger set.
- 3 Check the diagnostic information provided for the model.
- 4 Obtain the predictions of the obtained model on the smaller set.
- 5 Obtain the mean squared error of these predictions and also an error scatter plot.

		L	ЧŢ.
© L.Torgo (KNOYDA)	Predictive Analytics	Jul, 2019	69 / 119

Tree-based Models

Tree-based Models

- Tree-based models (both classification and regression trees) are models that provide as result a model based on logical tests on the input variables
- These models can be seen as a partitioning of the input space defined by the input variables
- This partitioning is defined based on carefully chosen logical tests on these variables
- Within each partition all cases are assigned the same prediction (either a class label or a numeric value)
- Tree-based models are known by their (i) computational efficiency; (ii) interpretable models; (iii) embedded variable selection; (iv) embedded handling of unknown variable values and (v) few assumptions on the unknown function being approximated

© L.Torgo (KNOYDA)	Predictive Analytics	Jul, 2019	71 / 119

Tree-based Models

An Example of Trees Partitioning

Tree-based Models

An Example of a Classification Tree

Tree-based Models

An Example of a Regression Tree

© L.Torgo (KNOYDA)

Jul, 2019 74 / 119

Tree-based Models

- Most tree-based models are binary trees with logical tests on each node
- **Tests on numerical predictors take the form** $x_i < \alpha$, with $\alpha \in \Re$
- Tests on nominal predictors take the form $x_j \in \{v_1, \cdots, v_m\}$
- Each path from the top (root) node till a leaf can be seen as a logical condition defining a region of the predictors space.
- All observations "falling" on a leaf will get the same prediction
 - the majority class of the training cases in that leaf for classification trees
 - the average value of the target variable for regression trees
- The prediction for a new test case is easily obtained by following a path from the root till a leaf according to the case predictors values

© L.Torgo (KNOYDA)	Predictive	Analytics		Jul, 2019	75 / 119
	Tree-based Models	Building a tree-based	l model		

The Recursive Partitioning Algorithm

1: **function** RECURSIVE**P**ARTITIONING(*D*)

Input :	D, a sample of cases, $\{\langle x_{i,1}, \cdots, x_{i,p}, y_i \rangle\}_{i=1}^{N_{train}}$
Output :	t, a tree node

- 2: if <TERMINATION CRITERION> then
- 3: **Return** a leaf node with the majority class in *D*
- 4: else
- 5: $t \leftarrow \text{new tree node}$
- 6: $t.split \leftarrow <$ FIND THE BEST PREDICTORS TEST>
- 7: $t.leftNode \leftarrow \text{RecursivePartitioning}(\mathbf{x} \in D : \mathbf{x} \models t.split)$
- 8: $t.rightNode \leftarrow \text{RecursivePartitioning}(\mathbf{x} \in D : \mathbf{x} \nvDash t.split)$
- 9: **Return** the node *t*
- 10: **end if**
- 11: end function

