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Traditional semi-supervised clustering uses only limited user supervision in the form of instance seeds for
clusters and pairwise instance constraints to aid unsupervised clustering. However, user supervision can also be
provided in alternative forms for document clustering, such as labeling a feature by indicating whether it discrim-
inates among clusters. This article thus fills this void by enhancing traditional semi-supervised clustering with
feature supervision, which asks the user to label discriminating features during defining (labeling) the instance
seeds or pairwise instance constraints. Various types of semi-supervised clustering algorithms were explored
with feature supervision. Our experimental results on several real-world data sets demonstrate that augment-
ing the instance-level supervision with feature-level supervision can significantly improve document clustering
performance.
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1. INTRODUCTION

Traditional document clustering is an unsupervised categorization of a given document
collection into clusters so that documents within the same cluster are more topically sim-
ilar than those in different clusters. However, given a document collection, different users
may want it organized in their own point of view instead of a universal one. Consider a
collection of news articles about international sports. One user may like to organize the col-
lection by country, while another may want it organized by sport, in which unsupervised
clustering is incapable. This is addressed by incorporating user supervision into the cluster-
ing process. In this article, we use two types of user supervision, i.e., document supervision
and feature supervision for document clustering. Document supervision involves labeling
(defining) documents, i.e., assigning a document to a cluster (defining a document seed) or
specifying a pairwise constraint “must-link” or “cannot-link” (Wagstaff et al. 2001) between
two documents (defining a document constraint). Feature supervision involves labeling fea-
tures, i.e., indicating whether a feature discriminates clusters. We say a feature is accepted
if it is labeled as discriminating. Note that accepted features are not assigned to a cluster but
known for their usefulness in clustering.

Traditional semi-supervised clustering, which uses both labeled and unlabeled
instances, has shown its usefulness in generating clusters matching user expectations. User
supervision usually takes the form of document supervision. In these methods, the user
defines instance seeds for initializing clusters or provides an instance constraint by indi-
cating whether the two instances involved should be placed into the same cluster or not.
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FIGURE 1. Text clouds of two documents. (a) Text cloud of document A about Canadian basketball.
(b) Text cloud of document B about Canadian hockey.

However, the user can also provide alternative forms of user supervision such as feature
supervision involving labeling features for document clustering. Because this article focuses
on document clustering, we may use instance and document, and feature and word inter-
changeably. Labeling documents and words can be performed at the same time with little
additional effort for labeling words, if an appropriate document visualization is used, such
as text clouds (Lamantia 2007). While the user assigns a document to a cluster or specifies
a pairwise constraint based on the document’s text cloud, the words appearing in the text
cloud can also be labeled by being clicked or highlighted.

Example 1. Documents A and B in Figure 1 can be specified as a must-link when clus-
tered by country but a cannot-link when clustered by sport. Correspondingly, the user would
accept the words “Canada,” “Canadian,” and “Spain” in the first case but “basketball,”
“points,” “hockey,” and “rychel” (last name of a hockey player) in the latter case.

Different accepted words reflect different organizations, and the user forms his or her
point of view based on the perception of the words in the text clouds. It has been argued that
document supervision and feature supervision are complementary rather than completely
redundant, and their joint use has been called dual supervision (Attenberg, Melville, and
Provost 2010).

In this article, we assume that the user defines a document seed or establishes a pair-
wise constraint by reading a fraction of the documents’ contents. At the same time, the
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user can label a word by indicating (e.g., highlighting) whether it discriminates among clus-
ters. The text cloud could be used to visualize the fraction of the content and augment the
labeling process. Because the accepted features are not associated with specific clusters, we
incorporate them into the semi-supervised clustering through feature reweighting. Despite
its simplicity, our proposed method is proven to be quite robust and effective under differ-
ent experimental settings. We enhance semi-supervised clustering algorithms in different
categories mentioned in Section 2. We also compare those algorithms using only docu-
ment seeds or document constraints with our proposed method using only accepted features.
Finally, we performed experiments by allowing the user to make errors in accepting features
and to only read a fraction of a document content and by allowing for various numbers of
documents to be assigned to each cluster.

The rest of this article is organized as follows. Related work on semi-supervised clus-
tering and feature supervision is discussed in Section 2. In Section 3, we introduce some
background knowledge and describe the unsupervised and semi-supervised clustering algo-
rithms we enhance with feature supervision. In Section 4, we present the methodology for
incorporating the feature supervision. The details of the experimental results on several real-
world text data sets are presented and discussed in Section 5. We conclude this article and
discuss future work in Section 6.

2. RELATED WORK

Existing semi-supervised clustering techniques, employing user supervision in the form
of instance-level constraints, are generally grouped into four categories. First, constraints
are used to modify the loss function (Basu, Bilenko, and Mooney 2004; Ji and Xu 2006;
Yoshida 2012). Second, cluster seeds derived from the constraints initialize the cluster cen-
ters (Basu, Banerjee, and Mooney 2002). Third, constraints are employed to learn adaptive
distance metrics using metric learning techniques (Cheng, Hua, and Vu 2008). Finally, the
original high-dimensional feature space can be projected into low-dimensional feature sub-
spaces guided by constraints (Tang et al. 2007). In this article, we enhance the first three
methods with user-accepted features obtained from feature supervision.

Liu et al. (2004) propose to ask the user to assign features with class labels and use
the set of features accepted for each class to find a set of documents for training classifiers.
Druck, Mann, and McCallum (2008) use accepted features with class labels to constrain the
probabilistic model estimation on unlabeled instances instead of creating pseudo-instances
as carried out in other approaches. Raghavan, Madani, and Jones (2005) make use of
feature feedback in the active learning with support vector machine by up-weighting the
accepted features. All those methods ask the user to assign class labels to features and
require accepted features for each class. In our article, we do not ask the user to label fea-
tures with cluster labels. In fact, the user does not even give the cluster label for a feature
but just indicates whether it is useful for clustering. We also assume that the user has the
document content as context to label words instead of having a stand-alone ranked list of
features from which to label features. In addition, the accepted features are used to mod-
ify document representations when cluster labels of the features are not given. Huang and
Mitchell (2006) propose a generative probabilistic framework to incorporate various types
of user feedback including feedback on features. In their work, the user needs to assign a
feature to an intermediate cluster, while we only ask the user to indicate whether a feature
is good or not for clustering. Hu, Milios, and Blustein (2011) propose an interactive frame-
work for feature selection for document clustering, in which the user only indicates whether
a feature is suitable for clustering. However, their work asks the user to label features from
a stand-alone ranked list of features. More importantly, they did not explore the usefulness
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of integrating document seeds (or document constraints) and features together or compare
feature supervision and document supervision for clustering.

