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Abstract—Different variations in deployment environments of
machine learning techniques may affect the performance of the
implemented systems. The variations may cause changes in the
data for machine learning solutions, such as in the number
of classes and the extracted features. This paper investigates
the capabilities of Genetic Programming (GP) for malicious
insider detection in corporate environments under such changes.
Assuming a Linear GP detector, techniques are introduced to
allow a previously trained GP population to adapt to different
changes in the data. The experiments and evaluation results show
promising insider threat detection performances of the techniques
in comparison with training machine learning classifiers from
scratch. This reduces the amount of data needed and computation
requirements for obtaining dependable insider threat detectors
under new conditions.

Index Terms—insider threat detection, cyber-security, dynamic
environment

I. INTRODUCTION

Insider threat is one of the most dangerous cyber-security
problems that organizations may face. The threat represents a
wide range of malicious activities as performed from “inside”
the organization. Data exfiltration, disclosure of classified
information, intellectual property theft, and IT sabotage are
notable examples of insider threats [1]. According to recent
reports, not only 53% of organizations and 42% of U.S. federal
agencies encounters insider threats each year, the attacks are
also becoming more frequent [2], [3].

The fact that malicious insiders are authorized to use the
computer systems and are familiar with the organization’s
security procedures creates many challenges in applying ma-
chine learning for insider threat detection. This is a highly
unbalanced data problem, where data representing malicious
behaviours are rare and usually not well documented. More-
over, dynamics in corporate environments represent another
major source of challenge. Firstly, user behaviours, both of
normal users and malicious insiders, may change and develop
over time. More importantly, a permanent deployment envi-
ronment may not be assured for machine learning solutions.
Different changes may appear in the application environments
and data collection and processing procedures. Examples of
such changes in insider threat detection might include:

• New features, which may be extracted from new data
sources with new information, such as new sensor types,
or a new/updated monitoring system.

• New output classes, which result from newly discovered
data behaviours, e.g. new malicious insider types.

Essentially, the dynamics of the deployment environment
generate changes in feature and/or label space for machine
learning applications. This, in turn, often leads to incompatibil-
ities or inadequate performance of traditional machine learning
deployments [4].

In this work, the use of Linear Genetic Programming (GP) is
explored for addressing the challenges. Specifically, this work
studies methods to allow a trained GP population to evolve
on expanded feature (input) space and label (output) space.
In doing so, the aim is to learn from additional features and
classes, while preserving the previous performance on legacy
data aspects. The Linear GP based approach is evaluated using
multiple releases of a publicly available insider threat detection
dataset.

The rest of the paper is organized as follows. Section II
summarizes related work in machine learning applications for
insider threat detection and learning in dynamic conditions.
Section III formally states the challenges and presents our
proposed solutions based on Linear GP. This section also
details the employed datasets, while Section IV presents the
experiments and evaluation results. Finally, conclusions are
drawn and the future work is discussed in Section V.

II. RELATED WORK

Cyber-security in general and intrusion detection in par-
ticular presents a rich set of opportunities for evolutionary
computation. Song et al. in [5] applied Linear GP for intrusion
detection on a large and highly imbalanced dataset (KDD-
99). Haddadi et al. employed Symbiotic Bid-based GP for
botnet detection and showed the advancement of GP over
rule based and packet payload inspection based systems [6].
In [7], Sen and Clark applied genetic programming and
grammatical evolution for intrusion detection in mobile net-
work environments, with a focus on power efficiency of the
solution. In general, Wu and Banzhaf surveyed applications
of computational intelligence, from artificial neural networks,
fuzzy systems, evolutionary computation, artificial immune
systems, to swarm intelligence, and soft computing in intrusion
detection [8].

In insider threat detection specifically, Le et al. bench-
marked GP methods, based on both static and active learn-
ing approaches [9]. On the other hand, many other non-



evolutionary approaches have been applied to insider threat
detection, where most of them are based on anomaly detection.
Approaches proposed to date include graph based anomaly
detection [10], [11], Hidden Markov Model and Gaussian
Mixture Model [12]–[14], deep neural network [15], decision
tree and self-organizing map [16]–[18]. A general review of
such applications can be found in [19].