The Recursive Partitioning Algorithm - an example

Weather	Temp.	Humidity	Wind	Decisi	on										
rain	26	high	15	dontPl	lay										
rain	35	normal	102	dontPl	lay										
overcast	27	high	99	Play						(w	eather)				
overcast	26	normal	97	Play											
rain	12	high	120	Play					{rain			<pre>{overcal</pre>	ast. sur	1}	
overcast	21	normal	74	Play									,	,	
sun	30	normal	89	dontPl	lay					¥		\mathbf{A}			
sun	19	high	111	dontPl	lay	Weather	Temp	Humidity	Wind	Decision	Weather	Temp	Humidity	Wind	Decision
sun	14	normal	81	Play	i	rain	26	high	15	dontPlay	overcast	27	high	99	Play
overcast	10	normal	70	Play		rain	35	normal	102	dontPlay	overcast	26	normal	97	Play
rain	11	normal	95	Play		rain	12	high	120	Play	overcast	21	normal	74	Play
rain	15	high	94	Play		rain	11	normal	95	Play	overcast	10	normal	70	Play
sun	19	high	41	dontPl	lay	rain	15	high	94	Play	overcast	30	high	108	Play
sun	35	normal	38	dontPl	lay	rain	29	nign	79	dontPlay	overcast	30	normal	16	Play
rain	29	high	79	dontPl	lay	rain	33	high	96	Play	overcast	30	normal	13	Play
rain	26	normal	75	dontPl	lay	rain	28	normal	44	Play	overcast	14	normal	32	Play
overcast	30	high	108	Play		rain	21	high	84	Play	sun	30	normal	89	dontPlay
overcast	30	normal	16	Play							sun	19	high	111	dontPlay
rain	33	high	96	Play							sun	14	normal	81	Play
overcast	30	normal	13	Play							sun	19	high	41	dontPlay
sun	32	normal	55	dontPl	lay						sun	35	normal	38	dontPlay
sun	11	high	108	dontPl	lay						sun	32	normal	55	dontPlay
sun	33	normal	103	Play							sun	11	high	108	dontPlay
overcast	14	normal	32	Play							sun	33	normal	103	Play
rain	28	normal	44	Play							sun	29	high	105	dontPlay
rain	21	high	84	Play							sun	15	normal	63	dontPlay
sun	29	high	105	dontPl	lay										
sun	15	normal	63	dontPl	lay										
©	L.Torao	(KNOYD	A)			Pred	ictive	Analvti	cs				Jul	2019	77 / 119

Tree-based Models

Building a tree-based model

The Recursive Partitioning Algorithm (cont.)

Key Issues of the RP Algorithm

- When to stop growing the tree termination criterion
- Which value to put on the leaves
- How to find the best split test

The Recursive Partitioning Algorithm (cont.)

When to Stop?

Too large trees tend to overfit the training data and will perform badly on new data - a question of reliability of error estimates

Which value?

Should be the value that better represents the cases in the leaves

What are the good tests?

A test is good if it is able to split the cases of sample in such a way that they form partitions that are "purer" than the parent node

				Ĺ	ŢP
© L.Torgo (KNOYDA)	Predictive	Analytics		Jul, 2019	79 / 119
	Tree-based Models	Building a tree-based	d model		
	_	_			

Classification vs Regression Trees

- They are both grown using the Recursive Partitioning algorithm
- The main difference lies on the used preference criterion
- This criterion has impact on:
 - The way the best test for each node is selected
 - The way the tree avoids over fitting the training sample
- Classification trees typically use criteria related to error rate (e.g. the Gini index, the Gain ratio, entropy, etc.)
- Regression trees typically use the least squares error criterion

Classification and Regression Trees in R

The package rpart

- Package rpart implements most of the ideas of the system CART that was described in the book "Classification and Regression Trees" by Breiman and colleagues
- This system is able to obtain classification and regression trees.
- For classification trees it uses the Gini score to grow the trees and it uses Cost-Complexity post-pruning to avoid over fitting
- For regression trees it uses the least squares error criterion and it uses Error-Complexity post-pruning to avoid over fitting
- On package DMwR2 you may find function rpartXse() that grows and prunes a tree in a way similar to CART using the above infra-structure

Tree-based Models Building a tree-based model

Illustration using a classification task - Glass

How to use the trees for Predicting?

```
tr <- Glass[1:200,]</pre>
ts <- Glass[201:214,]
ac <- rpartXse(Type ~ .,tr)</pre>
predict (ac, ts)
##
       1
                  2
                                                     7
                            3
                                        5 6
## 201 0 0.0000000 0.0000000 0.09090909 0 0.9090909
## 202 0 0.3636364 0.6363636 0.00000000 0 0.0000000
## 203 0 0.0000000 0.0000000 0.09090909 0 0.9090909
  204 0 0.0000000 0.0000000 0.09090909 0 0.9090909
##
   205 0 0.0000000 0.0000000 0.09090909 0 0.9090909
##
## 206 0 0.0000000 0.0000000 0.09090909 0 0.9090909
## 207 0 0.0000000 0.0000000 0.09090909 0 0.9090909
## 208 0 0.0000000 0.0000000 0.09090909 0 0.9090909
## 209 0 0.0000000 0.0000000 0.09090909 0 0.9090909
## 210 0 0.0000000 0.0000000 0.09090909 0 0.9090909
## 211 0 0.0000000 0.0000000 0.09090909 0 0.9090909
## 212 0 0.0000000 0.0000000 0.09090909 0 0.9090909
## 213 0 0.0000000 0.000000 0.09090909 0 0.9090909
## 214 0 0.0000000 0.0000000 0.09090909 0 0.9090909
                                                                     © L.Torgo (KNOYDA)
                                Predictive Analytics
                                                               Jul, 2019
                                                                        83 / 119
```