3. BACKGROUND

In this section, we introduce pairwise document constraints and present three semi-
supervised clustering algorithms enhanced, each of which is from a different category in
Section 2. COP K-means is a constraint-based method, while seeded K-means uses docu-
ments as cluster seeds for document clustering. Constrained K-means uses documents for
both cluster seeds and constraints derived from document seeds. XingK-means is a distance
metric learning method.

3.1. Pairwise Document Constraints

Two types of pairwise constraints are used for traditional semi-supervised clustering:

� Must-link constraints specify that two documents have to be placed in the same cluster.
� Cannot-link constraints specify that two documents cannot be placed in the same cluster.

Consequently, there are usually two sets defined: M is the set of must-link constraints,
and C is the set of cannot-link constraints. Both must-link and cannot-link constraints are
symmetric. Ideally, the must-link constraints are transitive, and transitive closures can be
derived.

3.2. K-Means

K-means is a clustering algorithm based on iterative assignments of data points to clus-
ters and partitions a data set into K clusters so that the average squared distance between
the data points and the closest cluster centers is locally minimized. For a data set with data
points X D ¹x1; x2; : : : ; xN º ; xi 2 Rd , K-means algorithm generates K clusters ¹XlºKlD1
of X such that the objective function

J D

KX
lD1

X
xi2Xl

jjxi � �l jj
2 (1)

is locally minimized and ¹�1; �2; : : : ; �Kº represent the centers of the K clusters.

3.3. COP K-Means

COP K-means (Wagstaff et al. 2001) is a constraint-based method, where user supervi-
sion is provided in the form of must-link and cannot-link constraints. During the clustering
process, all the constraints should be satisfied. Otherwise, COP K-means fails, in which no
clusters are produced. COP K-means is presented in Algorithm 1.

3.4. Seeded K-Means

Given a data set X , K-means can partition it into K clusters ¹XlºKlD1. K-means is
usually initialized with randomly selected cluster centers. It was observed that seeded K-
means (Basu et al. 2002), with cluster centers initialized with centroids derived from small
sets of instances, could improve clustering performance significantly. To this end, we define
the seed set S � X to be the subset of data points as follows: for each xi 2 S, the user
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Algorithm 1 COP K-means
Input: Set of data points X , must-link set M, cannot-link set C
Output: K clusters ¹XlºKlD1
Method:

1: Randomly initialize the cluster centers with ¹�0
l
ºK
lD1

2: repeat
3: Based on ¹�t

l
º, assign each data point xi to the closest cluster X tC1

l
for which

VIOLATE-CONSTRAINTS.xi ;Xl ;M; C/ (Algorithm 2) returns false. If no such
cluster exists, COP K-means fails and returns ¹º. At the end, obtain ¹X tC1

l
ºK
lD1

.

4: Update cluster centers: u.tC1/
l

 1

jX .t/
l
j

P
x2X .t/

l

x

5: t  t C 1
6: until No data point assignments change or the maximum number of iterations is

reached, where the maximum number of iterations is user defined based on heuristics.

Algorithm 2 VIOLATE-CONSTRAINTS
Input: Data points xi , cluster Xl must-link set M, and cannot-link set C
Output: TRUE/FALSE
Method:

1: VIOLATED FALSE
2: for all .xi ; y/ 2M do
3: if y … Xl and y is already re-assigned in the current iteration; i.e., y is processed

before xi then
4: VIOLATED TRUE;
5: break;
6: end if
7: end for
8: for all .xi ; y/ 2 C do
9: if y 2 Xl and y is already re-assigned in the current iteration, i.e., y is processed

before xi then
10: VIOLATED TRUE;
11: break;
12: end if
13: end for
14: return VIOLATED

provides the cluster Xl to which it belongs. We assume that there is at least one data point xi
for each cluster Xl . Note that there is aK-disjoint partitioning ¹SlºKlD1 of the seed set S such
that all xi 2 Sl belong to Xl according to the supervision. In seeded K-means (Basu et al.
2002), the seed set S is used to initialize theK-means algorithm. In this method, each cluster
center �l is initialized by the centroid of Sl instead of a randomly picked centroid. Note that
the seed set is only used in the initialization step and is not used in the remaining steps of
K-means. Therefore, the seeds can change their cluster memberships during the subsequent
clustering steps. In constrained K-means (Basu et al. 2002), the seed set is also used to
initialize theK-means algorithm. However, unlike seededK-means, the memberships of the
seeds are not re-computed and kept unchanged in the subsequent clustering steps. Compared
with seeded K-means, constrained K-means is more appropriate when there are no or very
few noisy seeds. In fact, constrained K-means can be thought of as a combination of COP
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K-means and seededK-means. In this article, we assume the seed set without noise. Seeded
K-means and constrained K-means are described in Algorithm 3.

Algorithm 3 Seeded K-means and Constrained K-means

Input: Set of data points X , the seed set S D [K
lD1

Sl
Output: K clusters ¹XlºKlD1
Method:

1: initialize each cluster center �l using the seed subset Sl : �0l  
1
jSl j

P
x2Sl x

2: t  0
3: repeat
4: for all xi 2 X do
5: if Constrained K-means and xi 2 S then
6: Assign xi to l where xi 2 Sl
7: else
8: Assign xi to the closest cluster X .tC1/

l
based on ¹�t

l
º and obtain ¹X .tC1/

l
ºK
lD1

9: end if
10: end for
11: Update cluster centers: u.tC1/

l
 1ˇ̌̌

X .t/
l

ˇ̌̌ P
x2X .t/

l

x

12: t  t C 1
13: until No data point assignments change or the maximum number of iterations is

reached, where the maximum number of iterations is user defined based on heuristics.

3.5. Xing K-Means

Many clustering algorithms, includingK-means, critically rely on a good metric for the
input data. A better metric may be learned from the document pairwise constraints. Xing
et al. (2003) provide a method to learn a generalized Euclidean distance metric based on
the pairwise constraints. Because the learned Euclidean distance metric can be used as a
component of K-means, we call it Xing K-means. Assuming the data set X , must-link set
M, and cannot-link set C, the distance metric dst.x; y/ between data points x and y can be
written in the form of

dst.x; y/ D dstA.x; y/ D kx � ykA D
q
.x � y/TA.x � y/: (2)

The metric learning algorithm tries to learn a positive semi-definite A so that the following
optimization problem is satisfied:

min
A

X
.xi ;xj /2M

kxi � xj k
2
A (3)

s.t.
X

.xi ;xj /2C

kxi � xj kA � 1: (4)

A � 0: (5)
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The choice of the constant 1 in the right-hand side of equation (4) is arbitrary, and it can be
any positive constant c so long as A is replaced by c2A.

