
Predictive Analytics

L. Torgo

ltorgo@knoyda.com

KNOYDA, Know Your Data!

Jul, 2019

Introduction

What is Prediction?

Definition

Prediction (forecasting) is the ability to anticipate the future.
Prediction is possible if we assume that there is some regularity in
what we observe, i.e. if the observed events are not random.

Example

Medical Diagnosis: given an historical record containing the symptoms
observed in several patients and the respective diagnosis, try to
forecast the correct diagnosis for a new patient for which we know the
symptoms.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 2 / 119

Introduction

Prediction Models

Are obtained on the basis of the assumption that there is an
unknown mechanism that maps the characteristics of the
observations into conclusions/diagnoses. The goal of prediction
models is to discover this mechanism.

Going back to the medical diagnosis what we want is to know how
symptoms influence the diagnosis.

Have access to a data set with “examples” of this mapping, e.g.
this patient had symptoms x , y , z and the conclusion was that he
had disease p
Try to obtain, using the available data, an approximation of the
unknown function that maps the observation descriptors into the
conclusions, i.e. Prediction = f (Descriptors)

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 3 / 119

Introduction

“Entities” involved in Predictive Modelling

Descriptors of the observation:
set of variables that describe the properties (features, attributes)
of the cases in the data set
Target variable:
what we want to predict/conclude regards the observations
The goal is to obtain an approximation of the function
Y = f (X1,X ,2 , · · · ,Xp), where Y is the target variable and
X1,X ,2 , · · · ,Xp the variables describing the characteristics of the
cases.
It is assumed that Y is a variable whose values depend on the
values of the variables which describe the cases. We just do not
know how!
The goal of the modelling techniques is thus to obtain a good
approximation of the unknown function f ()

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 4 / 119

Introduction

How are the Models Used?

Predictive models have two main uses:

1 Prediction
use the obtained models to make predictions regards the target
variable of new cases given their descriptors.

2 Comprehensibility
use the models to better understand which are the factors that
influence the conclusions.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 5 / 119

Introduction Types of Prediction Problems

Types of Prediction Problems

Depending on the type of the target variable (Y) we may be facing
two different types of prediction models:

1 Classification Problems - the target variable Y is nominal
e.g. medical diagnosis - given the symptoms of a patient try to
predict the diagnosis

2 Regression Problems - the target variable Y is numeric
e.g. forecast the market value of a certain asset given its
characteristics

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 6 / 119

Introduction Types of Prediction Problems

Examples of Prediction Problems

Classification
A marketing department of a bank stores information on previous
telephone contacts with its costumers for selling new products.
For each client a series of personal information is stored together
with the results of the last contact (if it bought or not the product).
The goal of this application is to obtain a predictive model that can
forecast whether a client will buy or not a new product before the
phone contact takes place.

Case ID age job marital education default balance housing loan y
1 30 unemployed married primary no 1787 no no no
2 33 services married secondary no 4789 yes yes no
3 35 management single tertiary no 1350 yes no no
4 30 management married tertiary no 1476 yes yes no
5 59 blue-collar married secondary no 0 yes no no
6 35 management single tertiary no 747 no no no

Regression
On the previous car insurance data try to forecast the normalized
losses of a car based on its characteristics.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 7 / 119

Introduction Types of Models

Types of Prediction Models

There are many techniques that can be used to obtain prediction
models based on a data set.
Independently of the pros and cons of each alternative, all have
some key characteristics:

1 They assume a certain functional form for the unknown function f ()
2 Given this assumed form the methods try to obtain the best

possible model based on:
1 the given data set
2 a certain preference criterion that allows comparing the different

alternative model variants

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 8 / 119

Introduction Types of Models

Functional Forms of the Models

There are many variants. Examples include:
Mathematical formulae - e.g. linear discriminants
Logical approaches - e.g. classification or regression trees, rules
Probabilistic approaches - e.g. naive Bayes
Other approaches - e.g. neural networks, SVMs, etc.
Sets of models (ensembles) - e.g. random forests, adaBoost

These different approaches entail different compromises in terms
of:

Assumptions on the unknown form of dependency between the
target and the predictors
Computational complexity of the search problem
Flexibility in terms of being able to approximate different types of
functions
Interpretability of the resulting model
etc.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 9 / 119

Introduction Types of Models

Which Models or Model Variants to Use?

This question is often known as the Model Selection problem
The answer depends on the goals of the final user - i.e. the
Preference Biases of the user
Establishing which are the preference criteria for a given
prediction problem allows to compare and select different models
or variants of the same model

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 10 / 119

Evaluation Metrics

Evaluation Metrics Classification Problems

Classification Problems

The setting

Given data set {< xi , yi >}Ni=1, where xi is a feature vector
< x1, x2, · · · , xp > and yi ∈ Y is the value of the nominal variable Y
There is an unknown function Y = f (x)

The approach

Assume a functional form hθ(x) for the unknown function f (),
where θ are a set of parameters
Assume a preference criterion over the space of possible
parameterizations of h()

Search for the “optimal” h() according to the criterion and the data
set

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 12 / 119

Evaluation Metrics Classification Problems

Classification Error
Error Rate

Given a set of test cases Ntest we can obtain the predictions for
these cases using some classification model.
The Error Rate (L0/1) measures the proportion of these
predictions that are incorrect.
In order to calculate the error rate we need to obtain the
information on the true class values of the Ntest cases.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 13 / 119

Evaluation Metrics Classification Problems

Classification Error
Error Rate

Given a test set for which we know the true class the error rate
can be calculated as follows,

L0/1 =
1

Ntest

Ntest∑
i=1

I(ĥθ(xi), yi)

where I() is an indicator function such that I(x , y) = 0 if x = y and
1 otherwise; and ĥθ(xi) is the prediction of the model being
evaluated for the test case i that has as true class the value yi .

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 14 / 119

Evaluation Metrics Classification Problems

Confusion Matrices

A square nc × nc matrix, where nc is the number of class values
of the problem
The matrix contains the number of times each pair
(ObservedClass,PredictedClass) occurred when testing a
classification model on a set of cases

Pred.
c1 c2 c3

O
bs

. c1 nc1,c1 nc1,c2 nc1,c3

c2 nc2,c1 nc2,c2 nc2,c3

c3 nc3,c1 nc3,c2 nc3,c3

The error rate can be calculated from the information on this table.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 15 / 119

Evaluation Metrics Classification Problems

An Example in R

trueVals <- c("c1","c1","c2","c1","c3","c1","c2","c3","c2","c3")
preds <- c("c1","c2","c1","c3","c3","c1","c1","c3","c1","c2")
confMatrix <- table(trueVals,preds)
confMatrix

preds
trueVals c1 c2 c3
c1 2 1 1
c2 3 0 0
c3 0 1 2

errorRate <- 1-sum(diag(confMatrix))/sum(confMatrix)
errorRate

[1] 0.6

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 16 / 119

Evaluation Metrics Classification Problems

Cost-Sensitive Applications

In the error rate one assumes that all errors and correct
predictions have the same value
This may not be adequate for some applications

Cost/benefit Matrices
Table where each entry specifies the
cost (negative benefit) or benefit of
each type of prediction

Pred.
c1 c2 c3

O
bs

. c1 B1,1 C1,2 C1,3
c2 C2,1 B2,2 C2,3
c3 C3,1 C3,2 B3,3

Models are then evaluated by the total balance of their predictions,
i.e. the sum of the benefits minus the costs.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 17 / 119

