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Introduction

What is Prediction?

Definition

Prediction (forecasting) is the ability to anticipate the future.
Prediction is possible if we assume that there is some regularity in
what we observe, i.e. if the observed events are not random.

Example

Medical Diagnosis: given an historical record containing the symptoms
observed in several patients and the respective diagnosis, try to
forecast the correct diagnosis for a new patient for which we know the
symptoms.
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Introduction

Prediction Models

Are obtained on the basis of the assumption that there is an
unknown mechanism that maps the characteristics of the
observations into conclusions/diagnoses. The goal of prediction
models is to discover this mechanism.

Going back to the medical diagnosis what we want is to know how
symptoms influence the diagnosis.

Have access to a data set with “examples” of this mapping, e.g.
this patient had symptoms x , y , z and the conclusion was that he
had disease p
Try to obtain, using the available data, an approximation of the
unknown function that maps the observation descriptors into the
conclusions, i.e. Prediction = f (Descriptors)
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Introduction

“Entities” involved in Predictive Modelling

Descriptors of the observation:
set of variables that describe the properties (features, attributes)
of the cases in the data set
Target variable:
what we want to predict/conclude regards the observations
The goal is to obtain an approximation of the function
Y = f (X1,X ,2 , · · · ,Xp), where Y is the target variable and
X1,X ,2 , · · · ,Xp the variables describing the characteristics of the
cases.
It is assumed that Y is a variable whose values depend on the
values of the variables which describe the cases. We just do not
know how!
The goal of the modelling techniques is thus to obtain a good
approximation of the unknown function f ()
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Introduction

How are the Models Used?

Predictive models have two main uses:
1 Prediction

use the obtained models to make predictions regards the target
variable of new cases given their descriptors.

2 Comprehensibility
use the models to better understand which are the factors that
influence the conclusions.
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Introduction Types of Prediction Problems

Types of Prediction Problems

Depending on the type of the target variable (Y ) we may be facing
two different types of prediction models:

1 Classification Problems - the target variable Y is nominal
e.g. medical diagnosis - given the symptoms of a patient try to
predict the diagnosis

2 Regression Problems - the target variable Y is numeric
e.g. forecast the market value of a certain asset given its
characteristics
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Evaluation Metrics

Evaluation Metrics Classification Problems

Classification Error
Error Rate

Given a set of test cases Ntest we can obtain the predictions for
these cases using some classification model.
The Error Rate (L0/1) measures the proportion of these
predictions that are incorrect.
In order to calculate the error rate we need to obtain the
information on the true class values of the Ntest cases.
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Evaluation Metrics Classification Problems

Classification Error
Error Rate

Given a test set for which we know the true class the error rate
can be calculated as follows,

L0/1 =
1

Ntest

Ntest∑
i=1

I(ĥθ(xi), yi)

where I() is an indicator function such that I(x , y) = 0 if x = y and
1 otherwise; and ĥθ(xi) is the prediction of the model being
evaluated for the test case i that has as true class the value yi .
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Evaluation Metrics Classification Problems

Confusion Matrices

A square nc × nc matrix, where nc is the number of class values
of the problem
The matrix contains the number of times each pair
(ObservedClass,PredictedClass) occurred when testing a
classification model on a set of cases

Pred.
c1 c2 c3

O
bs

. c1 nc1,c1 nc1,c2 nc1,c3

c2 nc2,c1 nc2,c2 nc2,c3

c3 nc3,c1 nc3,c2 nc3,c3

The error rate can be calculated from the information on this table.
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Evaluation Metrics Classification Problems

An Example in R

trueVals <- c("c1","c1","c2","c1","c3","c1","c2","c3","c2","c3")
preds <- c("c1","c2","c1","c3","c3","c1","c1","c3","c1","c2")
confMatrix <- table(trueVals,preds)
confMatrix

## preds
## trueVals c1 c2 c3
## c1 2 1 1
## c2 3 0 0
## c3 0 1 2

errorRate <- 1-sum(diag(confMatrix))/sum(confMatrix)
errorRate

## [1] 0.6
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Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Squared Error

Given a set of test cases Ntest we can obtain the predictions for
these cases using some regression model.
The Mean Squared Error (MSE) measures the average squared
deviation between the predictions and the true values.
In order to calculate the value of MSE we need to have both the
predicitons and the true values of the Ntest cases.
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Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Squared Error (cont.)