Because document vectors ¹xiºNiD1 have very high dimensions, it is computation-
ally prohibitive to estimate the full matrix A. Therefore, we only consider the case when
the matrix A is diagonal. When A is a diagonal matrix, it can be represented as A D
diag.A11; A22; : : : ; Ann/. An efficient algorithm for estimating A can be derived with the
Newton–Raphson method by defining

g.A/ D g.A11; A22; : : : ; Ann/

D
X

xi ;xj2M

kxi � xj k
2
A

� log

0
@ X
.xi ;xj /2C

kxi � xj kA

1
A :

(6)

It can be shown that minimizing g (subject to A � 0) is equivalent, up to a multiplica-
tion of A by a positive constant to solve the optimization problem defined by equations
(3)–(5) (Xing et al. 2003).

4. METHODOLOGY

In this section, we describe the details of the document oracle and feature oracle and
present the model for labeling documents and features together. We propose a framework
to incorporate feature supervision through feature reweighting into various traditional semi-
supervised clustering algorithms introduced in Section 3. In the traditional semi-supervised
clustering, only document seeds or constraints from document supervision are used to
either initialize the clustering algorithms or guide the clustering process. In our frame-
work, we introduce one more supervision dimension, namely, accepted features from feature
supervision, into the traditional semi-supervised clustering algorithms.

4.1. Oracles

Designing the document oracle is straightforward because all the documents in our data
sets have class labels. Therefore, the underlying document class labels can act as a document
oracle (Basu et al. 2002; Basu et al. 2004; Ji and Xu 2006; Tang et al. 2007; Cheng et al.
2008; Attenberg et al. 2010). However, this is not the case for labeling features. Ideally, we
should have a gold-standard feature set. To simulate how a human responds to queries for
feature labels, we construct a feature oracle similarly to previous approaches (Druck et al.
2008; Attenberg et al. 2010). The �2 value of words with respect to the known labels in the
document collection is computed, and all the words are ranked by their �2 values. Then, the
top f words are taken as the feature oracle and will be regarded as useful for clustering when
the user is queried about them. We define f as the capacity of the feature oracle. The larger
f is, the more features this oracle can accept. However, because more noisy features may be
included when f is large, we should select a proper f for our experiments. We investigate
how the value of f affects clustering performance in our experiments. Because human users
can make mistakes, we can also construct a noisy feature oracle. The bottom half of features
in the list of features sorted by the �2 values with respect to the known labels are considered
as noisy features. A noisy feature oracle can be constructed by replacing a certain number of
features in the top f features by the same number of features in the bottom half of the list.
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The construction of a feature oracle is presented in Algorithm 4. Note that our feature oracle
is different from those previous feature oracles (Druck et al. 2008; Attenberg et al. 2010) in
two aspects: (1) Our feature oracle only indicates whether a feature is useful for clustering
instead of giving the feature a class/cluster label; and (2) Our feature oracle can be noisy by
introducing pnf noise features (accepted by mistake) with a given probability pn > 0.

Algorithm 4 Construction of a Feature Oracle
Data Input: Set of unordered features F , training set CL—documents and their class labels
in the data set
Parameter Input: Noise level pn, the percentage of noise features the feature oracle will
mislabel as “accept,” Feature Oracle Capacity f —the number of features the oracle labels
as “accept,” f � jF j
Output: List of ordered features L—the list of features the feature oracle labels as “accept”
Method:

1: Compute �2 values of all features in F based on CL
2: Sort all features in F according to the computed �2 values and obtain ordered list T of

the same size as F
3: for i D 1 to f do
4: Flip a coin with the probability pn getting the tail and obtain the outcome O
5: if O is tail then
6: Randomly pick a feature from the bottom half of T , which is considered to be a

noisy feature
7: Swap i th feature with the picked noisy feature in T
8: end if
9: end for

10: Generate L by taking the top f features of T

4.2. Model for Document Supervision

Our purpose in this article is to demonstrate that enhancing traditional semi-supervised
document clustering with feature supervision can improve the clustering performance.
Therefore, with respect to document supervision in our framework, we adopt the same
supervision methods using the document oracle as in the traditional semi-supervised clus-
tering algorithms. In a seeded K-means-based framework, the seeds are randomly sampled
from the documents belonging to the corresponding class according to the size of the seed
set for each cluster. In a COP K-means-based framework, the must-link and cannot-link
constraints are derived from the sampled seeds for seeded K-means; i.e., the seeds for the
same clusters form the must-link constraints, while the seeds for the different clusters form
the cannot-link constraints. In a distance metric learning-based framework, we randomly
sample the designated number of constraints.

4.3. Model for Feature Supervision

We assume that the document (or document constraint) labeling and feature labeling
happen simultaneously; i.e., the user can label words as useful for clustering, while he or she
is defining a document seed or a pairwise document constraint, e.g., through highlighting
keywords for a document. With this labeling model, a feature is accepted once the user rec-
ognizes it as useful for clustering while reading a document. The advantage of this labeling



488 COMPUTATIONAL INTELLIGENCE

model is saving user effort, because the user does not need to label the features separately.
The disadvantage is that the user does not need to read the whole document content to estab-
lish a document constraint so that some useful features might be ignored. In our labeling
model, we first assume the user will read the whole document content to define a document
constraint. Then, we consider the user reading only the first fraction p% of content to define
a document seed or document constraint.

For example, a document d can be considered as a list of words in the order in which
the words occur in the document, i.e., < w1; w2; : : : ; wjd j >, where jd j is the length of the
document in terms of the number of words. Note that wi might be the same as wj where i
is not equal to j , 1 � i � jd j and 1 � j � jd j. To define a document seed or a document
constraint, we assume that the user needs to read at least a fraction of the document content
pc , i.e.,< ws; wsC1; : : : ; we >, where 1 � s � jd j, s � e � jd j, and e�sC1 D dpc 	 jd je.
When s D 1, the user reads a document from the beginning. While reading a document,
the user is assumed to be able to label words she or he encounters. The accepted words
are included in the accepted feature set WL. The fraction of document content could be
displayed as a text cloud, and the user could accept words by highlighting them on the text
clouds. The user accepts a feature if it is a good description of the topic of a cluster and
discriminates the cluster from others. Note that the user does not need to associate a feature
with a specific cluster.

Definition 1. Assuming accepted feature set WL D ¹wjM.w/ D labeledº, where M is the
function to produce the label of a feature:

M.w/ D

²
labeled if w is confirmed as useful for clustering
unlabeled otherwise, i.e., w is not presented or not confirmed as useful.

(7)

4.4. Feature Reweighting

Because the feature reweighting employed by Hu et al. (2011) is simple and effec-
tive, we use it on the accepted features for semi-supervised clustering. Although different
semi-supervised clustering algorithms may have their own method of integrating the feature
reweighting, we only have one underlying algorithm K-means in this article.