Evaluation Metrics Classification Problems

An Example in R

trueVals <- c("c1","c1","c2","c1","c3","c1","c2","c3","c2","c3")
preds <- c("c1","c2","c1","c3","c3","c1","c1","c3","c1","c2")
confMatrix <- table(trueVals,preds)
costMatrix <- matrix(c(10,-2,-4,-2,30,-3,-5,-6,12),ncol=3)
colnames(costMatrix) <- c("predC1","predC2","predC3")
rownames(costMatrix) <- c("obsC1","obsC2","obsC3")
costMatrix

predC1 predC2 predC3
obsC1 10 -2 -5
obsC2 -2 30 -6
obsC3 -4 -3 12

utilityPreds <- sum(confMatrix*costMatrix)
utilityPreds

[1] 28

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 18 / 119

Evaluation Metrics Classification Problems

Predicting a Rare Class
E.g. predicting outliers

Problems with two classes
One of the classes is much less frequent and it is also the most
relevant

Preds.
Pos Neg

O
bs

. Pos True Positives (TP) False Negatives (FN))
Neg False Positives (FP) True Negatives (TN)

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 19 / 119

Evaluation Metrics Classification Problems

Precision and Recall

Preds.
P N

O
bs

. P TP FN
N FP TN

Precision - proportion of the
signals (events) of the model that
are correct

Prec =
TP

TP + FP
Recall - proportion of the real
events that are captured by the
model

Rec =
TP

TP + FN

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 20 / 119

Evaluation Metrics Classification Problems

Precision and Recall
Examples

 Preds.
P N

P 2 2
N 1 1O

b
s
.

Precision =
TP

TP + FP
=

2
2 + 1

= 0.667

Recall =
TP

TP + FN
=

2
2 + 2

= 0.5

ErrorRate =
2 + 1

2 + 2 + 1 + 1
= 0.5

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 21 / 119

Evaluation Metrics Classification Problems

The F-Measure
Combining Precision and Recall into a single measure

Sometimes it is useful to have a single measure - e.g. optimization
within a search procedure
Maximizing one of them is easy at the cost of the other (it is easy
to have 100% recall - always predict “P”).
What is difficult is to have both of them with high values
The F-measure is a statistic that is based on the values of
precision and recall and allows establishing a trade-off between
the two using a user-defined parameter (β),

Fβ =
(β2 + 1) · Prec · Rec
β2 · Prec + Rec

where β controls the relative importance of Prec and Rec. If β = 1
then F is the harmonic mean between Prec and Rec; When
β → 0 the weight of Rec decreases. When β →∞ the weight of
Prec decreases.
© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 22 / 119

Evaluation Metrics Regression Problems

Regression Problems

The setting

Given data set {< xi , yi >}Ni=1, where xi is a feature vector
< x1, x2, · · · , xp > and yi ∈ < is the value of the numeric variable
Y
There is an unknown function Y = f (x)

The approach

Assume a functional form hθ(x) for the unknown function f (),
where θ are a set of parameters
Assume a preference criterion over the space of possible
parameterizations of h()

Search for the “optimal” h() according to the criterion and the data
set
© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 23 / 119

Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Squared Error

Given a set of test cases Ntest we can obtain the predictions for
these cases using some regression model.
The Mean Squared Error (MSE) measures the average squared
deviation between the predictions and the true values.
In order to calculate the value of MSE we need to have both the
predicitons and the true values of the Ntest cases.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 24 / 119

Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Squared Error (cont.)

If we have such information the MSE can be calculated as follows,

MSE =
1

Ntest

Ntest∑
i=1

(ŷi − yi)
2

where ŷi is the prediction of the model under evaluation for the
case i and yi the respective true target variable value.
Note that the MSE is measured in a unit that is squared of the
original variable scale. Because of the this is sometimes common
to use the Root Mean Squared Error (RMSE), defined as
RMSE =

√
MSE

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 25 / 119

Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Absolute Error

The Mean Absolute Error (MAE) measures the average absolute
deviation between the predictions and the true values.
The value of the MAE can be calculated as follows,

MAE =
1

Ntest

Ntest∑
i=1

|ŷi − yi |

where ŷi is the prediction of the model under evaluation for the
case i and yi the respective true target variable value.
Note that the MAE is measured in the same unit as the original
variable scale.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 26 / 119

Evaluation Metrics Regression Problems

Relative Error Metrics

Relative error metrics are unit less which means that their scores
can be compared across different domains.
They are calculated by comparing the scores of the model under
evaluation against the scores of some baseline model.
The relative score is expected to be a value between 0 and 1, with
values nearer (or even above) 1 representing performances as
bad as the baseline model, which is usually chosen as something
too naive.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 27 / 119

Evaluation Metrics Regression Problems

Relative Error Metrics (cont.)

The most common baseline model is the constant model
consisting of predicting for all test cases the average target
variable value calculated in the training data.
The Normalized Mean Squared Error (NMSE) is given by,

NMSE =

∑Ntest
i=1 (ŷi − yi)

2∑Ntest
i=1 (ȳ − yi)2

The Normalized Mean Absolute Error (NMAE) is given by,

NMAE =

∑Ntest
i=1 |ŷi − yi |∑Ntest
i=1 |ȳ − yi |

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 28 / 119

Evaluation Metrics Regression Problems

Relative Error Metrics (cont.)

The Mean Average Percentage Error (MAPE) is given by,

MAPE =
1

Ntest

Ntest∑
i=1

|ŷi − yi |
yi

The Symmetric Mean Absolute Percentage Error (sMAPE) is
given by,

sMAPE =
1
n

Ntest∑
i=1

|ŷi − yi |
|ŷi |+ |yi |

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 29 / 119

Evaluation Metrics Regression Problems

Relative Error Metrics (cont.)

The Correlation between the predictions and the true values (ρŷ ,y)
is given by,

ρŷ ,y =

∑Ntest
i=1 (ŷi − ¯̂y)(yi − ȳ)√∑Ntest

i=1 (ŷi − ¯̂y)2
∑Ntest

i=1 (yi − ȳ)2

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 30 / 119

Evaluation Metrics Regression Problems

An Example in R

trueVals <- c(10.2,-3,5.4,3,-43,21,
32.4,10.4,-65,23)

preds <- c(13.1,-6,0.4,-1.3,-30,1.6,
3.9,16.2,-6,20.4)

mse <- mean((trueVals-preds)^2)
mse

[1] 493.991

rmse <- sqrt(mse)
rmse

[1] 22.22591

mae <- mean(abs(trueVals-preds))
mae

[1] 14.35

nmse <- sum((trueVals-preds)^2) /
sum((trueVals-mean(trueVals))^2)

nmse

[1] 0.5916071

nmae <- sum(abs(trueVals-preds)) /
sum(abs(trueVals-mean(trueVals)))

nmae

[1] 0.65633

mape <- mean(abs(trueVals-preds)/trueVals)
mape

[1] 0.290773

smape <- 1/length(preds) * sum(abs(preds - trueVals) /
(abs(preds)+abs(trueVals)))

smape

[1] 0.5250418

corr <- cor(trueVals,preds)
corr

[1] 0.6745381

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 31 / 119

Linear Discriminant

Linear Discriminant

The Linear Discriminant

The Idea
Search for linear combinations of the variables that better separate
between the objects of the classes

The formalism for two classes - Fisher linear discriminant

Let Ĉ the pooled sample covariance matrix

Ĉ =
1

n1 + n2

(
n1Ĉ1 + n2Ĉ2

)
where ni is the number of training cases per class and Ĉi are the p × p sample covariance

matrices for each class. The sample covariance between two variables is given by

Cov(X ,Y) =
1
n

n∑
i=1

(xi − x̄)(yi − ȳ)

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 33 / 119

Linear Discriminant

The Linear Discriminant (cont.)