Several works have been proposed for dealing with changing
dynamics in machine learning deployment environments. For
streaming data, where main challenges are non-stationary data
and limited label budget, team-based GP has been success-
fully applied through the use of suitable sampling policy
and archiving policy [4], [20]. In [21], Haddadi and Zincir-
Heywood examined the effectiveness of Symbiotic Bid-Based
GP and other machine learning methods for botnet detection
under botnet evolution conditions. On evolving feature space,
recently Manzoor et al. in [22] proposed xStreams, a technique
for outlier detection in feature-evolving data streams through
the use of a streaming random projection scheme and ensemble
of half-space chains.

III. METHODOLOGY

In this section, we present and discuss the approach em-
ployed to explore the capabilities of GP for malicious insider
detection in corporate environments.

A. Problem Statement

In real world, the changes in the deployment environment
may cause the data generated by the applications and services
to evolve in both the number of features and the number of
classes (different behaviours). These changes could essentially
render many deployed machine learning solutions, which
assume a fixed feature space and output classes, obsolete.
Specifically, additional time and effort, and training examples
will need to be invested to create new models and to ensure
that the new models perform adequately on the new data.

In formalizing the problem, this study assumes that in
deployment is a machine learning classifier C working on
a data with feature set F to output to a set of categories
C. Then anticipated or not, changes in environment and data
collection create a different data stream with feature space F1,
where F ⊂ F1, and / or a larger output space (set of classes)
C1, where C ⊂ C1. Without having to train a completely
new classifier to accommodate the changes, there are two
major challenges in evolving C to C ′ working under the
new environment: (i) Learning from newly introduced features,
F1 \ F , and (ii) Learning to classify new classes, C1 \ C,
while maintaining current performance on legacy features and
classes.

B. Linear Genetic Programming based Proposals

In this work, we select an evolutionary based method,
specifically Linear GP, as the prime candidate for fulfilling
the stated challenges. It is assumed that GP can both perform
feature construction based on existing and new features, as
well as scale to additional classes without invalidating legacy

solutions. Indeed, the population based approach might pro-
vide a suitable means for incrementally shifting from legacy
solutions to new solutions. GP has been successfully applied in
streaming data tasks, under concept change and limited label
budget conditions, [9], [20]. In this section, we describe Linear
GP and our methods in order to incorporate newly introduced
information from larger feature and output spaces.

1) Linear Genetic Programming: Linear GP is a variant
of GP where programs in a population are represented in
a linear structure, as a sequence of instructions from an
imperative programming language [23]. The execution of a
Linear GP program follows a graph-based data flow, where
each instruction is executed based on the defined arithmetic
operations and operands, which can be registers, constants, or
input values; and the output is taken at the end of the program
as the values of the designated registers. The design allows the
register content to be reused multiple times during execution,
and structurally noneffective code (introns) to exist. Introns
may reduce the effect of variation on the effective code and
allows neutral variations in terms of fitness change [23].

In this work, Linear GP is trained through generations
using subsets of the original training data. Based on fitness
values from the evaluation of the population on a data subset,
selection and variation operators are performed to reproduce
the population for the next generation. Since the data is
extremely skewed, multi-objective selection is employed to
address two objectives simultaneously: (i) Maximizing the
detection rate (over all classes), and (ii) Maximizing the
accuracy. This is done through the use of Pareto ranking.
At each generation, higher ranked individuals are selected to
produce offsprings through variation operators to replace the
worst ranked individuals. The variation operators include: (i)
Crossover, where blocks of instructions are swapped between
pairs of parents, (ii) Micro mutation, where a part of a selected
instruction is modified (target register, operands, or operator),
and (iii) Macro mutation, where a selected instruction is
replaced, deleted, or a random instruction is inserted.