Feature reweighting for K-means is achieved through reweighting the TFIDF (term
frequency-inverse document frequency) values of features. More specifically, it is per-
formed as follows: the TFIDF values of accepted features in WL are multiplied by a given
weight g (>1):

Rdiw .tfidf / D

´
O
di
w .tfidf / 
 g if w 2WL

O
di
w .tfidf / otherwise

(8)

where Odiw .tfidf / and Rdiw .tfidf / are the original and reweighted tfidf values of feature w in
document di , respectively. After being reweighted, the vector of TFIDF values is normal-
ized. Because Xing K-means learns the feature weights based on the pairwise constraints,
we use another heuristic to incorporate the accepted features. We perform Euclidean dis-
tance metric learning and obtain the feature weights. The most useful features based on
the document constraints are assigned the highest weight by the metric learning algorithm.
Because accepted features are regarded as useful for clustering by the user, it is reasonable
to assign the highest weight to all accepted features 2WL.
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4.5. Semi-supervised Clustering with Feature Supervision

The procedure of semi-supervised clustering with feature supervision is presented in
Algorithm 5. Because traditional semi-supervised clustering methods employ user super-
vision in the form of pairwise constraints or cluster seeds, adding feature supervision to
semi-supervised clustering therefore amounts to dual supervision for clustering, i.e., both
document supervision and feature supervision (Attenberg et al. 2010). Dual supervision
takes place together and before the clustering algorithms begin. The clustering algorithms
will use both labeled documents and features to guide the clustering process and produce
clusters better matching user expectation.

Algorithm 5 Semi-supervised Clustering with Feature Supervision
Input: Set of data points X
Output: K clusters ¹XlºKlD1
Method:

1: Perform dual supervision, i.e., document supervision and feature supervision
2: Obtain the accepted feature set WL and the document seed set S or must-link set M

and cannot-link set C
3: if Xing K-means then
4: Learn diagonal matrix A and set weights of accepted features to the maximum value

in A
5: Perform basic K-means clustering using the learned weights
6: else
7: Perform feature reweighting based on accepted feature set WL.
8: Cluster the documents using semi-supervised clustering algorithm.
9: end if

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our proposed methods on several
real-word data sets. Specifically, we study the performance of different weight values for
feature reweighting, the size of the feature oracle vocabulary, the fraction of a document’s
content the user reads, and the noise level of the user (feature oracle). We enhance sev-
eral semi-supervised clustering algorithms with feature supervision and compare algorithms
with and without feature supervision.

5.1. Data Sets

We conducted our experiments on several real-word data sets of different sizes and
also consisting of different types of text documents. We derive six data sets with different
sizes and different separability from the 20-Newsgroup corpus1 and three more data sets
from webkb,2 industry sector,3 and reuters215784 separately. The descriptions and details

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.cs.cmu.edu/~webkb
3 http://www.cs.umass.edu/~mccallum/data.html
4 http://kdd.ics.uci.edu

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.cs.cmu.edu/~webkb
http://www.cs.umass.edu/~mccallum/data.html
http://kdd.ics.uci.edu


490 COMPUTATIONAL INTELLIGENCE

T
A

B
L

E
1.

S
ix

D
at

a
S

et
s

fr
om

20
-n

ew
sg

ro
up

s,
w

eb
kb

,i
nd

us
tr

y
se

ct
or

s,
an

d
re

ut
er

s2
15

78
.

C
at

eg
or

iz
ed

To
ta

l
D

at
a

se
t

D
es

cr
ip

ti
on

C
at

eg
or

ie
s

in
cl

ud
ed

do
cu

m
en

ts
do

cu
m

en
ts

ne
w

s-
si

m
il

ar
-3

-1
00

T
he

20
-N

ew
sg

ro
up

3:
co

m
p.

gr
ap

hi
cs

,c
om

p.
os

.m
s,

10
0

30
0

da
ta

se
tc

on
si

st
s

of
m

sw
in

do
w

s.
m

is
c,

an
d

co
m

p.
w

in
do

w
s.

x
ne

w
s-

di
ff

-3
-1

00
20

di
ff

er
en

tU
se

ne
t

3:
al

t.a
th

ei
sm

,r
ec

.s
po

rt
.b

as
eb

al
l,

an
d

sc
i.s

pa
ce

10
0

30
0

ne
w

s-
re

la
te

d-
3-

10
0

ne
w

sg
ro

up
s,

ea
ch

of
3:

ta
lk

.p
ol

it
ic

s.
m

is
c,

ta
lk

.p
ol

it
ic

s.
gu

ns
,a

nd
10

0
30

0
w

hi
ch

ha
s

ta
lk

.p
ol

it
ic

s.
m

id
ea

st

ne
w

s-
m

ul
ti

-7
-1

00
ap

pr
ox

im
at

el
y

7:
al

t.a
th

ei
sm

,c
om

p.
sy

s.
m

ac
.h

ar
dw

ar
e,

10
0

70
0

1,
00

0
ne

w
sg

ro
up

m
is

c.
fo

rs
al

e,
re

c.
sp

or
t.h

oc
ke

y,
sc

i.c
ry

pt
,

m
es

sa
ge

s.
ta

lk
.p

ol
it

ic
s.

gu
ns

,a
nd

so
c.

re
li

gi
on

.c
hr

is
ti

an

ne
w

s-
m

ul
ti

-1
0-

10
0

10
:a

lt
.a

th
ei

sm
,c

om
p.

sy
s.

m
ac

.h
ar

dw
ar

e,
m

is
c.

fo
rs

al
e,

10
0

1,
00

0
re

c.
au

to
s,

re
c.

sp
or

t.h
oc

ke
y,

sc
i.c

ry
pt

,s
ci

.m
ed

,
sc

i.e
le

ct
ro

ni
cs

,s
ci

.s
pa

ce
,t

al
k.

po
li

ti
cs

.g
un

s

w
eb

kb
-s

fc
p-

4-
25

0
W

eb
pa

ge
s

fr
om

4:
st

ud
en

t,
fa

cu
lt

y,
co

ur
se

,a
nd

pr
oj

ec
t

25
0

1,
00

0
di

ff
er

en
tu

ni
ve

rs
it

ie
s

se
ct

or
-m

ul
ti

-1
0-

10
0

W
eb

pa
ge

s
fr

om
10

:b
as

ic
.m

at
er

ia
ls

,c
ap

it
al

.g
oo

ds
,c

on
su

m
er

.c
yc

li
ca

l,
10

0
99

5
di

ff
er

en
ti

nd
us

tr
ia

l
oi

l.a
nd

.g
as

.in
te

gr
at

ed
,i

nv
es

tm
en

t.s
er

vi
ce

s,
bi

ot
ec

hn
ol

og
y.