The formalism (cont.)

The following is the score of the separation provided by a
p-dimensional vector w,

Sw =
wT µ̂1 −wT µ̂2

wT Ĉw
Given this score the goal is to find the vector w that maximizes it.
There is a solution for this maximization problem given by,

ŵlda = Ĉ−1(µ̂1 − µ̂2)

Canonical discriminant functions extend the idea for more than
two classes

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 34 / 119

Linear Discriminant

Canonical Discriminant Functions

Example

library(MASS)
data(iris)
lda(Species ~ ., iris)

Call:
lda(Species ~ ., data = iris)
##
Prior probabilities of groups:
setosa versicolor virginica
0.3333 0.3333 0.3333
##
Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026
##
Coefficients of linear discriminants:
LD1 LD2
Sepal.Length 0.8294 0.0241
Sepal.Width 1.5345 2.1645
Petal.Length -2.2012 -0.9319
Petal.Width -2.8105 2.8392
##
Proportion of trace:
LD1 LD2
0.9912 0.0088

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 35 / 119

Linear Discriminant

Using LDA for prediction in R

sp <- sample(1:150,100)
tr <- iris[sp,]
ts <- iris[-sp,]
l <- lda(Species ~ ., tr)
preds <- predict(l,ts)
(mtrx <- table(preds$class,ts$Species))

##
setosa versicolor virginica
setosa 16 0 0
versicolor 0 18 0
virginica 0 1 15

(err <- 1-sum(diag(mtrx))/sum(mtrx))

[1] 0.02

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 36 / 119

Hands on Linear Discriminants

Hands on LDAs - the Vehicle data set
The data set Vehicle is available in package mlbench. Load it and
explore its help page to grab a minimal understanding of the data and then
answer the following questions:

1 Obtain a random split of the data into two sub-sets using the
proportion 80%-20%.

2 Obtain a linear discriminant using the larger set.
3 Obtain the predictions of the obtained model on the smaller set.
4 Obtain a confusion matrix of the predictions and calculate the

respective accuracy.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 37 / 119

Multiple Linear Regression

Multiple Linear Regression

Multiple Linear Regression

Multiple linear regression is probably the most used statistical
method
It is one of the many possible approaches to the multiple
regression problem where given a training data set
D = {〈xi , yi〉}ni=1 we want to obtain an approximation of the
unknown regression function f () that maps the predictors values
into a target continuous variable value.
In matrix notation we have D = X|Y, where X is a matrix n × p,
and Y is a matrix n × 1.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 39 / 119

Multiple Linear Regression

Multiple Linear Regression (cont.)

A regression model rD(.) can be seen as a function that transforms
a vector of values of the predictors, x, into a real number, Y . This
model is an approximation of the unknown f () function.
Regression models assume the following relationship,
yi = r(β,xi) + εi , where r(β,xi) is a regression model with
parameters β and εi are observation errors.
The goal of a learning method is to obtain the model parameters β
that minimize a certain preference criterion.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 40 / 119

Multiple Linear Regression

Multiple Linear Regression (cont.)

In the case of multiple linear regression the functional form that is
assumed is the following:

Y = β0 + β1 · X1 + · · ·+ βp · Xp

The goal is to find the vector of parameters β that minimizes the
sum of the squared errors∑n

i=1(yi − (β0 + β1 · X1 + · · ·+ βp · Xp))2

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 41 / 119

Multiple Linear Regression

Multiple Linear Regression
Pros and Cons

Well-known and over-studied topic with many variants of this
simple methodology (e.g. Drapper and Smith, 1981)
Simple and effective approach when the “linearity” assumption is
adequate to the data.
Form of the model is intuitive - a set of additive effects of each
variable towards the prediction
Computationally very efficient
Too strong assumptions on the shape of the unknown regression
function

Drapper and Smith (1981): Applied Regression Analysis, 2nd edition. Wiley Series in Probability

and Mathematical Statistics.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 42 / 119

Multiple Linear Regression

Obtaining Multiple Linear Regression Models in R

library(DMwR2)
data(algae)
algae <- algae[-c(62,199),] # the 2 incomplete samples
clean.algae <- knnImputation(algae) # lm() does not handle NAs!
la1 <- lm(a1 ~ .,clean.algae[,1:12])
la1

##
Call:
lm(formula = a1 ~ ., data = clean.algae[, 1:12])
##
Coefficients:
(Intercept) seasonspring seasonsummer seasonwinter sizemedium
42.942055 3.726978 0.747597 3.692955 3.263728
sizesmall speedlow speedmedium mxPH mnO2
9.682140 3.922084 0.246764 -3.589118 1.052636
Cl NO3 NH4 oPO4 PO4
-0.040172 -1.511235 0.001634 -0.005435 -0.052241
Chla
-0.088022

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 43 / 119

Multiple Linear Regression

Obtaining Multiple Linear Regression Models in R
(cont.)
summary(la1)

##
Call:
lm(formula = a1 ~ ., data = clean.algae[, 1:12])
##
Residuals:
Min 1Q Median 3Q Max
-37.679 -11.893 -2.567 7.410 62.190
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.942055 24.010879 1.788 0.07537 .
seasonspring 3.726978 4.137741 0.901 0.36892
seasonsummer 0.747597 4.020711 0.186 0.85270
seasonwinter 3.692955 3.865391 0.955 0.34065
sizemedium 3.263728 3.802051 0.858 0.39179
sizesmall 9.682140 4.179971 2.316 0.02166 *
speedlow 3.922084 4.706315 0.833 0.40573
speedmedium 0.246764 3.241874 0.076 0.93941
mxPH -3.589118 2.703528 -1.328 0.18598
mnO2 1.052636 0.705018 1.493 0.13715
Cl -0.040172 0.033661 -1.193 0.23426
NO3 -1.511235 0.551339 -2.741 0.00674 **
NH4 0.001634 0.001003 1.628 0.10516
oPO4 -0.005435 0.039884 -0.136 0.89177
PO4 -0.052241 0.030755 -1.699 0.09109 .
Chla -0.088022 0.079998 -1.100 0.27265

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 17.65 on 182 degrees of freedom
Multiple R-squared: 0.3731,Adjusted R-squared: 0.3215
F-statistic: 7.223 on 15 and 182 DF, p-value: 2.444e-12

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 44 / 119

Multiple Linear Regression

The Diagnostic Information of the summary() Call

Distribution of the residuals (errors) of the model - should have
mean zero and should be normally distributed and as small as
possible
Estimate of each coefficient and respective standard error
Test of the hypothesis that each coefficient is null, i.e. H0 : βi = 0

Uses a t-test
Calculates a t-value as βi/sβi

Presents a column (Pr(>t)) with the level at which the hypothesis is
rejected. A value of 0.0001 would mean that we are 99.99%
confident that the coefficient is not null
Coefficients for which we can reject the hypothesis are tagged with
a symbol

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 45 / 119

Multiple Linear Regression

The Diagnostic Information of the summary() Call
(cont.)

