Performance Estimation

L. Torgo

ltorgo@knoyda.com KNOYDA, Know Your Data!

Jul, 2019

Evaluation Methodologies and Comparison of Models

Performance Estimation

The setting

- Predictive task: unknown function $Y = f(\mathbf{x})$ that maps the values of a set of predictors into a target variable value (can be a classification or a regression problem)
- A (training) data set $\{\langle \mathbf{x}_i, y_i \rangle\}_{i=1}^N$, with known values of this mapping
- Performance evaluation criterion(a) metric(s) of predictive performance (e.g. error rate or mean squared error)
- How to obtain a reliable estimates of the predictive performance of any solutions we consider to solve the task using the available data set?

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

3 / 57

Performance Estimation

Resubstituition estimates

Reliability of Estimates

Resubstitution estimates

- Given that we have a data set one possible way to obtain an estimate of the performance of a model is to evaluate it on this data set
- This leads to what is known as a **resubstitution estimate** of the prediction error
- These estimates are unreliable and should not be used as they tend to be over-optimistic!

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 4 / 57

Reliability of Estimates

Resubstitution estimates (2)

- Why are they unreliable?
 - Models are obtained with the goal of optimizing the selected prediction error statistic on the given data set
 - In this context it is expected that they get good scores!
 - The given data set is just a sample of the unknown distribution of the problem being tackled
 - What we would like is to have the performance of the model on this distribution
 - As this is usually impossible the best we can do is to evaluate the model on **new samples** of this distribution

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

5 / 57

Performance Estimation

Goals of Performance Estimation

Goal of Performance Estimation

Main Goal of Performance Estimation

Obtain a **reliable estimate** of the expected prediction error of a model on the unknown data distribution

In order to be reliable it should be based on evaluation on unseen cases - a test set

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 6 / 57

Goal of Performance Estimation (2)

- Ideally we want to repeat the testing several times
- This way we can collect a series of scores and provide as our estimate the average of these scores, together with the standard error of this estimate
- In summary:
 - calculate the sample mean prediction error on the repetitions as an estimate of the true population mean prediction error
 - complement this sample mean with the standard error of this estimate

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

7 / 57

Performance Estimation

Goals of Performance Estimation

Goal of Performance Estimation (3)

■ The golden rule of Performance Estimation:

The data used for evaluating (or comparing) any models cannot be seen during model development.

LTP

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 8 / 57

Goal of Performance Estimation (4)

- An experimental methodology should:
 - Allow obtaining several prediction error scores of a model, E_1, E_2, \dots, E_k
 - Such that we can calculate a sample mean prediction error

$$\overline{E} = \frac{1}{k} \sum_{i=1}^{k} E_i$$

And also the respective standard error of this estimate

$$SE(\overline{E}) = \frac{s_E}{\sqrt{k}}$$

where s_E is the sample standard deviation of E measured as

$$\sqrt{\frac{1}{k-1}\sum_{i=1}^{k}(E_i-\overline{E})^2}$$

LTP

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

9/57

The Holdout Method

The Holdout Method and Random Subsampling

- The holdout method consists on randomly dividing the available data sample in two sub-sets - one used for training the model; and the other for testing/evaluating it
 - A frequently used proportion is 70% for training and 30% for testing

LTP

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 10 / 57

The Holdout Method (2)

- If we have a small data sample there is the danger of either having a too small test set (unreliable estimates as a consequence), or removing too much data from the training set (worse model than what could be obtained with the available data)
- We only get one prediction error score no average score nor standard error
- If we have a very large data sample this is actually the preferred evaluation method

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

11 / 57

The Holdout Method

Random Subsampling

- The Random Subsampling method is a variation of holdout method and it simply consists of repeating the holdout process several times by randomly selecting the train and test partitions
- Has the same problems as the holdout with the exception that we already get several scores and thus can calculate means and standard errors
- If the available data sample is too large the repetitions may be too demanding in computation terms

