This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2021.3071928

Anomaly Detection for Insider Threats Using
Unsupervised Ensembles

Duc C. Le, Student Member, IEEE, and Nur Zincir-Heywood, Member, IEEE

Abstract—Insider threat represents a major cybersecurity
challenge to companies, organizations, and government agencies.
Insider threat detection involves many challenges, including
unbalanced data, limited ground truth, and possible user be-
haviour changes. This research presents an unsupervised learning
based anomaly detection approach for insider threat detection.
We employ four unsupervised learning methods with different
working principles, and explore various representations of data
with temporal information. Furthermore, different computational
intelligence schemes are explored to combine these models to
create anomaly detection ensembles for improving the detection
performance. Evaluation results show that the approach allows
learning from unlabelled data under challenging conditions for
insider threat detection. Insider threats are detected with high
detection and low false positive rates. For example, 60% of
malicious insiders are detected under 0.1% investigation budget,
and all malicious insiders are detected at at less than 5%
investigation budget. Furthermore, we explore the ability of the
proposed approach to generalize for detecting new anomalous
behaviours in different datasets, i.e. robustness. Finally, results
demonstrate that a voting-based ensemble of anomaly detection
can be used to improve detection performance as well as the
robustness. Comparisons with the state-of-the-art confirm the
effectiveness of the proposed approach.

Index Terms—insider threat detection, anomaly detection,
ensemble learning, unsupervised learning, temporal data, de-
pendable and robust learning.

I. INTRODUCTION

One of the most prevalent and destructing security threats
to computer networks, data, and intellectual property of
companies and organizations is insider threat. In insider
threat, malicious actions are carried out by authorized person-
nel/employees of organizations, which may be familiar with
its structure, valued properties, and security layers. Therefore,
detecting and mitigating insider threats represent a major
challenge [1]. According to recent reports, insider threats
account for a fourth of all cyberattacks experienced by U.S.
organizations [2]]. Up to 53% of organizations and 42% of U.S.
federal agencies faced insider threat attacks every year [3].
Furthermore, insider threat attacks have become more frequent
recently [4].

According to the CERT Insider Threat Center, insider threat
is defined as threats that originated from malicious or uninten-
tional insiders, whose authorized access to networks, systems,
and data of an organization is exploited to negatively affect the
confidentiality, integrity, availability, or physical state of the
organization’s information, information systems, or workforce
[5. Typical threats caused by malicious insiders are trade

The authors are with Faculty of Computer Science, Dalhousie University,
Canada (e-mail: led@dal.ca, zincir@cs.dal.ca).

secrets / intellectual property theft, disclosure of classified
information, theft of personal information, and IT system
sabotage [5]. A major challenge in detecting insider threats
come from the fact that malicious insiders are authorized to
access the organization’s systems and networks. In addition,
data describing insider threat activities is typically rare and
poorly documented [|6]. Furthermore, storing, processing, and
analyzing multiple sources of organizational data — from
network traffic, authentication logs, to web and email history
— for identifying malicious insiders and other potential threats
present another challenge in implementing detection solutions.

This work presents our proposed anomaly detection ap-
proach, where the focus is on employing unsupervised ma-
chine learning (ML) methods and different representations
of data with temporal information for identifying signs of
anomalous behaviours that may indicate insider threats. This is
the initial and important detection step in cybersecurity work-
flow, where early signs of user behaviour changes (anomaly)
is flagged for further investigation, potentially to detect both
known and unknown (zero day) attacks/vulnerabilities [7]]. In
doing so, the contributions of this paper are summarized as
follows: (i) Different representations of data, namely concate-
nation, percentile, mean and median difference, are introduced
for ML-based anomaly detection algorithms, where temporal
information is encoded to highlight user behaviour changes;
(ii) Capabilities and characteristics of popular unsupervised
ML methods for anomaly detection — Autoencoder, Isolation
Forest, Lightweight On-line detection of anomalies, and Local
Outlier Factor — are examined under different working con-
ditions, namely training data poisoning, number of users in
training data and the duration of training data; (iii) Anomaly
detection ensembles are created to explore performance en-
hancing capabilities and characteristics of different combining
schemes; (iv) Comprehensive anomaly detection results are
presented, per instance and per user; and (v) Evaluating on
publicly available datasets, the proposed approach demon-
strates the ability to generalize and detect malicious insiders
under very low investigation budgets.

The rest of the paper is organized as follows. Section
summarizes the related literature. Section introduces
the proposed anomaly detection approach. Section details
the experiments and presents the evaluation results, while
Section[V]further discusses the results and makes comparisons.
Finally, conclusion and future research directions are presented
in Section [VII

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

II. RELATED WORK

Research in insider threat detection and mitigation has
attracted more and more attention from organizations and
cybersecurity firms recently. Guides to detect and common
practices to combat insider threats in organizations were
released by the CERT Insider Threat Center and U.S. National
Cybersecurity and Communications Integration Center [3]], [8]].
In [5]], Collins et al. described case studies of misbehaviour
and 20 practices for organizations to prevent insider threats.
Recent surveys by Homoliak er al. [1]] and Liu et al. [9]
address the definition, taxonomy and categorization of insider
threats, and provide an overview of the countermeasures.

Following the successes in ML applications for intrusion
detection and anomaly detection tasks [7], [10]], ML techniques
have been applied in insider threat detection, based on their
ability to learn from large amount of data to detect anomalous
/ malicious behaviours of insiders. Most of the proposed
approaches are based on anomaly detection. Some notable
directions in anomaly detection for insider threat are graph-
based approach [11], [12], Hidden Markov Model [13], [14],
oneclass-SVM [15]], and deep learning-based autoencoders and
recurrent networks [[16]—[18]. In [19]], an approach employing
anomaly detectors on combined information from multiple
domains of user activities is proposed by Eldardiry et al.
The approach aims to detect blend-in anomalies and unusual
change anomalies. In [11] and [12], different varieties of
graph-based anomaly detection are employed for insider threat
detection, where user and system data are represented in
graph formats based on their interactions and connections. In
several works, different anomaly detection models are built
for each employee/user in an organization in order to detect
changes in the user behaviours [[13]], [16]], [20]. Rashid et
al. used Hidden Markov Models to model users’ weekly
activity sequences and detect possible insider threats based
on noticeable changes (low probabilities) in weekly user
activity sequences [[13]. In [21], a framework for modelling the
insider threat problem based on behavioural and psychological
observations is proposed that allows analyst to reason on
user data and construct hypothesis trees to describe potential
insider threats. Furthermore, to improve detection performance
in intrusion detection applications, mixture of models and
ensemble approaches have been used to improve detection
results [22]], [23].

Other ML concepts have been introduced to deal with
different aspects of the insider threat detection problem, such
as non-stationary environment and imbalanced data. Stream
online learning are employed in [[12] and [16] for learning
under non-stationary conditions of user behaviours, and to
provide continuous learning and predicting on data arrival.
With the recent trend in deep learning applications, many deep
learning based approaches to insider threat detection have been
proposed as well [16]—[18], [24]. Evolutionary computation
[25]], [26] and supervised learning techniques [27]-[29] are
some other examples.

Another closely related problem to insider threat detection is
lateral movement detection, in which many malicious actions
are also performed using insider accounts. Lateral movement

is used as a technique in advanced persistent threat by threat
actors to gain access to their intended targets, moving through
compromised accounts and systems of the victim organization.
Recently proposed machine learning approaches for lateral
movement detection are graph analysis [[11]], [30], recurrent
neural networks [24], and other supervised learning techniques
[31].

Some works in the literature report the importance of
temporal information in dealing with insider threat, which is
highly related to the human factors [13]], [[16[], [[17], [20], [22].
Notable attempts to leverage temporal information include a
moving average approach [16]], [20], graph embedding [11],
or employing ML models with temporal learning capabilities
[13], [16]. This work instead explore the representation of
temporal information in data for anomaly detection training.
With dynamics and user behaviour changes in mind, we
keep the focus on detecting the changes in each user’s most
recent activities instead of the whole / averaging over the
time range of data. Furthermore, this work constructs a single
anomaly detection model for a given training dataset under
reasonable training time ([II-C). This shows advantages over
other approaches that build one / many models per user [13],
[16], [20] and employ not as scalable learning algorithms [[15]—
[17]. In our previous work [32], a preliminary version of the
proposed anomaly detection was presented. In this work, we
aim to present a comprehensive anomaly detection system
for insider threat with expanded scopes and directions: (i)
different anomaly detection methods are employed to provide
insights under other unsupervised learning paradigms, such
as online learning; (ii) different ensembles for combining
anomaly detection models are investigated; (iii) different tem-
poral data representation methods and new datasets for system
evaluations are explored; and (iv) extended learning conditions
and further analysis / comparison of system performance are
presented.

III. ANOMALY DETECTION SYSTEM FOR INSIDER THREAT

Feature extraction
Numerical features of user
activity count and statistics

4 Machine learning based 4
ly detection / 1

Log data

http, email, log on/off,
device, file, ...

Data parser
Daily or Weekly

Temporal representation

| Autoencoder | | Isolation Forest | o | | Wsalt altiienge |

\

Anomaly scores

Investigation
budget

LODA Percentile

| |Local outlier Fact0r| | | Mean difference |

Fig. 1. Components of the proposed anomaly detection system

Fig. [T] shows an overview of the proposed insider threat
detection system. From raw collected log data of user activ-
ities, the data is pre-processed to extract numerical features
by day or week, with different temporal representations. The
pre-processing and feature extraction processes are detailed
in The extracted data are then used to train anomaly

detection models using unsupervised learning. The employed
ML methods are described in [[IlI-C| Post training, anomaly
scores are assigned by the detection model. Based on a
selected investigation budget, a decision threshold can be
calculated so that data samples with high anomaly scores (i.e.
exceeding a threshold) are flagged for further investigation of
possible malicious actions.