Tree-based Models Building a tree-based model

How to use the trees for Predicting? (cont.)

```
predict(ac,ts,type='class')
## 201 202 203 204 205 206 207 208 209 210 211 212 213 214
## 7 3 7 7 7 7 7 7 7 7 7 7
## Levels: 1 2 3 5 6 7
ps <- predict(ac,ts,type='class')</pre>
table(ps,ts$Type)
##
## ps 1 2 3 5 6 7
  1 0 0 0 0 0 0
##
##
   2 0 0 0 0 0 0
   3 0
5 0
##
         0
            0
               0
                  0
                    1
         0
            0
##
              0
                 0
   6 0 0 0 0 0 0
##
##
   7 0 0 0 0 0 13
mc <- table(ps,ts$Type)</pre>
err <- 100*(1-sum(diag(mc))/sum(mc))
err
## [1] 7.142857
```

© L.Torgo (KNOYDA)

<u>ין ו</u>

Illustration using a regression task

Forecasting Normalized Losses

How to use the trees for Predicting?

```
tr <- d[1:150,]
ts <- d[151:205,]
arv <- rpartXse(normLoss ~ .,tr)
preds <- predict(arv,ts)
mae <- mean(abs(preds-ts$normLoss),na.rm=T)
mae
## [1] 57.37964
mape <- mean(abs(preds-ts$normLoss)/ts$normLoss,na.rm=T)
mape
## [1] 0.607296</pre>
```

Hands on Tree-based Models - the Wines data

File Wine.Rdata contains two data frames with data on green wine quality: (i) redWine and (ii) whiteWine. Each of these data sets contains a series of tests with green wines (red and white). For each of these tests the values of several physicochemical variables together with a quality score assigned by wine experts (column quality).

- **1** Build a regression tree for the white wines data set
- 2 Obtain a graph of the obtained regression tree
- 3 Apply the tree to the data used to obtain the model and calculate the mean squared error of the predictions
- Split the data set in two parts: 70% of the tests and the remaining 30%. Using the larger part to obtain a regression tree and apply it to the other part. Calculate again the mean squared error. Compare with the previous scores and comment.

Model Ensembles and Random Forests

Model Ensembles

What?

Ensembles are collections of models that are used together to address a certain prediction problem

Why? (Diettrich, 2002)

- For complex problems it is hard to find a model that "explains" all observed data.
- Averaging over a set of models typically leads to significantly better results.

Dietterich, T. G. (2002). Ensemble Learning. In The Handbook of Brain Theory and Neural Networks, Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The MIT Press 2002. 405-408.

© L.Torgo (KNOYDA)

Predictive Analytics

Model Ensembles and Random Forests Motivation

The Bias-Variance Decomposition of Prediction Error

- The prediction error of a model can be split in two main components: the bias and the variance components
- The bias component is the part of the error that is due to the poor ability of the model to fit the seen data
- The variance component has to do with the sensibility of the model to the given training data

Jul, 2019

89/119

The Bias-Variance Decomposition of Prediction Error

- Decreasing the bias by adjusting more to the training sample will most probably lead to a higher variance - the over-fitting phenomenon
- Decreasing the variance by being less sensitive to the given training data will most probably have as consequence a higher bias
- In summary: there is a well-known bias-variance trade-off in learning a prediction model

