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ABSTRACT
Insider threat detection represents a challenging problem to compa-
nies and organizations where malicious actions are performed by
authorized users. This is a highly skewed data problem, where the
huge class imbalance makes the adaptation of learning algorithms
to the real world context very difficult. In this work, applications of
genetic programming (GP) and stream active learning are evaluated
for insider threat detection. Linear GP with lexicase/multi-objective
selection is employed to address the problem under a stationary
data assumption. Moreover, streaming GP is employed to address
the problem under a non-stationary data assumption. Experiments
conducted on a publicly available corporate data set show the capa-
bility of the approaches in dealing with extreme class imbalance,
stream learning and adaptation to the real world context.
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1 INTRODUCTION
Insider threat detection represents a particularly challenging ex-
ample of an intrusion detection task. It is not possible to assume
that ‘walls’ or ‘barriers’ can be built between an outside source of
malicious behaviour, because the source(s) of such behaviour are on
‘inside’ the organization. Moreover, the malicious behaviour(s) are
not necessarily static, and can change over time or might develop
over a period of time. Finally, in most organizations the individ-
uals with malicious intent represent an infrequently occurring
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behaviour, thus data available to describe the activity is particu-
larly rare. This work represents an initial study in which we make
use of the CERT insider thread dataset (Section 4) to benchmark
different machine learning (ML) approaches, divided into two ba-
sic categories. The categories are selected to reflect different basic
underlying assumptions regarding access to data.

Category 1 algorithms assume that the ML models can be built
offline under the traditional supervised learning stationary data
assumption i.e., training data is completely representative of the
overall task, and models are built once and deployed on an indepen-
dent test partition. Category 2 algorithms assume that ML models
can be built online by interactingwith the data as a stream generated
by a non-stationary process. Moreover, it is not possible to label all
the data, so such algorithms have to operate under a label budget
that defines howmuch of the data an expert can be called on to label
[27]. Algorithms of this class therefore have to answer additional
questions such as what to request labels for, and how much of the
material that has been labeled can be retained, i.e. it is not possible
(or desirable) to save everything because the underlying task might
also be non-stationary. Finally, we note that malicious behaviours
could also be adopted that introduce ‘adversarial samples’ into the
stream, thus aiming to fool the ML algorithm into characterizing
malicious behaviour as normal [1, 25]. In order to address this latter
point, we assume that the human expert needs to provide the label,
ground truth, but does not decide what to label.

In the following, Section 2 summarizes previous research in
the general area of Insider threat detection. Section 3 introduces
the GP frameworks later used for benchmarking, as well as the
non-evolutionary ML algorithms. Section 4 details how the CERT
data set expresses the Insider threat problem and how features
are then derived. Parameterizations for the GP algorithms are also
discussed and performance metrics established. Section 5 presents
the performance evaluations under each application constraint
category, with concluding remarks made in Section 6.