== Qutliers _ . _._._., >

—— All data
—#— Malicious data
——= Threshold

0.0 0.2 0.4 0.6 0.8 1.0
Anomaly score (X)

Fig. 2. Demonstration of anomaly detection and threshold.

Using anomaly detection based on unsupervised learning,
the assumption is that malicious behaviours are often rare and
deviated from normal user behaviours, which constitute the
vast majority of the collected data [[7]], [33]. Thus, although
no label information is used, a trained anomaly detection
model may capture the normal data and reveal anomalous
behaviours as outliers. Outliers identified by the anomaly
detection model are defined by a threshold of anomaly scores,
as demonstrated in Fig. @ In this work, different thresholds
are examined through changing the investigation budget (IB),
which is the amount (%) of data that the security analyst can
examine for confirmation of malicious behaviours [7], [34]].
This represents the available human resources for analyzing
the highest ranked data instances, post-training of the detection
system, and performing the necessary actions in response.

A. Data Pre-processing with Temporal Information

Assuming common monitoring data in organizations, such
as web access, email and file access logs, the data pre-
processing step is performed based on aggregated user activity
data, e.g. daily or weekly. These time periods for data aggre-
gation are selected to summarize a complete view of users’
activities over a day or a week into a data instance [35]]. Daily
or weekly data may be selected in deployment depending on
each organization’s human resources for inspecting anomaly
alerts and requirements for timely detection. More fine-grained
data, e.g. session of user activities, could be extracted as well
[35]]. However, that may not be beneficial in terms of utilizing
human resources, as extracting fine-grained data increases the
data count, and thus raises the workload to inspect anomaly
alerts in the unsupervised anomaly detection setting, where
false alerts are unavoidable [7]].

Numerical features are then extracted for each day or week
of a user’s activities. Two main types of features from the data
are extracted: (i) Frequency features, i.e. numbers of different
user actions over a day / week, e.g. number of external emails
received, number of file access after work hours, and (ii)
Statistical features, i.e. the mean and the standard deviation
of changing statistics, e.g. email size, file size. When possible,

user information, such as user’s role and user-user relationship,
is employed in the extraction process to provide context
for ML algorithms. Further details of the process to extract
numerical features with different information depicting PC,
action’s time, or email/HTTP categories from log files can be
found in [35].

B. Temporal information in data representation

Exploiting the fact that insiders are essentially regular
employees before they start performing malicious actions [5]],
we propose data representation approaches using temporal
information. The goal is to highlight the trends / changes in
the user behaviour over time. This may potentially reveal the
transitions in behaviours of malicious insiders. The approach
performs concatenating or comparing a data point to a time
window of the most recent data of the same user.

Using a window of time, the approach compares a user’s
activities to only his/her most recent and relevant behaviours.
As concept shift and drift are likely in user behaviours [36],
this may be more effective than normalizing all data instances
of each user from the beginning. Furthermore, by processing
each data instance via time window, our approach is ready to
apply anytime a new data instance appears, which is critical in
online stream learning. Additionally, we note that in contrast
to extracting time series data from a time window, where all
data points in the window contributes similarly to the output,
in our work, the focus is in using the time window to define
a baseline comparison for each new data instance (see [V-D).

1) Concatenation: Inspired by the use of shift register and
taps for representing time in data for intrusion detection [37]],
we introduce data examples to anomaly detection algorithms
as concatenation of y consecutive data instances of the same
user (abbreviated as C,). The idea is to encourage the learn-
ing algorithms to construct comparisons/arithmetic operations
between each user data instance and its previous records. In
this data representation form, a data instance x; at time ¢ is
adjoined with y — 1 most recent instances to form a data point
for anomaly detection:

XONCAENAON. — 061 CAL(Xy, Xy 1y X125 oees Xr—yi) (D)
Essentially, this creates a data instance with ¢ times the number
of features originally extracted.

2) Comparing to a time window — Percentile and
Mean/Median difference representations: In order to explicitly
include temporal information and reflect changes in user
activities, we propose to represent data for anomaly detection
via a function comparing each data instance x; with a time
window w leading to t. The procedure is summarized in
Algorithm [T]

Each arriving data instance is compared with previous data
instances of the same user in the most recent time window w to
create percentile or mean/median difference representation. In
this work, we set the window size w to 7 days, 30 days, or 60
days (IV-A). This setting allows contrasting each day (week) of
user’s activity against the same user’s activities in the full week
(month) leading to it, where both weekdays and weekends
are taken into account to provide sufficient information for
comparison.

Algorithm 1: Calculating Percentile and Mean/Median
difference representation of data

Input : x; of user u, window size w
tput
Output: x;"™
construct a n X |F| matrix X of x,_1,x,2, ..., x;_, of
the same user u, basedonw ; // F: features
output __ .
'xt - []’

for feature f in F do
if Percentile then
‘ f’ = findPercentile(x,[f], X[:, f]);
else if Mean difference then
| =x 1 - EX[£
else if Median difference then
| f = x[f] - median(X[:, f1);

output

| x, = .append(f”);

C. Unsupervised Machine Learning for Anomaly Detection

This work employs four popular ML methods for anomaly
detection with different underlying concepts: Autoencoder
(AE), Isolation Forest (IF), Lightweight On-Line Anomaly
Detection (LODA), and Local Outlier Factor (LOF).

< --—--—o-—————— Autoencoder —----=--=----

PP Encoder - ———--——wat-———-o—— Decoder -~~~

Hidden Layers

Input Layer € RY Output Layer € R¢

Fig. 3. An example of an autoencoder.

1) Autoencoder (AE): AE is a form of multi-layer neural
network that compresses and reconstructs the data. Fig.
depicts an example of an AE with three hidden layers. The
input and output layers both have d neurons (d: the number
of dimensions). Each data dimension j in the input x is
reconstructed into a corresponding dimension of r at the
output layer by AE. By enforcing a “bottleneck™ architecture
through hidden layers (middle hidden layer size:h, h < d),
AE compresses (encodes) the input data into /4 dimensions
and reconstructs it at the output layer. AE is trained through
minimizing the aggregated reconstruction error as the cost

function:
N d
E=Z Z(xij—rij)z, 2
R

Post training, the lossy compression produced by AE essen-
tially captures the lower-dimensionality representation of the
majority of training data at the middle hidden layer. Assuming
that normal user data constitute the majority of the training
data, it is expected that AE shows a higher reconstruction error
for anomalies [38[], which may represent malicious insider
behaviours. Thus, for each data instance x, the AE anomaly

score is defined as the Euclidean distance between x and r:
e; = Z?Zl (xij —rij)?. To construct AE models in this work,
the hidden layers and the output layer take the form of rectified
linear [39] and sigmoid activation functions, respectively.

2) Isolation Forest (IF): Based on the principle that
anomaly examples are rare and significantly different in
attribute-values from normal data points, IF [40] is designed
as an ensemble of “isolation trees”, whereas the anomalies —
being easier to isolate — are assumed to be closer to the roots
of the trees than normal instances. This is different from other
anomaly detection methods, which build models of (mostly)
normal data, and identify anomalies as any instances that do
not conform to the model.

Each tree in IF works on a subset of training data and feature
set. Binary splits are generated in each node of a tree by
a randomly selected feature and split value. The process is
recursively repeated until each instance is isolated in a leave.
Having trained all isolation trees, the anomaly score of a data
instance — h(x) = E(h;j(x)) — is calculated as the average
path length from root nodes to the corresponding leaves of
the instance in the trees (%;(x)).

Based on different principles from other outlier detection
methods (such as AE), IF has been shown to possess some
desired capabilities: To be able to deal with high dimensional
data with irrelevant attributes, and to be trained with or without
anomalies included the training set [40]]. These characteristics
are evaluated in

3) LODA — Lightweight on-line detector of anomalies:
LODA [41] is an ensemble method combining weak histogram
based anomaly detectors into a strong detector. Similar to
IF, each histogram anomaly detector in LODA works on a
subset of input features in order to to promote diversity. This
is achieved through the use of sparse random projections
{w; € Rd}{.‘zl, where k one-dimensional vectors, each has
Vd non-zero components, are created to approximate the
probability density of input data. Individual histograms are
then calculated for each of k vectors. Each histogram shows
an approximation of the original data distribution, which
may reveal some aspects of outliers that come from different
distribution than normal data. Furthermore, in online LODA
training, each histogram is updated by a training sample by
projecting the sample onto a vector and then the corresponding
histogram bin is updated.

To produce anomaly score for a data sample, LODA uses
the average of the logarithm of probabilities estimated on
individual projection vectors:

1 k
f@) = ;logmﬂwi), 3)

LODA was shown to achieve comparable detection per-
formance to more complicated algorithms, while significantly
reduce time and storage complexity [41]]. Furthermore, it is
also able to operate and update itself in real-time online envi-
ronment and on data with missing variables. In cybersecurity,
LODA’s ability in identifying features of an outlier sample that
deviates from the majority provides an useful tool to explain
the causes of anomalous events detected.

4) Local Outlier Factor (LOF): LOF [42] is a popular
anomaly detection algorithm, which proposes the concept of
local density to identify anomalous data points. The local
density measures how isolated a data sample is with respect
to the surrounding neighbourhood. By comparing the local
density of a data sample to that of its neighbours, LOF can
identify data points that have a substantially lower density than
their neighbours, which are considered to be outliers.

