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Introduction

Motivation for Data Visualization

Humans are outstanding at detecting patterns and structures with
their eyes
Data visualization methods try to explore these capabilities
In spite of all advantages visualization methods also have several
problems, particularly with very large data sets
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Introduction

Outline of what we will learn

Tools for visualizing amounts
Tools for visualizing distributions of values
Tools for visualizing proportions
Tools for visualizing x-y relationships
Multivariate visualization tools
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Introduction

R Graphics
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Introduction to Standard Graphics

Standard Graphics (the graphics package)

R standard graphics, available through package graphics,
includes several functions that provide standard statistical plots,
like:

Scatterplots
Boxplots
Piecharts
Barplots
etc.

These graphs can be obtained tyipically by a single function call
Example of a scatterplot

plot(1:10,sin(1:10))

These graphs can be easily augmented by adding several
elements to these graphs (lines, text, etc.)
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Introduction to Standard Graphics

Graphics Devices

R graphics functions produce output that depends on the active
graphics device
The default and more frequently used device is the screen
There are many more graphical devices in R, like the pdf device,
the jpeg device, etc.
The user just needs to open (and in the end close) the graphics
output device she/he wants. R takes care of producing the type of
output required by the device
This means that to produce a certain plot on the screen or as a
GIF graphics file the R code is exactly the same. You only need to
open the target output device before!
Several devices may be open at the same time, but only one is the
active device
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Introduction to Standard Graphics

A few examples

A scatterplot

plot(seq(0,4*pi,0.1),sin(seq(0,4*pi,0.1)))

The same but stored on a jpeg file

jpeg('exp.jpg')
plot(seq(0,4*pi,0.1),sin(seq(0,4*pi,0.1)))
dev.off()

And now as a pdf file

pdf('exp.pdf',width=6,height=6)
plot(seq(0,4*pi,0.1),sin(seq(0,4*pi,0.1)))
dev.off()
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Introduction to ggplot

Package ggplot2

Package ggplot2 implements the ideas created by Wilkinson
(2005) on a grammar of graphics
This grammar is the result of a theoretical study on what is a
statistical graphic
ggplot2 builds upon this theory by implementing the concept of
a layered grammar of graphics (Wickham, 2009)
The grammar defines a statistical graphic as:

a mapping from data into aesthetic attributes (color, shape, size,
etc.) of geometric objects (points, lines, bars, etc.)

L. Wilkinson (2005). The Grammar of Graphics. Springer.

H. Wickham (2009). A layered grammar of graphics. Journal of Computational and Graphical Statistics.
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Introduction to ggplot

The Basics of the Grammar of Graphics

Key elements of a statistical graphic:
data
aesthetic mappings
geometric objects
statistical transformations
scales
coordinate system
faceting
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Introduction to ggplot

Aesthetic Mappings

Controls the relation between data variables and graphic
properties

map the Temperature variable of a data set into the x coordinate in
a scatter plot
map the Species of a plant into the colour of dots in a graphic
map the Citizenship of a person into the shape of a dot
map tje Age of a car into the line width of lines in a graphic
etc.
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Introduction to ggplot

Geometric Objects / Graphical Elements

Controls what is shown in the graphics, e.g.
show each observation by a point using the aesthetic mappings
that map two variables in the data set into the x, y coordinates of
the plot
etc.
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Introduction to ggplot

Statistical Transformations

Allows us to calculate and do statistical analysis over the data in
the plot

Use the data and approximate it by a regression line on the x, y
coordinates
Count occurrences of certain values
etc.
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Introduction to ggplot

Scales

Decide how the data values are mapped into the aesthetics
properties

A scale defines a one to one mapping between the data values and
the values of some aesthetical property
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Introduction to ggplot

Coordinate System

The coordinate system used to plot the data
Cartesian
Polar
etc.