Ensembles are able to reduce both components of the error

Their approach consist on applying the same algorithm to different samples of the data and use the resulting models in a voting schema to obtain predictions for new cases

© L.Torgo (KNOYDA)	Predictive	Analytics		Jul, 2019	91 / 119	
Model Ensembles	and Random Forests	Random Forests				
Random Forests (Breiman, 2001)						

- Random Forests put the ideas of sampling the cases and sampling the predictors, together in a single method
 - Random Forests combine the ideas of bagging together with the idea of random selection of predictors
- Random Forests consist of sets of tree-based models where each tree is obtained from a bootstrap sample of the original data and uses some form of random selection of variables during tree growth

Breiman, L. (2001): "Random Forests". Machine Learning 45 (1): 5-32.

Random Forests - the algorithm

For each of the *k* models Draw a random sample with replacement to obtain the training set Grow a classification or regression tree On each node of the tree choose the best split from a randomly selected subset *m* of the predictors The trees are fully grown, i.e. no pruning is carried out LTP © LTorgo (KNOYDA) Predictive Analytics Jul, 2019 93/119 Model Ensembles and Random Forest Random Forests

The package randomForest

```
library(randomForest)
data(Boston,package="MASS")
samp <- sample(1:nrow(Boston),354)
tr <- Boston[samp,]
ts <- Boston[-samp,]
m <- randomForest(medv ~ ., tr)
ps <- predict(m,ts)
mean(abs(ts$medv-ps))</pre>
```

[1] 2.190258

A classification example

<pre>data(Glass,package='mlbench') set.seed(1234) sp <- sample(1:nrow(Glass),150) tr <- Glass[sp,] ts <- Glass[-sp,] m <- randomForest(Type ~ ., tr, ps <- predict(m,ts) table(ps,ts\$Type) ### ## ps 1 2 3 5 6 7 ## 1 13 5 3 0 0 1 ## 2 2 18 0 3 0 2 ## 3 0 0 1 0 0 0 ## 5 0 0 0 4 0 0 ## 6 0 1 0 0 3 0 ## 7 0 0 0 0 0 8 mc <- table(ps,ts\$Type) err <- 100*(1-sum(diag(mc))/sum err ## [1] 26.5625</pre>	ntree=3000)	ΓŢΡ
© L.Torgo (KNOYDA)	Predictive Analytics	Jul, 2019 95 / 119

Model Ensembles and Random Forests Random Forests

Other Uses of Random Forests Variable Importance

<pre>data(Boston,package='MASS') library(randomForest) m <- randomForest(medv ~ ., Boston,</pre>						
##		%IncMSE	IncNodePurity			
##	crim	16.001604	2511.3914			
##	zn	2.719681	184.4274			
##	indus	11.992644	2501.0269			
##	chas	4.496731	208.3667			
##	nox	18.440180	2702.4705			
##	rm	37.873226	13288.7533			
##	age	11.793865	1198.7370			
##	dis	17.957678	2423.8487			
##	rad	7.259293	320.4829			
##	tax	14.721102	1157.0856			
##	ptratio	15.715445	2716.8744			
##	black	11.498495	826.2531			
##	lstat	29.172401	11871.6578			

varImpPlot(m,main="Feature Relevance Scores")

Feature Relevance Scores

ĿŢ₽

Hands on Linear Regression and Random Forests the Algae data set

Load in the data set algae from package DMwR2 and answer the following questions:

- 1 How would you obtain a random forest to forecast the value of alga *a4*
- 2 Repeat the previous exercise but now using a linear regression model. Try to simplify the model using the step() function.
- 3 Obtain the predictions of the two previous models for the data used to obtain them. Draw a scatterplot comparing these predictions
- The data frame named test.algae contains a test set with some extra 140 water samples for which we want predictions. Use the previous two models to obtain predictions for a4 on these new samples. Check what happened to the test cases with NA's. Fill-in the NA's on the test set and repeat the experiment.