Considering k nearest neighbours to each data point, a
k-distance(x) is defined as the distance of point x to its k"
neighbour, and N (x) is the set of x’s nearest neighbours.
A reachability distance between two data points x and y is
defined as reach-disty (x, y) = max{k-distance(y), dist(x,y)}.
The local reachability density of a data point x is then defined
as the inverse of the average reachability distance based on

. 2yen, (x) Feach-distg (x,y)
Ny (x) neighbours of x: Ird;(x) = 1 YRl)|Nk &l

Finally, LOF assigns anomaly score (i.e. outlier factor) of
a data point x as average local reachability density of x’s
neighbours divided by Irdg (x):

ZygNk(x) lrdk(Y)
[Nk ()] - Irdg (x) ”
A value significantly larger than 1 indicate outliers, where the
considered point has much lower local reachability than its
neighbours. Despite clear disadvantage in runtime, LOF has
the capability to identify local outliers that could be skipped
by other methods [42]. The algorithm also has been shown to
perform well in cybersecurity domains [43]].

LOFy (x) = “4)

D. Combination of Anomaly Detection Scores

Ensemble methods have been shown to reduce variance and
bias of anomaly detection models in several applications [38].
In this section, we present methods to combine results from
four aforementioned algorithms to create anomaly detection
ensembles, in order to test their ability in insider threat
detection. Employing four anomaly detection methods with
different working principles, we expect to see differences in
their detection results, especially under different conditions
or scenarios. This creates potentials for improvements by
combining the individual models. Specifically, we investigate
combining schemes to create aggregated anomaly scores based
on the average / maximum of individual anomaly scores, or
based on majority votes of individual algorithms:

o Averaging (AVG): Anomaly scores of individual models
are normalized by rank, i.e. percentile transformation. The
combined score of a single data point is then computed as
the average (mean) over the different scores of the point.

o Maximum (MAX): This approach assigns the combined
anomaly score to a data point as the maximum of nor-
malized (by rank) scores reported by individual models
on the point. In essence, this combining scheme reports
the highest anomaly signal (alarm) generated for a data
sample by any of the participating models.

o Voting (VOTE”): In this scheme, majority vote is used to
select outlier data points at each investigation budget. The
parameter v € {2, 3,4} dictates how many votes required
in order to flag a data sample as anomalous.

IV. EXPERIMENTS AND RESULTS

In this section, we present the datasets and experiments
using the proposed approach for insider threat detection.
Specifically, Section summarizes the datasets and data
pre-processing techniques with temporal representations. Ex-
periment settings and results are presented in Sections

and - respectively.

A. Datasets

The CERT insider threat datasets are publicly available
for development and testing of insider threat mitigation ap-
proaches [44], [45]. In this paper, we employ releases 4.2
(CERT R4.2) and 6.2 (CERT R6.2). CERT R4.2 simulates
a company with 1000 employees, where 70 are malicious in-
siders under three threat scenarios. This enables us to perform
more flexible experiments in anomaly detection and provide
better understanding of the models’ behaviours. On the other
hand, R6.2 is the newest CERT dataset. It depicts a much
larger company with 4000 employees, containing only five
malicious insiders (five threat scenarios, with only a single
malicious user per scenario). This makes the detection task in
CERT R6.2 much more challenging and realistic.

The CERT datasets consist of user activity logs (log on/off,
email, web, file and thumb drive connect), company struc-
ture and user information. Following the process detailed
in [[M-A] daily and weekly numerical features (i.e. original
data representations) are extracted from the log files. Then,
different temporal representations of the data are created as
presented in (Table [M). Specifically, for concatenation
representation, y = 2 or ¥ = 3 most recent data instances of
each user are joined. In percentile and mean/median difference
representations, the window size value w is set to 7 days and
30 days for day data, and 30 days and 60 days for week
data (4 weeks and 8 weeks). In the experiments, original data
representation (Org) is also included as a baseline. Finally, we
note that each malicious insider in the CERT data belongs to
one of five popular insider threat scenarios: Data exfiltration
(scenario 1), intellectual property theft (scenarios 2, 4, 5) and
IT sabotage (scenario 3). Details of the threat scenarios can
be found in [44].

Additionally, LANL dataset [46] and TWOS dataset [47]
are also used for evaluation in this work. LANL consists
of log files collected over 58 consecutive days. The logs
contain anonymized real users’ process, network flow, DNS,
and authentication information. Furthermore, redteam (attack-
ing) authentications is provided for the dataset, but without
any additional information. In this paper, we employ only
authentication and process logs of the LANL dataset. These
events are collected from Windows-based desktops, servers,
and active directory servers. Due to limitations of the dataset,
30 days of the logs are extracted to user-day numerical
data. Temporal representations with window size of 7 days
are then applied to LANL data. Similarly, TWOS dataset
provides anonymized authentication, mouse, keystroke, email,
and network captures from a student competition with the aim
of emulating insider threats, by both masqueraders and traitors.
The competition comprises of 24 participants in six teams

over five days, which includes 12 instances of masquerading
and one instance of traitor. With provided timestamps, we
can only extract features from authentication, mouse, and
keystroke activities. Due to the dataset’s limited duration and
size, data instances of 30 minutes of activities are extracted
with temporal representations based on time window of one
day.

Table [I| shows the statistics of the employed data in each
type and the number of normal and malicious users. Table
describes the abbreviations used for temporal representations
for each dataset in this paper.

TABLE 1
SUMMARY OF THE DATASETS. SC: INSIDER THREAT SCENARIO.
MALICIOUS USER COUNTS ARE IN PARENTHESES.

Class distribution

Dur- Feature User

Data .

ation count count Normal Sc 1 Sc 2 Sc3 Sc4 Scs
CERT day 500 1000 329466 85 (30) 861 (30) 20 (10)
R4.2 week 661 1000 66840 52 (30) 254 (30) 10 (10)
CERT day 888 4000 1393941 3(1) 20 (1) 2(1) 9 (1) 1(
R6.2 week 1176 4000 283205 2(1) 4 (1) 1.(1) 7)) 1)
LANL day 1215 11814 229691 Attack: 176 (98)
TWOS 30mins 278 24 1458 Attack: 38 (13)

TABLE II

TEMPORAL REPRESENTATION ABBREVIATIONS FOR EACH DATASET

Temp. rep. CERT week CERT day LANL TWOS Description
7y is number of in-
Concat. (Cy) €2, G €2, G €2, G €2, G stances concatenated
Percentile (Py,) P30, Pso P7, Py Py P
- w denotes the size of
Mean Diff. (E,,) E3o, Eso E7, E3o Er E time window in days
Med. Diff. (M) M3y, Mo M7, M3 M; M,

B. Experiment Settings

In training the anomaly detection algorithms, we randomly
select a number of users n,, whose data in the first n,, weeks
is included in the training process. Essentially n, and n,,
control the amount of data for training the models to represent
computation and real-world limitations: Only a limited amount
of data collected before the time of training can be used. In
the following experiments, unless specified otherwise, we use
training data of randomly selected n,, = 200 users (2000 for
LANL data) in the first 50% of dataset duration (n,, = 37 for
CERT and 2 for LANL). In the case of TWOS dataset, n,, = 24
and n,, = 1, due to the dataset’s limitations. Since the training
process is label free (unsupervised), test results are reported
on the entire dataset. The experiments are repeated 10 times
in each setting, and the averaged results are reported.

The experiments are performed on compute nodes with Intel
Xeon E5-2683v4 CPU and 125GB of RAM. We implemented
the data pre-processing and analysis steps using Python 3. AEs
are implemented using Tensorflow [48]. In this paper, each
AE has three hidden layers, where the size of the first and
the third hidden layers are set to input_dimension/4, and the
middle hidden layer’s size is set to input_dimension/8. AEs
are trained using Adam optimization [49] for 100 epoch each.
Implementations from Scikit-learn [50]] and PyOD [51] is used

for IF, LODA, and LOF. For IF, the number of trees is set to
200, and 256 is used for max sample size. LODA is built with
400 histograms and 1/Vd sparsity, while LOF’s number of
neighbours is set to 20. These parameter values are chosen
empirically.

1) Performance metrics: In this work, the insider threat de-
tection performance is measured using ROC and AUC metrics.
ROC (Receiving Characteristic Curve) depicts the relationship
between Detection rate (DR) and False Positive Rate (FPR)
under different decision thresholds (i.e. different investigation
budgets), and AUC (Area Under the Curve) summarizes ROC
in a single numerical metric for comparison between models.

DR TruePositive

)

"~ TruePositive + FalseNegative

We also present DRs at critical IBs (see Section [ITI) for
better understanding of the performance at very low IBs.

Furthermore, user-based results are presented in this section
in terms of alarms that are raised per user through aggregation
of raw (instance-based) anomalous alerts [35], [52]. Specif-
ically, a normal insider (user) is misclassified if at least one
of his/her data instances is classified as “malicious”. On the
other hand, a malicious insider is identified if at least one
of his/her malicious data instances is labelled as “malicious”
by the detection system. Consequently, we have two sets of
performance metrics: Instance-based (DR, FPR, AUC) and
User-based (UDR, UFPR, UAUC).

To compare between multiple algorithms or data repre-
sentations on multiple datasets, we perform Friedman test,
which is a non-parametric statistical test. The null hypothesis
of Friedman test is that there is no significant differences
between the variables. It is rejected when test statistic exceeds
the critical value of the significance level (p = 0.05). Using
average rank of a method on all datasets (R;), the Friedman

2
statistic is calculated as: y% = 12N quc R?‘@],

k(k+1

where N is the number of data points,< anc)l is the number of
methods. The statistic is distributed according to)(12, with k—1
degrees of freedom [53]]. If the null hypothesis is rejected, a
post-hoc test (Bonferroni-Dunn) is carried out to compare the
algorithms by pairs, i.e. the corresponding average ranks differ
by at least the critical difference. The critical difference (CD)
of the post-hoc test can be calculated based on k and N [53]].