If we have such information the MSE can be calculated as follows,

MSE =
1

Ntest

Ntest∑
i=1

(ŷi − yi)
2

where ŷi is the prediction of the model under evaluation for the
case i and yi the respective true target variable value.
Note that the MSE is measured in a unit that is squared of the
original variable scale. Because of the this is sometimes common
to use the Root Mean Squared Error (RMSE), defined as
RMSE =

√
MSE
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Evaluation Metrics Regression Problems

Measuring Regression Error
Mean Absolute Error

The Mean Absolute Error (MAE) measures the average absolute
deviation between the predictions and the true values.
The value of the MAE can be calculated as follows,

MAE =
1

Ntest

Ntest∑
i=1

|ŷi − yi |

where ŷi is the prediction of the model under evaluation for the
case i and yi the respective true target variable value.
Note that the MAE is measured in the same unit as the original
variable scale.
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Evaluation Metrics Regression Problems

Relative Error Metrics

Relative error metrics are unit less which means that their scores
can be compared across different domains.
They are calculated by comparing the scores of the model under
evaluation against the scores of some baseline model.
The relative score is expected to be a value between 0 and 1, with
values nearer (or even above) 1 representing performances as
bad as the baseline model, which is usually chosen as something
too naive.

© L.Torgo (Dalhousie University) Predictive Analytics May, 2021 15 / 52

Evaluation Metrics Regression Problems

Relative Error Metrics (cont.)

The most common baseline model is the constant model
consisting of predicting for all test cases the average target
variable value calculated in the training data.
The Normalized Mean Squared Error (NMSE) is given by,

NMSE =

∑Ntest
i=1 (ŷi − yi)

2∑Ntest
i=1 (ȳ − yi)2

The Normalized Mean Absolute Error (NMAE) is given by,

NMAE =

∑Ntest
i=1 |ŷi − yi |∑Ntest
i=1 |ȳ − yi |
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Evaluation Metrics Regression Problems

Relative Error Metrics (cont.)

The Mean Average Percentage Error (MAPE) is given by,

MAPE =
1

Ntest

Ntest∑
i=1

|ŷi − yi |
yi

The Symmetric Mean Absolute Percentage Error (sMAPE) is
given by,

sMAPE =
1
n

Ntest∑
i=1

|ŷi − yi |
|ŷi |+ |yi |
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Evaluation Metrics Regression Problems

Relative Error Metrics (cont.)

The Correlation between the predictions and the true values (ρŷ ,y )
is given by,

ρŷ ,y =

∑Ntest
i=1 (ŷi − ¯̂y)(yi − ȳ)√∑Ntest

i=1 (ŷi − ¯̂y)2
∑Ntest

i=1 (yi − ȳ)2
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Evaluation Metrics Regression Problems

An Example in R

trueVals <- c(10.2,-3,5.4,3,-43,21,
32.4,10.4,-65,23)

preds <- c(13.1,-6,0.4,-1.3,-30,1.6,
3.9,16.2,-6,20.4)

mse <- mean((trueVals-preds)^2)
mse

## [1] 493.991

rmse <- sqrt(mse)
rmse

## [1] 22.22591

mae <- mean(abs(trueVals-preds))
mae

## [1] 14.35

nmse <- sum((trueVals-preds)^2) /
sum((trueVals-mean(trueVals))^2)