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 12 / 57

The Holdout method in R

```
library (DMwR2)
set.seed(1234)
data (Boston, package='MASS')
## random selection of the holdout
trPerc <- 0.7
sp <- sample(1:nrow(Boston), as.integer(trPerc*nrow(Boston)))
## division in two samples
tr <- Boston[sp,]
ts <- Boston[-sp,]
## obtaining the model and respective predictions on the test set
m <- rpartXse(medv ~.,tr)
p <- predict(m,ts)
## evaluation
mean((ts$medv-p)^2)</pre>
## [1] 22.1313
```


© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

13 / 57

Cross Validation

The k-fold Cross Validation Method

- The idea of k-fold Cross Validation (CV) is similar to random subsampling
- It essentially consists of *k* repetitions of training on part of the data and then test on the remaining
- The diference lies on the way the partitions are obtained

The k-fold Cross Validation Method (cont.)

Cross Validation

Leave One Out Cross Validation Method (LOOCV)

- Similar idea to k-fold Cross Validation (CV) but in this case on each iteration a single case is left out of the training set
- This means it is essentially equivalent to *n*-fold CV, where *n* is the size of the available data set

LTP

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 16 / 57

The Bootstrap Method

- Train a model on a random sample of size *n* with replacement from the original data set (of size *n*)
 - Sampling with replacement means that after a case is randomly drawn from the data set, it is "put back on the sampling bag"
 - This means that several cases will appear more than once on the training data
 - On average only 63.2% of all cases will be on the training set
- Test the model on the cases that were not used on the training set
- Repeat this process many times (typically around 200)
- The average of the scores on these repetitions is known as the ϵ_0 bootstrap estimate
- The .632 bootstrap estimate is obtained by .368 $\times \epsilon_r$ + .632 $\times \epsilon_0$, where ϵ_r is the resubstitution estimate

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

17 / 57

Bootstrap

Bootstrap in R

```
data (Boston, package='MASS')
nreps <- 200
scores <- vector("numeric", length=nreps)</pre>
n <- nrow(Boston)</pre>
set.seed(1234)
for(i in 1:nreps) {
   # random sample with replacement
  sp <- sample(n,n,replace=TRUE)</pre>
   # data splitting
   tr <- Boston[sp,]</pre>
   ts <- Boston[-sp,]
   # model learning and prediction
   m \leftarrow 1m (medv \sim ., tr)
   p <- predict(m,ts)</pre>
   # evaluation
   scores[i] <- mean((ts$medv-p)^2)</pre>
# calculating means and standard errors
summary(scores)
    Min. 1st Qu. Median Mean 3rd Qu.
##
## 16.37 21.70 24.20 24.56 26.47 48.82
```


Evaluation with Time Series Data

- Most common evaluation methods revolve around resampling
 - Simulating the reality.
 - Obtain an evaluation estimate for unseen data.
- Resampling randomly permutes the order of the rows in the data sets
- Time series data are Special!
 - The order of the rows has a meaning cannot be changed!

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

19 / 57

Time Series Tasks

Introduction

Correct Evalution of Time Series Models

- General Guidelines
 - Do not "forget" the time tags of the observations.
 - Do not evaluate a model on past data.
- A possible method
 - Divide the existing data in two time windows
 - Past data (observations till a time *t*).
 - \blacksquare "Future" data (observations after t).
 - Use one of these three learn-test alternatives
 - Fixed learning window.
 - Growing window.
 - Sliding window.

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 20 / 57

Learn-Test Strategies

Fixed Window

A single model is obtained with the available "training" data, and applied to all test period.

Growing Window

Every w_V test cases a new model is obtained using all data available till then.

Sliding Window

Every w_V test cases a new model is obtained using the previous w_S observations of the time series.