© L.Torgo (Dalhousie University) Data Visualization May, 2021 14 / 73



Introduction to ggplot

Faceting

Split the data into sub-groups and draw sub-graphs for each group
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Introduction to ggplot

A Simple Example

data(iris)
library(ggplot2)
library(ggthemes)
ggplot(data = iris) +

geom_point(mapping = aes(x=Petal.Length,y=Sepal.Length, colour=Species, shape=Species)) +
scale_colour_colorblind()
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ggplot(data = <DATA_SOURCE>) +
<GEOM_OBJECT>(mapping = aes(<MAPPINGS>)) +
<EVENTUALLY_OTHER_LAYERS>

Both the data and mapping
components can be defined locally
(within some geom) or globally (at
the ggplot call)

© L.Torgo (Dalhousie University) Data Visualization May, 2021 16 / 73



Visualizing Amounts

Visualizing Amounts

Visualizing Amounts

Comparing the magnitude of a set of numbers
May include comparisons across different groups
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Visualizing Amounts Barplots

Bar plots

Displays the set of values as heights of different bars

Example data set: wins and losses of NBA teams of Atlantic Division

Team Wins Losses Season
Toronto Raptors 58 24 2018_19
Philadelphia 76ers 51 31 2018_19
Boston Celtics 49 33 2018_19
Brooklyn Nets 42 40 2018_19
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Visualizing Amounts Barplots

Bar plots
Two frequent settings

1 The values to show are already in the data set
2 The values to show need to be computed from the data
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Visualizing Amounts Barplots

Bar plots
Values in the data set

Showing the number of wins on 2018/19

library(ggplot2)
ggplot(data = filter(nba,Season=="2018_19"), mapping = aes(x=Team,y=Wins)) + geom_col()
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Visualizing Amounts Barplots

Bar plots
Ordering the bars

If the order of the values (team names) has no meaning then the
bars should be order by decreasing value for better readability

ggplot(data = filter(nba,Season=="2018_19"), mapping = aes(x=reorder(Team,-Wins), y=Wins)) +
geom_col() + xlab("Team")

0

20

40

60

Toronto RaptorsPhiladelphia 76ersBoston Celtics Brooklyn NetsNew York Knicks
Team

W
in

s

© L.Torgo (Dalhousie University) Data Visualization May, 2021 22 / 73



Visualizing Amounts Barplots

Bar plots
Horizontal bars

When the X labels are long or are far too many, horizontal bars
may be more readable

ggplot(data = filter(nba,Season=="2018_19"), mapping = aes(x=reorder(Team, Wins), y=Wins)) +
coord_flip() + geom_col() + xlab("Team")
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Visualizing Amounts Barplots

Bar plots
Values need to be calculated

Showing how many teams had a percentage of wins larger than
30% per season

ggplot(data = filter(nba,Wins/(Wins+Losses) > .3), mapping = aes(x=Season)) + geom_bar()
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NOTE: ordering the bars here would be wrong as the labels have an
implicit ordering (time)
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Visualizing Amounts Barplots

Bar plots
Problems

Bars always must start from zero
This may create a problem known as zero baseline
When the bars have similar height, due to the start on zero, the
differences are hard to perceive
Barplots should not be used in these situations - dot plots are
better representations
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Visualizing Amounts Dotplots

Dot plots

ggplot(filter(nba,Season=="2018_19"),
aes(x=reorder(Team,Wins), y=Wins)) +

geom_col() + coord_flip() + xlab("Team")
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ggplot(filter(nba,Season=="2018_19"),
aes(x=reorder(Team,Wins), y=Wins)) +

geom_point() + coord_flip() + xlab("Team")
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Visualizing Amounts Grouped amounts

Grouped bar plots

Sometimes we want to contrast amounts for different groups
Number of wins of the Teams along the Seasons

ggplot(nba,aes(x=Team,y=Wins,fill=Season)) + geom_col(position="dodge") + coord_flip()
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Visualizing Amounts Grouped amounts

Stacked bar plots

Sometimes we want to contrast amounts for different groups
Number of wins of the Teams along the Seasons

ggplot(nba,aes(x=Team,y=Wins,fill=Season)) + geom_col() + coord_flip()
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Visualizing Amounts Grouped amounts

Facets

Yet another alternative of contrasting different groups

ggplot(nba,aes(x=Team,y=Wins)) + geom_col() + facet_wrap(~Season) + coord_flip()
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Visualizing Amounts Grouped amounts