2 BACKGROUND
The potential utility of adopting a streaming approach to insider
threat detection problem was first recognized in [5, 17]. Multiple
algorithms were applied to the KDD’99 dataset. The principal lim-
itation of the evaluation was that the KDD’99 dataset pertains to
intrusion detection as a whole as opposed to insider detection in
particular. More recently, Parveen et al. assumed an incremental
learning approach to insider threat detection under streaming data
[18]. The stream is divided into non-overlapping data chunks, and
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a quantized dictionary of patterns in data is created based on data
from the current data chunk and some of the most recent chunks
using a weighted sum scheme. Test data is considered an anom-
aly if it has large edit distance from all patterns in the dictionary.
Such a scheme is potentially capable of detecting threats across
multiple users. An alternative approach to insider threat detection
with machine learning is to adopt a representation explicitly ca-
pable of expressing temporal properties. Rashid et al. use Hidden
Markov Models (HMMs) to capture each user’s normal weekly
activity sequences and detect the deviation that may potentially
indicate insider threats [19]. The model requires training one HMM
per user per week on explicitly ‘normal’ data. Their results illus-
trate the potential of HMM as an unsupervised learning method
for anomaly detection in general and insider threat detection in
particular. The temporal nature of insider threats can also poten-
tially be captured using a recurrent neural network. A combination
of a deep neural network and recurrent neural network were used
to recognize each user’s behaviours and output anomaly scores
[23]. As per the HMM, one model is required per user, and the
model needs to be retrained at each time step. The scores for recent
time steps (days) are combined using weighted moving average.
Experiments are performed on r6.2 of CERT insider threat dataset,
and Cumulative recall is used for measurement. They argue that
“the cost of a missed detection is substantially larger than the cost of a
false positive, we feel that recall-oriented metrics such as CR-k are a
more suitable measurement of performance than precision-oriented
ones” ; thus performance is reported in terms of recall alone. Rather
than have the ML explicitly capture temporal properties in the
original user data, features might be crafted by experts to capture
such information. This also implies that algorithms designed for
anomaly detection and/or supervised learning can be applied for
insider threat detection. Such an approach was adopted by [21].

3 LEARNING ALGORITHMS
3.1 Linear GP
In this paper, Linear genetic programming (LGP) is employed as
one of the supervised learning methods for classifying data to
detect insider threats under a stationary data assumption. LGP is
a variant of GP where programs in a population are represented
in linear form, as a sequence of instructions from an imperative
programming language [3]. Each instruction executes an operation
over the operands, which can be registers, constants, or input value.
Then result of each instruction is stored in a register. The final
result of the program is taken as the values of the registers which
are designated as the output registers at the end of the program.

There are two properties that differentiate LGP from other rep-
resentations of GP. First, the imperative representation of LGP
allows the data to be processed as in a directed graph data flow,
thus facilitating reuse of register content by multiple instructions.
This in turn allows the reuse of subprograms for evolving compact
solutions. Second, structurally noneffective code (introns) in LGP
programs - instructions that have no impact on the output regis-
ters - support neutral variation and skipping of intron code during
fitness evaluation, where noneffective code can be tuned effective
by variation operators.

Each generation, LGP evolves the program population by de-
termining fitness for each program in the population for a sub-
set of training data. Variation operators, mutation and crossover,
introduce new material for consideration at the next generation.
Crossover in LGP is done similarly to a genetic algorithm, blocks
of genes (representing instructions) are swapped between pairs of
parents. Mutation operates at two levels: macro mutation, impacts
an entire instruction (i.e. instruction replacement, deletion or inser-
tion), and micro mutation, where a field of a current instruction is
effected (target register, operands, or operator).

Selection operators determine which individuals in the popu-
lation are selected to generate the next population. In this study,
as there are inherently uncompromising objectives of the insider
threat detection, that are high malicious detection rate and low
false positive rate. Hence, for that purpose, two selection methods -
lexicase [10] and multi-objective selection - are employed in this
study. Parent selection in the lexicase selection algorithm follows a
randomized order of test cases each time. On the other hand, multi-
objective selection in this study is based on Pareto-ranking with
the two main objectives: class-wise detection rate and accuracy are
taken into account.

3.2 GP Teams
Teaming formulations of genetic programming (hereafter GP teams)
enable task decomposition to take place across multiple programs,
or co-operative coevolution [15]. Recent research has shown that
adopting a teaming formulation for GP is particularly beneficial un-
der the context of streaming classification tasks with non-stationary
data [11, 24]. In particular, change is not necessarily associated with
all of the task changing, but instead change might be reflected in
updates to different aspects of specific classes at different points in
time. Hence, in adopting a modular approach to the streaming task,
it is possible to more quickly react to changes in the data [24].