C. Detection Results

100 e i S 100
-+ P60, AUC = 0.887

- P30, AUC = 0.874
C2, AUC =0.858
C3, AUC =0.857
E60, AUC = 0.848
Org, AUC = 0.847
E30, AUC = 0.845
K M60, AUC = 0.844
H -==- M30, AUC = 0.839
H

80

Tk C3, AUC =0.857
' C2, AUC =0.850

60
Org, AUC =0.835
E30, AUC =0.797
M30, AUC = 0.792
E60, AUC = 0.752
M60, AUC = 0.739

40

Detection rate %
Detection rate %

20

0 20 40 60 80 100 0 20 40 60 80 100
False positive rate % False positive rate %

(a) Instance-based ROCs (b) User-based ROCs
Fig. 4. ROCs of AE on R4.2 week data with different representations

Instance-based anomaly detection results with different IBs
are presented in Tables and Figures [and [5] show

TABLE III

INSTANCE-BASED ANOMALY DETECTION RESULTS WITH DIFFERENT INVESTIGATION BUDGETS ON CERT DATASETS. THE UNIT OF DR IS PERCENT (%)

INSTANCE-BASED ANOMALY DETECTION RESULTS WITH DIFFERENT
INVESTIGATION BUDGETS ON LANL AND TWOS DATASETS. THE UNIT
OF DR IS PERCENT (%)

Data | Rep. DR@ 1% IB DR @5% IB DR @ 10% IB DR @ 20% 1B AuC
AE_[IF_[LODAJLOF| AE | IF_JLODA[LOF [AE [IF [LODA]LOF | AE | IF [LODA[LOF [AE [IF [LODA]LOF

Org. |20.28 34.77 2523 6.59|53.86 54.60 45.00 14.55(71.31 64.15 58.47 2443&76.[4‘73.98 51.59] 0.908 0.884 0.863 0.776

€2 [17.76 24.59 2129 8.59|51.18 48.82 38.71 18.82[69.53 59.29 53.29 33.41(85.06 73.88 6835 56.47(0.89 0.869 0.841 0.787
L[5 1349 2060 1651 7714145 41.33 3301 1590|5723 5482 44.58 3337|7614 7133 6193 59,16 0862 0.846 0814 0.789
P7 1182 654 4.03 5.79|44.78 26.04 19.12 10.19|64.91 4491 3245 17.86|85.16 65.28 51.82 32.58| 0.897 0.804 0.749 0.689,

7 [1748 1145 1157 5.03|47.67 3673 30.19 17.99]6943 5371 43.02 31.57|83.02 7044 62.14 57.23| 0883 0834 0.789 0780

M7 | 17.48 8.68 1346 4.15(44.40 31.19 2692 16.98]62.26 47.55 41.26 30.44|79.12 65.66 60.13 49.18| 0.864 0.813 0.779 0.763

Org. | 2.63 026 0 0[13.42 1895 895 7.89]|23.42 29.47 17.11 15.79(42.89 44.47 3421 34.21| 0.714 0.708 0.577 0.632

C2 0 0 0 0f 553 1053 8.68 10.53|14.21 19.74 13.68 15.79(33.42 37.89 26.58 31.58 0.641 0.673 0.591 0.613
TWOS| C3 0.79 0 0 0 526 579 421 10531026 11.84 9.47 15.79(19.47 28.16 21.32 23.68| 0.599 0.634 0.555 0.565
Pl 0026 053 0[1632 1211 1632 2634053 27.89 3421 2.635526 57.63 5447 18.42| 0.794 0.780 0777 0.578

El 737 132 2,11 2.63| 11.05 13.68 13.68 7.89|18.95 22.89 21.84 10.53|40.26 39.21 38.16 31.58| 0.709 0.716 0.691 0.669]

Mi | 447 474 342 526] 8.16 1763 13.68 7892053 3605 2026 13.16/3921 4421 37.63 36.84] 0.708 0.737 0671 0692

Detection rate %
®
3

N
S

o

@
3

IS
S

20

40

== P7, AUC =0.942
M30, AUC = 0.934
E30, AUC =0.928
M7, AUC =0.875
E7, AUC =0.844
C2, AUC =0.817
-=- C3, AUC =0.787
Org, AUC = 0.751

60 80

False positive rate %

(a) Instance-based ROCs
Fig. 5. ROCs of LOF on R6.2 day data

g —
- P30, AUC = 0.948

Detection rate %

100

P30, AUC = 0.975
M30, AUC = 0.969
E30, AUC = 0.968
P7, AUC =0.962
M7, AUC =0.942
E7, AUC =0.941
Org, AUC = 0.768
s+ C2, AUC =0.752
€3, AUC =0.752

@
3

@
3

IS
3

N
3

o

20

40 60
False positive rate %

(b) User-based ROCs

80 100

with different representations

Data | Dt [Temp. DR @ 0.1% IB DR @ 1% IB DR @ 5% IB DR @ 10% IB DR @ 20% IB AUC
type | rep. [AE | IF [LODAJLOF | AE | IF [LODA LOF | AE [IF [LODAJLOF [AE | IF [LODAJLOF [AE | IF [LODAJLOF | AE | IF [LODA[LOF
Org. 245 010 264 091 8.50 1.60 7.71 4.06| 2620 13.72 1457 7.41| 4741 4048 3697 1033| 7470 70.56 70.93 15.98| 0.854 0.830 0.830 0.521
C2 268 0.03 1.39 1.18] 934 0.84 549 3.60| 2468 11.89 1284 8.72| 46.07 38.81 3343 1497| 77.03 73.98 77.13 28.30| 0.866 0.843 0.852 0.636
C3 223 0.02 0.68 1.04 8.81 0.45 4.43 379 21.92 11.39 10.62 10.52| 43.37 39.87 28.88 17.56| 72.82° 7921 77.72 32.07| 0.853 0.855 0.851 0.667
P7 2.00 0.71 2.26 1.84 7.85 3.59 7.85 8.96| 3575 2420 3237 35.67| 63.02 5271 55.63 57.52| 87.60 84.63 78.73 [77.95| 0.903 0.882 0.870 0.859
day P30 231 0.72 355 1.33| 12.08 3.66 1230 9.25| 36.15 23.82 36.14 30.37| 62.39 5499 5927 52.22| 8843 86.59 81.18‘ 77.47| 0.902 0.890 0.882 0.858
E7 3.48 0.58 225 2.05(10.57 3.44 9.55 4.84| 20.86 1597 19.47 12.67| 33.55 37.87 32.59 20.14| 5536 70.18 55.64 32.67| 0.788 0.835 0.783 0.612
E3o 341 0.52 2.64 1.2| 10.82 331 10.52 493| 21.15 1509 21.89 10.66| 35.37 41.00 3556 16.05| 59.22' 77.38 62.68 27.52| 0.797 0.859 0.814 0.590
M7 262 061 2.64 135 958 352 931 4.18| 2040 18.58 19.95 10.97| 32.14 38.23 34.76 16.50| 54.92 66.54 57.24 27.47| 0.771 0.819 0.781 0.604
CERT M3o 2.10 054 275 1.43(831 3.82 1039 427(21.99 22.10 22.52 10.64| 36.94 43.71 39.55 1598 59.57 7249 63.27 27.29| 0.786 0.841 0.808 0.623
R4.2 Org. 2.53 0.03 0.25 225 9.97 0.85 6.14 7.18(2241 6.71 2098 17.47| 40.13 23.89 33.70 22.82| 72.53 7047 67.18 32.06| 0.847 0.825 0.844 0.611
C2 2.88 0.03 0.16 275 9.21 0.66 2.85 6.23| 22.15 478 1620 18.13| 41.65 19.53 30.98 24.62| 77.03 72.75 64.59 34.49| 0.858 0.838 0.842 0.624
C3 2.75 0 0 269 7.2 0.66 1.42 630 2092 3.64 1025 16.71| 40.06 1576 26.30 24.08| 77.85 66.90 64.72 3522| 0.857 0.827 0.837 0.617
P30 576 022 247 56| 1057 044 972 9.72| 27.63 1323 31.46 29.59| 52.18 4630 57.56 54.49 81.55| 8646| 83499| 88.20| 0.874 0.881 0.889 0.897
week | P60 766 016 332 7.22| 1434 060 13.10 13.07| 3256 13.64 3658 3146| 5509 47.41 5949 56.99(83.67 87.12 86.58 88.58| 0.887 0.884 0.900 0.901
E30 611 025 225 579 1494 117 981 13.01| 2892 1234 2665 2421| 4649 31.84 4335 3699| 70.79 72.78 67.82 63.58| 0.845 0.843 0.833 0.804
E60 839 028 222 832| 1623 142 1009 1472| 2930 1146 2877 24.15| 4848 32.69 4845 36.58[70 7408 70.57 64.27| 0.849 0.848 0.852 0.824
M30 364 032 203 396 1316 212 1032 9.94| 3158 17.53 2946 22.82| 47.53 38.16 4623 36.23| 69.75 7180 70.16 61.04] 0.839 0.847 0.840 0.797
Mé60 503 028 3.01 544 9.81 2.85 14.08 12.44| 29.08 20.22 34.72 25.16| 4851 4278 51.96 38.01| 6899 76.65 75.13 62.12] 0.844 0.862 0.863 0.806
Org. 26.29 0 800 20.00] 39.14 6.00 2257 3524| 67.43 49.71 52.00 38.10 84.29‘ 79.71 88.86 41.90| 0.952 0.924 0.949 0.751
C2 2457 0 229 2095| 3829 4.00 2200 3524| 74.00 4829 55.71 37.14| 91.14 79.14 9343 47.62| 0.965 0.923 0949 0.817
C3 22.86 0 0.57 22.86| 36.86 5.14 16.00 35.24| 80.29 49.71 57.71 38.10 73.71 42.86| 0.969 0.909 0.942 0.787
P7 31.14 029 16.00 27.62| 4543 2143 46.29 40.00(81.71 72.00 71.14 69.52 92.00 0.977 0.958 0.958 0.942
day |P30 33.71 0 1371 37.14| 4343 1571 4257 44.76| 8143 8257 69.71 65.71 92.29 83.81 0.974 0.960 0.957 0.948
E7 30.57 0 1029 27.62| 37.71 629 31.71 39.05| 52.57 48.86 43.14 41.90| 64.00 80.86 5543 49.52 0913 0.936 0.878 0.844
E3o 28.86 0 10 31.43| 40.00 3.71 33.43 37.14| 5543 52.00 44.00 58.10| 67.43 90.57 58.86 ‘ 76.19 77.71 87.62| 0.926 0.942 0.892 0.928
M7 2800 029 9.14 2381| 37.71 12.00 30.57 38.10| 53.71 46.29 4543 50.48| 68.86 67.14 54.00 60.00 71.71 76.19| 0.906 0.890 0.849 0.875
CERT Ms3o 25.71 0.29 1229 12.38| 3743 9.43 29.71 40095| 58.00 47.71 4429 58.10| 7429 6429 5571 75.24| 92.00 86.00 74.00 91.43| 0.935 0.901 0.862 0.934
R6.2 Org. | 38.00 0 0 3867| 6333 0 867 64.00(7533 1000 4200 74.00] 94 4467 82 7867 87.33 86.00| 0.973 0.870 0933 0.925
C2 3333 0 0 34.00(57.33 0 467 60.67| 72.00 14.67 41.33 70.67| 91.33 44.67 76 7533 82.00 82.00| 0.967 0.857 0.926 0.901
C3 32.00 0 0 34.00(50.67 0 1.33 53.33| 71.33 1533 40.67 64.00| 88.67 34.67 78.67 70.67 74.00 90.00 78.00| 0.959 0.837 0.915 0.881
P30 40.00 0 9.63 33.33| 66.67 0 3926 66.67| 85.93 17.78 ‘ 74.81 91.85 52.59 85.93 0.981 0.889 0.970 0.985
week P60 40.74 0 296 32.59| 66.67 0 5111 66.67| 7852 12.59| 74.07 85.93 42.22 90.37 0.979 0.881 0.971 0.981
E30 30.37 0 0 31.11| 63.70 0 1037 63.70| 70.37 6.67 50.37 74.81| 8222 21.48 6593 83.70 74.81 86.67 0.958 0.829 0.909 0.966
Eco 24.44 0 0 25.19| 66.67 0 667 66.67| 71.85 3.70/ 51.11 75.56| 85.19 20.74| 70.37 90.37 77.78 91.85 0.966 0.837 0.925 0.972
Ms3o 3333 0 0 3533| 60.67 0 9.33 62.67| 74.67 10.00 41.33 80.00| 85.33 3533 62.67 92.00 76.00 88.00 0.961 0.842 0.908 0.971
Moo 35.33 0 0 38.67| 61.33 0.67 733 60.00(71.33 13.33 37.33 76.00| 82.67 42.00 64.00 92.67 86.67 0.962 0.864 0913 0.969
instance-based and user-based ROCs on R4.2 week data and
TABLE IV R6.2 day data with different temporal data representations.