Heatmaps

Heatmaps can also be used to contrast different groups

ggplot(nba,aes(x=Season,y=Team,fill=Wins)) + geom_tile()
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Visualizing Distributions
of Variables

Visualizing Distributions

Visualizing Distributions

The goal of these graphs is to understand how the values of a
certain variable are distributed in our data set
We will distinguish two common setups

Visualize a single distribution
Visualize multiple distributions
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Visualizing Distributions Single Distribution

Histograms

Histograms visually look like barplots but they are rather different
The number of bars in an histogram is determined by a binning
process that divides the range of a numeric variable into a set of
bins
For each bin the number of values fitting inside of the bin is
counted and that determines the height of the respective bar
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Visualizing Distributions Single Distribution

Histograms
An example with the Iris dataset

What is the distribution of the values of Sepal.Lenght in the Iris
data set?

library(ggplot2)
data(iris)
ggplot(data = iris, mapping = aes(x=Sepal.Length)) + geom_histogram()

## ‘stat_bin()‘ using ‘bins = 30‘. Pick
## better value with ‘binwidth‘.
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Visualizing Distributions Single Distribution

Histograms
Effects of changing the number of bins

By default the range is divided into 30 bins

ggplot(iris,aes(x=Sepal.Length)) +
geom_histogram()

## ‘stat_bin()‘ using ‘bins = 30‘. Pick
better value with ‘binwidth‘.
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ggplot(iris,aes(x=Sepal.Length)) +
geom_histogram(bins=10)
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Note: it is a good idea to try several values
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Visualizing Distributions Single Distribution

Density plots

An alternative to histograms is to use density plots
They obtain an approaximation of the probability density function
of the variable
They are usually obtained using kernel density estimators
(frequently the Gaussian kernel)
These estimators typically depend on a parameter known as
bandwidth that controls how sensitive are the estimates at each
point

Changing its value has a similar effect as changing the number of
bins in histograms
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Visualizing Distributions Single Distribution

Density plots
An example with the Iris dataset

What is the distribution of the values of Petal.Width in the Iris
data set?

ggplot(iris,aes(x=Petal.Width)) +
geom_density(fill="orange",alpha=0.5)
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Note: by default this uses a bandwidth determined by a rule whose
theoretical justification can be seen at the reference provided in the
help page of function bw.nrd0()
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Visualizing Distributions Single Distribution

Boxplots

Boxplots provide a synthetic representation of a distribution by
showing a few summary statistics
This obviously implies some loss of information on the full
distribution
Still, they provide interesting features like for instance identifying
outliers
They are better suited for comparing multiple distributions but they
can also be used for a single distribution
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Visualizing Distributions Single Distribution

Boxplots
An example with the Iris dataset

What is the distribution of the values of Petal.Lenght in the Iris
data set?

ggplot(iris,aes(y=Petal.Length)) + geom_boxplot() +
theme(axis.ticks.x = element_blank(), axis.text.x = element_blank())
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Visualizing Distributions Single Distribution

Empirical cumulative distribution functions (ECDF’s)

ECDF’s are interesting tools to visualize the distribution of a
continuous variable
They are obtained by ordering the sample values and then ploting
them against the cumulative frequency proportion (a value
between 0 and 1)
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Visualizing Distributions Single Distribution

ECDFs
An example with the Iris dataset

Plot the empirical cumulative distribution function of
Petal.Lenght in the Iris data set?

ggplot(iris,aes(x=Petal.Length)) + stat_ecdf() + ylab("Cumulative frequency")

0.00

0.25

0.50

0.75

1.00

2 4 6
Petal.Length

C
um

ul
at

iv
e 

fr
eq

ue
nc

y

© L.Torgo (Dalhousie University) Data Visualization May, 2021 41 / 73

Visualizing Distributions Single Distribution

Quantile-quantile Plots (Q-Q plots)

These plots compare the sample quantiles of a continuous
variable with the theoretical quantiles of a known distribution
They are useful to check if some variable follows a certain
distribution
Frequently we compare the sample against the Normal distribution
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Visualizing Distributions Single Distribution

Q-Q plots
An example with the Iris dataset

Is it reasonable to think the variable Petal.width of the Iris data
set follows a Normal distribution?