The approach adopted to GP teams in this work takes the form
of Symbolic bid-based GP (or SBB) [16]. Such a framework co-
operatively coevolves a population of programs and a population
of candidate teams. The population of teams assumes a variable
length representation in which each individual is a set of pointers
to (a unique subset of) individuals in the program population. This
means that team complement is evolved (it is not necessary make
assumptions regarding team membership), and multi-class classifi-
cation appears as an emergent property of team complement. The
only constraints are that each member of the team population have
to index at least two members of the program population, and there
should be at least two different classes represented by each team.

Members of the program population assume a LGP representa-
tion (Section 3.1). However, each program is also associated with
one scalar class label, a ∈ C, where C is the set of class labels. Thus,
the program output represents the ‘certainty’ for its corresponding
label. Now, consider a team consisting of two programs, pa and pb .
Both programs are evaluated on the current exemplar, producing
a single output for each program, pa .out and pb .out . Which ever
of the two programs has the maximum output ‘wins’ the right to
suggest its class label, a. If a matches the actual class label, then the
fitness of the team improves. Thus, fitness is only directly expressed
at the level of teams.
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SBB assumes a breeder formulation for evolution, thus at each
generation the worst Tдap teams are deleted. At this point the pro-
gram population is tested for any programs which are not indexed
by a team. If any such programs exist, they must have been as-
sociated with the worst performing teams, and are therefore also
deleted. Selection begins at the team population with Tдap teams
selected as parents with uniform probability, and begins by cloning
the parents. Variation operators probabilistically add and/or delete
programs from the selected parent teams. Likewise, a program can
be cloned and variation applied to the program as per LGP.

3.3 Streaming GP
As introduced in Section 1, a GP teaming formulation will be as-
sumed for operation under the streaming data scenario (Section
3.2). However, GP teaming does not address how GP ‘interfaces’
with the stream such that operation under a label budget is pos-
sible. Figure 1 summarizes the general approach, where this has
previously been evaluated under various non-stationary streaming
data benchmarks with artificial data [13, 14].

Figure 1: Stream GP framework

A non-overlapping window provides the initial interface to the
stream. At each time, t , only the content of current window, SW (i)
is available and accessible for making label queries. The Data Subset,
DS(i), represents exemplars for which the true label information has
been requested. After each update to the Data Subset, τ generations
of GP are performed, so identifying a champion classifier, gp*, which
provides label predictions on an ‘anytime’ basis. Thus, after a cold
start, a gp* individual is always available for label prediction before
label requests are made. Evolution of new champion classifiers
takes place throughout the stream at a rate of replacement dictated
by the label budget β .

Sampling andArchiving policies determinewhat to sample/retain
in the Data Subset. Following the recommendations of Khanchi et
al. [13, 14], the Sampling policy (S) selects up to Gap instances
from current window location, SW (i), with a uniform p.d.f. Such a
sampling process does not make use of label information. The size
of the GP non-overlapping window reflects the label budget β . As
β → 1(0) window size decreases to Gap (increases to ∞), implying
that every exemplar has its label requested (never requested), or
β =

Gap
DSsize .

True label information is provided by a human expert and placed
in the data subset. This guarantees the validity of label informa-
tion, so avoiding the pathology of adversarial samples [1, 25]. The

Archiving policy (A), on the other hand, has the true label infor-
mation, incrementally balances the Data Subset class distribution by
targeting exemplars from the over-represented classes for replace-
ment. The combination of these Archiving and Sampling policies
leads to an incrementally balanced data subset in which valuable
minor classes are retained [13, 14].

3.4 Comparator algorithms
Two of themost popularML algorithms –Decision tree and Bayesian
based classifiers – provide the basis for comparison against GP in
this study [26]. This provides an example of each algorithm for
stationary and non-stationary training scenarios, using the imple-
mentations in WEKA and MOA software suites [2, 6].