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

21 / 57

Time Series Tasks

Introduction

Dealing with model selection

- Most modelling techniques involve some form of parameters that usually need to be tunned.
- The following describes an evaluation methodology considering this issue:

	y ₁	• • •	y_s	• • •	\mathbf{y}_{t}	• • •	y _n
Stage 1		used for obtaining nodel alternatives		Model tunning and selection period			
Stage 2	Data used for obtaining the selected model alternative / variant				Final Evaluation Period		

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 22 / 57

Some Metrics for Evaluating Predictive Performance

Absolute Measures

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{x}_i - x_i)^2$$

Mean Absolute Deviation (MAD)

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |\hat{x}_i - x_i|$$

Relative Measures

■ Theil Coefficient

$$U = \frac{\sqrt{\sum_{i=1}^{n} (\hat{x}_i - x_i)^2}}{\sqrt{\sum_{i=1}^{n} (x_i - x_{i-1})^2}}$$

Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{(\hat{x}_i - x_i)}{x_i} \right|$$

دا ا ــا

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

23 / 57

Time Series Tasks

IMetrics for Time Series Tasks

The Metrics in R

The Goal of an Experimental Comparison with Time Series Data

- Given a set of observations of a time series X.
- Given a set of alternative modelling approaches *M*.
- Obtain estimates of the predictive performance of each m_i for this time series.

More specifically,

given a forecasting period size, w_{test} , and a predictive performance statistic, Err, we want to obtain a reliable estimate of the value of Err for each m_i .

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

25 / 57

Time Series Tasks

A Method

Using Monte Carlo Simulations for Obtaining Reliable Estimates of *Err*

- A possible approach would be to use our proposed method of Model Selection.
- This would give us one estimate of *Err*.
- More reliability is achievable if more repetitions of the process are carried out.

Monte Carlo Estimates for Time Series Forecasting

Given: a time series, a training window size, w_{train} , a testing window size, w_{test} , and a number of repetitions, r,

- randomly generate r points in the interval $]w_{train}..(n w_{test})[$,
- for each point proceed according to our Model Selection strategy.

1 1

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 26 / 57

Using Monte Carlo Simulations for Obtaining Reliable Estimates of *Err* - 2

The Infra-Structure of package performanceEstimation

The Infra-Structure of package performanceEstimation

- The package performanceEstimation provides a set of functions that can be used to carry out comparative experiments of different models on different predictive tasks
- This infra-structure can be applied to any model/task/evaluation metric
- Installation:
 - Official release (from CRAN repositories):

```
install.packages("performanceEstimation")
```

■ Development release (from Github):

library(devtools) # You need to install this package before!
install_github("ltorgo/performanceEstimation", ref="develop")

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 28 / 57

The Infra-Structure of package **performanceEstimation**

■ The main function of the package is

performanceEstimation()

- It has 3 arguments:
 - 1 The predictive tasks to use in the comparison
 - 2 The models to be compared
 - 3 The estimation task to be carried out
- The function implements a wide range of experimental methodologies including all we have discussed

© L.Torgo (KNOYDA)

Performance Estimation

Jul. 2019

29 / 57

The Infra-Structure of package performanceEstimation

A Simple Example

Suppose we want to estimate the mean squared error of regression trees in a certain regression task using cross validation

```
library (performanceEstimation)
library (DMwR2)
data (Boston, package='MASS')
res <- performanceEstimation (
    PredTask (medv ~ ., Boston),
    Workflow ("standardWF", learner="rpartXse"),
    EstimationTask (metrics="mse", method=CV (nReps=1, nFolds=10)))</pre>
```


© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 30 / 57

A Simple Example (2)

```
summary(res)
## == Summary of a Cross Validation Performance Estimation Experiment ==
##
## Task for estimating mse using
## 1 x 10 - Fold Cross Validation
    Run with seed = 1234
##
## * Predictive Tasks :: Boston.medv
## * Workflows :: rpartXse
##
## -> Task: Boston.medv
## *Workflow: rpartXse
## mse
## avg 19.610531
## std 9.375305
## med 16.867969
## iqr 11.523275
## min 9.266761
## max 34.752888
##
                    mse
## invalid 0.000000
```

LTP

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

31 / 57

The Infra-Structure of package performanceEstimation

A Simple Example (3)

```
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
```


LTP

Jul, 2019 32 / 57

4

Predictive Tasks

- Objects of class PredTask describing a predictive task
 - Classification
 - Regression
 - Time series forecasting
- Created with the constructor with the same name