Overall, the results achieved using autoencoder and percentile
representation are very promising, given that the results are
obtained under unsupervised setting with very limited training
data (a small set of only 200 unidentified users in 37 weeks,
for CERT data). On CERT R4.2, the approach was able to
detect 77% of the malicious users by investigating only 1% of
the most anomalous instances (1% IB). Also, at only 5% IB,
nearly 100% of 70 malicious insiders are detected. Figures [
and [5] also show the differences in reporting results based on
data instances and users, where the AUC achieved on user-
based results could be higher and the differences between
temporal data representations are more pronounced.

We note that normal data dominates the distribution in
all employed datasets (Table [). Thus, the FPR (normal data
wrongly flagged) obtained under each IB is very similar to the
IB, e.g. at 1% IB, FPRs ranges from 0.96% to 0.99% on CERT
R4.2 week data. Furthermore, as IB represents different human
resource levels for investigating anomaly detection output, i.e.
different amounts of data flagged, a suitable IB can be selected
based on deployment conditions. For example, on CERT R4.2
day data (Table[l), 1% / 5% / 10% IBs are equivalent to 3300
/ 16500 / 33000 alerts, or approximately 7 / 33 / 66 alerts per
day over the dataset’s duration.

1) Results by learning algorithms: Figure [6] shows a com-
parison of the algorithms by ROC. Performing Friedman

40 |} —+— AE, AUC =0.936

—— LODA, AUC = 0.863

20 IF, AUC =0.774
—— LOF, AUC =0.768

Detection rate %

0 20 40 60 80 100
False positive rate %

Fig. 6. User-based ROC by learning algorithms on original R6.2 day data

L, I
! 2 3 4 1 2 3 4
IF Loba oF — | IF

(a) Instance-based results (b) User-based results

Fig. 7. Critical Difference (CD) diagrams of algorithms’ results by instance
and by user. Average rank of each algorithm is shown on the scale. Two linked
entries (connected by a horizontal black bar) are not significantly different,
i.e. rank difference is less than CD.

test on both user-based and instance-based anomaly detection
performance of the algorithms, the null hypotheses are easily
rejected (yz = 38.78,p = 2 x 107® and y7 = 40.28,p =
9 x 107%), which means there are significant differences be-
tween the algorithms. Figure [7) presents the critical difference
diagram obtained using post-hoc test, where average ranking
of each algorithm and whether they are significantly different
are shown. Additionally, training and prediction times per data
instance of each algorithm are presented in Figure [§]

Overall, it is shown that AE achieves the best performance
in detecting anomalies representing insider threats, especially
at very low FPRs. For example, at only 0.1% IB, AE is able
to detect 60% of the malicious insiders from R6.2 week data
with P3y representation, while IF requires 8% IB to reach a
similar UDR in the same setting.

LOF shows interesting results, where it performs well when
data counts are lower (R4.2 and R6.2 week) and only on
percentile representations. We believe that its ability to out-
perform in some cases is due to the “local” characteristics of
its detected outliers, which may be missed by other algorithms
(T-C4). However, LOF suffers from very long training and
prediction time. On the remaining two algorithms, LODA
achieves very similar results to IF (Table [[II] and Figure [7)),
and at very low time complexity. This makes it suitable to
time critical on-line detection tasks.

4§ 26 32
200 5.0
CERT R4.2 week CERT R4.2 day
CERTR6.2week [l CERT R6.2day
W LANL W Twos
100 25
_meel, Ml oon tod RGN VL~ | T v U |17

(a) Training time (s) (b) Prediction time per instance (ms)

Fig. 8. Average training time and prediction time per data instance of the
algorithms on different data. Out of chart values are noted in red.

Experiments in Section [[V-D] provide further insights into
the detection performance of the algorithms. We note that
the datasets characteristics (predominantly normal behaviours
— Table [[), and experiment settings (Section [[V-B) could
be partly the reason to AE’s outstanding performance in
this section. On the other hand, Section [[V-D| shows that
LODA and IF can be more robust to changes in deployment
conditions.

s cb

. .
Percenti ‘ + Med Diff. Percenti
Org. Mean Diff. Org.
Concat —— Concat

1]

(b) User-based results

Mean Diff.
Med Diff.

(a) Instance-based results

Fig. 9. Critical Difference (CD) diagrams of results by data representations.

2) Results by data representations: On data representations,
Table [ITI] and Figure [4] show that percentile (P,,) is the best
representation of data for anomaly detection. This is confirmed
by Friedman test (hypotheses rejected, X% = 21.46,p =
0.0003 and)(% = 12.48,p = 0.01), and post-hoc tests, as
shown in CD diagrams in Figure 0] Percentile representation
allows the algorithms to achieve significantly better results
than on the original data. Concatenation shows slight improve-
ments in some cases, while mean / median differences are
unable to surpass the original data. In some cases, such as
R4.2 day data, mean/median difference even deteriorates the
AUC.

The observations suggest that percentile representation, al-
though encoding the data change by omitting the absolute
values, successfully captures the change in user behaviours
while avoiding noises in the data. At the same time, main-
taining the absolute values of changes as in mean and median
difference representation seems to create noise and decreases
the detection performance (Figure). Finally, on concatenated
representation, the results show that it is hard to facilitate
meaningful automatic comparisons between data related to
different points in time.

D. Results on Different Conditions for Training Anomaly
Detection Algorithms

In the following, we assume P3p data representation and
analyze ML algorithms on CERT R4.2 data types under
different sizes of training data and conditions.

—=— AE, day data
—&— |F, day data
< LODA, day data
LOF, day data
AE, week data
0.7 IF, week data
—&-- LODA, week data
0.6 —e-+ LOF, week data

e
0.9 S o

/7

L
e
-l
-

0 10 20 30 40 50 60 70 70mal users
Number of malicious users in training

Fig. 10. UAUC by number of malicious users in R4.2 training data

1) Anomaly detection performance under training data poi-
soning conditions: In this experiment, instead of using data

from 200 randomly selected users, we deliberately introduce
malicious users’ data during training. The number of malicious
users included varies from O (pure normal training data) to
all 70 malicious users of CERT R4.2 (35% of training users
are malicious). In an extreme case, we use only data of the
70 malicious insiders for training the algorithms. This is to
analyze how the anomaly methods respond to data poisoning,
where malicious data is presented at high density in training
data, which may corrupt the ML models into mislabelling
malicious as normal [54]], [55].

Figure shows the user-based AUC by the algorithms
on R4.2 data under different number of malicious users in
training. Overall, it is clear that ensemble-based algorithms,
IF and LODA, are very robust to the data poisoning attack.
Using IF, AUC even increases slightly with the presence of
malicious data in training. This can be explained through its
properties, where small amount of contamination in training
data allows trained IF trees to better model the anomalies that
may appear in the data [40].