(r
ai

lr
oa

d—
95

)
se

ct
or

s
an

d.
dr

ug
s,

ho
te

ls
.a

nd
.m

ot
el

s,
co

m
m

un
ic

at
io

ns
.

eq
ui

pm
en

t,
ra

il
ro

ad
,a

nd
w

at
er

.u
ti

li
ti

es

re
ut

er
s-

m
ul

ti
-1

0-
10

0

N
ew

s
ar

ti
cl

es
fr

om

10
:a

cq
,c

of
fe

e,
cr

ud
e,

10
0

99
0

re
ut

er
s2

15
78

.W
e

us
e

ea
rn

,g
ol

d,
in

te
re

st
,

(g
ol

d—
90

)
th

e
to

p
10

m
os

tf
re

qu
en

t

m
on

ey
-f

x,
sh

ip
,s

ug
ar

,a
nd

tr
ad

e
ca

te
go

ri
es

,t
he

do
cu

m
en

ts
of

w
hi

ch
do

no
th

av
e

m
ul

ti
pl

e
la

be
ls

.



DUAL SUPERVISION THROUGH FEATURE REWEIGHTING 491

T
A

B
L

E
2.

A
ll

V
ar

ia
nt

s
of
K

-m
ea

ns
w

it
h/

w
it

ho
ut

D
oc

um
en

tS
up

er
vi

si
on

an
d

Fe
at

ur
e

S
up

er
vi

si
on

.

D
oc

um
en

ts
up

er
vi

si
on

Fe
at

ur
e

su
pe

rv
is

io
n

A
lg

or
it

hm
(n

o/
se

ed
/c

on
st

ra
in

t)
(y

es
/n

o)
D

efi
ni

ti
on

R
an

do
m
K

-m
ea

ns
N

o
N

o
T

he
un

su
pe

rv
is

ed
K

-m
ea

ns
w

it
h

ra
nd

om
in

it
ia

li
za

ti
on

of
th

e
ce

nt
ro

id
s

Fe
s
K

-m
ea

ns
N

o
Y

es
Pe

rf
or

m
s

fe
at

ur
e

su
pe

rv
is

io
n

du
ri

ng
de

fi
ni

ng
do

cu
m

en
t

se
ed

s
or

do
cu

m
en

tc
on

st
ra

in
ts

bu
td

oe
s

no
tu

se
do

cu
m

en
t

se
ed

s
or

do
cu

m
en

tc
on

st
ra

in
ts

fo
r

cl
us

te
ri

ng

C
O

P
K

-m
ea

ns
C

on
st

ra
in

t
N

o
E

nf
or

ce
s

do
cu

m
en

tc
on

st
ra

in
ts

du
ri

ng
cl

us
te

ri
ng

pr
oc

es
s

C
O

P
Fe

s
K

-m
ea

ns
C

on
st

ra
in

t
Y

es
E

nf
or

ce
s

do
cu

m
en

tc
on

st
ra

in
ts

du
ri

ng
cl

us
te

ri
ng

pr
oc

es
s

an
d

us
es

fe
at

ur
e

su
pe

rv
is

io
n

du
ri

ng
de

fi
ni

ng
do

cu
m

en
tc

on
st

ra
in

ts

S
ee

de
d
K

-m
ea

ns
S

ee
d

N
o

U
se

s
do

cu
m

en
ts

ee
ds

to
in

it
ia

li
ze

th
e

ce
nt

ro
id

s
fo

r
K

-m
ea

ns

S
ee

de
d

Fe
s
K

-m
ea

ns
S

ee
d

Y
es

U
se

s
do

cu
m

en
ts

ee
ds

to
in

it
ia

li
ze

th
e

ce
nt

ro
id

s
fo

r
K

-m
ea

ns
an

d
pe

rf
or

m
s

fe
at

ur
e

su
pe

rv
is

io
n

du
ri

ng
de

fi
ni

ng
do

cu
m

en
ts

ee
ds

C
on

st
ra

in
ed
K

-m
ea

ns
S

ee
d

an
d

co
ns

tr
ai

nt
N

o
U

se
s

do
cu

m
en

ts
ee

ds
to

in
it

ia
li

ze
th

e
ce

nt
ro

id
s

fo
r
K

-m
ea

ns
an

d
co

ns
tr

ai
n

th
e

cl
us

te
ri

ng
pr

oc
es

s
us

in
g

do
cu

m
en

tc
on

st
ra

in
ts

de
ri

ve
d

fr
om

do
cu

m
en

ts
ee

ds

C
on

st
ra

in
ed

Fe
s
K

-m
ea

ns
S

ee
d

an
d

co
ns

tr
ai

nt
Y

es

U
se

s
do

cu
m

en
ts

ee
ds

to
in

it
ia

li
ze

th
e

ce
nt

ro
id

s
fo

r
K

-m
ea

ns
an

d
co

ns
tr

ai
n

th
e

cl
us

te
ri

ng
pr

oc
es

s
us

in
g

do
cu

m
en

tc
on

st
ra

in
ts

de
ri

ve
d

fr
om

do
cu

m
en

ts
ee

ds
.A

tt
he

sa
m

e
ti

m
e,

fe
at

ur
e

su
pe

rv
is

io
n

is
pe

rf
or

m
ed

du
ri

ng
de

fi
ni

ng
do

cu
m

en
ts

ee
ds

X
in

g
K

-m
ea

ns
C

on
st

ra
in

t
N

o
L

ea
rn

s
di

st
an

ce
m

et
ri

c
ba

se
d

on
do

cu
m

en
tc

on
st

ra
in

ts

X
in

g
Fe

s
K

-m
ea

ns
C

on
st

ra
in

t
Y

es
L

ea
rn

s
di

st
an

ce
m

et
ri

c
an

d
us

es
fe

at
ur

e
su

pe
rv

is
io

n



492 COMPUTATIONAL INTELLIGENCE

T
A

B
L

E
3.

E
xp

er
im

en
ts

W
e

R
an

an
d

th
e

C
or

re
sp

on
di

ng
S

et
up

In
cl

ud
in

g
A

lg
or

it
hm

s
an

d
Pa

ra
m

et
er

s.

E
xp

er
im

en
t

A
lg

or
it

hm
s

W
ei

gh
tg

V
oc

ab
ul

ar
y
f

C
on

te
nt

N
oi

se
N

um
be

r
of

fr
ac

ti
on
p
c

fr
ac

ti
on
p
n

se
ed

s
pe

r
cl

us
te

r

Fe
at

ur
e

re
w

ei
gh

ti
ng

Fe
s,

se
ed

ed
Fe

s,
co

ns
tr

ai
ne

d
1–

10
30

1.
0

0.
0

10
Fe

s,
an

d
C

O
P

Fe
s

O
ra

cl
e

ca
pa

ci
ty

A
ll

al
go

ri
th

m
s

ex
ce

pt
2

0–
10

0
1.

0
0.

