Performance Estimation

L. Torgo

ltorgo@knoyda.com
KNQOYDA, Know Your Data!

Jul, 2019

=

Evaluation Methodologies
and Comparison of Models

Performance Estimation

Performance Estimation

The setting

m Predictive task: unknown function Y = f(x) that maps the values
of a set of predictors into a target variable value (can be a
classification or a regression problem)

m A (training) data set {< x;, y; >} ,, with known values of this
mapping

m Performance evaluation criterion(a) - metric(s) of predictive
performance (e.g. error rate or mean squared error)

m How to obtain a reliable estimates of the predictive performance
of any solutions we consider to solve the task using the available
data set?

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 3/57

Performance Estimation Resubstituition estimates

Reliability of Estimates

Resubstitution estimates

m Given that we have a data set one possible way to obtain an
estimate of the performance of a model is to evaluate it on this
data set

m This leads to what is known as a resubstitution estimate of the
prediction error

m These estimates are unreliable and should not be used as they
tend to be over-optimistic!

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 4/57

Performance Estimation Resubstituition estimates

Reliability of Estimates

Resubstitution estimates (2)

m Why are they unreliable?

m Models are obtained with the goal of optimizing the selected
prediction error statistic on the given data set

m In this context it is expected that they get good scores!

m The given data set is just a sample of the unknown distribution of
the problem being tackled

m What we would like is to have the performance of the model on this
distribution

m As this is usually impossible the best we can do is to evaluate the
model on new samples of this distribution

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 5/57

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation

Main Goal of Performance Estimation

Obtain a reliable estimate of the expected prediction error of a model
on the unknown data distribution

m In order to be reliable it should be based on evaluation on unseen
cases - a lest set

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 6/57

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (2)

m |deally we want to repeat the testing several times

m This way we can collect a series of scores and provide as our
estimate the average of these scores, together with the standard

error of this estimate

m In summary:
m calculate the sample mean prediction error on the repetitions as an
estimate of the true population mean prediction error
m complement this sample mean with the standard error of this

estimate

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 7157

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (3)

m The golden rule of Performance Estimation:

The data used for evaluating (or comparing) any models cannot
be seen during model development.

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 8/57

Performance Estimation Goals of Performance Estimation

Goal of Performance Estimation (4)

m An experimental methodology should:

m Allow obtaining several prediction error scores of a model,
E17E27"' 7Ek
m Such that we can calculate a sample mean prediction error

1 E
E:RIZ:;E,-

m And also the respective standard error of this estimate

SE(E) = %

where sg is the sample standard deviation of E measured as

\/k1T1 Zf'(:1 (Ei — E)2

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 9/57

The Holdout Method

The Holdout Method and Random Subsampling

m The holdout method consists on randomly dividing the available
data sample in two sub-sets - one used for training the model;
and the other for testing/evaluating it

m A frequently used proportion is 70% for training and 30% for testing

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 10/57

The Holdout Method

The Holdout Method (2)

m If we have a small data sample there is the danger of either having
a too small test set (unreliable estimates as a consequence), or
removing too much data from the training set (worse model than
what could be obtained with the available data)

m We only get one prediction error score - no average score nor
standard error

m If we have a very large data sample this is actually the preferred
evaluation method

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 11/57

The Holdout Method

Random Subsampling

m The Random Subsampling method is a variation of holdout
method and it simply consists of repeating the holdout process
several times by randomly selecting the train and test partitions

m Has the same problems as the holdout with the exception that we
already get several scores and thus can calculate means and
standard errors

m If the available data sample is too large the repetitions may be too
demanding in computation terms

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 12 /57

The Holdout Method

The Holdout method in R

library (DMwR2)
set.seed (1234)
data (Boston, package="MASS')

trPerc <- 0.7
sp <— sample (l:nrow(Boston),as.integer (trPercxnrow (Boston)))

tr <- Boston|[sp,]
ts <- Boston[-sp,]

m <- rpartXse (medv ~.,tr)
p <- predict (m, ts)

mean ((tsSmedv-p) *2)

[1] 22.1313
L7 P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 13/57

Cross Validation

The k-fold Cross Validation Method

m The idea of k-fold Cross Validation (CV) is similar to random
subsampling

m It essentially consists of k repetitions of training on part of the data
and then test on the remaining

m The diference lies on the way the partitions are obtained

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 14 /57

Cross Validation

The k-fold Cross Validation Method (cont.)