nmse

## [1] 0.5916071

nmae <- sum(abs(trueVals-preds)) /
sum(abs(trueVals-mean(trueVals)))

nmae

## [1] 0.65633

mape <- mean(abs(trueVals-preds)/trueVals)
mape

## [1] 0.290773

smape <- 1/length(preds) * sum(abs(preds - trueVals) /
(abs(preds)+abs(trueVals)))

smape

## [1] 0.5250418

corr <- cor(trueVals,preds)
corr

## [1] 0.6745381
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Multiple Linear Regression

Multiple Linear Regression

Multiple linear regression is probably the most used statistical
method
It is one of the many possible approaches to the multiple
regression problem where given a training data set
D = {〈xi , yi〉}ni=1 we want to obtain an approximation of the
unknown regression function f () that maps the predictors values
into a target continuous variable value.
In matrix notation we have D = X|Y, where X is a matrix n × p,
and Y is a matrix n × 1.
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Multiple Linear Regression

Multiple Linear Regression (cont.)

In the case of multiple linear regression the functional form that is
assumed is the following:

Y = β0 + β1 · X1 + · · ·+ βp · Xp

The goal is to find the vector of parameters β that minimizes the
sum of the squared errors∑n

i=1(yi − (β0 + β1 · X1 + · · ·+ βp · Xp))2
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Multiple Linear Regression

Multiple Linear Regression
Pros and Cons

Well-known and over-studied topic with many variants of this
simple methodology (e.g. Drapper and Smith, 1981)
Simple and effective approach when the “linearity” assumption is
adequate to the data.
Form of the model is intuitive - a set of additive effects of each
variable towards the prediction
Computationally very efficient
Too strong assumptions on the shape of the unknown regression
function

Drapper and Smith (1981): Applied Regression Analysis, 2nd edition. Wiley Series in Probability

and Mathematical Statistics.
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Multiple Linear Regression

Obtaining Multiple Linear Regression Models in R
library(tidymodels)
data(algae, package="DMwR2")
alg <- as_tibble(algae) %>% # Preparing the data

select(1:12) %>% slice(-c(62,199))

lmSpec <-
linear_reg() %>% # the type of model
set_engine("lm") # the implementation to use

lm <- lmSpec %>% fit(a1 ~ ., data = alg) # fit the model to the data

tidy(lm) # showing the model

## # A tibble: 16 x 5
## term estimate std.error statistic
## <chr> <dbl> <dbl> <dbl>
## 1 (Interc~ 28.1 29.7 0.946
## 2 seasons~ -1.09 4.31 -0.252
## 3 seasons~ -0.917 4.08 -0.225
## 4 seasonw~ 1.82 3.98 0.457
## 5 sizemed~ 2.60 3.83 0.680
## 6 sizesma~ 8.96 4.24 2.11
## 7 speedlow 1.70 4.93 0.345
## 8 speedme~ -2.24 3.41 -0.658
## 9 mxPH -1.06 3.49 -0.305
## 10 mnO2 0.754 0.709 1.06
## 11 Cl -0.0325 0.0331 -0.982
## 12 NO3 -1.60 0.551 -2.90
## 13 NH4 0.00178 0.000993 1.80
## 14 oPO4 -0.0151 0.0396 -0.380
## 15 PO4 -0.0402 0.0308 -1.30
## 16 Chla -0.108 0.0821 -1.31
## # ... with 1 more variable:
## # p.value <dbl>
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Multiple Linear Regression

Using the Models for Prediction

dataSplit <- initial_split(alg, prop = 0.7)
algTr <- training(dataSplit) # training set
algTs <- testing(dataSplit) # test set

lmTr <-
lmSpec %>% fit(a1 ~ ., data = algTr)

preds <- predict(lmTr, new_data = algTs)
algTs %>% bind_cols(preds) %>% metrics(a1,.pred)

## # A tibble: 3 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 14.6
## 2 rsq standard 0.299
## 3 mae standard 11.9

library(ggplot2)
ggplot(bind_cols(algTs,preds), aes(x=a1,y=.pred)) + geom_point() + geom_abline(slope=1,intercept=0) + xlab("True") + ylab("Predicted")
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Support Vector Machines (SVMs)

A Bit of History...