3.4.1 Decision trees. Decision trees are notable for its popular-
ity and interpretability. Under the stationary data assumption, a
decision tree is generated using C4.5 algorithm [26]. C4.5 is based
on the concept of information entropy and creates an if-then rule
at each decision tree node. A normalized information gain measure
is calculated at each tree node and splits the data into subsets, such
that the ‘purity’ of a subset increases as the tree is descended. The
Hoeffding tree algorithm is employed on non-stationary data.
The algorithm for constructing a Hoeffding tree progressively splits
leaves and creates decision nodes where enough statistics are avail-
able at the leaf. For each exemplar, it traverses from the root node
to a leaf and updates the statistics along the way. The decision on
when and how to split the leaf is based on the hoeffding bound
[12] which with a certain confidence suggests an attribute for split-
ting. The Hoeffding tree has been successfully applied on multiple
streaming applications [7] and generalized to operate under label
budgets [27].

3.4.2 Bayesian based algorithms. On stationary data, Bayesian
networks have been shown to be capable of working in other cyber-
security applications [9, 22]. A Bayesian network describes a di-
rected graphical model representing a set of features and their rela-
tionships using Bayesian probabilities. Each node in the network
represents a data attribute, and the directed link between nodes
represents the conditional dependency between the attributes. For
classification applications, a Bayesian network models the relation-
ship between the features and class labels.

On non-stationary data, Naive Bayes is applied to streaming
applications incrementally [20]. The learning process starts with
an initial data subset and estimates the prior probability (P(C)) and
conditional probability (P(X |C)). Then, as the stream progresses,
new data subsets are prepared and these two parameters are up-
dated based on the new information. At anytime the label prediction
for stream exemplars is done based on the available parameters
and calculating the post probability (P(C |X )). It is noteworthy that
Bayesian based algorithmswork on discrete attributes, whichmakes
it a promising approach for the data in this study. Moreover, a gen-
eralization to the case of operation under label budgets is readily
available [27].
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Table 1: CERT dataset exemplar counts. There are 5 classes:
class 1 denotes normal user behaviours, classes 2-4 denote
three different types of insider behaviours, class 5 repre-
sents in part malicious behaviours by class 4 users using
other user’s accounts

Class 1 Class 2 Class 3 Class 4 Class 5

CERT-Weekly 48041 254 52 10 10
CERT-Daily 233557 1252 265 52 50

4 EMPIRICAL METHODOLOGY
4.1 Dataset and feature extraction
Obtaining data for designing and evaluating insider threat detection
systems encounters several additional difficulties unique to the
application area. Insider threats typically involve corporations and
government agencies, where such threats relate to compromising
organizational intellectual properties. Hence the data is usually not
made available to research community.

This study employs the publicly available CERT insider threat
dataset1 [8], one of a very few datasets available for benchmarking
purposes. A number of different model types including commu-
nication and connection graph models, topic models, behavioural
models, and psychometric models are employed for generating the
data as close to what is seen in the real-world as possible. Further-
more, the insider threat data provided is synthesized in the same
form and scope as the normal data. There are a total of 5 insider
threat scenarios, ranging from data leaking, intellectual property
theft to IT sabotage.

The dataset is divided into multiple releases, each of which char-
acterize an organization with 1000 employees over a time period of
either a day or a week. Data in each release describes two proper-
ties: (i) the users’ activity logs, which includes log on, device, file,
email, and http logs, and (ii) the organization’s structure and users’
information in a Light-weight directory access protocol (LDAP)
folder. For evaluating the algorithms, raw data from the two are
combined, additional models, such as user - host are built, before
numerical features are extracted.

Two categories of attributes appear: user features and activity
features. User features include each user’s role, functional unit,
department, psychometric scores, and employment status. The ac-
tivity features mostly take the form of specific activity count in
each log file over a given time period, such as: number of logins,
number of logins in after hours, number of external
emails, number of cloud storage visits. Moreover, two
versions of the CERT insider threat dataset are extracted based
on the extraction window: weekly and daily data. While weekly
data may capture a more complete picture of a user’s activities
over a longer time period (both week days and weekend days are
taken into account), daily data on the other hand may allow better
responsiveness of a detection system, i.e. insider threat is detected
earlier.