2) Learning from an expanded feature space: In Linear
GP, the input feature space to each GP program is defined
by a set of read only input registers [23]. An instruction
set selectively reads values and potentially performs feature
construction by manipulating the content of ‘general purpose
registers’ (GPR). The program and the output is defined by
mapping the value of some subset of the GPR to class labels.
The design essentially allows Linear GP program to take any
amount of expansion in feature space through expanding the
register space accordingly.

Initially, new features have no effect on the execution and
output of a program. However, employing appropriate changes
in variation operators, such as mutation, new features in F1\F
might be incorporated into programs through the training
generations. This allows a previously trained population to
evolve on an expanded feature space. On modifying the
variation operators to allow exploration of an expanded feature
space, we examine the following two methods:

(i) Simply adjust the variation operators to take into account



the expanded feature space. In this case, variation oper-
ators will immediately consider a feature f1 ∈ F1 \ F
with the same probability as f ∈ F to include in an
instruction.

(ii) Introduce a bias toward selecting a feature f1 ∈ F1 \ F
in the variation operators upon detecting feature space
expansion. In this initial work, we examine a scheme
where new features in F1 \ F are selected with higher
probability, pf1 = αt×pf , where p is the probability that
a register is selected by the variation operators and/or
sampled by a new instruction. Let αt be a generation
dependent factor that starts at α0 > 1 and gradually
decreases to 1 at generation Gf .

3) Learning to classify a new class: Similar to the feature
space expansion, new output classes of a Linear GP program
can be accommodated by creating new output registers that
corresponds to the new classes. Initially the introduction of
new output register has no effect on output of a GP program,
as they are not involved in any trained Linear GP programs.
Eventually, through selection and variation operators, the GP
population may learn to recognize the new class. To accelerate
the process, we investigate several methods for putting higher
pressure on the Linear GP population such that new classes
are more likely to be detected:

(i) A custom cost matrix can be used to reward individuals
that succeed in classifying the new class. For example,
the cost of misclassifying an exemplar of class c1 ∈ C1\C
can be set to Ec1 = βt×Ec, where Ec is misclassification
cost of a class c ∈ C. βt is a time dependent factor, that,
similar to αt, starts at β0 and reduces to 1 at Gc.

(ii) Using multi-objective selection, choose the detection rate
of recently introduced classes in C1 \ C as an objective
to select individuals for reproduction. In this work, we
apply an objective swapping scheme, where the detec-
tion rate of the new classes are switched among other
objectives in the first Gc generations upon output space
expansion.

C. Dataset and Feature Extraction

This work employs the CERT insider threat datasets [24],
which are a publicly available datasets for research, develop-
ment, and testing of insider threat mitigation approaches. Two
releases, 4.2 and 5.2, of the CERT datasets (hereafter R4.2 and
R5.2) are used in the experiments. These releases simulate
organizations with 1000 and 2000 employees, respectively,
over the period of 18 months. Two main sources of information
in the datasets are (i) the users’ activity logs, which include
log in/off, web access, file, email, and thumb drive connect,
and (ii) the organization’s structure and users’ information.

The data releases are constructed using a number of dif-
ferent models including connection graphs, topic models,
behavioural models, and psychometric models [24]. In each
release of the dataset, in addition to an expanded organization
size and structure, the source models are also updated to pro-
vide new information that is unavailable in previous releases.
Furthermore, additional insider threat scenarios are added. In

R4.2 and R5.2, there are 3 and 4 insider threat scenarios,
respectively. These range from data exfiltration (scenario 1),
intellectual property theft (scenarios 2 and 4) to IT sabotage
(scenario 3) [24]. In short, the datasets provide an ideal
condition for examining the aforementioned approaches, in
both the feature space and the output space expansions.