We are also given the R2 coefficients (multiple and adjusted).
These coefficients indicate the degree of fit of the model to the
data, i.e. the proportion of variance explained by the model.
Values near 1 (100%) are better. The adjusted coefficient is more
demanding as it takes into account the size of the model
Finally, there is also a test of the hypothesis that there is no
dependence of the target variable on the predictors, i.e.
H0 : β1 = β2 = · · · = βp = 0. The F -statistic is used with this
purpose. R provides the confidence level at which we are sure to
reject this hypothesis. A p-level of 0.0001 means that we are
99.99% confident that the hypothesis is not true.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 46 / 119

Multiple Linear Regression

Simplifying the Linear Model
final.la1 <- step(la1)

summary(final.la1)

##
Call:
lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[,
1:12])
##
Residuals:
Min 1Q Median 3Q Max
-28.874 -12.732 -3.741 8.424 62.926
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 57.28555 20.96132 2.733 0.00687 **
sizemedium 2.80050 3.40190 0.823 0.41141
sizesmall 10.40636 3.82243 2.722 0.00708 **
mxPH -3.97076 2.48204 -1.600 0.11130
Cl -0.05227 0.03165 -1.651 0.10028
NO3 -0.89529 0.35148 -2.547 0.01165 *
PO4 -0.05911 0.01117 -5.291 3.32e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 17.5 on 191 degrees of freedom
Multiple R-squared: 0.3527,Adjusted R-squared: 0.3324
F-statistic: 17.35 on 6 and 191 DF, p-value: 5.554e-16

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 47 / 119

Multiple Linear Regression

Using the Models for Prediction

clean.test.algae <- knnImputation(test.algae,
k = 10, distData = clean.algae[, 1:11])

preds <- predict(final.la1,clean.test.algae)
mean((preds-algae.sols$a1)^2)

[1] 296.0934

But there are no negative algae
frequencies!...

plot(algae.sols$a1,preds,main='Errors Scaterplot',
ylab='Predicted Values',xlab='True Values')

abline(0,1,col='red',lty=2)

●

●

●●

● ●
●

● ●

●

●

●

●● ●

●

●

●

●●

●●

●
●

●
●

●

●

●●
●

●

● ●

●
● ● ●

●● ●

●●●

●

●

●
●

●

●
●

●

●
●

●

●

●● ●● ●

●
●●

●

●●

●●

●
●

●

●

●

●

●

●
●

● ●

●●

● ●

●

● ●
●
●
●

●● ●
●

●
●

● ●
●
● ●

●●

●

●

●

●

●● ●●
● ●

●

● ●
●● ●

●
●

●

●
●

●

●

●●

●

●

●●
●●●

●

●

●
●●

0 20 40 60 80

−
60

−
40

−
20

0
20

40

Errors Scaterplot

True Values

P
re

di
ct

ed
 V

al
ue

s

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 48 / 119

Support Vector Machines

Support Vector Machines (SVMs)

A Bit of History...

SVM’s were introduced in 1992 at the COLT-92 conference
They gave origin to a new class of algorithms named kernel
machines
Since then there has been a growing interest on these methods
More information may be obtained at
www.kernel-machines.org

A good reference on SVMs:
N. Cristianini and J. Shawe-Taylor: An introduction to Support
Vector Machines. Cambridge University Press, 2000.
SVMs have been applied with success in a wide range of areas
like: bio-informatics, text mining, hand-written character
recognition, etc.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 50 / 119

www.kernel-machines.org

Support Vector Machines (SVMs) The Basic Idea

Two Linearly Separable Classes

b

w

Class , y= +1

Class , y = −1

X2

X1

Obtain a linear separation of the cases (binary classification
problems)
Very simple and effective for linearly separable problems
Most real-world problems are not linearly separable!

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 51 / 119

Support Vector Machines (SVMs) The Basic Idea

The Basic Idea of SVMs

Map the original data into a new space of variables with very high
dimension.
Use a linear approximation on this new input space.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 52 / 119

Support Vector Machines (SVMs) The Basic Idea

The Idea in a Figure

Map the original data into a new (higher dimension) coordinates
system where the classes are linearly separable

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 53 / 119

Support Vector Machines (SVMs) The Separating Hyperplane

Maximum Margin Hyperplane

Class , y= +1

Class , y = −1

X2

X1

Class , y= +1

Class , y = −1

X2

X1

There is an infinite number of
hyperplanes separating the two
classes!
Which one should we choose?!
We want the one that ensures a better
classification accuracy on unseen data
SVMs approach this problem by
searching for the maximum margin
hyperplane

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 54 / 119

Support Vector Machines (SVMs) The Separating Hyperplane

The Support Vectors

Class , y= +1

Class , y = −1

X2

X1

H1

H2

All cases that fall on the hyperplanes H1
and H2 are called the support vectors.

Removing all other cases would not
change the solution!

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 55 / 119

Support Vector Machines (SVMs) The Separating Hyperplane

The Optimal Hyperplane

SVMs use quadratic optimization algorithms to find the optimal
hyperplane that maximizes the margin that separates the cases
from the 2 classes
Namely, these methods are used to find a solution to the following
equation,

LD =
n∑

i=1

αi −
1
2

n∑
i,j

αiαjyiyj(xi · xj)

Subject to :

αi ≥ 0∑
i

αiyi = 0

In the found solution, the αi ’s > 0 correspond to the support
vectors that represent the optimal solution

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 56 / 119

Support Vector Machines (SVMs) The Problem of Linear Separability

Recap

Most real world problems are not linearly separable
SVMs solve this by “moving” into a extended input space where
classes are already linearly separable
This means the maximum margin hyperplane needs to be found
on this new very high dimension space

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 57 / 119

Support Vector Machines (SVMs) The Problem of Linear Separability

The Kernel trick

The solution to the optimization equation involves dot products
that are computationally heavy on high-dimensional spaces
It was demonstrated that the result of these complex calculations
is equivalent to the result of applying certain functions (the kernel
functions) in the space of the original variables.

The Kernel Trick
Instead of calculating the dot products in a high dimensional space,
take advantage of the proof that K (x, z) = φ(x) · φ(z) and simply
replace the complex dot products by these simpler and efficient
calculations

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 58 / 119

Support Vector Machines (SVMs) The Problem of Linear Separability

Summary of the SVMs Method

As problems are usually non-linear on the original feature space,
move into a high-dimension space where linear separability is
possible
Find the optimal separating hyperplane on this new space using
quadratic optimization algorithms
Avoid the heavy computational costs of the dot products using the
kernel trick

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 59 / 119

Support Vector Machines (SVMs) Multiple Classes

How to handle more than 2 classes?

Solve several binary classification tasks
Essentially find the support vectors that separate each class from
all others

The Algorithm

Given a m classes task
Obtain m SVM classifiers, one for each class
Given a test case assign it to the class whose separating
hyperplane is more distant from the test case

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 60 / 119

Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R
The package e1071

library(e1071)
data(Glass,package='mlbench')
tr <- Glass[1:200,]
ts <- Glass[201:214,]
s <- svm(Type ~ .,tr)
predict(s,ts)

201 202 203 204 205 206 207 208 209 210 211 212 213 214
7 2 7 7 7 7 7 2 7 7 7 7 7 7
Levels: 1 2 3 5 6 7

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 61 / 119

Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R (2)
The package e1071

ps <- predict(s,ts)
table(ps,ts$Type)

##
ps 1 2 3 5 6 7
1 0 0 0 0 0 0
2 0 0 0 0 0 2
3 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 12

mc <- table(ps,ts$Type)
error <- 100*(1-sum(diag(mc))/sum(mc))
error

[1] 14.28571

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 62 / 119

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression

Vapnik (1995) proposed the notion of ε support vector regression
The goal in ε-SV Regression is to find a function f (x) that has at
most ε deviation from the given training cases
In other words we do not care about errors smaller than ε

V. Vapnik (1995). The Nature of Statistical Learning Theory. Springer.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 63 / 119

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

ε-SV Regression uses the following error metric,

|ξ|ε =

{
0 if |ξ| ≤ ε
|ξ| − ε otherwise

x

x
x x

x x x x

x x

x 0

−ε

−ε

+ε

+ε

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 64 / 119

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

The theoretical development of this idea leads to the following
optimization problem,

Minimize :
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i)