Rep. 1 Rep. 2 Rep. k

1 1 1
(19}
i)
©
=) 2 2 2
9
o) Random
O | Permutation” — o o .
© — [] [] o000 L)
g . ° °
<
(D)
< k-1 k-1 k-1
|_

k k k
¢ ¢ o0 0 ¢
Score, Score, Score,
- ’ _—
Score * SE(Score) I_ | |D
© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 15/57

Cross Validation

Leave One Out Cross Validation Method (LOOCV)

m Similar idea to k-fold Cross Validation (CV) but in this case on
each iteration a single case is left out of the training set

m This means it is essentially equivalent to n-fold CV, where n is the
size of the available data set

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 16 /57

Bootstrap

The Bootstrap Method

m Train a model on a random sample of size n with replacement

from the original data set (of size n)

m Sampling with replacement means that after a case is randomly

drawn from the data set, it is “put back on the sampling bag”
m This means that several cases will appear more than once on the

training data

m On average only 63.2% of all cases will be on the training set
m Test the model on the cases that were not used on the training set

m Repeat this process many times (typically around 200)

m The average of the scores on these repetitions is known as the ¢g

bootstrap estimate

m The .632 bootstrap estimate is obtained by .368 x ¢, + .632 x ¢,

where ¢, is the resubstitution estimate

© L.Torgo (KNOYDA) Performance Estimation

Bootstrap

Bootstrap in R

data (Boston, package="MASS"')

nreps <- 200

scores <- vector ("numeric", length=nreps)
n <- nrow (Boston)

set.seed (1234)

for (i in l:nreps) {

sp <- sample (n,n, replace=TRUE)

tr <- Boston[sp,]
ts <- Boston[-sp,]

m <- Im(medv ~.,tr)
p <- predict (m,ts)

scores[i] <- mean ((ts$medv-p)"2)

}

summary (scores)

#4# Min. 1st Qu. Median Mean 3rd Qu. Max.
#4# 16.37 21.70 24 .20 24.56 26.47 48.82

© L.Torgo (KNOYDA) Performance Estimation

LT P
Jul, 2019 17 /57

LT P
Jul, 2019 18 /57

Time Series Tasks Introduction

Evaluation with Time Series Data

m Most common evaluation methods revolve around resampling
m Simulating the reality.
B Obtain an evaluation estimate for unseen data.
m Resampling randomly permutes the order of the rows in the data
sets
m Time series data are Special!
m The order of the rows has a meaning - cannot be changed!

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 19/57

Time Series Tasks Introduction

Correct Evalution of Time Series Models

m General Guidelines

m Do not “forget” the time tags of the observations.
m Do not evaluate a model on past data.

m A possible method
m Divide the existing data in two time windows

B Past data (observations till a time t).
m “Future” data (observations after t).

m Use one of these three learn-test alternatives

m Fixed learning window.
m Growing window.
m Sliding window.

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 20/57

Time Series Tasks Introduction

Learn-Test Strategies

Fixed Window

A single model is obtained with the available “training” data, and
applied to all test period.

Growing Window

Every w, test cases a new model is obtained using all data available till
then.

Sliding Window
Every w, test cases a new model is obtained using the previous wg | — D
observations of the time series. Lol

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 21/57

Time Series Tasks Introduction

Dealing with model selection

m Most modelling techniques involve some form of parameters that
usually need to be tunned.

m The following describes an evaluation methodology considering

this issue:
Y1 XX Ys XX A X Yn
Stave I Data used for obtaining MOdC.l tunnir'lg and
age the model alternatives selection period
Stage 2 Data used for obtaining the selected Final Evaluation
model alternative / variant Period

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 22 /57

Time Series Tasks IMetrics for Time Series Tasks

Some Metrics for Evaluating Predictive Performance

Absolute Measures Relative Measures

m Mean Squared Error (MSE) m Theil Coefficient

L n (&)2
MSE = %Z(f(l —_ Xi)2 U— \/21:1 (Xi — x;)
= VI (% — Xy)2

Mean Absolute Deviati
- (Me:B) bsolute Deviation m Mean Absolute Percentage

Error (MAPE)

1 e N
MAD = EZ ‘XI' _Xi| MAPE — 12 (X/ _Xi)
=1 n

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 23/57

Time Series Tasks IMetrics for Time Series Tasks
The Metrics in R
set .seed (1234)
library (xts)
someSeries <- xts(rnorm(1000), seq.Date (from=Sys.Date (), length.out=1000,
by ="1 day"))
somePreds <- xts(rnorm(1000), seq.Date (from=Sys.Date (), length.out=1000,

by ="1 day"))
(mse <— mean ((someSeries—-somePreds) *2))