From the data sources, pre-processing steps and feature
extraction are performed. In this work, we extract features
from each session of a user’s activities, starting from a log on
to a corresponding log off action. The session data has been
shown to provide high malicious insider detection rates and
low detection delay [18]. There are two main categories of
features, depending on data sources. The first feature category
is user activity features, which can be frequency features, such
as the number of website visited, number of user connections
after hours, or the number of file access on a shared PC, or
statistical features, such as the mean and standard deviation
of email attachment size, file size, or visited website word
count in each session. The second category includes user and
session information, e.g user’s role, department, or session
time, duration, and PC, which are designed to provide context
for machine learning algorithms.

Table I presents a summary of the training and testing data
in R4.2 and R5.2 datasets. To reflect real-world conditions,
where ground truth is limited [25], [26], we use data belonging
to the first half (50%) of the duration of each release and from
a limited set of users (400) for training the machine learning
algorithms. The second half of each release is used as the
testing data (part). This resembles an extremely imbalanced
data problem, where data from all malicious classes accounts
for only 0.5% of the training dataset, and 0.2% of the testing
dataset.

IV. EXPERIMENTS AND EVALUATION RESULTS

We conduct two main experiments to explore the perfor-
mance of Linear GP. These are: (i) Feature space and (ii)
Output space (new behaviours) expansion conditions. The
main parameters of Linear GP are summarized in Table II.
The performances of GP based classifiers are measured using
detection rates,

DRc = 100× tpc
tpc + fnc

,

where tpc and fnc are true positive and false negative counts
for class c. Class-wise detection rate is used as an objective
in multi-objective selection:

DR =
1

|C|
×
|C|∑
c=1

DRc

Seeing that normal class dominates 99.5% of the data,
classification accuracy is essentially the same as DRNormal.
Additionally, with this in mind, the best individual of GP
population post training is selected with at least 99% training
accuracy to keep low false positive rates. Results are presented
in terms of mean and standard deviation from 10 runs in
each experiment. All the experiments are performed on a lab



TABLE I
CERT DATASET SUMMARY

Data |F| |C|
Exemplar count

Normal Scenario 1 Scenario 2 Scenario 3 Scenario 4

R4.2 training 107 4 101023 23 427 16
testing 217469 45 482 16

R5.2 training 190 5 107747 25 489 10 78
testing 497038 40 537 23 522

TABLE II
PARAMETERS OF LGP

Parameter Value

Population size 2000
Data subset size 400
Number of generations 300
Crossover rate 0.6
Micro mutation rate 0.8
Macro mutation rate 0.8
Function set {+,−,×, /,>, sin, exp, log}
Maximum program length 200
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Fig. 1. Experiment 1 Class-wise detection rates of the populations on training
subsets by number of generations

machine equipped with dual Intel Xeon E5-2650v4 CPUs and
128 GB of RAM. Linear GP is implemented in Matlab R2018b
[27].

A. Experiment 1 - Evolving GP on expanded feature space

In this experiment, a GP population which has been trained
on R4.2 is then evolved on R5.2 in different settings for
understanding of the evolution under feature space expansion.
To focus exclusively on learning from the newly introduced
features, we assume a binary classification task, where the
two classes are: normal and malicious (insider threat). Based
on III-B2, four different GP populations (P1,P2,P3,P4) are
evolved under the expanded feature space. P1,P2, and P3,
are evolved from population P , which was trained for 300
generations on R4.2. Note that P achieved 98.39% and 51.50%
normal and malicious DRs on R4.2 testing part (Table V).

TABLE III
EXPERIMENT 1: R5.2 TEST RESULTS OF GP POPULATIONS TRAINED WITH

INCREASING GENERATIONS.