SVM’s were introduced in 1992 at the COLT-92 conference
They gave origin to a new class of algorithms named kernel
machines
Since then there has been a growing interest on these methods
More information may be obtained at
www.kernel-machines.org

A good reference on SVMs:
N. Cristianini and J. Shawe-Taylor: An introduction to Support
Vector Machines. Cambridge University Press, 2000.
SVMs have been applied with success in a wide range of areas
like: bio-informatics, text mining, hand-written character
recognition, etc.
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Support Vector Machines (SVMs) The Basic Idea

Two Linearly Separable Classes

b

w

Class       , y= +1

Class       , y = −1

X2

X1

Obtain a linear separation of the cases (binary classification
problems)
Very simple and effective for linearly separable problems
Most real-world problems are not linearly separable!
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Support Vector Machines (SVMs) The Basic Idea

The Basic Idea of SVMs

Map the original data into a new space of variables with very high
dimension.
Use a linear approximation on this new input space.
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Support Vector Machines (SVMs) The Basic Idea

The Idea in a Figure

Map the original data into a new (higher dimension) coordinates
system where the classes are linearly separable
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Support Vector Machines (SVMs) The Separating Hyperplane

Maximum Margin Hyperplane

Class       , y= +1

Class       , y = −1

X2

X1

Class       , y= +1

Class       , y = −1

X2

X1

There is an infinite number of
hyperplanes separating the two
classes!
Which one should we choose?!
We want the one that ensures a better
classification accuracy on unseen data
SVMs approach this problem by
searching for the maximum margin
hyperplane
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Support Vector Machines (SVMs) The Separating Hyperplane

The Support Vectors

Class       , y= +1

Class       , y = −1

X2

X1

H1

H2

All cases that fall on the hyperplanes H1
and H2 are called the support vectors.

Removing all other cases would not
change the solution!
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Support Vector Machines (SVMs) The Separating Hyperplane

The Optimal Hyperplane

SVMs use quadratic optimization algorithms to find the optimal
hyperplane that maximizes the margin that separates the cases
from the 2 classes
Namely, these methods are used to find a solution to the following
equation,

LD =
n∑

i=1

αi −
1
2

n∑
i,j

αiαjyiyj(xi · xj)

Subject to :

αi ≥ 0∑
i

αiyi = 0

In the found solution, the αi ’s > 0 correspond to the support
vectors that represent the optimal solution

© L.Torgo (Dalhousie University) Predictive Analytics May, 2021 33 / 52

Support Vector Machines (SVMs) The Problem of Linear Separability

Recap

Most real world problems are not linearly separable
SVMs solve this by “moving” into a extended input space where
classes are already linearly separable
This means the maximum margin hyperplane needs to be found
on this new very high dimension space

© L.Torgo (Dalhousie University) Predictive Analytics May, 2021 34 / 52



Support Vector Machines (SVMs) The Problem of Linear Separability

The Kernel trick

The solution to the optimization equation involves dot products
that are computationally heavy on high-dimensional spaces
It was demonstrated that the result of these complex calculations
is equivalent to the result of applying certain functions (the kernel
functions) in the space of the original variables.

The Kernel Trick
Instead of calculating the dot products in a high dimensional space,
take advantage of the proof that K (x, z) = φ(x) · φ(z) and simply
replace the complex dot products by these simpler and efficient
calculations
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Support Vector Machines (SVMs) The Problem of Linear Separability

Summary of the SVMs Method

As problems are usually non-linear on the original feature space,
move into a high-dimension space where linear separability is
possible
Find the optimal separating hyperplane on this new space using
quadratic optimization algorithms
Avoid the heavy computational costs of the dot products using the
kernel trick
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Support Vector Machines (SVMs) Multiple Classes

How to handle more than 2 classes?