[1] 1.846431
(mad <- mean (abs (someSeries—-somePreds))
[1] 1.070021

(U <- sqgrt (sum(((someSeries—somePreds) *2) [-1])
sqgrt (sum(((someSeries-lag(someSeries, 1))"

[1] 0.9771318
(mape <- mean (abs ((someSeries—-somePreds)/someSeries)))

[1] 4.551463
L I

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 24 /57

Time Series Tasks A Method

The Goal of an Experimental Comparison with Time
Series Data

m Given a set of observations of a time series X.
m Given a set of alternative modelling approaches M.

m Obtain estimates of the predictive performance of each m; for this
time series.

More specifically,
given a forecasting period size, Wiegt,
and a predictive performance statistic, Err,
we want to obtain a reliable estimate of the value of Err

for each m;. —
o

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 25/57

Time Series Tasks A Method

Using Monte Carlo Simulations for Obtaining Reliable
Estimates of Err

m A possible approach would be to use our proposed method of
Model Selection.

m This would give us one estimate of Err.

m More reliability is achievable if more repetitions of the process are
carried out.

Monte Carlo Estimates for Time Series Forecasting

Given: a time series, a training window size, wy,jn, a testing window
size, Wiest, and a number of repetitions, r,
- randomly generate r points in the interval |Wy4in..(n — Wiest)|,

- for each point proceed according to our Model Selection strategy.
I I

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 26 /57

Time Series Tasks A Method

Using Monte Carlo Simulations for Obtaining Reliable
Estimates of Err - 2

Available Time Series Data

1 n
{ © - : 9 ®
Wtrain sampling window Wiest
Wtrain Wtest i S— > T estimatel
o °
r . [[)
repetitions . °
Wtrain |Wtest| > e eStimater

Y

Avg Estimatelz T

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 27 /57

The Infra-Structure of package performanceEstimation

The Infra-Structure of package
performanceEstimation

m The package performanceEstimation provides a set of functions
that can be used to carry out comparative experiments of different
models on different predictive tasks

m This infra-structure can be applied to any model/task/evaluation
metric

m Installation:
m Official release (from CRAN repositories):

install.packages ("performanceEstimation")

m Development release (from Github):

library (devtools)
install github ("ltorgo/performanceEstimation"”, ref="develop")

TP

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 28 /57

The Infra-Structure of package performanceEstimation

The Infra-Structure of package
performanceEstimation

m The main function of the package is
performancekEstimation ()
m |t has 3 arguments:

The predictive tasks to use in the comparison
The models to be compared
The estimation task to be carried out

m The function implements a wide range of experimental
methodologies including all we have discussed

LT P
© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 29 /57

The Infra-Structure of package performanceEstimation

A Simple Example

m Suppose we want to estimate the mean squared error of
regression trees in a certain regression task using cross validation

library (performanceEstimation)
library (DMwR2)
data (Boston, package="MASS"')
res <- performanceEstimation (
PredTask (medv ~ .,Boston),
Workflow ("standardWF", learner="rpartXse"),
EstimationTask (metrics="mse", method=CV (nReps=1,nFolds=10)))

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 30/57

A

The Infra-Structure of package performanceEstimation

Simple Example (2)

summary (res)

##
##
##
##
##
ki
##
ki
##

A

== Summary of a Cross Validation Performance Estimation Experiment

Task for estimating mse using
1 x 10 - Fold Cross Validation
Run with seed = 1234

* Predictive Tasks :: Boston.medv
* Workflows :: rpartXse

-> Task: Boston.medv

*Workflow: rpartXse
mse
avg 19.610531
std 9.375305
med 16.867969
igr 11.523275
min 9.266761
max 34.752888
invalid 0.000000

© L.Torgo (KNOYDA) Performance Estimation

The Infra-Structure of package performanceEstimation

Simple Example (3)

plot (res)

Registered S3 methods overwritten by ’‘ggplotl2’:
method from

[.quosures rlang

c.quosures rlang

print.quosures rlang

Cross Validation Performance Estimation Results

Boston.medv.

Distribution of Statistics Scores

© L.Torgo (KNOYDA) Performance Estimation

2d) -

asw

LT P

Jul, 2019

31/57

LT P

Jul, 2019

32/57

The Infra-Structure of package performanceEstimation Predictive Tasks

Predictive Tasks

m Objects of class PredTask describing a predictive task
m Classification
m Regression
m Time series forecasting

m Created with the constructor with the same name

data(iris)
PredTask (Species ~ ., 1iris)

Prediction Task Object:

Task Name :: iris.Species

Task Type :: classification

Target Feature :: Species

Formula :: Species ~ .