# generation Population Normal DR Insider threat DR

0 P,P1−3 98.72 ± 0.40 21.46 ± 2.89

20

P1 98.13 ± 0.26 29.97 ± 3.15
P2 97.96 ± 0.14 39.62 ± 5.03
P3 97.98 ± 0.52 35.98 ± 2.00

P4 99.91 ± 0.12 11.70 ± 7.21

50

P1 98.11 ± 0.22 36.59 ± 8.62
P2 97.99 ± 0.02 45.36 ± 5.30
P3 98.15 ± 0.12 38.41 ± 3.92

P4 99.57 ± 0.07 15.74 ± 7.31

100

P1 97.97 ± 0.37 44.37 ± 4.71
P2 97.91 ± 0.04 49.98 ± 1.60
P3 98.04 ± 0.31 44.06 ± 6.44

P4 99.51 ± 0.31 22.51 ± 7.74

200

P1 97.70 ± 0.29 46.60 ± 3.16
P2 98.01 ± 0.04 52.54 ± 0.84
P3 97.61 ± 0.16 49.12 ± 7.24

P4 98.10 ± 0.57 39.65 ± 1.31

300

P1 97.60 ± 0.45 46.21 ± 1.63
P2 97.67 ± 0.19 53.52 ± 1.39
P3 97.98 ± 0.25 49.65 ± 5.78

P4 98.13 ± 0.21 50.52 ± 0.14

Population P1 uses the same (old) feature subspace F (as of
R4.2) for evolution. Based on the two strategies described in
III-B2, P2 and P3 are retrained on F1 (R5.2 full feature space),
without and with a bias towards new features, respectively. The
bias in variation operators of P3 towards newly introduced
features is controlled by Gf = 50 and α0 = 2. Finally, a
population P4 is trained from scratch on R5.2 as a baseline
for comparisons.

Class-wise detection rates of the GP populations over train-
ing generations (on subsets of R5.2 and R4.2 training data) are
shown in Figure 1. Table III presents test performance after 0,
20, 50, 100, 200, and 300 generations on R5.2 for the Linear
GP training scenarios.

Figure 1 clearly shows that P1−3 maintained the perfor-
mance of previously trained population P . Furthermore, the
populations evolved from that to adapt to changes in R5.2.
Even at 0 generation (no data samples from R5.2 has been
used to train P1−3), these GP populations are already better



than P4, in terms of DR, after 100 generations. Using the
initial advantage, P2−3 maintain clearly better performances
than P4 during the rest of the training generations. Similarly,
Table III shows that after just 100 generations (using about
40% of R5.2 training data), populations P2 and P3 achieved
nearly 50% insider threat detection rate on R5.2 test data. Even
after only 50 generations (20% of training data), population
P2 was able to obtain 45% in malicious class detection rate.
In general, these results show that retraining a Linear GP
population (P) with techniques for adaptation to R5.2 are
suitable for obtaining better results than a population trained
from scratch on R5.2 (P4), using less data and training time.

On the three GP populations that evolve from P on R5.2,
P1 gives the worst results. Given enough training time, P4 was
also able to surpass P1 (after 200 generations). Thus, it is clear
that using only legacy features (F) of new data may result
in inability to learn new information (introduced in F1 \ F).
This, in return, hampers the detection of malicious behaviours
in the new data. On the other hand, comparing results of P2

and P3, which evolve on R5.2 based on methods presented
in § III-B2, it is shown that P2 achieved marginally better
results overall. In this case, it appears that introducing bias
to increase the usage of newly introduced features (as in P3)
does not improve results over simply training GP normally
with all features in F1. While this may indicate that GP with
expanded input register space was able to incorporate newly
introduced features well enough, better designed schemes to
allow GP evolving on unseen feature spaces may be needed
to further improve the performance.

Finally, results of the GP populations on test part of R5.2
(Table III) are slightly different from that observed on training
R5.2 data (Figure 1). Different distribution of malicious be-
haviours in training and testing R5.2 data (Table I), especially
in insider threat scenario 4, is likely the reason. Under the
binary classification setting, where all malicious classes are
handled in the same manner, it is harder to overcome this
issue. In the next experiment, Linear GP is run under multi-
class classification setting to examine its ability to learn from
an expanded output space condition (new behaviours).