0
10

X
in

g
an

d
X

in
g

Fe
s

C
on

te
nt

fr
ac

ti
on

A
ll

al
go

ri
th

m
s

ex
ce

pt
2

30
0.

0–
1.

0
0.

0
10

X
in

g
an

d
X

in
g

Fe
s

N
oi

se
fr

ac
ti

on
A

ll
al

go
ri

th
m

s
ex

ce
pt

2
30

1.
0

0.
0–

1.
0

10
X

in
g

an
d

X
in

g
Fe

s

N
um

be
r

of
se

ed
s

A
ll

al
go

ri
th

m
s

ex
ce

pt
2

30
1.

0
0.

0
0–

50
X

in
g

an
d

X
in

g
Fe

s

Fe
at

ur
e

ve
rs

us
A

ll
al

go
ri

th
m

s
2

30
1.

0
0.

0
10

do
cu

m
en

ts
up

er
vi

si
on

C
on

te
nt

an
d

no
is

e
A

ll
al

go
ri

th
m

s
ex

ce
pt

2
30

0.
0–

1.
0

0.
0–

1.
0

10
X

in
g

an
d

X
in

g
Fe

s

A
ll

al
go

ri
th

m
s

ar
e

de
fi

ne
d

in
S

ec
ti

on
5.

3.



DUAL SUPERVISION THROUGH FEATURE REWEIGHTING 493

T
A

B
L

E
4.

E
xp

er
im

en
ts

W
e

R
an

an
d

th
e

C
or

re
sp

on
di

ng
R

es
ul

ts
.

E
xp

er
im

en
t

R
es

ul
ts

Fe
at

ur
e

re
w

ei
gh

ti
ng

D
if

fe
re

nt
da

ta
se

ts
an

d
al

go
ri

th
m

s
ac

hi
ev

ed
th

ei
r

be
st

pe
rf

or
m

an
ce

w
it

h
di

ff
er

en
tv

al
ue

s
of
g

.
H

ow
ev

er
,a

ll
w

ei
gh

ts
us

ed
im

pr
ov

e
ov

er
th

ei
r

co
rr

es
po

nd
in

g
ba

se
li

ne
s

(g
D
1

),
na

m
el

y,
ra

nd
om

K
-m

ea
ns

,
se

ed
ed
K

-m
ea

ns
,c

on
st

ra
in

ed
K

-m
ea

ns
,a

nd
C

O
P
K

-m
ea

ns
.

O
ra

cl
e

ca
pa

ci
ty

T
he

pe
rf

or
m

an
ce

of
th

e
cl

us
te

ri
ng

al
go

ri
th

m
s

st
ay

s
re

la
tiv

el
y

st
ab

le
af

te
r

th
e

fe
at

ur
e

or
ac

le
vo

ca
bu

la
ry

pe
r

cl
us

te
r

re
ac

he
s

a
sm

al
ls

iz
e

of
10

–3
0.

In
pr

ac
ti

ce
,i

tm
ea

ns
th

at
th

e
us

er
do

es
no

th
av

e
to

kn
ow

al
lt

he
di

sc
ri

m
in

at
iv

e
fe

at
ur

es
,b

ut
on

ly
a

fe
w

of
th

e
m

os
td

is
cr

im
in

at
iv

e
on

es
.

C
on

te
nt

fr
ac

ti
on

T
he

cl
us

te
ri

ng
pe

rf
or

m
an

ce
on

ly
in

cr
ea

se
s

m
od

er
at

el
y

w
it

h
m

or
e

th
an
1
0

%
of

th
e

co
nt

en
to

f
a

do
cu

m
en

tb
ei

ng
re

ad
.T

he
re

fo
re

,t
he

us
er

do
es

no
tn

ee
d

to
re

ad
th

e
w

ho
le

co
nt

en
to

f
a

do
cu

m
en

tf
or

ef
fe

ct
iv

e
fe

at
ur

e
su

pe
rv

is
io

n.

N
oi

se
fr

ac
ti

on
E

ve
n

w
it

h
so

m
e

in
co

rr
ec

tf
ea

tu
re

s
be

in
g

la
be

le
d

as
“a

cc
ep

te
d,

”
th

e
pe

rf
or

m
an

ce
of

se
m

i-
su

pe
rv

is
ed

cl
us

te
ri

ng
w

it
h

fe
at

ur
e

su
pe

rv
is

io
n

ca
n

st
il

li
m

pr
ov

e
ov

er
th

e
pu

re
do

cu
m

en
ts

up
er

vi
si

on
.

N
um

be
r

of
se

ed
s

Fe
at

ur
e

su
pe

rv
is

io
n

w
it

h
on

ly
a

fe
w

de
fi

ne
d

do
cu

m
en

ts
as

se
ed

s
or

co
ns

tr
ai

nt
s

ca
n

im
pr

ov
e

th
e

cl
us

te
ri

ng
pe

rf
or

m
an

ce
si

gn
ifi

ca
nt

ly
co

m
pa

re
d

w
it

h
th

e
pu

re
do

cu
m

en
ts

up
er

vi
si

on
m

et
ho

d.

Fe
at

ur
ed

ve
rs

us
R

an
do

m
K

-m
ea

ns
w

it
h

fe
at

ur
e

su
pe

rv
is

io
n

on
ly

re
qu

ir
es

a
fe

w
do

cu
m

en
tc

on
st

ra
in

ts
do

cu
m

en
ts

up
er

vi
si

on
to

be
de

fi
ne

d
an

d
fe

at
ur

es
to

be
la

be
le

d
to

im
pr

ov
e

th
e

cl
us

te
ri

ng
pe

rf
or

m
an

ce
.

C
on

te
nt

an
d

no
is

e

A
no

is
y

fe
at

ur
e

or
ac

le
st

il
lw

or
ks

ve
ry

w
el

le
ve

n
w

he
n

on
ly

a
sm

al
la

m
ou

nt
of

th
e

co
nt

en
to

f
a

do
cu

m
en

ti
s

re
ad

fo
r

de
fi

ni
ng

se
ed

s
or

do
cu

m
en

tc
on

st
ra

in
ts

.T
hi

s
ob

se
rv

at
io

n
al

lo
w

s
hu

m
an

us
er

s
to

m
ak

e
m

is
ta

ke
s

in
fe

at
ur

e
su

pe
rv

is
io

n
w

hi
le

re
ad

in
g

on
ly

pa
rt

of
a

do
cu

m
en

ta
nd

va
li

da
te

s
th

e
pr

ac
ti

ca
li

ty
of

ou
r

fe
at

ur
e

su
pe

rv
is

io
n

m
od

el
th

at
fe

at
ur

e
su

pe
rv

is
io

n
du

ri
ng

do
cu

m
en

ts
up

er
vi

si
on

ca
n

im
pr

ov
e

cl
us

te
ri

ng
pe

rf
or

m
an

ce
.