On the other hand, performance of AE and LOF deteriorates
as the amount of malicious users in training increases. It seems
that with high malicious data presence in training set, AE may
incorporate some malicious actions as normal in its trained
model through the encoding-decoding process. Thus, it is
unable to detect those types of behaviours in testing. Similarly,
in the case of LOF, high amount of poisoning data injected
into training may increase the local density of malicious data
points, which may trick LOF to assign lower anomaly scores
to those points.

Nevertheless, AE was able to maintain a better performance
than other algorithms, up to 30 malicious users in training
data (15%). We note that in practice, the amount of malicious
users in training data for insider threat detection approaches is
typically very small [6], hence the use of AE is still preferred.
Moreover, LODA shows great balance between detection
performance and robustness, making it a prime candidate in
severe poisoning condition.

0.95 —=— AE, day data
—&— |F, day data

~— k| LODA, day data
g 0.90 T LOF, day data
% O-V—’*\‘~‘;<>- ————— e = AE, week data
M——‘E&‘__ﬁ—)_.‘_ﬁ IF, week data
0.85 4’ ~~~~~ g |~ LODA, week data
—e-- LOF, week data
50100 200 400 700 1000

Number of users in training data

Fig. 11. UAUC by number of users in R4.2 training data

2) Effects of the number of users in training data: Without
having to collect groundtruth for training data, the unsuper-
vised learning approach permits the use of as many users in
training data as possible, at the cost of a higher computational
cost. In this experiment, we vary the number of (randomly
selected) users to include in training data from 50 to 1000
(maximum amount) users in CERT R4.2. User-based AUCs
are presented in Figure [TT] Results show that except LOF, in
most cases, the performance is largely unchanged. However,
results varies more (i.e. unstable), when less data (Iless number
of users) are used in training. LODA and AE’s UAUC increase

slightly to 200 users in training data, but AE’s performance
decreases slowly as the number of users increase in training.

Behaviours of AE and LOF can be explained through
results in [[V-DI] where a larger number of training users
creates a higher chance of malicious users to be included in
training data, hence lowering their effectiveness. This shows
that maintaining a relatively small number of users (200) in
training data not only reduces the computational cost but also
potentially gives more robust results.

0.95
—&— AE, day data

— o IF, day data
0.90 LODA, day data
S B ot e s LOF, day data
g :—-“jm AE, week data
0.85 =T i IF, week data
5 —&- LODA, week data
Jiead —&- LOF, week data
0.80 i
7 22 37 52 67 74

Number of weeks in training data

Fig. 12. UAUC by number of weeks in R4.2 training data

3) Effects of training data duration: Similar to the number
of users in training data, the number of weeks can be adjusted,
too. This experiment varies the parameter from 7 (10% of
data time range) to 74 (100%). This setting also simulates
online learning conditions, where the algorithms are retrained
/ enhanced with the arrival of new data. Figure [I2] shows user-
based AUCs on CERT R4.2 data types. As in the previous
experiments, IF’s performance is maintained through different
number of weeks used in training data. On the other hand,
detection performance of AE and LODA rises until about
50% of the data duration is used in training (37 weeks), then
remains largely unchanged. LOF shows similar improvements
in the first half of data duration, but quickly deteriorates after
that. In fact, more malicious insider activities appear in the
second half of CERT data than in the first half [44]. Hence,
it can be concluded that for AE and LOF, more training data
may help to improve results, but only to a point where the
improvements are negated by the introduction of malicious
samples in training data (TV-DI). This experiment shows the
advantage of online learning methods, such as LODA, where
results can be progressively improved over time with more
training data.

E. Ensembles of Anomaly Detection Models

As shown in previous sections, four anomaly detection
algorithms show various effectiveness on the datasets, espe-
cially under different training conditions. This section presents
the results by the ensemble schemes described in
Combining the anomaly scores to create ensembles, the best
results (measured by AUC) by individual unsupervised ML
algorithms are maintained in almost all cases, by VOTE”
and AVG. In some cases, ensembles increase the detection
performance. For example, VOTE® achieves AUCs of 0.909
and 0.907 on CERT R4.2 day and week data, respectively,
which improves over the individual components (Table [ITI).
Performing Friedman test, hypotheses rejected on both AUC
and UAUC comparisons between the learning algorithms and
ensemble schemes (X% = 148,p = 4 x 10728 and X% =

120, p = 2 x 10722). Figure [13| shows critical difference dia-
grams for the post-hoc tests on instance-based and user-based
results. On the other hand, as shown in the figure, there are
no significant differences detected between AVG, VOTEZ23,
and AE, and these methods all significantly outperform the
remaining algorithms (VOTE4, MAX, IF, LODA, LOF).

cb

s <,
123456789 12345673859
voTe3 J L LOF AE :‘"- L LODA
AVG LODA VOTE3 IF
VOTE2 VOTE? VOTE2 MAX
AE MAX AVG LOF
L — VOTE4

(a) Instance-based results (b) User-based results

Fig. 13. Critical Difference diagrams of results by learning algorithms and
ensembles

-

0 10 20 30 40 50 60 70
Number of malicious users in training

50100 200 400 700 1000
Number of users in training data

70 mal. users

(b) UAUCs with different number of
users in training data.

(a) UAUCs under training data poi-
soning

Fig. 14. UAUC of learning algorithms and ensembles under different training
conditions on CERT R4.2 day data.

Furthermore, we explore the effects of ensemble schemes
under different training conditions as in [[V-D| Figure [14]
shows results (in UAUC) of ML algorithms and ensembles on
CERT R4.2 day data under different training conditions. It is
apparent that voting schemes, especially VOTE?, achieve the
best or near best detection performance in almost all cases.
Moreover, with more training data (Figure , VOTE? is
able to outperform all other algorithms. On the other hand,
while AVG shows similar results to voting-based ensembles,
Figure [I4]shows that combination by averaging is not favoured
under adverse learning conditions.

On time requirement consideration, it is noteworthy that
while the computation cost (and hence time) of combining
scores by the individual algorithms is insignificant, in order
to create an ensemble, all components need to be trained.
Hence, the ensembles are restricted by the slowest algorithm
(e.g. LOF) in both training and predicting. In the particular
cases of the datasets employed in this work, the time required
to train and evaluate detection models is reasonable (Fig. @,
hence permitting their use in the current form. In other real-
world applications, lightweight components can be selected to
create ensembles to avoid time and computation cost burdens.

V. DISCUSSIONS AND COMPARISONS

In this part, CERT R6.2 is employed for testing purposes,
as it represents more malicious insider threat cases and better
mimics real-world conditions (only 5 malicious insiders). We
study anomaly detection results given by the proposed sys-
tem under specific scenarios and show how security analysts

may use these to further investigate and identify malicious
behaviours. Results on each insider threat scenario and com-
parisons with other works in the literature are also presented.

A. Case study of anomaly alerts

Using a unique id for each data instance used in anomaly
detection process, the corresponding course of original user ac-
tions can be quickly examined, once an anomaly alert is raised.
A true anomaly alert example on CERT R6.2 is associated with
actions of user PLJ1771 — an IT administrator — on August
12, 2010. Using AE and Pj3(representation, the data instance
was assigned an anomaly alert with 99.99% confidence (i.e.
the data instance has anomaly score higher than 99.99% of
CERT R6.2 data). By studying the action sequence of the
user on the day, his/her malicious behaviour can quickly be
confirmed: The user visits several sites providing computer
monitoring software, downloads a keylogger and puts it on
a USB. Later in the day, they log onto PC-3999, which
belongs to their supervisor — HIS1706, and start keylogging
on the PC. This corresponds to the behaviours of a “disgruntled
system administrator” in the CERT dataset [44].

Another true anomaly alert is raised with 99.93% confidence
for activities of user CDE1846 on March 22, 2011, in which
the user logged in after work hours to PC-5014, which be-
longs to another user. Then, he/she opens and emails multiple
documents to his/her personal email.

On the other hand, several false alarms generated by the
anomaly detection system are worth investigating as well.
For example, false alarms are raised for user YNW2855 on
September 24, 2010 and user RRH3057 on November 03,
2010 with confidence of 99.90% and 99.99%. Investigating
the original user activities on both days reveals multiple
actions (file accesses, website visits) very late after work hours
(around 10 PM). While these examples may not depict mali-
cious intentions (as per dataset’s groundtruth), their anomalous
nature needs to be inspected to ensure the safety of the system
and data.

These case studies show how a system administrator may
leverage the anomaly detection system’s output to identify the
true nature of alerts as well as perform appropriate response,
with reference to the reorganized course of actions (by user,
time) in log files. Furthermore, in manually investigating
the original user’s activities corresponding to each alert, the
analyst may have access to more restricted information that
was not incorporated in the ML system’s training, such as
email content, to make informed decisions.

B. Detection performance on insider threat scenarios

As mentioned in there are five malicious insiders in
CERT R6.2, each depicts a unique threat scenario. This part
examines the detection results on the scenarios.

Table [V] presents the malicious insiders and detection results
using AE and week data with Pgy representation of CERT
R6.2. Detection delays (at 10% IB), which is the time between
the first malicious action and when the malicious user is
detected, are also presented in the table. As the table shows,
scenarios 1, 3, and 4 can be detected very easily using the

proposed system with only 0% to 0.04% FPR (or 0.04 to
0.15% normal users flagged wrongly). All malicious instances
of those users are detected with less than half a percent
(0.32%) FPR. Scenarios 1 and 3 can also be detected very
quickly.

On the other hand, threat scenarios 2 and 5 are much harder
to detect, resulting in FPRs of 3.07% and 8.36%, respectively.
At a UFPR of 26.46%, a system analyst will need to inspect
more than 1000 users to identify the malicious user MBG3183.
The descriptions of these scenarios show much less intrusive
malicious behaviours than the other three scenarios [44]]. For
example, in scenario 5, “a member of a group decimated
by layoffs uploads documents to Dropbox, planning to use
them for personal gain”. This explains the lower detection
performance on these two scenarios, as they are easy to be
mistaken as normal activities.