B. Experiment 2 - Evolving GP to recognize new malicious
behaviours

This experiment is aimed at studying the evolution of a GP
population – which has been trained on R4.2 – under output
space expansion in R5.2. Based on the results of the previous
experiment, the GP populations in this experiment are trained
on all feature set F1 of R5.2, without feature bias, for up to
300 generations. There are 4 populations in this experiment,
Q1,Q2,Q3, andQ4.Q1−3 are evolved from populationQ that
was trained on R4.2, and Q4 is trained from scratch on R5.2.
PopulationQ achieved 98.37% normal DR and 100%, 47.86%,
and 45.83% DRs on three insider threat scenarios, respectively.
Based on that, Q1−3 is trained on R5.2 with expanded output
register vectors to accommodate the the appearance of new
class in R5.2, insider threat scenario 4. Population Q1 assumes
a normal training process without any bias.Q2 andQ3 training
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Fig. 2. Experiment 2 Class-wise detection rates of the populations on training
subsets by the number of generations
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Fig. 3. Experiment 2 Insider threat scenario 4 detection rates of the
populations on training subsets by the number of generations

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.7

Fig. 4. Experiment 2 Insider threat scenario 2 detection rates of the
populations on training subsets by the number of generations



TABLE IV
EXPERIMENT 2 RESULTS OF GP POPULATIONS TRAINED WITH DIFFERENT NUMBER OF GENERATIONS ON R5.2 TESTING PART

# generation Population Normal DR
Insider threat DRs

Scenario 1 Scenario 2 Scenario 3 Scenario 4

0 Q,Q1−3 98.32 ± 0.52 96.43 ± 2.69 46.17 ± 11.97 49.69 ± 21.07 0.00 ± 0.00

20

Q1 98.73 ± 0.52 98.93 ± 2.83 34.51 ± 13.80 57.76 ± 20.73 7.83 ± 20.72
Q2 98.70 ± 0.68 100.0 ± 0.00 31.09 ± 16.83 56.52 ± 18.04 6.67 ± 17.64
Q3 98.58 ± 0.61 100.0 ± 0.00 41.47 ± 13.22 49.07 ± 23.78 18.13 ± 13.87

Q4 99.74 ± 0.08 100.0 ± 0.00 0.22 ± 0.59 46.58 ± 23.17 14.50 ± 19.20

50

Q1 98.78 ± 0.35 98.93 ± 1.00 33.87 ± 11.41 62.11 ± 20.29 20.86 ± 18.47
Q2 98.51 ± 0.56 99.64 ± 0.33 39.67 ± 07.05 56.52 ± 21.00 38.11 ± 14.35
Q3 98.67 ± 0.47 100.0 ± 0.00 28.43 ± 16.00 55.28 ± 18.74 46.75 ± 2.09

Q4 99.65 ± 0.10 100.0 ± 0.00 0.00 ± 0.00 52.17 ± 10.24 21.59 ± 19.57

100

Q1 98.61 ± 0.45 100.0 ± 0.00 41.64 ± 9.40 62.11 ± 14.02 15.39 ± 22.37
Q2 98.49 ± 0.39 100.0 ± 0.00 38.00 ± 11.04 65.22 ± 12.20 33.63 ± 12.25
Q3 98.64 ± 0.29 100.0 ± 0.00 35.87 ± 9.78 64.60 ± 15.28 47.15 ± 3.50

Q4 99.46 ± 0.18 100.0 ± 0.00 3.27 ± 3.06 58.38 ± 12.42 38.14 ± 4.96

200

Q1 98.69 ± 0.35 100.0 ± 0.00 33.26 ± 6.60 68.32 ± 9.63 20.93 ± 19.36
Q2 98.45 ± 0.53 100.0 ± 0.00 36.39 ± 18.07 65.22 ± 14.49 39.46 ± 14.87
Q3 98.27 ± 0.21 100.0 ± 0.00 48.19 ± 11.74 67.08 ± 13.63 46.74 ± 6.25