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

33 / 57

The Infra-Structure of package performanceEstimation

Workflows and Workflow Variants

Workflows

- Objects of class Workflow describing an approach to a predictive task
 - Standard Workflows
 - Function standardWF for classification and regression
 - Function timeseriesWF for time series forecasting
 - User-defined Workflows

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 34 / 57

Standard Workflows for Classification and Regression Tasks

```
library(e1071)
Workflow("standardWF", learner="svm", learner.pars=list(cost=10, gamma=0.1))
## Workflow Object:
## Workflow ID :: svm
## Workflow Function :: standardWF
## Parameter values:
## learner -> svm
## learner.pars -> cost=10 gamma=0.1
```

"standardWF" can be omitted ...

```
Workflow (learner="svm", learner.pars=list(cost=5))

## Workflow Object:
## Workflow ID :: svm
## Workflow Function :: standardWF
## Parameter values:
## learner -> svm
## learner.pars -> cost=5

©L.Torgo (KNOYDA) Performance Estimation
Jul, 2019 35/57
```

The Infra-Structure of package performanceEstimation

Workflows and Workflow Variants

Standard Workflows for Classification and Regression Tasks (cont.)

- Main parameters of the constructor:
 - Learning stage
 - learner which function is used to obtain the model for the training data
 - learner.pars list with the parameter settings to pass to the learner
 - Prediction stage
 - predictor function used to obtain the predictions (defaults to predict())
 - predictor.pars list with the parameter settings to pass to the
 predictor

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 36 / 57

Standard Workflows for Classification and Regression Tasks (cont.)

- Main parameters of the constructor (cont.):
 - Data pre-processing
 - pre vector with function names to be applied to the training and test sets before learning
 - pre.pars list with the parameter settings to pass to the functions
 - Predictions post-processing
 - post vector with function names to be applied to the predictions
 - post.pars list with the parameter settings to pass to the functions

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

37 / 57

The Infra-Structure of package performanceEstimation

Workflows and Workflow Variants

Standard Workflows for Classification and Regression Tasks (cont.)

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 38 / 57

Evaluating Variants of Workflows

Function workflowVariants()

Sometimes you want to evaluate different parameter variants of the same workflow - that is the goal of function workflowVariants(). It produces a vector of **Workflow** objects without having to specify all of them.

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

39 / 57

The Infra-Structure of package performanceEstimation

Workflows and Workflow Variants

Evaluating Variants of Workflows (cont.)

```
summary(res2)
## == Summary of a Cross Validation Performance Estimation Experiment ==
##
## Task for estimating mse using
## 1 x 10 - Fold Cross Validation
## Run with seed = 1234
## * Predictive Tasks :: Boston.medv
## * Workflows :: svm.v1, svm.v2, svm.v3, svm.v4, svm.v5, svm.v6, svm.v7, svm.v8, svm.v9, svm.v10
##
## -> Task: Boston.medv
## *Workflow: svm.v1
##
## mse
## avg 14.80685
## std 10.15295
## med 12.27015
## iqr 11.87737
## min 5.35198
## max 38.39681
## invalid 0.00000
## *Workflow: svm.v2
##
## mse
## avg 11.995178
          7.908371
## std
## med 8.359433
## iqr 11.626306
## min 4.842848
```

© L.Torgo (KNOYDA)

Exploring the Results

```
getWorkflow("svm.v1", res2)
## Workflow Object:
## Workflow ID :: svm.v1
## Workflow Function :: standardWF
##
        Parameter values:
##
   learner.pars -> cost=1 gamma=0.1
   learner -> svm
topPerformers (res2)
## $Boston.medv
## Workflow Estimate
## mse svm.v5 10.65
```


© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

41 / 57

The Infra-Structure of package performanceEstimation

Workflows and Workflow Variants

Visualizing the Results

```
plot (res2)
```


42 / 57 © L.Torgo (KNOYDA) Performance Estimation Jul, 2019

Estimation Tasks

- Objects of class EstimationTask describing the estimation task
 - Main parameters of the constructor
 - **metrics** vector with names of performance metrics
 - method object of class EstimationMethod describing the method used to obtain the estimates

```
EstimationTask (metrics=c("F", "rec", "prec"), method=Bootstrap (nReps=100))
## Task for estimating F, rec, prec using
## 100 repetitions of e0 Bootstrap experiment
## Run with seed = 1234
```