In this paper, release 4.2 of the dataset, hereafter the ‘CERT’
dataset, is employed for designing and evaluating insider threat

1https://www.cert.org/insider-threat/tools/index.cfm

Table 2: Stream GP Parameters.

Parameter Value

Data Subset size (DSsize ) 120
DS gap size (Gap) 20
GP gap size (Tдap) 20
Team pop. size (Psize ) 120
Max. programs per host (ω) 20
Prob. Program deletion (pd) 0.3
Prob. Program addition (pa) 0.3
Prob. Action mutation (µ) 0.1

detection approaches. Release 4.2, which spans over 72 weeks, con-
tains a significantly greater amount of insider threat incidents than
other releases. This provides the basis for testing the proposed de-
tection systems against a more diverse set of scenarios. Given the
nature of the task, an extreme imbalance exists in the distribution
of classes (Table 1). With this in mind, since there are no malicious
behaviours in the first 20 weeks, the actual data employed in this
work is from week 20 onwards of original CERT dataset. This deci-
sion is made to evaluate some of the issues with class imbalance.
Moreover, from the perspective of streaming classifiers, there may
very well be shifts and drifts in a user’s behaviours and activities
over the duration of the datasets.

4.2 Parameterization
The GP model deployed with batch updating in this study is an
implementation of Linear GP [3], where each program is defined
in terms of 1 and 2 argument operations (+, -, x, /, sin, cos,
sqrt, log, exp, if) with operands taking the form of either
registers or constants. Post execution, the program’s output class
is defined by the output register with maximum value. As noted in
Section 3.1, we compare two selection methods: Lexicase selection
[10] and a Pareto-rankingmulti-objective (overall detection rate and
accuracy). The main parameters of GP are: population size = 2500,
mutation prob. = 0.8, crossover prob. = 0.4, number of generations
= 2000, tournament size = 5.

Stream GP applies the same parameters as previous work [14]
which is represented in Table. 2. At each training epoch, Gap = 20
exemplars from data subset and Tдap = 20 teams from team popu-
lation are replaced and τ = 5 GP generations are performed. The ex-
periments are done under two different label budgets, β = 0.05, 0.25.
The same label budget is used for Naive bayes and Hoeffding Tree
streaming policies.

4.3 Performance metrics
In this work, performances of classifiers based on a stationary
learning approach is measured as traditionally based on detection
rate (DR) of each class and accuracy on the testing data, Eq. (1):

DRj =
tpj

tpj + f nj
, and Accuracy =

∑
j tpj∑

j tpj +
∑
j f nj

, (1)

where tpj and f nj are the counts of true positive and false negative
for class j post testing. On the other hand, given the nature of
training data in stream learning algorithms, the performances need
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to be measured dynamically throughout the stream. Hence, the
same measures as in Khanchi et al. [13, 14] are applied in this paper.
Thus, in this case the detection rates are incrementally estimated
as a function of time, t, as well as class. A multi-class detection
rate DR(t) is used to measure the performances of non-stationary
learning algorithms, Eq. (2):

DR(t) = 1
C

C∑
j=1

DRj (t), (2)

where C represents the number of data classes encountered up to t
and the Detection rates of majority and minority classes contribute
equally to DR(t). Thus, DR(t) allows a fair comparison between
stream learning algorithms under the imbalanced data condition,
where all classes are taken into account. Finally, we note that Eq.
(2) describes Detection rate as a function of time, hence can also be
summarized as a single scalar ‘area under the curve’ [11].