Subject to :


yi −w · x− b ≤ ε+ ξi
w · x + b − yi ≤ ε+ ξ∗i
ξi , ξ

∗
i ≥ 0

where C corresponds to the cost to pay for each violation of the
error limit ε

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 65 / 119

Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

As within classification we use the kernel trick to map a non-linear
problem into a high dimensional space where we solve the same
quadratic optimization problem as in the linear case
In summary, by the use of the |ξ|ε loss function we reach a very
similar optimization problem to find the support vectors of any
non-linear regression problem.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 66 / 119

Support Vector Machines (SVMs) SVMs for Regression

SVMs for regression in R

library(e1071)
data(Boston,package='MASS')
set.seed(1234)
sp <- sample(1:nrow(Boston),354)
tr <- Boston[sp,]
ts <- Boston[-sp,]
s <- svm(medv ~ .,tr,cost=10,epsilon=0.02)
preds <- predict(s,ts)
mean((ts$medv-preds)^2)

[1] 13.82111

plot(ts$medv,preds,main='Errors Scaterplot',
ylab='Predictions',xlab='True')

abline(0,1,col='red',lty=2)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

10 20 30 40 50

10
20

30
40

50

Errors Scaterplot

True

P
re

di
ct

io
ns

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 67 / 119

Hands On SMVs

Hands on SVMs

The file Wine.Rdata contains 2 data frames with data about the
quality of “green” wines: i) redWine and ii) whiteWine. Each of
these data sets has information on a series of wine tasting sessions to
“green” wines (both red and white). For each wine sample several
physico-chemical properties of the wine sample together with a quality
score assigned by a committee of wine experts (variable quality).

1 Obtain and SVM for forecasting the quality of the red variant of
“green” wines

2 Split the data set in two parts: one with 70% of the samples and
the other with the remaining 30%. Obtain an SVM with the first
part and apply it to the second. What was the resulting mean
absolute error?

3 Using the round() function, round the predictions obtained in the
previous question to the nearest integer. Calculate the error rate
of the resulting integers when compared to the true values

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 68 / 119

Hands on Linear Regression

Hands on Linear Regression - the Boston data set
The data set Boston is available in package MASS. Load it and explore
its help page to grab a minimal understanding of the data and then answer
the following questions:

1 Obtain a random split of the data into two sub-sets using the
proportion 70%-30%.

2 Obtain a multiple linear regression model using the larger set.
3 Check the diagnostic information provided for the model.
4 Obtain the predictions of the obtained model on the smaller set.
5 Obtain the mean squared error of these predictions and also an error

scatter plot.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 69 / 119

Tree-based Models

Tree-based Models

Tree-based Models

Tree-based models (both classification and regression trees) are
models that provide as result a model based on logical tests on
the input variables
These models can be seen as a partitioning of the input space
defined by the input variables
This partitioning is defined based on carefully chosen logical tests
on these variables
Within each partition all cases are assigned the same prediction
(either a class label or a numeric value)
Tree-based models are known by their (i) computational efficiency;
(ii) interpretable models; (iii) embedded variable selection; (iv)
embedded handling of unknown variable values and (v) few
assumptions on the unknown function being approximated

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 71 / 119

Tree-based Models

An Example of Trees Partitioning

Example of a Regression Tree

x2 < 3.1

x1 < 3.4

x2 < 6.1

x1 >= 6.6

x2 >= 3.1

x1 >= 3.4

x2 >= 6.1

x1 < 6.6

y = 3.6
n=20 100%

y = 0.75
n=2 10%

y = 4
n=18 90%

y = 2.2
n=6 30%

y = 4.8
n=12 60%

y = 3.8
n=7 35%

y = 2.3
n=3 15%

y = 4.9
n=4 20%

y = 6.3
n=5 25%

y = 0.75

y = 2.2

y = 2.3y = 4.9

y = 6.3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

4

6

8

2 4 6 8
x1

x2

Partitioning of the Predictors' Space

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 72 / 119

Tree-based Models

An Example of a Classification Tree

Cell.siz = 1,2

Cell.sha = 1,2

Cell.siz = 3,4,5,6,7,8,9,10

Cell.sha = 3,4,5,6,7,8,9,10

Cell.siz = 1,2

Cell.sha = 1,2

Cell.siz = 3,4,5,6,7,8,9,10

Cell.sha = 3,4,5,6,7,8,9,10

benign
458 241

100%

benign
417 12

61%

malignan
41 229

39%

benign
18 5
3%

malignan
23 224

35%

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 73 / 119

Tree-based Models

An Example of a Regression Tree

rm < 6.9

lstat >= 14

crim >= 7 dis >= 1.4

rm < 6.5

rm < 7.4

crim >= 7.4 ptratio >= 18

rm >= 6.9

lstat < 14

crim < 7 dis < 1.4

rm >= 6.5

rm >= 7.4

crim < 7.4 ptratio < 18

23
n=506 100%

20
n=430 85%

15
n=175 35%

12
n=74 15%

17
n=101 20%

23
n=255 50%

23
n=250 49%

22
n=195 39%

27
n=55 11%

46
n=5 1%

37
n=76 15%

32
n=46 9%

14
n=3 1%

33
n=43 8%

45
n=30 6%

33
n=3 1%

46
n=27 5%

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 74 / 119

Tree-based Models

Tree-based Models

Most tree-based models are binary trees with logical tests on each
node
Tests on numerical predictors take the form xi < α, with α ∈ <
Tests on nominal predictors take the form xj ∈ {v1, · · · , vm}
Each path from the top (root) node till a leaf can be seen as a
logical condition defining a region of the predictors space.
All observations “falling” on a leaf will get the same prediction

the majority class of the training cases in that leaf for classification
trees
the average value of the target variable for regression trees

The prediction for a new test case is easily obtained by following a
path from the root till a leaf according to the case predictors values

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 75 / 119

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm

1: function RECURSIVEPARTITIONING(D)
Input : D, a sample of cases, {〈xi,1, · · · , xi,p, yi〉}Ntrain

i=1
Output : t , a tree node

2: if <TERMINATION CRITERION> then
3: Return a leaf node with the majority class in D
4: else
5: t ← new tree node
6: t .split ← <FIND THE BEST PREDICTORS TEST>
7: t .leftNode← RecursivePartitioning(x ∈ D : x � t .split)
8: t .rightNode← RecursivePartitioning(x ∈ D : x 2 t .split)
9: Return the node t

10: end if
11: end function

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 76 / 119

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm - an example

Weather Temp. Humidity Wind Decision
rain 26 high 15 dontPlay
rain 35 normal 102 dontPlay
overcast 27 high 99 Play
overcast 26 normal 97 Play
rain 12 high 120 Play
overcast 21 normal 74 Play
sun 30 normal 89 dontPlay
sun 19 high 111 dontPlay
sun 14 normal 81 Play
overcast 10 normal 70 Play
rain 11 normal 95 Play
rain 15 high 94 Play
sun 19 high 41 dontPlay
sun 35 normal 38 dontPlay
rain 29 high 79 dontPlay
rain 26 normal 75 dontPlay
overcast 30 high 108 Play
overcast 30 normal 16 Play
rain 33 high 96 Play
overcast 30 normal 13 Play
sun 32 normal 55 dontPlay
sun 11 high 108 dontPlay
sun 33 normal 103 Play
overcast 14 normal 32 Play
rain 28 normal 44 Play
rain 21 high 84 Play
sun 29 high 105 dontPlay
sun 15 normal 63 dontPlay

Weather

{rain}

Weather Temp Humidity Wind Decision

rain 26 high 15 dontPlay

rain 35 normal 102 dontPlay

rain 12 high 120 Play

rain 11 normal 95 Play

rain 15 high 94 Play

rain 29 high 79 dontPlay

rain 26 normal 75 dontPlay

rain 33 high 96 Play

rain 28 normal 44 Play

rain 21 high 84 Play

Weather Temp Humidity Wind Decision

overcast 27 high 99 Play

overcast 26 normal 97 Play

overcast 21 normal 74 Play

overcast 10 normal 70 Play

overcast 30 high 108 Play

overcast 30 normal 16 Play

overcast 30 normal 13 Play

overcast 14 normal 32 Play

sun 30 normal 89 dontPlay

sun 19 high 111 dontPlay

sun 14 normal 81 Play

sun 19 high 41 dontPlay

sun 35 normal 38 dontPlay

sun 32 normal 55 dontPlay

sun 11 high 108 dontPlay

sun 33 normal 103 Play

sun 29 high 105 dontPlay

sun 15 normal 63 dontPlay

{overcast, sun}

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 77 / 119

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm (cont.)