© L.Torgo (KNOYDA)

Performance Estimation

Jul. 2019

43 / 57

The Infra-Structure of package performanceEstimation

Estimation Tasks

Performance Metrics

- Many classification and regression metrics are available
 - Check the help page of functions classificationMetrics and regressionMetrics
- User can provide a function that implements any other metric she/he wishes to use
 - Parameters evaluator and evaluator.pars of the EstimationTask constructor

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 44 / 57

Comparing Different Algorithms on the Same Task

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

45 / 57

The Infra-Structure of package performanceEstimation

Exploring the Results

Some auxiliary functions

```
## $Boston.medv
## $Boston.medv$mse
## Workflow Estimate
## 1 randomForest 10.83722
## 2 svm 14.89183
## 3 rpartXse 19.73468
```


© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 46 / 57

The Results

```
plot (res3)
```


LTP

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

47 / 57

The Infra-Structure of package performanceEstimation

Exploring the Results

An example using Holdout and a classification task

The Results

```
plot (res4)
```


© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

49 / 57

The Infra-Structure of package performanceEstimation

Exploring the Results

An example involving more than one task

The Results

plot (res5)

© L.Torgo (KNOYDA)

Performance Estimation

Jul, 2019

51 / 57

The Infra-Structure of package performanceEstimation

Exploring the Results

The Results (2)

```
topPerformers (res5)
## $Glass.Type
  Workflow Estimate
  err svm.v1 0.294
##
## $iris.Species
   Workflow Estimate
  err svm.v2 0.04
topPerformer(res5, "err", "Glass.Type")
## Workflow Object:
   Workflow ID :: svm.v1
   Workflow Function :: standardWF
       Parameter values:
##
    learner.pars -> cost=1 gamma=0.1
    learner -> svm
```

An example involving time series

First getting the data and building an illustrative data set

© L.Torgo (KNOYDA)

Performance Estimation

Jul. 2019

53 / 57

The Infra-Structure of package performanceEstimation

A Time Series Example

An example involving time series - 2

Now comparing models

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 54 / 57

Checking the results

```
summary( tsExp )
\#\# == Summary of a Monte Carlo Performance Estimation Experiment ==
##
## Task for estimating theil using
## 10 repetitions Monte Carlo Simulation using:
   seed = 1234
##
    train size = 0.5 \times NROW(DataSet)
    test size = 0.25 x NROW(DataSet)
##
## * Predictive Tasks :: GG
## * Workflows :: slideSVM, slideRF
##
## -> Task: GG
    *Workflow: slideSVM
##
                 theil
##
       1.17730919
0.10350654
1.20835823
0.02347964
0.97822580
1.27029812
## std
## med
## iqr
## min
## invalid 0.00000000
##
##
    *Workflow: slideRF
##
                 theil
## avg
           1.19310303
        0.05801541
1.19355379
## std
```

max 1.27353411 ## invalid 0.00000000

111111

© L.Torgo (KNOYDA)

A Time Series Example

Performance Estimation

Checking the results - 2

The Infra-Structure of package performanceEstimation

```
plot ( tsExp )
```

Monte Carlo Performance Estimation Results

Jul, 2019

55 / 57

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 56 / 57

Hands on Performance Estimation

the Algae data set

Load in the data set algae and answer the following questions:

- 1 Estimate the MSE of a regression tree for forecasting alga *a1* using 10-fold Cross validation.
- Repeat the previous exercise this time trying some variants of random forests. Check what are the characteristics of the best performing variant.
- Compare the results in terms of mean absolute error of the default variants of a regression tree, a linear regression model and a random forest, in the task of predicting alga a3. Use 2 repetitions of a 5-fold Cross Validation experiment.
- Carry out an experiment designed to select what are the best models for each of the seven harmful algae. Use 10-fold Cross Validation. For illustrative purposes consider only the default variants of regression trees, linear regression and random forests.

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 57 / 57