TABLE V
DETECTION PERFORMANCE ON SPECIFIC INSIDER THREAT SCENARIOS.
DD: DETECTION DELAY.

Threat Username Min. FPR FPR to detect all UFPR DD - week DD - day
Scen. to detect malicious instances data (days) data (days)
1 ACM2278 0.02% 0.06% 0.12% 3.22 0.22
2 CMP2946 3.07% 6.97% 13.00% 5.74 0.74
3 PLJ1771 0.00% 0.00% 0.04% 279 0.79
4 CDE1846 0.04% 0.32% 0.15% 5.68 3.07
5 MBG3183 8.36% 8.36% 26.46% 4.57 0.57

C. Robustness of the trained models

For this analysis, we use an anomaly detection model
trained on one CERT dataset (R4.2) to detect new anomalies
on another one (R6.2). As CERT R6.2 is a newer version
with changed generative models and a larger size [44], this
experiment can be seen as applying anomaly detection model
of a company for a different one. User-based AUCs on CERT
R6.2 week data by AE models trained using the original and
P3y data representations are shown in Figure [I5] The figure
shows that anomaly detection model trained using CERT R4.2
data with P3p representation can achieve very good AUC
when tested on CERT R6.2 (UAUC=0.908). The result is
vastly improved over a model trained using R4.2 via the
original data representation (UAUC=0.511). This demonstrates
the robustness of the proposed system when percentile data
representation is used. The result suggests that modelling user
data points in percentile representation brings in the temporal
information of the user’s previous data instances and therefore
allows the model to generalize better.

100 e ——t
4
/I
80 2.
a
/.
s
60 X

e
40 —e— Train on R6.2 P30, AUC = 0.948
—#— Train on R6.2 Org, AUC = 0.915
e Train on R4.2 P30, AUC = 0.908
=4+ Train on R4.2 Org, AUC = 0.511

Detection rate %

20 |
- Y g
ol
0 20 40 60 80 100
False positive rate %

Fig. 15. UAUC of models trained on CERT R4.2 and R6.2 data when tested
on R6.2

D. Comparison against time series data extraction

In this section, we perform comparison between the tempo-
ral data representation and time series feature extraction. Time
series features are extracted from CERT R4.2 day data with a
rolling window size of 30. tsfel package [56] is employed
with comprehensive extraction settings. Due to computation
overhead of the time series feature extraction process, a sample
set of 200 randomly selected users in CERT R4.2 is used. Each
feature in the original data is treated as a time series to extract
132 time series features, using tsfel. Given LODA’s low time
complexity and good performance, as shown in Section [[V]
we apply it for anomaly detection on the time series extracted
features.

Results obtained show an AUC of 0.78 using time series
extracted features. In comparison, using original data and
percentile representation generate AUCs of 0.81 and 0.87,
respectively, under the same conditions. This shows the ad-
vantage of our approach to traditional time series extraction
approaches for temporal data in this application. We believe
that by focusing on using the temporal window to define a
baseline comparison for each new data instance, changes in
user behaviours are easier to detect than from time series
data via time windows, where all data points in the window
contributes similarly to the output.

E. Comparative study

The proposed system shows clear advantages in both de-
tection performance and the ability to generalize when com-
pared to other works in the literature employing unsupervised
anomaly detection methods for insider threat detection on the
CERT datasets [11], [13[]-[18]I, [57]l.

On CERT R4.2, our proposed approach obtained AUC
of 0.907 and 0.909 on week and day data (Section [[V-E),
outperforming previous works [[13]-[15]] that used HMM and
OneClass-SVM, which achieved AUC of 0.83 and 0.89, re-
spectively. On CERT R6.2 data, our approach achieved AUC
of 0.977 and 0.981 on day and week data. In comparison,
recent best AUCs achieved on R6.2 day data were 0.814 (Mat-
terer et al. [[17]]), and 0.956 (Liu et al. [57]), on only 3 malicious
insiders). This demonstrates the advantage of our approach
in embedding temporal information in data representation, as
opposed to using a learner with temporal learning capabilities
such as Long Short-Term Memory [[17] and Markov models
[13]. On R6.2 week data, recently, [18|] achieved AUC of
0.999. However, they only tested on 500 users and 1 easy-to-
detect malicious user (ACM2278, see [V-B). Under the same
malicious user consideration, our approach posts an AUC
of 0.9996. Similarly, log2vec [11]] achieved AUC of 0.93
with only 6 malicious users and 12 normal users in CERT
R6.2 included in evaluation, while our result (higher AUC) is
obtained on the full dataset. Furthermore, to the best of our
knowledge, no other work has been able to show the ability
of the anomaly detection solutions to generalize (robustness)
on other datasets as illustrated in [V-C|

Finally, on LANL, our approach achieves comparable re-
sults to unsupervised approaches in the literature [[11f], [30].
Note that other recent works on the datasets achieved higher

AUCs, but they used supervised learning, as in [31], or
presented results by log lines [24]], which significantly increase
the amount of alerts.

VI. CONCLUSIONS AND FUTURE WORK

In this research, an unsupervised ML based anomaly de-
tection approach for insider threat detection is presented. To
this end, four different anomaly detection algorithms with
different working principles are employed. The methods are
studied using different representations of data with temporal
information, including concatenation, percentile and mean or
median difference. In doing so, the aim is to describe the
changes in user activities that could highlight the detec-
tion of anomalous behaviours. Experiments under different
constrained conditions are performed on publicly available
datasets and comprehensive results are reported. Results show
that Autoencoder using percentile representation of data is the
best combination for anomaly detection. Temporal data rep-
resentation in percentile format achieves significant improve-
ments over original extracted data, which enables effective
insider threat detection under very low investigation budgets
and generalizes well on new data. Moreover, experiments
demonstrate the robustness of LODA, which may suggest its
use under extreme conditions and for low time complexity
on-line learning and prediction. Furthermore, when training
resources permit, voting-based ensemble of anomaly detection
can be used to improve detection performance and robustness.
Comparing with the existing literature, our approach shows
clear advantage in detection performance and ability to gen-
eralize to work under different environments.

Future work will investigate other ML approaches, such as
semi-supervised and adversarial techniques, and data availabil-
ity for anomaly detection. Finally, informed attackers’ actions
and adversarial attacks can also be introduced to further
examine the performance under more adverse conditions.

ACKNOWLEDGEMENT

This research has been enabled in part by sup-
port provided by Natural Science and Engineering Re-
search Council of Canada (NSERC) and Compute Canada
(www.computecanada.ca). Duc C. Le gratefully acknowledges
the support by the Killam Trusts and the province of Nova
Scotia. The research is conducted as part of the Dalhousie
NIMS Lab at: https://projects.cs.dal.ca/projectx/.

REFERENCES

[1]1 1. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M. Ochoa, “Insight
into insiders and IT: A survey of insider threat taxonomies, analysis,
modeling, and countermeasures,” ACM Computing Surveys, vol. 52,
no. 2, pp. 30:1-30:40, Apr. 2019.

[2] CSO, CERT Division of SEI-CMU, U.S. Secret Service, and KnowBe4,
“The 2018 U.S. state of cybercrime survey,” IDG, Tech. Rep.,
2018. [Online]. Available: https://www.idg.com/tools-for-marketers/
2018-u-s-state-of-cybercrime

[3] Crowd Research Partners, ‘2018 insider threat report,” CA
Technologies, Tech. Rep., 2018, https://crowdresearchpartners.com/
insider-threat-report.

[4] R. Campagna, “Enterprise insider threats on the rise,” https://www.
cyberdefensemagazine.com/enterprise-insider-threats-on-the-rise/.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. L. Collins et al., “Common sense guide to mitigating insider threats,
fifth edition,” The CERT Insider Threat Center, Tech. Rep., 2016,
CMU/SEI-2015-TR-010.

A. Azaria, A. Richardson, S. Kraus, and V. S. Subrahmanian, “Behav-
ioral analysis of insider threat: A survey and bootstrapped prediction in
imbalanced data,” IEEE Transactions on Computational Social Systems,
vol. 1, no. 2, pp. 135-155, Jun. 2014.

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: Methods, systems and tools,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 1, pp. 303-336, 2014.

National Cybersecurity and Communications Integration Center,
“Combating the insider threat,” 2014, https://www.us-cert.gov/
security-publications/Combating- Insider-Threat.

L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting and
Preventing Cyber Insider Threats: A Survey,” IEEE Communications
Surveys & Tutorials, 2018.

A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” /EEE Commu-
nications Surveys & Tutorials, vol. 18, no. 2, pp. 1153-1176, 2016.

F. Liu et al, “Log2vec: A Heterogeneous Graph Embedding Based
Approach for Detecting Cyber Threats within Enterprise,” in ACM
SIGSAC Conference on Computer and Communications Security, 2019.
P. Parveen, J. Evans, B. Thuraisingham, K. W. Hamlen, and L. Khan,
“Insider threat detection using stream mining and graph mining,” in
IEEE Third International Conference on Privacy, Security, Risk and
Trust, 2011, pp. 1102-1110.

T. Rashid, I. Agrafiotis, and J. R. Nurse, “A new take on detecting insider
threats,” in Int. Workshop on Managing Insider Security Threats, 2016.
D. C. Le and N. Zincir-Heywood, “Evaluating insider threat detection
workflow using supervised and unsupervised learning,” in IEEE Security
and Privacy Workshops (SPW), 2018.

M. Aldairi, L. Karimi, and J. Joshi, “A trust aware unsupervised learning
approach for insider threat detection,” in IEEE Int. Conf. on Information
Reuse and Integration for Data Science, 2019, pp. 89-98.