5 EXPERIMENT RESULTS
5.1 Static offline classifier evaluation
The algorithms are benchmarked on the CERT dataset using two
scenarios for splitting the training–testing data: 1) the first 50% of
the data is used for training, and the last 50% for test, and 2) 50% of
the data is sampled uniformly from the entire dataset for training
(with the remainder representing the test partition). Naturally, the
first scenario is more representative of a deployment situation, as
it implies a detection model has to be built first before deployment.
The second scenario provides an indication of how much better
the models might be if it was possible to sample across the entire
detection period.

Results from LGP with both lexicase and multi-objective se-
lection are estimated over an average of 4 different runs in each
experiment. For C4.5 and Bayesian Network, when the first 50%
of data provides the training partition, the results are taken from
a single run, i.e. C4.5 and Bayes Net return the same results for
the same data. When 50% of the data are sampled randomly for
training, the results are the average of 20 independent runs (effect
of different data samples).

The results of the stationary/non streaming algorithms on both
weekly and daily CERT data are summarized in Table 3. Note that
this reflects a binary classification task, where the two classes are
normal (class 1) and insider threats (classes 2-5). It appears that
under a stationary data assumption, the supervised learning algo-
rithms employed in this study generally perform well and give sta-
ble results. Most of the algorithms achieve higher than 90% in both
class-wise detection rate and accuracy. Additionally, we observe
that the results represent a trade-off between accuracy (normal DR)
and insider threat detection rates. This can be explained by the
extremely imbalanced class distribution in the data.

The LGP algorithms achieve high insider detection rate with
reasonable false positive rate in most cases. Interestingly, LGP with
multi-objective selection usually evolve simpler solutions (shorter
solution length). Naturally, the cost of false negatives (miss classi-
fying a threat as normal) is higher than the cost of false positives.
However, given the cost of an analyst performing follow up on
cases characterized as a threat, it is also important to minimize the
false positives. The results indicate that C4.5 struggles to find the

patterns to detect insider threats in all cases. The possible explana-
tion is that C4.5 focuses on achieving the highest accuracy, hence
is not able to learn from the minority class well. Finally, Bayesian
network achieve similar results to LGP in most of the cases.

Over the two versions of the dataset, while C4.5 performance is
largely unchanged, the different selection methods of LGP shows an
interesting observation. On CERT-weekly data, LGP with lexicase
selection performs better than multi-objective LGP, i.e. higher ac-
curacy via higher normal DR and maintains the similar insider DR.
However, on the CERT-daily task, the trend is reversed, i.e. multi-
objective LGP gives better normal DR, at a cost of lower insider
DR. Bayesian network clearly achieves the best balance between
accuracy and class-wise detection rate in CERT-daily dataset, while
LGP with lexicase selection is the best performer on weekly data.

Finally, on the two training-testing data split approaches, gen-
erally the experimental results are better where 50% of data is
randomly selected for training. The reason behind this is likely
that temporal variation exists in user behaviours. Given the long
duration of the dataset, models trained on first part of the data are
likely not capable of adapting well to the user behaviours in the
second part of the dataset.

5.2 Streaming online algorithm evaluation
The Stream GP algorithm (Archive) and two MoA algorithms, Ho-
effding Tree and Naive Bayes with variable uncertainty sampling are
evaluated. A total of 20 trials are performed per algorithm indepen-
dently at two different label budgets, β = {0.05, 0.25}. In all cases,
classification models are incrementally constructed over the course
of the dataset (stream), implying that the model at the end of the
stream is potentially very different from that at the beginning of
the stream. In order to provide an impression for how much might
be gained by seeing the same data more than once, we actually
present the same data twice. Thus, the 50% point represents one
‘pass’ through the CERT dataset. The remaining 50% of the stream
represents a ‘second pass’ through the CERT dataset. During this
second pass, the models experience a second opportunity to sam-
ple the same data, i.e. a label budget of 2β is simulated during the
second pass.