ggplot(iris, aes(sample = Petal.Width)) + stat_qq() + stat_qq_line()
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Visualizing Distributions Multiple Distributions

Multiple Distributions using Histograms

ggplot(iris,aes(x=Sepal.Length, fill=Species)) +
geom_histogram(alpha=0.4)

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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This is bad - avoid!
Overplotting causes visualization problems

© L.Torgo (Dalhousie University) Data Visualization May, 2021 44 / 73



Visualizing Distributions Multiple Distributions

Multiple Distributions using Histograms - 2

ggplot(iris,aes(x=Sepal.Length)) + geom_histogram() + facet_wrap(~ Species)

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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This is better
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Visualizing Distributions Multiple Distributions

Multiple Distributions using Density Plots

library(ggthemes)
ggplot(iris,aes(x=Sepal.Length, fill=Species)) +

geom_density(alpha=0.4) + scale_fill_colorblind()
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Visualizing Distributions Multiple Distributions

Multiple Distributions with Box Plots

ggplot(iris,aes(x=Species,y=Sepal.Length)) +
geom_boxplot()

●

5

6

7

8

setosa versicolor virginica
Species

S
ep

al
.L

en
gt

h

© L.Torgo (Dalhousie University) Data Visualization May, 2021 47 / 73

Visualizing Distributions Multiple Distributions

Multiple Distributions with Box Plots
Adding information on the amount of values

ggplot(iris,aes(x=Species,y=Sepal.Length)) +
geom_boxplot() + geom_jitter(color="orange",alpha=0.3,width=0.1)
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Visualizing Distributions Multiple Distributions

Multiple Distributions with Violin Plots

ggplot(iris,aes(x=Species,y=Sepal.Length)) + geom_violin()
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Note: similar to density plots...
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Visualizing Distributions Multiple Distributions

Variations on Violin Plots
ggplot(iris,aes(x=Species,y=Sepal.Length)) + geom_violin(trim=FALSE) +

geom_boxplot(width=0.1) + geom_jitter(position=position_jitter(0.15),alpha=0.3)

## Warning in sample.int(.Machine$integer.max, 1L): ’.Random.seed[1]’ is not a valid integer,
so ignored
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Note: similar to density plots...
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Visualizing Distributions Multiple Distributions

Multiple Distributions with ECDFs

ggplot(iris,aes(x=Petal.Length,color=Species)) + stat_ecdf()+ ylab("Cumulative frequency")

0.00

0.25

0.50

0.75

1.00

2 4 6
Petal.Length

C
um

ul
at

iv
e 

fr
eq

ue
nc

y

Species

setosa

versicolor

virginica

© L.Torgo (Dalhousie University) Data Visualization May, 2021 51 / 73

Visualizing Distributions Multiple Distributions

Hands on Data Visualization - the Algae data set

Using the Algae data set from package DMwR2 (extra package you
need to install) answer to the following questions:

1 Create a graph that you find adequate to show the distribution of
the values of algae a6

2 Show the distribution of the values of size
3 Check visually if it is plausible to consider that oPO4 follows a

normal distribution
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Visualizing Proportions

Visualizing Proportions

Visualizing Proportions

Goal: show how a certain information breaks down into
proportions

e.g. how the clients of some company are distributed across
different genders

We will study three main tools for handling proporties, each with
pros and cons

Pie charts
Stacked barcharts
Bar plots
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Visualizing Proportions Piecharts and barplots

Piecharts

These plots associate the proportion values with slices of a pie
Reading the values thus involves comparing areas of slices
Piecharts are frequently criticized by being harder on the human
eye, on the basis that it is easier to compare height of bars than
areas of slices
Technical note: pie charts are much easier to obtain with R base
graphs than with ggplot2

Example data set: the number of seats of four political parties in an
election

Party Seats
A 196
B 80
C 92
D 33
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Visualizing Proportions Piecharts and barplots

Pie Charts

Comparing the parliement seats of the parties

pie(dat$Seats, labels=dat$Party)
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Visualizing Proportions Piecharts and barplots