Solve several binary classification tasks
Essentially find the support vectors that separate each class from
all others

The Algorithm

Given a m classes task
Obtain m SVM classifiers, one for each class
Given a test case assign it to the class whose separating
hyperplane is more distant from the test case

© L.Torgo (Dalhousie University) Predictive Analytics May, 2021 37 / 52

Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R
Training

library(tidymodels)
data(iris)

svmSpec <-
svm_rbf() %>% # the type of model
set_engine("kernlab") %>% # the implementation to use
set_mode("classification") # type of task

s <- svmSpec %>% fit(Species ~ ., data = iris) # fit the model to the data

svmSpec2 <-
svm_rbf(cost=10, margin = 0.01) %>%
set_engine("kernlab") %>%
set_mode("classification")

s2 <- svmSpec2 %>% fit(Species ~ ., data = iris)
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Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R (2)
Predicting

dataSplit <- initial_split(iris, prop = 0.7)
irTr <- training(dataSplit) # training set
irTs <- testing(dataSplit) # test set

svmTr <-
svmSpec %>% fit(Species ~ ., data = irTr)

results <- irTs %>% select(Species) %>% bind_cols(predict(svmTr, new_data = irTs))
head(results)

## Species .pred_class
## 1 setosa setosa
## 2 setosa setosa
## 3 setosa setosa
## 4 setosa setosa
## 5 setosa setosa
## 6 setosa setosa

results %>% metrics(Species,.pred_class)

## # A tibble: 2 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy multiclass 0.956
## 2 kap multiclass 0.933
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Support Vector Machines (SVMs) SVMs em R

Obtaining an SVM in R (2)
Predicting (cont.)

results %>% conf_mat(Species,.pred_class)

## Truth
## Prediction setosa versicolor
## setosa 16 0
## versicolor 0 13
## virginica 1 1
## Truth
## Prediction virginica
## setosa 0
## versicolor 0
## virginica 14

autoplot(results %>% conf_mat(Species,.pred_class),
type="heatmap")
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Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression

Vapnik (1995) proposed the notion of ε support vector regression
The goal in ε-SV Regression is to find a function f (x) that has at
most ε deviation from the given training cases
In other words we do not care about errors smaller than ε

V. Vapnik (1995). The Nature of Statistical Learning Theory. Springer.
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Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

ε-SV Regression uses the following error metric,

|ξ|ε =

{
0 if |ξ| ≤ ε
|ξ| − ε otherwise

x

x
x x

x x x x

x x

x 0

−ε

−ε

+ε

+ε
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Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

The theoretical development of this idea leads to the following
optimization problem,

Minimize :
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

Subject to :


yi −w · x− b ≤ ε+ ξi
w · x + b − yi ≤ ε+ ξ∗i
ξi , ξ

∗
i ≥ 0

where C corresponds to the cost to pay for each violation of the
error limit ε
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Support Vector Machines (SVMs) SVMs for Regression

ε-SV Regression (cont.)

As within classification we use the kernel trick to map a non-linear
problem into a high dimensional space where we solve the same
quadratic optimization problem as in the linear case
In summary, by the use of the |ξ|ε loss function we reach a very
similar optimization problem to find the support vectors of any
non-linear regression problem.
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Support Vector Machines (SVMs) SVMs for Regression

SVMs for regression in R

data(Boston,package='MASS')
dataSplit <- initial_split(Boston, prop = 0.7)
bTr <- training(dataSplit) # training set
bTs <- testing(dataSplit) # test set

svmSpec <-
svm_rbf() %>% # the type of model
set_engine("kernlab") %>% # the implementation to use
set_mode("regression") # type of task

sTr <-
svmSpec %>% fit(medv ~ ., data = bTr)

preds <- predict(sTr, new_data = bTs)
bTs %>% bind_cols(preds) %>% metrics(medv,.pred)

## # A tibble: 3 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 3.39
## 2 rsq standard 0.862
## 3 mae standard 2.20

library(ggplot2)
ggplot(bind_cols(bTs,preds), aes(x=medv,y=.pred)) +

geom_point() + geom_abline(slope=1,intercept=0) +
xlab("True") + ylab("Predicted")
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Model Ensembles and Random Forests Motivation

Model Ensembles

What?