Key Issues of the RP Algorithm

When to stop growing the tree - termination criterion
Which value to put on the leaves
How to find the best split test

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 78 / 119

Tree-based Models Building a tree-based model

The Recursive Partitioning Algorithm (cont.)

When to Stop?

Too large trees tend to overfit the training data and will perform badly
on new data - a question of reliability of error estimates

Which value?
Should be the value that better represents the cases in the leaves

What are the good tests?

A test is good if it is able to split the cases of sample in such a way that
they form partitions that are “purer” than the parent node

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 79 / 119

Tree-based Models Building a tree-based model

Classification vs Regression Trees

They are both grown using the Recursive Partitioning algorithm
The main difference lies on the used preference criterion
This criterion has impact on:

The way the best test for each node is selected
The way the tree avoids over fitting the training sample

Classification trees typically use criteria related to error rate (e.g.
the Gini index, the Gain ratio, entropy, etc.)
Regression trees typically use the least squares error criterion

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 80 / 119

Tree-based Models Building a tree-based model

Classification and Regression Trees in R
The package rpart

Package rpart implements most of the ideas of the system
CART that was described in the book “Classification and
Regression Trees” by Breiman and colleagues
This system is able to obtain classification and regression trees.
For classification trees it uses the Gini score to grow the trees and
it uses Cost-Complexity post-pruning to avoid over fitting
For regression trees it uses the least squares error criterion and it
uses Error-Complexity post-pruning to avoid over fitting
On package DMwR2 you may find function rpartXse() that
grows and prunes a tree in a way similar to CART using the above
infra-structure

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 81 / 119

Tree-based Models Building a tree-based model

Illustration using a classification task - Glass

library(DMwR2)
library(rpart.plot)
data(Glass,package='mlbench')
ac <- rpartXse(Type ~ .,Glass)
prp(ac,type=4,extra=101)

Ba < 0.34

Al < 1.4

Ca < 10 Mg >= 2.3

 >= 0.34

 >= 1.4

 >= 10 < 2.3

2
70 76 17 13 9 29

100%

2
69 75 17 12 9 3

86%

1
63 31 13 1 3 2

53%

1
63 21 13 0 2 2

47%

2
0 10 0 1 1 0

6%

2
6 44 4 11 6 1

34%

2
6 41 4 0 1 0

24%

5
0 3 0 11 5 1

9%

7
1 1 0 1 0 26

14%

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 82 / 119

Tree-based Models Building a tree-based model

How to use the trees for Predicting?

tr <- Glass[1:200,]
ts <- Glass[201:214,]
ac <- rpartXse(Type ~ .,tr)
predict(ac,ts)

1 2 3 5 6 7
201 0 0.0000000 0.0000000 0.09090909 0 0.9090909
202 0 0.3636364 0.6363636 0.00000000 0 0.0000000
203 0 0.0000000 0.0000000 0.09090909 0 0.9090909
204 0 0.0000000 0.0000000 0.09090909 0 0.9090909
205 0 0.0000000 0.0000000 0.09090909 0 0.9090909
206 0 0.0000000 0.0000000 0.09090909 0 0.9090909
207 0 0.0000000 0.0000000 0.09090909 0 0.9090909
208 0 0.0000000 0.0000000 0.09090909 0 0.9090909
209 0 0.0000000 0.0000000 0.09090909 0 0.9090909
210 0 0.0000000 0.0000000 0.09090909 0 0.9090909
211 0 0.0000000 0.0000000 0.09090909 0 0.9090909
212 0 0.0000000 0.0000000 0.09090909 0 0.9090909
213 0 0.0000000 0.0000000 0.09090909 0 0.9090909
214 0 0.0000000 0.0000000 0.09090909 0 0.9090909

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 83 / 119

Tree-based Models Building a tree-based model

How to use the trees for Predicting? (cont.)

predict(ac,ts,type='class')

201 202 203 204 205 206 207 208 209 210 211 212 213 214
7 3 7 7 7 7 7 7 7 7 7 7 7 7
Levels: 1 2 3 5 6 7

ps <- predict(ac,ts,type='class')
table(ps,ts$Type)

##
ps 1 2 3 5 6 7
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 1
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 13

mc <- table(ps,ts$Type)
err <- 100*(1-sum(diag(mc))/sum(mc))
err

[1] 7.142857

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 84 / 119

Tree-based Models Building a tree-based model

Illustration using a regression task
Forecasting Normalized Losses

library(DMwR2)
library(rpart.plot)
load('carInsurance.Rdata')
d <- ins[,-1]
ar <- rpartXse(normLoss ~ .,d)
prp(ar,type=4,extra=101)

make = chv,hnd,mr−,sbr,tyt,vlk,vlv

height >= 53

highwayM >= 30

driveWhe = fwd

aud,bmw,ddg,jgr,mzd,mts,nss,pgt,ply,prs,sab

 < 53

 < 30

4wd,rwd

122
n=164 100%

104
n=83 51%

91
n=59 36%

138
n=24 15%

121
n=18 11%

188
n=6 4%

140
n=81 49%

129
n=59 36%

169
n=22 13%

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 85 / 119

Tree-based Models Building a tree-based model

How to use the trees for Predicting?

tr <- d[1:150,]
ts <- d[151:205,]
arv <- rpartXse(normLoss ~ .,tr)
preds <- predict(arv,ts)
mae <- mean(abs(preds-ts$normLoss),na.rm=T)
mae

[1] 57.37964

mape <- mean(abs(preds-ts$normLoss)/ts$normLoss,na.rm=T)
mape

[1] 0.607296

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 86 / 119

Hands on Tree-based Models

Hands on Tree-based Models - the Wines data
File Wine.Rdata contains two data frames with data on green wine
quality: (i) redWine and (ii) whiteWine. Each of these data sets contains
a series of tests with green wines (red and white). For each of these tests
the values of several physicochemical variables together with a quality
score assigned by wine experts (column quality).

1 Build a regression tree for the white wines data set
2 Obtain a graph of the obtained regression tree
3 Apply the tree to the data used to obtain the model and calculate the

mean squared error of the predictions
4 Split the data set in two parts: 70% of the tests and the remaining

30%. Using the larger part to obtain a regression tree and apply it to
the other part. Calculate again the mean squared error. Compare with
the previous scores and comment.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 87 / 119

Model Ensembles
and Random Forests

Model Ensembles and Random Forests Motivation

Model Ensembles

What?

Ensembles are collections of models that are used together to
address a certain prediction problem

Why? (Diettrich, 2002)

For complex problems it is hard to find a model that “explains” all
observed data.
Averaging over a set of models typically leads to significantly
better results.