Pie Charts
Comparing with a barplot

pie(dat$Seats, labels=dat$Party)
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ggplot(mutate(dat,Prop=Seats/sum(dat$Seats)),
aes(x=Party,y=Prop)) + geom_col() +

ylab("Proportion")
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Visualizing Proportions Piecharts and barplots

Pie Charts
Discussion
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On the pie it is not so easy to see that C has more seats than B
On the bar plot it is not easy to see that A and D together have the
majority of the seats and thus could form a government
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Visualizing Proportions Stacked barcharts

Stacked barcharts

Comparing the parliement seats of the parties

ggplot(mutate(dat,Prop=Seats/sum(dat$Seats)),
aes(x="",y=Prop,fill=Party)) + geom_col()
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X-Y Associations



X-Y Associations

X-Y Associations

Goal: understand how two continuous variables related with each
other

e.g. is the growth of Petal.Length associated with a growth in
Sepal.Width?
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X-Y Associations Scatter Plots

Scatter Plots

The simplest way of checking this type of relationships is through
a scatter plot
Each of the numeric variables is associated with one of the plot
axis

ggplot(iris, aes(x=Petal.Length, y= Sepal.Width)) + geom_point()
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X-Y Associations Scatter Plots

Scatter Plots
Grouped associations

Sometimes the association may be different for different
sub-groups of data

library(ggthemes)
ggplot(iris, aes(x=Petal.Length, y= Sepal.Width, color=Species, shape=Species)) +

geom_point() + scale_color_colorblind()
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X-Y Associations Scatter Plots

Scatter Plots
Trying to “model” the associations

ggplot(iris, aes(x=Petal.Length, y= Sepal.Width)) +
geom_point() + geom_smooth(method="loess", se=TRUE,level=0.95) +
facet_wrap(~ Species,scales = "free")
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Multiple Associations

Multiple Associations

Multiple Associations

Goal: understand how multiple variables related with each other

© L.Torgo (Dalhousie University) Data Visualization May, 2021 66 / 73



Multiple Associations Scatter Plots for more than two variables

Scatter plots for more than two variables

Using other aesthetic properties to code other variables
Use with caution, t may get too confusing!

ggplot(iris,
aes(x=Petal.Length, y= Sepal.Width, size=Sepal.Length, color= Species, shape=Species)) +

geom_point(alpha=0.5) + scale_color_colorblind()
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Multiple Associations Scatter Plots for more than two variables

Scatterplot matrices through package GGally

These graphs try to present all pairwise scatterplots in a data set.
They are unfeasible for data sets with many variables.

library(GGally)
ggpairs(iris)
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Multiple Associations Scatter Plots for more than two variables

Scatterplot matrices - a more interesting variant

Differentiating with a nominal variable

ggpairs(iris,columns = 1:4,ggplot2::aes(color=Species,alpha=0.5))
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Multiple Associations Heat Maps for more than two variables

Heat Maps for more than two variables

Axes are two nominal variables

data(algae,package="DMwR2")
library(dplyr)
library(forcats)
mutate(algae,

size = fct_relevel(size,c("small","medium","large")),
speed = fct_relevel(speed,c("low","medium","high"))) %>%

ggplot(aes(x = size, y = speed, fill = a1)) +
geom_tile() +xlab("River Size") + ylab("River Speed")
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Multiple Associations Heat Maps for more than two variables

Heat Maps for more than two variables - 2

Axes are two nominal variables, and a third as a facet

mutate(algae,
size = fct_relevel(size,c("small","medium","large")),
speed = fct_relevel(speed,c("low","medium","high")),
season = fct_relevel(season,c("spring","summer","autumn","winter"))) %>%

ggplot(aes(x = size, y = speed, fill = a1)) +
geom_tile() + facet_wrap(~ season) + xlab("River Size") + ylab("River Speed")
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Multiple Associations Correlograms for numeric variables

Correlograms

For numeric variables we can calulate an represent the correlation
value

library(GGally)
ggcorr(iris[,-5])
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Multiple Associations Parallel plots

Parallel Plots

Parallel plots are also interesting for visualizing a full data set

library(GGally)
ggparcoord(iris,columns = 1:4,groupColumn = "Species", alphaLines = 0.5)
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