Task Data Source :: iris

PredTask (Species ~ ., iris,"IrisDS", copy=TRUE)

Prediction Task Object:

Task Name :: IrisDS
Task Type :: classification
Target Feature :: Species
Formula :: Species ~ .
Task Data Source :: internal 150x5 data frame.
L N
© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 33/57

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Workflows

m Obijects of class Workflow describing an approach to a predictive
task
m Standard Workflows

B Function standardwF for classification and regression
B Function timeseriesWF for time series forecasting

m User-defined Workflows

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 34 /57

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks

library(el071)
Workflow ("standardWF", learner="svm", learner.pars=1list (cost=10, gamma=0.1))

Workflow Object:

Workflow ID i svm

Workflow Function :: standardWF

#4 Parameter values:

learner -> svm

learner.pars -> cost=10 gamma=0.1

“standardWF” can be omitted ...

Workflow (learner="svm", learner.pars=1list (cost=5))

Workflow Object:

Workflow ID :: svm
Workflow Function :: standardWF
#4 Parameter values:
learner -> svm
learner.pars —> cost=5
© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 35/57

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Standard Workflows for Classification and Regression
Tasks (cont.)

m Main parameters of the constructor:
m Learning stage

B learner - which function is used to obtain the model for the training
data

B learner.pars - list with the parameter settings to pass to the
learner

m Prediction stage

B predictor - function used to obtain the predictions (defaults to
predict ())

B predictor.pars - list with the parameter settings to pass to the
predictor

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 36 /57

The Infra-Structure of package performanceEstimation

Workflows and Workflow Variants

Standard Workflows for Classification and Regression

Tasks (cont.)

m Main parameters of the constructor (cont.):

m Data pre-processing

B pre - vector with function names to be applied to the training and test

sets before learning

B pre.pars - list with the parameter settings to pass to the functions

m Predictions post-processing

B post - vector with function names to be applied to the predictions
B post.pars - list with the parameter settings to pass to the functions

© L.Torgo (KNOYDA) Performance Estimation

The Infra-Structure of package performanceEstimation

Workflows and Workflow Variants

LT P

Jul, 2019

37 /57

Standard Workflows for Classification and Regression

Tasks (cont.)

data (algae, package="DMwR2")
res <- performanceEstimation (

PredTask (al ~ .,algae[,1:12],"Al1"),

Workflow (learner="1m", pre="centralImp", post="onlyPos"),
EstimationTask ("mse", method=CV ())

)

ik
ik

PERFORMANCE ESTIMATION USING CROSS VALIDATION ###4#4#

##

*~x PREDICTIVE TASK :: Al

##

++ MODEL/WORKFLOW :: 1m

Task for estimating mse wusing
1 x 10 - Fold Cross Validation
#4# Run with seed = 1234

Tteration :xxxxxxxxxx

© L.Torgo (KNOYDA) Performance Estimation

Jul, 2019

38/57

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Evaluating Variants of Workflows

Function workflowVariants ()

Sometimes you want to evaluate different parameter variants of the
same workflow - that is the goal of function workflowvariants (). It
produces a vector of Workflow objects without having to specify all of
them.

library (el1071)
data (Boston, package="MASS")
res2 <- performanceEstimation (
PredTask (medv ~ .,Boston),
workflowVariants (learner="svm",
learner.pars=1list (cost=1:5, gamma=c (0.1,0.01))),
EstimationTask (metrics="mse", method=CV()))

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 39/57

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Evaluating Variants of Workflows (cont.)

summary (res2)

##
== Summary of a Cross Validation Performance Estimation Experiment ==
##
Task for estimating mse using
1 x 10 - Fold Cross Validation
Run with seed = 1234
##
» Predictive Tasks :: Boston.medv
* Workflows :: svm.vl, svm.v2, svm.v3, svm.v4, svm.v5, svm.v6, svm.v7, svm.v8, svm.v9, svm.v1l0
#4
—-> Task: Boston.medv
xWorkflow: svm.vl
mse
avg 14.80685
std 10.15295
med 12.27015
iqgr 11.87737
min 5.35198
max 38.39681
invalid 0.00000
##
*Workflow: svm.v2
mse
avg 11.995178
std 7.908371
med 8.359433
iqr 11.626306
min 4.842848
© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 40 /57

i LIlvallU | VAVAVAVAVAV)