© L.Torgo (KNOYDA)

Predictive Analytics

Jul, 2019 97 / 119

Handling Imbalanced Distributions

work by Paula Branco, Luis Torgo and Rita Ribeiro

The Problem of Imbalanced Domains

- Special Learning Methods

Jul, 2019 100 / 119

Utility-based Learning

- Predictive tasks
- Goal: obtain a good approximation h of an unknown function $Y = f(X_1, X_2, \dots, X_p)$
- Use a training set $D = \{\langle \mathbf{x}_i, y_i \rangle\}_{i=1}^n$

 Utility-based Learning Problem

 the user assigns a non-uniform importance to the predictive performance of the model *h* across the target variable domain

 Imbalanced Domains Problem

 the user assigns a non-uniform importance to the predictive performance of the model *h* across the target variable domain;

 the user assigns a non-uniform importance to the predictive performance of the model *h* across the target variable domain;

 important cases| << |normal cases|

 Limportant cases| << |normal cases|

 Limportant cases| << |normal cases|
 </td>

 Limportant cases|

 Limportant cases|

 Limportant cases|

 Predictive Analytics

 Jul, 2019

 101/119

What is a non-uniform importance?

If we have the full information available:

- cost/utility matrix (classification)
- utility surfaces (regression)
- If we only have **partial or informal information**:
 - a relevance function
 - estimate information from data distribution

Utility Matrices and Surfaces

Hands on Random Forests Imbalanced Distributions

Relevance Function and Information Estimated from Data

Hands	on Random Forests Imbalanced Di	stributions					
Main Challenges							
Estimation of Utility Information: How can we obtain a utility surface/matrix when only partial or informal information is available?							
Modelling Approaches: How can we build models that take into consideration the domain specific preferences?							
Performance Assessment Measures: How can we evaluate the performance of the models considering the user preferences?							
© L.Torgo (KNOYDA)	Predictive Analytics	Jul, 2019 105 / 119					
Hands	on Random Forests Package UBL						
Utility-based Learning in R - UBL Package							
 Package that implements most existing methods to handle imbalanced distributions and utilit-based learning approaches Available on CRAN: https://CRAN.R-project.org/package=UBL Installation as any R package: 							
 Package that impleting imbalanced distribution Available on CRAN https://CRAN.R Installation as any 	ements most existing r utions and utilit-based I: -project.org/pac R package:	methods to handle learning approaches					

Development versions available on github: https://github.com/paobranco/UBL

ΙΤΡ

Package UBL

Two main approaches:

1 Changing the learning algorithms to cope with the imbalance

Hands on Random Forests

Addressing Imbalancved Domains

Changing the original data distribution to facilitate the task of the algorithms - known as resampling approaches

Addressing Imbalanced Domains Problems with UBL Classification

Removing or Adding Cas	es		
 Random Under-/Over-s Tomek Links Condensed Nearest Nei One-Sided Selection (C Edited Nearest Neighborhood CLeanin Importance Sampling Under-sampling with Neighborhood Selection (C 	ampling eighbors (CNN) DSS) ors (ENN) g rule (NCL) eighborhood Bias		
Generating New Synthetic	c Cases		
 SMOTE SMOTE with Neighborh Introduction of Gaussia 	nood Bias In Noise		LTP
© L.Torgo (KNOYDA)	Predictive Analytics	Jul,	2019 109 / 119

Hands on Random Forests Package UBL

Addressing Imbalanced Domains Problems with UBL Regression

Removing or Adding Cases

- Random Under-sampling
- Random Over-sampling
- Importance Sampling
- Under-sampling with neighborhood Bias

Generating New Synthetic Cases

- SMOTER
- SMOTER with Neighborhood Bias
- Introduction of Gaussian Noise
- SMOGN

A simple (classification) example

library(UBL) # Loading our infra-structure **library**(e1071) # package containing the svm we will use **data**(ImbC) # The synthetic data set we are going to use summary(ImbC) # Summary of the ImbC data ## X1 Х2 Class Min. :-13.5843 cat :300 normal:859 ## 1st Qu.: -2.6930 dog :400 rare1 : 10 ## ## Median : -0.1592 fish:300 rare2 :131 ## Mean : -0.1064 ## 3rd Qu.: 2.4633 Max. : 12.7836 ## table(ImbC\$Class) ## ## normal rare1 rare2 ## 859 10 131 ΙŢΡ © L.Torgo (KNOYDA) **Predictive Analytics** Jul, 2019 111 / 119