Q4 98.98 ± 0.45 100.0 ± 0.00 18.00 ± 12.94 60.87 ± 13.89 41.79 ± 13.16

300

Q1 98.83 ± 0.36 100.0 ± 0.00 30.06 ± 3.97 69.57 ± 10.45 26.75 ± 15.57
Q2 98.16 ± 0.51 99.64 ± 0.94 49.60 ± 13.91 69.56 ± 14.49 41.21 ± 16.28
Q3 98.30 ± 0.46 100.0 ± 0.00 41.57 ± 16.28 61.49 ± 17.47 50.53 ± 5.24

Q4 98.88 ± 0.40 100.0 ± 0.00 31.21 ± 18.21 65.22 ± 4.07 41.56 ± 12.91

follows method (i) and (ii) in § III-B3, respectively. The bias
towards the newly introduced class is controlled by Gf = 50
and α0 = 2. Furthermore, Q2 assumes a cost matrix, where
the cost of misclassifying a normal instance and a malicious
class m ∈ C are ENormal = 1 and Em = 10, respectively.

The evolution of the populations, measured by class-wise
DR, over R5.2 and R4.2 training subsets are presented in
Figure 2. Table IV shows Linear GP results on testing part
of R5.2 after 0, 20, 50, 100, 200, and 300 generations.

Similar to experiment 1, pre-trained GP populations, Q1−3,
show better results over a population training from scratch,
Q4. At 0 generation, as shown in Table IV, Q1−3 is already
able to obtain fairly good DRs on the first 3 malicious
insider scenarios, which is inherited from Q. Hence, on R5.2,
Q1−3 only need to maintain performance on insider threat
scenarios 1-3 while learning to detect the newly introduced
scenario. Overall, the best results achieved on R5.2 belongs to
population Q3, which is trained using method (ii) in III-B3,
where accuracy, class-wise DR, and insider threat scenario 4
DR are objectives being swapped in the first 50 generations.

In this experiment, introducing bias in selection operator
(via cost matrix or swapping objective mechanism) indeed
enables the population to learn from the new class better.
As shown in Figure 3, at Gc = 50 generations, Q2 and Q3

achieved much better scenario 4 DR than Q1 and Q4. Espe-
cially on Q3, it seems that the swapping objective mechanism
puts the highest pressure toward detection of the new class.
Hence, when the bias is removed at the 50th generation, the
performance on the new malicious insider scenario reaches the

highest point using population Q3. On the other hand, simply
retraining a pre-trained population without taking care of the
new class, as in Q1, may prohibit it from learning to recognize
the new class (Figure 3). In effect, useful innovations that im-
prove the new class may hurt the overall performance initially,
and hence fail to compete and remain in the population.

On the three remaining malicious classes, results of Q1−3
on two insider threat scenarios, 1 and 3, remain stable over
training generations. On the other hand, although the same
initial scenario 2 detection rate was inherited from Q, the
populations showed different performances on this scenario
over training generations R5.2 (Figure 4). Population Q3

initially sees some decrease to insider scenario 2, as it puts
high priority in learning to detect insider scenario 4. However,
Q3’s scenario 3 performance quickly recovers after the bias
mechanism stops at generation 50.

Finally, similar to experiment 1, there are discrepancies in
R5.2 training results (Figures 2, 3, 4) and results on R5.2
testing data Table IV. A possible explanation of this is that
not only the distribution of malicious behaviours is different
(Table I), but also temporal variations in user behaviours may
exist in R5.2 training and testing datasets. In that case, a stream
learning method as in [9] may be employed to better adapt the
GP population to temporal variations in the data.