H#4#

The Infra-Structure of package performanceEstimation Workflows and Workflow Variants

Exploring the Results

getWorkflow ("svm.v1l", res2)

Workflow Object:

Workflow ID :: svm.vl

Workflow Function :: standardWF
Parameter values:

#4# learner.pars —> cost=1 gamma=0.1
learner -> svm

topPerformers (res2)

S$Boston.medv

Workflow Estimate
mse svm.v5 10.65
LT P
© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 41 /57
The Infra-Structure of package performanceEstimation Workflows and Workflow Variants
Visualizing the Results
plot (res2)
Cross Validation Performance Estimation Results
Boston.medv
40-
30-
,g 20 I
2 C
.é’
10-
B
S Ol
e ¢ ¢ —_
- - L7 P

© L.Torgo (KNOYDA) ' Performance Estimation : Jul, 2019 42 /57

The Infra-Structure of package performanceEstimation Estimation Tasks

Estimation Tasks

m Objects of class EstimationTask describing the estimation task
m Main parameters of the constructor

B metrics - vector with names of performance metrics
B method - object of class EstimationMethod describing the method

used to obtain the estimates
EstimationTask (metrics=c("F", "rec", "prec") ,method=Bootstrap (nReps=100))
Task for estimating F,rec,prec using

100 repetitions of e0 Bootstrap experiment
Run with seed = 1234

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 43 /57

The Infra-Structure of package performanceEstimation Estimation Tasks

Performance Metrics

m Many classification and regression metrics are available

m Check the help page of functions classificationMetrics and
regressionMetrics

m User can provide a function that implements any other metric
she/he wishes to use

m Parameters evaluator and evaluator.pars of the
EstimationTask constructor

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 44 /57

The Infra-Structure of package performanceEstimation Exploring the Results

Comparing Different Algorithms on the Same Task

library (randomForest)
library (el1071)
res3 <- performanceEstimation (
PredTask (medv ~ ., Boston),
workflowVariants ("standardwWg",
learner=c ("rpartXse", "svm", "randomForest")),
EstimationTask (metrics="mse", method=CV (nReps=2,nFolds=5)))

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 45 /57

The Infra-Structure of package performanceEstimation Exploring the Results

Some auxiliary functions

rankWorkflows (res3, 3)

SBoston.medv

SBoston.medvSmse

#4# Workflow Estimate
1 randomForest 10.83722
2 svm 14.89183
3 rpartXse 19.73468

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 46 / 57

The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot (res3)

Cross Validation Performance Estimation Results

Boston.medv.

Distribution of Statistics Scores
asw

%)
<
3

asxueds -
1S3104WOpUel -

| T2
= 11
Alternative Workflows

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 47 /57

The Infra-Structure of package performanceEstimation Exploring the Results

An example using Holdout and a classification task

data (Glass, package="mlbench')
res4 <- performanceEstimation (
PredTask (Type ~ ., Glass),
workflowVariants (learner="svn", # You may omit "standardwr" !
learner.pars=1list (cost=c(1,10),
gamma=c(0.1,0.01))),
EstimationTask (metrics="err", method=Holdout (nReps=5,h1dsSz=0.3)))

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 48 /57

The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot (res4)

Hold Out Performance Estimation Results

Glass.Type

05-

us

04~

Distribution of Statistics Scores

0.3-

LT P

TAWAS
ZNWAS
EAWAS -
YA WAS

Alternative Workflows

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 49 /57

The Infra-Structure of package performanceEstimation Exploring the Results

An example involving more than one task

data (Glass,package="'mlbench')
data (iris)
resb <- performanceEstimation (
c (PredTask (Type ~ ., Glass),PredTask (Species ~.,iris)),
c (workflowVariants (learner="svm",
learner.pars=1list (cost=c(1,10),
gamma=c¢ (0.1,0.01))),
workflowVariants (learner="rpartXse",
learner.pars=1list (se=c(0,0.5,1)),
predictor.pars=1list (type="class"))),
EstimationTask (metrics="err", method=CV (nReps=3)))

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 50/57

The Infra-Structure of package performanceEstimation Exploring the Results

The Results

plot (resb)