Dietterich, T. G. (2002). Ensemble Learning. In The Handbook of Brain Theory and
Neural Networks, Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The MIT Press,
2002. 405-408.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 89 / 119

Model Ensembles and Random Forests Motivation

The Bias-Variance Decomposition of Prediction Error

The prediction error of a model can be split in two main
components: the bias and the variance components

The bias component is the part of the error that is due to the poor
ability of the model to fit the seen data
The variance component has to do with the sensibility of the
model to the given training data

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 90 / 119

Model Ensembles and Random Forests Motivation

The Bias-Variance Decomposition of Prediction Error

Decreasing the bias by adjusting more to the training sample will
most probably lead to a higher variance - the over-fitting
phenomenon
Decreasing the variance by being less sensitive to the given
training data will most probably have as consequence a higher
bias
In summary: there is a well-known bias-variance trade-off in
learning a prediction model

Ensembles are able to reduce both components of the error

Their approach consist on applying the same algorithm to different
samples of the data and use the resulting models in a voting schema

to obtain predictions for new cases

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 91 / 119

Model Ensembles and Random Forests Random Forests

Random Forests (Breiman, 2001)

Random Forests put the ideas of sampling the cases and
sampling the predictors, together in a single method

Random Forests combine the ideas of bagging together with the
idea of random selection of predictors

Random Forests consist of sets of tree-based models where each
tree is obtained from a bootstrap sample of the original data and
uses some form of random selection of variables during tree
growth

Breiman, L. (2001): "Random Forests". Machine Learning 45 (1): 5—32.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 92 / 119

Model Ensembles and Random Forests Random Forests

Random Forests - the algorithm

For each of the k models

Draw a random sample with replacement to obtain the training set
Grow a classification or regression tree

On each node of the tree choose the best split from a randomly
selected subset m of the predictors

The trees are fully grown, i.e. no pruning is carried out

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 93 / 119

Model Ensembles and Random Forests Random Forests

Random Forests in R
The package randomForest

library(randomForest)
data(Boston,package="MASS")
samp <- sample(1:nrow(Boston),354)
tr <- Boston[samp,]
ts <- Boston[-samp,]
m <- randomForest(medv ~ ., tr)
ps <- predict(m,ts)
mean(abs(ts$medv-ps))

[1] 2.190258

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 94 / 119

Model Ensembles and Random Forests Random Forests

A classification example

data(Glass,package='mlbench')
set.seed(1234)
sp <- sample(1:nrow(Glass),150)
tr <- Glass[sp,]
ts <- Glass[-sp,]
m <- randomForest(Type ~ ., tr,ntree=3000)
ps <- predict(m,ts)
table(ps,ts$Type)

##
ps 1 2 3 5 6 7
1 13 5 3 0 0 1
2 2 18 0 3 0 2
3 0 0 1 0 0 0
5 0 0 0 4 0 0
6 0 1 0 0 3 0
7 0 0 0 0 0 8

mc <- table(ps,ts$Type)
err <- 100*(1-sum(diag(mc))/sum(mc))
err

[1] 26.5625

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 95 / 119

Model Ensembles and Random Forests Random Forests

Other Uses of Random Forests
Variable Importance

data(Boston,package='MASS')
library(randomForest)
m <- randomForest(medv ~ ., Boston,

importance=T)
importance(m)

%IncMSE IncNodePurity
crim 16.001604 2511.3914
zn 2.719681 184.4274
indus 11.992644 2501.0269
chas 4.496731 208.3667
nox 18.440180 2702.4705
rm 37.873226 13288.7533
age 11.793865 1198.7370
dis 17.957678 2423.8487
rad 7.259293 320.4829
tax 14.721102 1157.0856
ptratio 15.715445 2716.8744
black 11.498495 826.2531
lstat 29.172401 11871.6578

varImpPlot(m,main="Feature Relevance Scores")

zn
chas
rad
black
age
indus
tax
ptratio
crim
dis
nox
lstat
rm

●

●

●

●

●

●

●

●

●

●

●

●

●

5 15 25 35
%IncMSE

zn
chas
rad
black
tax
age
dis
indus
crim
nox
ptratio
lstat
rm

●

●

●

●

●

●

●

●

●

●

●

●

●

0 4000 10000
IncNodePurity

Feature Relevance Scores

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 96 / 119

Hands on Random Forests

Hands on Linear Regression and Random Forests
the Algae data set

Load in the data set algae from package DMwR2 and answer the
following questions:

1 How would you obtain a random forest to forecast the value of
alga a4

2 Repeat the previous exercise but now using a linear regression
model. Try to simplify the model using the step() function.

3 Obtain the predictions of the two previous models for the data
used to obtain them. Draw a scatterplot comparing these
predictions

4 The data frame named test.algae contains a test set with
some extra 140 water samples for which we want predictions. Use
the previous two models to obtain predictions for a4 on these new
samples. Check what happened to the test cases with NA’s. Fill-in
the NA’s on the test set and repeat the experiment.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 97 / 119

Handling Imbalanced Distributions
work by Paula Branco, Luis Torgo and Rita Ribeiro

Hands on Random Forests Imbalanced Distributions

The Problem of Imbalanced Domains

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 99 / 119

Hands on Random Forests Imbalanced Distributions

The Problem of Imbalanced Domains

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 100 / 119

Hands on Random Forests Imbalanced Distributions

Utility-based Learning

Predictive tasks
Goal: obtain a good approximation h of an unknown function Y = f (X1,X2, · · · ,Xp)
Use a training set D = {〈xi , yi〉}ni=1

Utility-based Learning Problem

1 the user assigns a non-uniform importance to the predictive performance of the
model h across the target variable domain

Imbalanced Domains Problem

1 the user assigns a non-uniform importance to the predictive performance of the
model h across the target variable domain;

2 |important cases| << |normal cases|

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 101 / 119

Hands on Random Forests Imbalanced Distributions

What is a non-uniform importance?

If we have the full information available:
cost/utility matrix (classification)
utility surfaces (regression)

If we only have partial or informal information:
a relevance function
estimate information from data distribution

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 102 / 119

Hands on Random Forests Imbalanced Distributions

Utility Matrices and Surfaces

2

3

4

5

6

2

3

4

5

6

−1.0

−0.5

0.0

0.5

1.0

Uφ
splines Utility Surface

Y
Ŷ

Uφ
splines (Ŷ , Y)

−1.0 −0.5 0.0 0.5 1.0

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 103 / 119

Hands on Random Forests Imbalanced Distributions

Relevance Function and Information Estimated from
Data

1 2 3 5 6 7

0
20

40
60

80

● ●

●

●

●

●

0.13 0.12

0.53

0.69

1

0.31

0.32

0.36

0.08
0.06

0.04

0.14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

φ(
)

fr
eq

ue
nc

y

Glass Classes

Figure: Classification Example

0.
00

0.
02

0.
04

0.
06

D
en

si
ty

φ(
Y

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

 0% 46%
Y

Figure: Regression Example
© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 104 / 119

Hands on Random Forests Imbalanced Distributions

Main Challenges

Estimation of Utility Information: How can we obtain a utility
surface/matrix when only partial or informal information is
available?

Modelling Approaches: How can we build models that take into
consideration the domain specific preferences?

Performance Assessment Measures: How can we evaluate the
performance of the models considering the user
preferences?