494 COMPUTATIONAL INTELLIGENCE

FIGURE 2. Feature reweighting with different weights: (a) sector-multi-10-100 and (b) reuters-multi-10-
100. NMI, normalized mutual information.

TABLE 5. Feature Reweighting with Different Weights with Data Sets sector-multi-10-100 and
reuters-multi-10-100.

Weight 1 2 3 4 5 6 7 8 9 10 100

Sector

Fes 0.32 0.40 0.42 0.41 0.40 0.40 0.39 0.39 0.40 0.40 0.39
Seeded Fes 0.53 0.60 0.56 0.55 0.55 0.55 0.55 0.55 0.55 0.54 0.54
Constrained Fes 0.56 0.59 0.60 0.59 0.58 0.58 0.58 0.58 0.57 0.57 0.57
COPFes 0.35 0.43 0.44 0.43 0.41 0.41 0.42 0.42 0.41 0.40 0.41

Reuters

Fes 0.66 0.71 0.70 0.71 0.70 0.71 0.70 0.70 0.70 0.70 0.70
Seeded Fes 0.76 0.78 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Constrained Fes 0.78 0.80 0.81 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82
COPFes 0.66 0.70 0.70 0.72 0.72 0.71 0.72 0.72 0.73 0.73 0.72



DUAL SUPERVISION THROUGH FEATURE REWEIGHTING 495

FIGURE 3. Performance as a function of the size of feature vocabulary, i.e., feature oracle capacity.
(a) news-diff-3-100 and (b) news-related-3-100. NMI, normalized mutual information.

of the data sets are summarized in Table 1. Particularly, data set news-diff-3 covers topics
from three quite different newsgroups (alt.atheism, rec.sport.baseball, and sci.space). Data
set news-related-3 contains three related newsgroups (talk.politics.misc, talk.politics.guns,
and talk.politics.mideast). Data set news-similar-3 consists of messages from three similar
newsgroups (comp.graphics, comp.os.ms-windows, and comp.windows.x). Because news-
similar-3 has a significant overlap between groups, it is the most difficult one to be clustered.
Those three data sets are created for the purpose of studying the effect of data separability
of the algorithms. Other data sets are generated for the purpose of studying the effect of data
set size on the performance of the algorithms.

We preprocessed each document by tokenizing the text into bags-of-words.5 Then, we
removed the stop words and stemmed all the remaining words. Next, we selected the top
2000 words using mutual information between words and documents (Dhillon, Mallela,
and Modha 2003). Finally, a feature vector for each document is constructed with TFIDF
weighting and then normalized.

5 A word is defined as a sequence of alphabetic characters delimited by nonalphabetic characters.
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FIGURE 4. Performance as a function of the size of feature vocabulary, i.e., feature oracle capacity.
(a) news-similar-3-100 and (b) news-multi-7-100. NMI, normalized mutual information.

5.2. Evaluation Measures

Normalized mutual information (NMI) (Dom 2001) measures the shared information
between the cluster assignments S and class labels L of documents. It is defined as

NMI.S; L/ D
I.S;L/

.H.S/CH.L//=2
(9)

where I.S;L/, H.S/, and H.L/ denote the mutual information between S and L, the
entropy of S , and the entropy of L, respectively. Assuming there are K classes, K clusters,
and N documents; n.li / denotes the number of documents in class li ; n.sj / denotes the
number of documents in cluster sj ; and n.li ; sj / denotes the number of documents in both
class li and cluster sj , we define

H.L/ D �

KX
iD1

P.li / log2 P.li / (10)
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FIGURE 5. Performance as a function of the size of feature vocabulary, i.e., feature oracle capacity.
(a) news-multi-10-100 and (b) webkb-sfcp-4-250. NMI, normalized mutual information.

H.S/ D �

KX
jD1

P.sj / log2 P.sj / (11)

I.S;L/ D �

KX
iD1

KX
jD1

P.li ; sj / log2
P.li ; sj /

P.li /P.sj /
(12)

where P.li / D n.li /=N;P.sj / D n.sj /=N and P.li ; sj / D n.li ; sj /=N . The NMI values
are in the interval Œ0; 1�.

5.3. Clustering Algorithms

In this article, we have several variants of K-means with document supervision and/or
feature supervision for our experiments. The algorithms and the corresponding supervision
methods are summarized in Table 2.
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FIGURE 6. Performance as a function of the size of feature vocabulary, i.e., feature oracle capacity.
(a) sector-multi-10-100 and (b) reuters-multi-10-100. NMI, normalized mutual information.

5.4. Parameters for the Experiments

In this subsection, we describe the free parameters used in the experiments. The actual
values of the parameters are given in the analysis of the results in Section 5.5.

Feature reweighting g: Feature reweighting and weight g are defined in Section 4.4.
Different values of g might lead to different clusterings.

Feature oracle capacity f: This is the number of features the feature oracle can recog-
nize and label as “accept,” namely, the size of the feature oracle vocabulary. Because we
do not know the best value of f for clustering, we conducted experiments with different
values of f. The f features that the user labels as “accepted” are included in the feature
oracle vocabulary. The general hypothesis is values of s that are neither too large nor too
small can produce good clusters. Many noise features are included when s is too large
(more than half of all extracted features), while many useful features for clustering are
excluded when s is too small (less than 10).
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TABLE 6. Performance as a Function of the Size of Feature Vocabulary, i.e., Feature
Oracle Capacity.

Capacity 0 20 40 60 80 100

news-similar-3-100
Seeded Fes 0.44 0.43 0.45 0.46 0.46 0.45
Constrained Fes 0.44 0.44 0.46 0.46 0.47 0.46
COPFes 0.24 0.25 0.25 0.25 0.24 0.25

news-multi-7-100
Seeded Fes 0.70 0.70 0.72 0.73 0.73 0.74
Constrained Fes 0.71 0.72 0.74 0.74 0.74 0.75
COPFes 0.54 0.60 0.63 0.62 0.62 0.63

news-multi-10-100
Seeded Fes 0.70 0.82 0.84 0.82 0.82 0.81
Constrained Fes 0.71 0.84 0.85 0.84 0.83 0.82
COPFes 0.48 0.71 0.68 0.67 0.63 0.63

webkb-sfcp-4-250
Seeded Fes 0.32 0.40 0.41 0.38 0.37 0.38
Constrained Fes 0.34 0.42 0.43 0.40 0.40 0.41
COPFes 0.27 0.33 0.33 0.32 0.31 0.31

sector-multi-10-100
Seeded Fes 0.53 0.57 0.57 0.57 0.57 0.56
Constrained Fes 0.56 0.61 0.59 0.60 0.60 0.59
COPFes 0.35 0.42 0.41 0.42 0.40 0.38

reuters-multi-10-100
Seeded Fes 0.76 0.77 0.79 0.79 0.79 0.79
Constrained Fes 0.78 0.79 0.80 0.80 0.80 0.80
COPFes 0.66 0.69 0.70 0.71 0.69 0.68

Content fraction pc: Because the user does not have to read the whole content of a
document to label it, we assume that the user reads a fraction pc of its content starting
from the beginning of the document. The general hypothesis is that the more content
the user reads, the more features the user will label and the better the performance will
be, provided that the the user can label the features correctly. However, if the user is not
confident with feature labeling, reading more content might not help or even harm the
clustering performance.