Hands on Random Forests Package UBL

Ŭ

Obtaining a model with the original data

```
set.seed(123)
samp <- sample(1:nrow(ImbC), nrow(ImbC)*0.7)</pre>
train <- ImbC[samp,]</pre>
test <- ImbC[-samp,]</pre>
model <- svm(Class~., train)</pre>
preds <- predict(model,test)</pre>
table(preds, test$Class) # confusion matrix
##
## preds normal rare1 rare2
   normal
                     5
##
                258
                              37
##
    rarel
                0
                         0
                               0
##
   rare2
                  0
                         0
```

The model completely ignored the rare (and more important) classes!

LTP

Changing the distribution of the original data

```
# not using the default distance (Eucledian) because of the nominal feature
newtrain <- SmoteClassif(Class~., train, C.perc="balance", dist="HEOM")</pre>
## Warning: SmoteClassif :: Nr of examples is less or equal to k.
## Using k = 4 in the nearest neighbours computation in this bump.
# generate a new model with the changed data
newmodel <- svm(Class~., newtrain)</pre>
preds <- predict(newmodel,test)</pre>
table(preds, test$Class)
##
## preds normal rare1 rare2
## normal 109 0 4
  rarel
              10
                       5
                             0
##
## rare2 139 0 33
                                                                  ΙŢΡ
    © L.Torgo (KNOYDA)
                               Predictive Analytics
                                                            Jul, 2019
                                                                    113/119
```

Hands on Random Forests Package UBL

Trying another method

```
newtrain2 <- RandOverClassif(Class~., train, C.perc="balance")</pre>
#generate a new model with the modified data set
newmodel2 <- svm(Class~., newtrain2)</pre>
preds <- predict(newmodel2, test)</pre>
table(preds, test$Class)
##
## preds normal rare1 rare2
  normal 133 1
##
                            4
##
               7
                      4
                            0
  rarel
## rare2 118
                    0
                           33
```

ΙŢΡ

A simple (regression) example

data sumr	a (ImbR) mary (ImbR)						
## ## ## ## ## set samp tra:	X1 Min. : 0.3654 1st Qu.: 8.2821 Median : 9.9811 Mean : 9.9418 3rd Qu.:11.7202 Max. :19.0565 .seed(123) p <- sample(1:nrow(inD <- ImbR[samp,]	X2 Min. : 0.201 1st Qu.: 8.246 Median :10.129 Mean :10.078 3rd Qu.:11.903 Max. :19.474 ImbR), as.intege	Tgt Min. :1 1st Qu.:1 Median :1 Mean :1 3rd Qu.:1 Max. :2	0.00 0.06 0.22 0.98 0.72 3.17 (ImbR)))			
<pre>testD <- ImbR[-samp,]</pre>							
					Į	<u>Ţ</u> P	
	© L.Torgo (KNOYDA)	Predictive Ana	alytics		Jul, 2019	115 / 119	

Hands on Random Forests Package UBL

Obtaining a random forest with the original data

library(randomForest)
model <- randomForest(Tgt~., trainD)
preds <- predict(model, testD)</pre>

LTP

Changing the distribution of the original data

using the Introduction of Gaussian Noise with the default parameters
newTrain <- GaussNoiseRegress(Tgt~., trainD)
newModel <-randomForest(Tgt~., newTrain)
newPreds <- predict(newModel, testD)</pre>

Hands on Random Forests Package UBL

Comparing the results

<u>L</u>TP

Further Information on Imbalanced Domains

- P. Branco, L. Torgo, R. Ribeiro (2016): A Survey of Predictive Modeling on Imbalanced Domains, ACM Comput. Surv., (49), 2-31, 2016
- Check the vignette of package UBL for further examples