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 105 / 119

Hands on Random Forests Package UBL

Utility-based Learning in R - UBL Package

Package that implements most existing methods to handle
imbalanced distributions and utilit-based learning approaches
Available on CRAN:
https://CRAN.R-project.org/package=UBL

Installation as any R package:

install.packages("UBL")

Development versions available on github:
https://github.com/paobranco/UBL

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 106 / 119

https://CRAN.R-project.org/package=UBL
https://github.com/paobranco/UBL

Hands on Random Forests Package UBL

Uses of the package UBL

1 For deriving utility surfaces;

2 For optimizing a utility surface/matrix;

3 For learning in imbalanced domains.

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 107 / 119

Hands on Random Forests Package UBL

Addressing Imbalancved Domains

Two main approaches:

1 Changing the learning algorithms to cope with the imbalance

2 Changing the original data distribution to facilitate the task of
the algorithms - known as resampling approaches

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 108 / 119

Hands on Random Forests Package UBL

Addressing Imbalanced Domains Problems with UBL
Classification

Removing or Adding Cases

Random Under-/Over-sampling
Tomek Links
Condensed Nearest Neighbors (CNN)
One-Sided Selection (OSS)
Edited Nearest Neighbors (ENN)
Neighborhood CLeaning rule (NCL)
Importance Sampling
Under-sampling with Neighborhood Bias

Generating New Synthetic Cases

SMOTE
SMOTE with Neighborhood Bias
Introduction of Gaussian Noise

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 109 / 119

Hands on Random Forests Package UBL

Addressing Imbalanced Domains Problems with UBL
Regression

Removing or Adding Cases

Random Under-sampling
Random Over-sampling
Importance Sampling
Under-sampling with neighborhood Bias

Generating New Synthetic Cases

SMOTER
SMOTER with Neighborhood Bias
Introduction of Gaussian Noise
SMOGN

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 110 / 119

Hands on Random Forests Package UBL

A simple (classification) example

library(UBL) # Loading our infra-structure
library(e1071) # package containing the svm we will use
data(ImbC) # The synthetic data set we are going to use
summary(ImbC) # Summary of the ImbC data

X1 X2 Class
Min. :-13.5843 cat :300 normal:859
1st Qu.: -2.6930 dog :400 rare1 : 10
Median : -0.1592 fish:300 rare2 :131
Mean : -0.1064
3rd Qu.: 2.4633
Max. : 12.7836

table(ImbC$Class)

##
normal rare1 rare2
859 10 131

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 111 / 119

Hands on Random Forests Package UBL

Obtaining a model with the original data

set.seed(123)
samp <- sample(1:nrow(ImbC), nrow(ImbC)*0.7)
train <- ImbC[samp,]
test <- ImbC[-samp,]
model <- svm(Class~., train)
preds <- predict(model,test)
table(preds, test$Class) # confusion matrix

##
preds normal rare1 rare2
normal 258 5 37
rare1 0 0 0
rare2 0 0 0

The model completely ignored the rare (and more important) classes!

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 112 / 119

Hands on Random Forests Package UBL

Changing the distribution of the original data

not using the default distance (Eucledian) because of the nominal feature
newtrain <- SmoteClassif(Class~., train, C.perc="balance", dist="HEOM")

Warning: SmoteClassif :: Nr of examples is less or equal to k.
Using k = 4 in the nearest neighbours computation in this bump.

generate a new model with the changed data
newmodel <- svm(Class~., newtrain)
preds <- predict(newmodel,test)
table(preds, test$Class)

##
preds normal rare1 rare2
normal 109 0 4
rare1 10 5 0
rare2 139 0 33

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 113 / 119

Hands on Random Forests Package UBL

Trying another method

newtrain2 <- RandOverClassif(Class~., train, C.perc="balance")
#generate a new model with the modified data set
newmodel2 <- svm(Class~., newtrain2)
preds <- predict(newmodel2, test)
table(preds, test$Class)

##
preds normal rare1 rare2
normal 133 1 4
rare1 7 4 0
rare2 118 0 33

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 114 / 119

Hands on Random Forests Package UBL

A simple (regression) example

data(ImbR)
summary(ImbR)

X1 X2 Tgt
Min. : 0.3654 Min. : 0.201 Min. :10.00
1st Qu.: 8.2821 1st Qu.: 8.246 1st Qu.:10.06
Median : 9.9811 Median :10.129 Median :10.22
Mean : 9.9418 Mean :10.078 Mean :10.98
3rd Qu.:11.7202 3rd Qu.:11.903 3rd Qu.:10.72
Max. :19.0565 Max. :19.474 Max. :23.17

set.seed(123)
samp <- sample(1:nrow(ImbR), as.integer(0.7*nrow(ImbR)))
trainD <- ImbR[samp,]
testD <- ImbR[-samp,]

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 115 / 119

Hands on Random Forests Package UBL

Obtaining a random forest with the original data

library(randomForest)
model <- randomForest(Tgt~., trainD)
preds <- predict(model, testD)

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 116 / 119

Hands on Random Forests Package UBL

Changing the distribution of the original data

using the Introduction of Gaussian Noise with the default parameters
newTrain <- GaussNoiseRegress(Tgt~., trainD)
newModel <-randomForest(Tgt~., newTrain)
newPreds <- predict(newModel, testD)

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 117 / 119

Hands on Random Forests Package UBL

Comparing the results

res <- data.frame(true=rep(testD$Tgt,2),preds=c(preds,newPreds),
model=c(rep("original",nrow(testD)),rep("resampled",nrow(testD))))

library(ggplot2)
ggplot(res, aes(x=true,y=preds,color=model)) + geom_point() + geom_abline(slope=1,intercept=0)

●
●

●● ●
●

●

●●

●

●
●
●

●● ●
●
●

●

●
●

●
●

●

●●

●

●●

● ●

●
●●● ●

●

●

●● ●
●●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●
●

●

●
●

●

●● ●
●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●●●●

●

●
●

●

●●●
● ●●●●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●● ●●
●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●
●●

●

●

●

●

●● ●
●●

●● ●

●

●●

●

●

●
●

●

●

●
●

●
●

●●
●

● ●●

●

●
●

●●

●
●●

●
●

●

●

●

●
●

●●
● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

● ● ●

●

● ●●

●

●
● ●

●●● ●

●

●
●
● ●

●

●
●

●

●

●

●

●

●
●

●●●
●●

● ●●●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●● ●

●

●
●

●

●
● ●●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●
●●

●

●

● ●
●

●

●
●
●

●

●
●

● ●

●
●●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●

●●

●

●●

●
●

●

●

●●●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●

●●

●

●

●
●

●

●

● ●●
●

●

● ●
●

●

●

●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●
● ●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

10.0

12.5

15.0

17.5

20.0

10.0 12.5 15.0 17.5 20.0 22.5

true

pr
ed

s

model

●

●

original

resampled

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 118 / 119

Hands on Random Forests Further Information

Further Information on Imbalanced Domains

P. Branco, L. Torgo, R. Ribeiro (2016): A Survey of Predictive
Modeling on Imbalanced Domains, ACM Comput. Surv., (49),
2-31, 2016
Check the vignette of package UBL for further examples

© L.Torgo (KNOYDA) Predictive Analytics Jul, 2019 119 / 119

	Introduction
	Types of Prediction Problems
	Types of Models

	Evaluation Metrics
	Classification Problems
	Regression Problems

	Linear Discriminant
	Hands on Linear Discriminants
	Multiple Linear Regression
	Support Vector Machines (SVMs)
	The Basic Idea
	The Separating Hyperplane
	The Problem of Linear Separability
	Multiple Classes
	SVMs em R
	SVMs for Regression

	Hands On SMVs
	Hands on Linear Regression
	Tree-based Models
	Building a tree-based model

	Hands on Tree-based Models
	Model Ensembles and Random Forests
	Motivation
	Random Forests

	Hands on Random Forests
	Imbalanced Distributions
	Package UBL
	Further Information