Cross Validation Performance Estimation Results

GlassType s Species

Distribution of Statistics Scores

0.2 o L]
)) h) 5 s Alleénative Work:;ows)) i = 5 B ! i lD
© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 51/57
The Infra-Structure of package performanceEstimation Exploring the Results
topPerformers (resb)
$Glass.Type
#4# Workflow Estimate
err svm.vl 0.294
#4#
Siris.Species
#34# Workflow Estimate
err svm.v2 0.04
topPerformer (resb5, "err", "Glass.Type")
Workflow Object:
Workflow ID :: svm.vl
Workflow Function :: standardwWF
#4# Parameter values:
learner.pars —> cost=1 gamma=0.1
#4# learner —> svm
L7 1P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 52 /57

The Infra-Structure of package performanceEstimation A Time Series Example

An example involving time series

First getting the data and building an illustrative data set

library (quantmod)
library (lubridate)
getSymbols ("GOOGL", from=Sys.Date () - years(5))

[1] "GOOGL"

gg <- Delt (Cl (GOOGL))

library (DMwRZ2)

library (TTR)

dat <- createEmbedDS (gg, emb=7)

dat <- data.frame (cbind (lag(gg,-1),
dat,
MA10=SMA (gg, 10),
RSI=RSI (gqg),
BB=BBands (gg) $SpctB))

colnames (dat) [1] <— "FutureT"

dat <- na.omit (dat)

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019

The Infra-Structure of package performanceEstimation A Time Series Example

An example involving time series - 2

Now comparing models

library (el1071)
library (randomForest)
tsExp <— performanceEstimation (
PredTask (FutureT ~ .,dat, 'GG'"),
c (Workflow ('timeseriesWF',wfID="slideSVM",
type="slide", relearn.step=90,
learner="'svm', learner.pars=1list (cost=10, gamma=0.01)),
Workflow ('timeseriesWF',wfID="slideRF",
type="slide", relearn.step=90,
learner="'randomForest', learner.pars=1list (ntrees=500))

),
EstimationTask (metrics="theil",

e

53 /57

method=MonteCarlo (nReps=10, szTrain=0.5, szTest=0.25)))

LT P

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019

54 /57

The Infra-Structure of package performanceEstimation A Time Series Example

Checking the results

summary (tsExp)

== Summary of a Monte Carlo Performance Estimation Experiment ==

Task for estimating theil using
10 repetitions Monte Carlo Simulation using:

seed = 1234

#4# train size = 0.5 x NROW (DataSet)
#4# test size = 0.25 x NROW (DataSet)
##

x Predictive Tasks :: GG

* Workflows :: slideSVM, slideRF
##

—-> Task: GG
xWorkflow: slideSVM

theil
avg 1.17730919
std 0.10350654
med 1.20835823
iqr 0.02347964
min 0.97822580
max 1.27029812
invalid 0.00000000
##

*Workflow: slideRF
#4# theil
avg 1.19310303
std 0.05801541
med 1.19355379

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 55/57

1 1 LIl 1L.UJ304000
max 1.27353411

invalid 0.00000000

The Infra-Structure of package performanceEstimation A Time Series Example

Checking the results - 2

plot (tsExp)

Monte Carlo Performance Estimation Results

GG
s &
4 P
1]
L
o 12-
o
(9]
0 C)
o
=
Q
I =
3 3
- 2
o 11-
k<]
=
5
2
=
R%]
[a)
1.0- -
.
\ \
z 73
) o)
< X
3 T

Alternative Workflows

I

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 56 /57

Hands on Performance Estimation

Hands on Performance Estimation
the Algae data set

Load in the data set algae and answer the following questions:

Estimate the MSE of a regression tree for forecasting alga a7 using
10-fold Cross validation.

Repeat the previous exercise this time trying some variants of random
forests. Check what are the characteristics of the best performing
variant.

Compare the results in terms of mean absolute error of the default
variants of a regression tree, a linear regression model and a random
forest, in the task of predicting alga a3. Use 2 repetitions of a 5-fold
Cross Validation experiment.

Carry out an experiment designed to select what are the best models
for each of the seven harmful algae. Use 10-fold Cross Validation. For
illustrative purposes consider only the default variants of regression
trees, linear regression and random forests. | T

[

© L.Torgo (KNOYDA) Performance Estimation Jul, 2019 57 /57

	Performance Estimation
	Resubstituition estimates
	Goals of Performance Estimation

	The Holdout Method
	Cross Validation
	Bootstrap
	Time Series Tasks
	Introduction
	IMetrics for Time Series Tasks
	A Method

	The Infra-Structure of package performanceEstimation
	Predictive Tasks
	Workflows and Workflow Variants
	Estimation Tasks
	Exploring the Results
	A Time Series Example

	Hands on Performance Estimation