5.2.1 Overall Performance. The Friedman non-parametric re-
peated measures statistic is employed to showcase the trend of
algorithms on the four combinations of the data set [4]. Tables 4
and 5 summarize the results by ranking the algorithms. The last
column represents the average rank of each algorithm from which
the Friedman statistic is estimated [4]. The result of the Friedman
test χ2F for β = {0.05, 0.25} is 8 and 6.5 respectively, where the
critical value of F (2, 6) for α = 0.05 is 6, so the null-hypothesis is
rejected in each case. Applying the Nemenyi post hoc test groups
algorithms with equivalent performance. If the average rank is
within the critical value of CD = 1.6 for qα = 0.05 then they are
considered equivalent. In this case, stream GP performs signifi-
cantly better than Hoeffding Tree, but there is insufficient data to
reach a conclusion regarding Naive Bayes.

5.2.2 Class-wise detection rate. In order to give a better per-
spective of the algorithms behaviour throughout the course of
the stream, the DR metric can be plotted over the course of the
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Table 3: Results of non streaming algorithms

Algorithm
Train on first 50% of data Train on random 50% of data

Normal DR Insider DR Accuracy Solution length Normal DR Insider DR Accuracy Solution length

CERT-Weekly
LGP - Lexicase 97.42 88.50 97.37 122 97.81 89.08 97.77 75
LGP - MultiObj 92.70 88.50 92.68 16 88.00 93.67 88.04 19
C4.5 99.88 47.79 99.62 49 99.88 62.09 99.64 79
Bayes Net 89.49 96.52 89.52 88.38 92.88 88.41

CERT-Daily
LGP - Lexicase 84.84 91.31 84.87 26 90.60 89.39 90.59 101
LGP - MultiObj 93.40 82.23 93.37 44 95.64 85.51 95.60 53
C4.5 99.98 42.77 99.87 68 99.98 77.86 99.89 117
Bayes Net 96.25 87.65 96.23 94.90 88.30 94.87

Table 4: Algorithm ranks w.r.t. streaming average DRmetric under a 25% label budget. Bracketed entries represent median DR
values to 1 decimal place. Naive Bayes (NB) andHoeffding tree classifiers (fromMoA) appear with ‘variable’ sampling protocol.
SBB algorithm is ‘Archive’ which uses uniform sampling.

Data set
CERT-Weekly CERT-Daily

Rj
Binary DR Multi-class DR Binary DR Multi-class DR

stream GP 1 (78.8) 1 (53.4) 1 (81.3) 1 (56.9) 1
Hoeffding 3 (52.3) 3 (20.0) 2.5 (57.5) 2.5 (29.3) 2.75
Naive bayes 2 (59.2) 2 (24.1) 2.5 (57.5) 2.5 (29.3) 2.25

Table 5: Algorithm ranks w.r.t. streaming average DR metric under a 5% label budget. Bracketed entries represent median DR
metric values to 1 decimal place. Naive Bayes (NB) and Hoeffding tree classifiers (from MoA) appear with ‘variable’ sampling
protocol. GP streaming algorithm is ‘Archive’ which uses uniform sampling.

Data set
CERT-Weekly CERT-Daily

Rj
Binary DR Multi-class DR Binary DR Multi-class DR

stream GP 1 (67.8) 1 (33.3) 1 (74.1) 1 (39.8) 1
Hoeffding 3 (50.0) 3 (19.9) 3 (50.8) 3 (20.1) 3
Naive bayes 2 (59.6) 2 (22.7) 2 (53.0) 2 (24.1) 2

stream. We are interested to know if stream GP and Naive Bayes
(identified with the best overall performance, Section 5.2.1) behave
similarly throughout the stream. Figure. 2 compares the perfor-
mance of stream GP and Naive Bayes over the CERT-Daily data set
for β = 0.25, 0.05.

As noted above, the 50% interval on the x-axis denotes one pass
through the dataset, after which the 50-100% interval represents a
second pass. Given the label budget parameterization, this implies
that by the end of the second pass the β = 0.25 parameterization
has encountered a total label budget of 50%. These models are
also deployed as multi-class classifiers, thus we can also inspect
to what degree different classes are detected (class 1 is the only
non-malicious user).