C. Comparison to other machine learning algorithms

Popular non-evolutionary machine learning techniques -
Random forest (RF) [28], Logistic regression (LR), and Multi-
layer perceptron (MLP) - are employed in this work for com-



TABLE V
RESULTS OF LEARNING ALGORITHMS ON CERT DATASETS WITH

DIFFERENT TRAINING AND TESTING DATA

Algorithm Training data Testing data Normal DR Insider threat DR

LR

R4.2 R4.2

99.83 17.09
RF 100 16.39

MLP 99.78 26.39
LGP 98.39 51.50

LR
R4.2 R5.2

99.76 10.42
RF 100 5.14

MLP 99.87 8.99

LR
R5.2 R5.2

99.74 26.4
RF 99.99 30.39

MLP 99.89 28.65

LGP, 100 gen. R4.2, R5.2 R5.2 98.64 43.90
LGP, 300 gen. 98.30 48.14

parison with the proposed approach. The algorithms, which
are widely used in cyber-security applications [25], provide a
baseline of non-evolving methods for comparisons against GP
[18]. More details on the foundations of these algorithms can
be found in [29].

We used implementations of the algorithms in Scikit-learn
on Python 3.7 [30]. While parameters of LR are left at default
values, we used random search with cross-validation to adjust
hyperparameters of RF and MLP. For RF, we tuned the number
of individual decision trees (50, 100, and 200), the number
of features available for training individual trees (|F|,

√
|F|,

and log2 |F|), and the maximum number of leaf nodes in a
tree (100, 200, or unlimited). For MLP, Adam optimization
algorithm [31] is used for training up to 250 epochs, and the
number of hidden layers (1 to 3, each hidden layer has the
size set to a half of the previous layer), batch size (32, 64,
and 256), l2 penalty (10−4, 10−2, and 10−1) are tuned using
random search.

Table V presents results of Linear GP and other widely used
machine learning algorithms, MLP, RF, LR, on CERT R4.2
and R5.2 datasets. Since it is not possible to retrain MLP, RF,
or LR classifiers under both the feature space and the output
space expansion conditions (at least using these code bases),
test results of these algorithms are shown where the training
and the testing datasets are in the same CERT release, or a
trained model on R4.2 is used to test on R5.2. In the latter
case, the models can work on only a subset (F) of features in
R5.2 (F1). These are done under a binary classification setting.
Results of Linear GP on R5.2 in Table V are obtained from
population Q3 in experiment 2.

Overall, there was a clear trade-off between detection
performance on normal and malicious insider behaviours.
Nevertheless, Linear GP showed much better malicious insider
detection rates, while maintaining an acceptable accuracy.
As demonstrated in the experiments, a clear advantage of
GP is that a properly retrained GP population can adapt to
changes in data, where new features and classes are introduced
over time. Moreover, in this case, evolving a pre-trained GP
population on a new CERT dataset needs only 20% to 40%
of training data to achieve good results. This greatly reduces

the computational overheads and expedites the deployment of
insider threat detection under the new conditions.

V. CONCLUSIONS AND FUTURE WORK

In this work, we examined the application of Linear GP
in dynamic insider threat detection task, specifically under
feature space and output space expansion conditions. Ex-
ploiting unique characteristics of Linear GP, where registers
are used for data feature input and class output, and the
nature of a population-based method, we applied different
techniques to allow a trained GP population to evolve on
updated versions of previously used training data, where
new features and new classes are introduced. Experiments
are performed on multiple releases of a publicly available
dataset of enterprise insider threats. Results show that an
appropriate bias can be introduced to the variation operators
to assist the incorporation of newly introduced information
in expanded feature and output spaces. Thus, the trained
Linear GP populations can be successfully evolved to the new
working environments. This greatly reduces the requirements
for computational cost and the number of training examples for
a working machine learning model under evolving (changing)
conditions. This, then, allows quicker redeployment of the
system under new environments. Furthermore, comparisons
against other machine learning methods that are widely used
in cyber-security show that not only the results that are
achieved by the Linear GP population are comparable, but
also the method has the advantage of being evolvable and
adaptable to dynamics in deployment environments. This is
crucial in corporate deployments, while still maintaining good
performances under different conditions.

Future work will investigate different and more sophisti-
cated techniques addressing the changes in feature and out-
put spaces, for example task transfer. The use of learning
algorithms for streaming data will also be investigated for
providing an online process for adapting to change.
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