A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” in AAAI Workshop on Artificial Intelligence
for Cyber Security, 2017.

J. Matterer and D. Lejeune, “Peer group metadata-informed LSTM
ensembles for insider threat detection,” International Florida Artificial
Intelligence Research Society Conference, pp. 62—67, 2018.

L. Liu, C. Chen, J. Zhang, O. De Vel, and Y. Xiang, “Unsupervised in-
sider detection through neural feature learning and model optimisation,”
in Lecture Notes in Comp. Sci., vol. 11928 LNCS. Springer, 2019.
H. Eldardiry et al., “Multi-domain information fusion for insider threat
detection,” in IEEE SPW, 2013.

P. Parveen and B. Thuraisingham, “Unsupervised incremental sequence
learning for insider threat detection,” in The IEEE International Confer-
ence on Intelligence and Security Informatics, 2012.

P. A. Legg, O. Buckley, M. Goldsmith, and S. Creese, “Automated
insider threat detection system using user and role-based profile assess-
ment,” IEEE Systems Journal, vol. 11, no. 2, 2017.

T. E. Senator et al., “Detecting insider threats in a real corporate database
of computer usage activity,” in ACM SIGKDD Conf. (KDD), 2013.

B. Bose, B. Avasarala, S. Tirthapura, Y. Y. Chung, and D. Steiner,
“Detecting insider threats using radish: A system for real-time anomaly
detection in heterogeneous data streams,” IEEE Systems Journal, 2017.
A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” in Proceedings of the First Workshop on Machine Learning
for Computing Systems, 2018, pp. 1-8.

D. C. Le, S. Khanchi, N. Zincir-Heywood, and M. 1. Heywood,
“Benchmarking evolutionary computation approaches to insider threat
detection,” in ACM Genetic and Evolutionary Computation Conf., 2018.
D. C. Le, N. Zincir-Heywood, and M. I. Heywood, “Dynamic insider
threat detection based on adaptable genetic programming,” in [EEE
Symposium Series on Computational Intelligence, 2019.

G. Gavai et al., “Supervised and unsupervised methods to detect insider
threat from enterprise social and online activity data,” J. Wirel. Mob.
Networks Ubiquitous Comput. Dependable Appl. (JoWUA), vol. 6, no. 4,
2015.

D. C. Le and N. Zincir-Heywood, “Machine learning based insider threat
modelling and detection,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management, 2019.

W. Meng, K. R. Choo, S. Furnell, A. V. Vasilakos, and C. W. Probst, ‘“To-
wards bayesian-based trust management for insider attacks in healthcare

https://www.idg.com/tools-for-marketers/2018-u-s-state-of-cybercrime
https://www.idg.com/tools-for-marketers/2018-u-s-state-of-cybercrime
https://crowdresearchpartners.com/insider-threat-report
https://crowdresearchpartners.com/insider-threat-report
https://www.cyberdefensemagazine.com/enterprise-insider-threats-on-the-rise/
https://www.cyberdefensemagazine.com/enterprise-insider-threats-on-the-rise/
https://www.us-cert.gov/security-publications/Combating-Insider-Threat
https://www.us-cert.gov/security-publications/Combating-Insider-Threat

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]
[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

software-defined networks,” IEEE Trans. Netw. Service Manag., vol. 15,
no. 2, pp. 761-773, Jun. 2018.

S. Zhao, R. Wei, L. Cai, A. Yu, and D. Meng, “Ctlmd: Continuous-
temporal lateral movement detection using graph embedding,” in In-
ternational Conference on Information and Communications Security.
Springer, 2019, pp. 181-196.

H. Bian, T. Bai, M. A. Salahuddin, N. Limam, A. Abou Daya, and
R. Boutaba, “Uncovering lateral movement using authentication logs,”
IEEE Transactions on Network and Service Management, 2021.

D. C. Le and N. Zincir-Heywood, “Exploring adversarial properties of
insider threat detection,” in IEEE Conference on Communications and
Network Security (CNS), 2020.

——, “Big data in network anomaly detection,” in Encyclopedia of
Big Data Technologies, , S. Sakr and A. Zomaya, Eds. Springer
International Publishing, 2018, pp. 1-9.

——, “Exploring anomalous behaviour detection and classification for
insider threat identification,” International Journal of Network Manage-
ment, Mar. 2020.

D. C. Le, N. Zincir-Heywood, and M. 1. Heywood, “Analyzing data
granularity levels for insider threat detection using machine learning,”
IEEE Transactions on Network and Service Management, vol. 17, no. 1,
pp. 3044, 2020.

M. 1. Heywood, “Evolutionary model building under streaming data for
classification tasks: opportunities and challenges,” Genetic Programming
and Evolvable Machines, vol. 16, no. 3, pp. 283-326, 2015.

H. G. Kayacik, N. Zincir-Heywood, and M. I. Heywood, “On the
capability of an som based intrusion detection system,” in International
Joint Conference on Neural Networks, Jul. 2003, pp. 1808-1813.

C. C. Aggarwal, Outlier Analysis, 2nd ed. Springer Publishing, 2016.
X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Int. Conf. on Artificial Intelligence and Statistics, 2011.
F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, Mar. 2012.
T. Pevny, “Loda: Lightweight on-line detector of anomalies,” Machine
Learning, vol. 102, pp. 275-304, 2016.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” SIGMOD Rec., vol. 29, no. 2, p. 93-104,
May 2000.

G. O. Campos et al., “On the evaluation of unsupervised outlier
detection: measures, datasets, and an empirical study,” Data mining and
knowledge discovery, vol. 30, no. 4, pp. 891-927, 2016.

CERT and ExactData, LLC, “Insider Threat Test Dataset,” https://
resources.sei.cmu.edu/library/asset- view.cfm?assetid=508099.

J. Glasser and B. Lindauer, “Bridging the gap: A pragmatic approach
to generating insider threat data,” in JEEE SPW, 2013.

A. D. Kent, “Cybersecurity Data Sources for Dynamic Network
Research,” in Dynamic Networks in Cybersecurity. Imperial College
Press, Jun. 2015. [Online]. Available: https://csr.lanl.gov/data/cyber1/
A. Harilal et al., “The wolf of sutd (twos): A dataset of
malicious insider threat behavior based on a gamified competition.”
JoWUA, vol. 9, no. 1, pp. 54-85, 2018. [Online]. Available:
https://github.com/ivan-homoliak-sutd/twos

M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015, https://www.tensorflow.org/.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations, 2015.
F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, 2011.

Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable
outlier detection,” Journal of Machine Learning Research, vol. 20,
no. 96, pp. 1-7, 2019.

H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts,” in International Workshop on Recent Advances in
Intrusion Detection. Springer, 2001, pp. 85-103.

J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1-30, 2006.
D. C. Le and N. Zincir-Heywood, “A frontier: Dependable, reliable and
secure machine learning for network/system management,” Journal of
Network and Systems Management, Jan. 2020.

M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?” in ACM Symposium on Information,
Computer and Communications Security, vol. 2006, 2006, pp. 16-25.
M. Barandas, D. Folgado, L. Fernandes, S. Santos, M. Abreu, P. Bota,
H. Liu, T. Schultz, and H. Gamboa, “Tsfel: Time series feature extraction
library,” SoftwareX, vol. 11, p. 100456, 2020.

[57] L. Liu, C. Chen, J. Zhang, O. De Vel, and Y. Xiang, “Insider threat

identification using the simultaneous neural learning of multi-source
logs,” IEEE Access, vol. 7, pp. 183162-183176, 2019.

Duc C. Le is a Ph.D. student at Dalhousie Uni-
versity, Halifax, Canada. He received the Master
degree in computer science from the same univer-
sity in 2017, and the B. Eng. degree in electron-
ics and telecommunications engineering from Posts
and Telecommunications Institute of Technology, Ha
Noi, Vietnam, in 2015. His research focuses on
machine learning and its applications in computer
and network security and analysis.

Nur Zincir-Heywood is a Full Professor of Com-
puter Science with Dalhousie University, Canada.
Her research interests include machine learning and
data mining for networks, services and cybersecurity.
She has published over 200 fully reviewed papers
and has been a recipient of several best paper awards.
She is an Associate Editor of the IEEE Transaction
on Network and Service Management and the Inter-
national Journal of Network Management. She has
recently served as the Program Co-Chair and the
General Co-Chair for the IEEE/IFIP International

Conference on Network and Service Management. She is a member of the
IEEE and the ACM and a recipient of the 2017 DNS Women Leaders in the
Digital Economy Award.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
https://csr.lanl.gov/data/cyber1/
https://github.com/ivan-homoliak-sutd/twos
https://www.tensorflow.org/

	Introduction
	Related Work
	Anomaly detection system for insider threat
	Data Pre-processing with Temporal Information
	Temporal information in data representation
	Concatenation
	Comparing to a time window – Percentile and Mean/Median difference representations

	Unsupervised Machine Learning for Anomaly Detection
	Autoencoder (AE)
	Isolation Forest (IF)
	LODA – Lightweight on-line detector of anomalies
	Local Outlier Factor (LOF)

	Combination of Anomaly Detection Scores

	Experiments and Results
	Datasets
	Experiment Settings
	Performance metrics

	Detection Results
	Results by learning algorithms
	Results by data representations

	Results on Different Conditions for Training Anomaly Detection Algorithms
	Anomaly detection performance under training data poisoning conditions
	Effects of the number of users in training data
	Effects of training data duration

	Ensembles of Anomaly Detection Models

	Discussions and Comparisons
	Case study of anomaly alerts
	Detection performance on insider threat scenarios
	Robustness of the trained models
	Comparison against time series data extraction
	Comparative study

	Conclusions and Future Work
	References
	Biographies
	Duc C. Le
	Nur Zincir-Heywood