Figure 2(a) summarizes the average Detection rate per class over
the 20 runs for each algorithm. Both stream GP and Naive Bayes
begin by labeling everything as the major class. After about the

first 10% of the stream, detection of class 1 decreases somewhat as
the detection of the remaining (malicious) classes improves. Both
algorithms see a more pronounced decrease in class 1 detection
under the β = 0.25 label budget, but also a far stronger detection of
the malicious classes. It is also interesting to note that stream GP is
much better at detecting classes 2, 4 and 5, whereas Naive Bayes
detects class 3 better than stream GP. Under the β = 0.05 label
budget, stream GP appears to perform better than Naive Bayes in
all but class 3.

5.2.3 Computational cost. Computational cost for a real-time
problem should be reasonably low which GP is not known for. Here,
we demonstrate that the stream GP framework is able to provide
‘near’ real-time operation. Wall clock time is calculated based on
two aspects: 1) the cost of performing fitness evaluation, and 2)
the cost of deploying the champion to make predictions for new
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(a) Stream GP (25%) (b) NB Variable (25%)

(c) Stream GP (5%) (d) NB Variable (5%)

Figure 2: CERT Daily class-wise Detection rate through the stream. 25% versus 5% label budget. Class 1 is Normal, class 2-5
represent insider threat attacks (ordered).

data (champion labeling). These timings can be viewed in Figure.
3. Naturally, the time taken by the human expert to suggest true
labels for data under the label budget does not appear. However,
there is always a champion available to provide label prediction
at anytime, meanwhile the expert can continue to provide true
labels. In practice, this would insert a lag in the provision of label
information, where such lags are always present in supervised
learning systems. The times are the average of 20 single-threaded
runs on Intel i5 CPU 16@2.67GHz and 48GB memory.

The average time for the champion to suggest labels for a win-
dow is ≈ 7.6µs and for the fitness evaluations is 0.7s. The fitness
evaluation time is calculated based on the time it takes to perform
τ = 5 training epochs on a window plus the champion selection.
The number of evaluations is calculated as DS = 120 exemplars for
each window that should be learned by Psize = 120 teams. This
number is reduced to learning new exemplars (Gap = 20) and up-
dating the new Teams (Tдap = 20) with the data subset or 20×20×5
evaluations. In short, the framework is sufficient to operate in real
time, with a lag relative to the expert’s ability to provide labels.

Finally, from an insider threat detection application perspective,
we note that where each data instance represents a day or a week
of a user’s activities, thus ground truth can potentially be provided
by an analyst with such small label budgets (5% or 25%).

6 CONCLUSIONS
In this paper, GP algorithms in two categories, static and active
learning, are benchmarked against popular machine learning algo-
rithms in the literature for the corporate insider threat detection
task, under two data assumptions, stationary and non-stationary.
The insider threat detection task represents a challenging problem,
where class distributions are highly imbalanced, ground truth may
be limited, and shifts and drifts may appear in user behaviours
over time. Results show that the GP algorithms achieve satisfactory
performance, with good balances between insider threat detection
rates and normal data misclassification rates. More specifically, the
stream active learning GP outperforms the comparing algorithms
in all experiments. Moreover, the results are achieved at only a
small computational cost. This demonstrates the capabilities of the
approach in dealing with real-world and real-time active learning
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(a) Fitness evaluation

(b) Champion labeling

Figure 3: Wall clock time for of stream GP on CERT-daily
data set (multi-class version)

problems. Future work will investigate the active learning approach
under more extreme conditions, such as much higher class imbal-
ance in other versions of the CERT dataset. Given the nature of
the insider threat detection task, where the ground truth may be
hard to obtain, an approach where GP algorithms act as an anomaly
detection system on a change detection basis, or are teamed with
other anomaly detection algorithms can be considered.
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