Ensembles are collections of models that are used together to
address a certain prediction problem

Why? (Diettrich, 2002)

For complex problems it is hard to find a model that “explains” all
observed data.
Averaging over a set of models typically leads to significantly
better results.

Dietterich, T. G. (2002). Ensemble Learning. In The Handbook of Brain Theory and
Neural Networks, Second edition, (M.A. Arbib, Ed.), Cambridge, MA: The MIT Press,
2002. 405-408.
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Model Ensembles and Random Forests Random Forests

Random Forests (Breiman, 2001)

One of the keys to sucessful ensembles is diversity among the
models
Random forests are formed by a set of decision tree models
Diversity is achieved by obtaining each tree in different ways

There are differences in the training set
There are differences in the way the variables are used in the tree

Random Forests consist of sets of tree-based models where each
tree is obtained from a bootstrap sample of the original data and
uses some form of random selection of variables during tree
growth

Breiman, L. (2001): "Random Forests". Machine Learning 45 (1): 5—32.
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Model Ensembles and Random Forests Random Forests

Random Forests - the algorithm

For each of the k models
Draw a random sample with replacement to obtain the training set
Grow a classification or regression tree

On each node of the tree choose the best split from a randomly
selected subset m of the predictors

The trees are fully grown, i.e. no pruning is carried out
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Model Ensembles and Random Forests Random Forests

Random Forests in R
The package randomForest

library(tidymodels)
data(Boston,package='MASS')
dataSplit <- initial_split(Boston, prop = 0.7)
bTr <- training(dataSplit) # training set
bTs <- testing(dataSplit) # test set

rfSpec <-
rand_forest() %>% # the type of model
set_engine("ranger") %>% # the implementation to use
set_mode("regression") # type of task

rfTr <-
rfSpec %>% fit(medv ~ ., data = bTr)

preds <- predict(rfTr, new_data = bTs)
bTs %>% bind_cols(preds) %>% metrics(medv,.pred)

## # A tibble: 3 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 3.44
## 2 rsq standard 0.879
## 3 mae standard 2.27
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Model Ensembles and Random Forests Random Forests

A classification example

data(iris)
dataSplit <- initial_split(iris, prop = 0.7)
irTr <- training(dataSplit) # training set
irTs <- testing(dataSplit) # test set

rfSpec <-
rand_forest() %>% # the type of model
set_engine("randomForest") %>% # the implementation to use
set_mode("classification") # type of task

rfTr <-
rfSpec %>% fit(Species ~ ., data = irTr)

results <- irTs %>% select(Species) %>% bind_cols(predict(rfTr, new_data = irTs))
results %>% metrics(Species,.pred_class)

## # A tibble: 2 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy multiclass 0.933
## 2 kap multiclass 0.900
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Hands on Random Forests

Hands on Linear Regression and Random Forests
the Servo data set

Load in the data set Servo from package mlbench and answer the
following questions:

1 How would you obtain a random forest with 750 trees to forecast
the value of Class (it is a numeric variable)

2 Repeat the previous exercise but now using a linear regression
model.

3 Obtain the predictions of the two previous models for the data
used to obtain them. Draw a scatterplot comparing these
predictions

4 Split the data in train and test sets (80%-20%). Obtain the two
previous models on the training data and get their predictions for
the test set. Compare the predictions of the models.
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