Noisy feature fraction pn: Because the user can make mistakes by accepting poor
features for clustering, we constructed feature oracles with various fractions of noisy fea-
tures (Algorithm 4). The general hypothesis is that the more noisy the feature oracle, the
worse the clustering performance.

Number of seeds or constraints per cluster: We used different numbers of cluster
seeds and constraints for the semi-supervised clustering algorithms. The cluster seeds
for seeded K-means and constrained K-means are randomly sampled and defined from
the documents belonging to the corresponding class. Because we compare the COP
K-means, seeded K-means, and constrained K-means, the constraints used for COP
K-means are constructed from the cluster seeds by establishing must-link constraints
between the seeds with the same cluster labels and by establishing cannot-link constraints
between the seeds with different cluster labels. The constraints for Xing K-means are
randomly sampled.
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FIGURE 7. Enhanced with feature supervision with varying content being read. (a) sector-multi-10-100
and (b) reuters-multi-10-100. NMI, normalized mutual information.

5.5. Analysis of Results

Except when explicitly stated, we assume the whole content is read to define a document
seed or a pairwise constraint and a noise-free feature oracle is employed to label the words
in the documents. In addition, we set the number of seeds for each cluster to 10 and the
feature capacity per cluster f to 30 if not explicitly described.

For the clarity of the article, we are not able to present all the experimental results for all
combinations of data sets and algorithms. Therefore, we mainly use data set sector-multi-
10-100 and seeded K-means (if not explicitly stated) to illustrate our points. The results for
all other data sets have a similar pattern to those presented here. However, we include the
results of all data sets for discussion of the feature oracle capacity and number of seeds for
completeness. The experiments we ran and the setup are summarized in Table 3. The results
are summarized in Table 4.

5.5.1. Feature Reweighting g. Different weight values, g (refer to Section 4.4 for
details), might lead to different clustering results. We conducted experiments with different



DUAL SUPERVISION THROUGH FEATURE REWEIGHTING 501

TABLE 7. Enhanced with Feature Supervision with Varying Content Being Read.

Content fraction

0.0 0.2 0.4 0.6 0.8 1.0

sector-multi-10-100

Fes 0.32 0.39 0.39 0.39 0.40 0.40
Seeded Fes 0.53 0.55 0.56 0.56 0.56 0.56
Constrained Fes 0.56 0.58 0.58 0.58 0.59 0.59
COPFes 0.35 0.40 0.41 0.42 0.42 0.43

reuters-multi-10-100

Fes 0.66 0.70 0.71 0.71 0.71 0.71
Seeded Fes 0.76 0.78 0.78 0.78 0.78 0.78
Constrained Fes 0.78 0.79 0.80 0.80 0.80 0.80
COPFes 0.66 0.69 0.69 0.69 0.70 0.70

FIGURE 8. Enhanced with feature supervision with varying noise feature fractions. (a) sector-multi-10-100
and (b) news-multi-7-100. NMI, normalized mutual information.
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TABLE 8. Enhanced with Feature Supervision with Varying Noise Feature Fractions.

Noisy fraction

0.0 0.2 0.4 0.6 0.8 1.0

sector-multi-10-100

Fes 0.40 0.38 0.37 0.34 0.32 0.30
Seeded Fes 0.56 0.56 0.56 0.54 0.51 0.49
Constrained Fes 0.59 0.59 0.59 0.57 0.54 0.52
COPFes 0.43 0.40 0.39 0.38 0.33 0.32

news-multi-7-100

Fes 0.61 0.60 0.59 0.54 0.53 0.47
Seeded Fes 0.71 0.70 0.68 0.67 0.66 0.66
Constrained Fes 0.73 0.73 0.70 0.69 0.68 0.67
COPFes 0.63 0.62 0.57 0.56 0.51 0.50

FIGURE 9. Different numbers of document seeds (constraints for COPK-means and COPFesK-means are
generated from document seeds; refer to Section 5.4 for details). (a) news-diff-3-100 and (b) news-related-3-100.
NMI, normalized mutual information.
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FIGURE 10. Different numbers of document seeds (constraints for COP K-means and COPFes K-means
are generated from document seeds; refer to Section 5.4 for details). (a) news-similar-3-100 and (b) news-multi-
7-100. NMI, normalized mutual information.

values of g to show the robustness of our algorithms. Results show that different data sets
and algorithms achieved their best performance with different values of g (Figure 2 and
Table 5). However, all weights used improve over their corresponding baselines (g D 1),
namely, random K-means, seeded K-means, constrained K-means, and COP K-means.
Because of the limit of space, we select g D 2 to report the results on the following
experiments. Weight 2 is selected because it is seldom the weight to achieve the best per-
formance for various algorithms on all data sets. Namely, we give the benefit to the baseline
algorithms.

5.5.2. Feature Oracle Capacity f. Assuming the whole content of a document seed
(or two documents in a pairwise constraint) is read and a noise-free feature oracle, semi-
supervised clustering with feature supervision shows significantly6 improved performance

6 Two-tailed paired t-test with p D 0:05. Also applies to other significance statements.
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FIGURE 11. Different numbers of document seeds (constraints for COP K-means and COPFes K-means
are generated from document seeds; refer to Section 5.4 for details). (a) news-multi-10-100 and (b) webkb-sfcp-
4-250. NMI, normalized mutual information.

over the method without feature supervision (Figures 3–6 and Table 6). With feature
supervision, constrained K-means and seeded K-means still work much better than COP
K-means. It is noticeable that the performance of the clustering algorithms stays relatively
stable after the feature oracle vocabulary per cluster reaches a small size of 10–30. In prac-
tice, it means that the user does not have to know all the discriminative features, but only
a few of the most discriminative ones. As f grows, clustering performances may decrease,
e.g., Figure 5(b). Because the algorithm used to construct the feature oracle is not perfect,
it is unavoidable to include some features that are not discriminating for clustering in the
feature oracle vocabulary as f grows. We conjecture that clustering performance declines
because of the presence of such features introduced by the construction algorithm. The
behavior of a noisy feature oracle with explicitly injected poor features is explored later.

5.5.3. Content Fraction pc . Assuming a noise-free feature oracle, the clustering per-
formance with feature supervision is improved with more content of a defined document
being read (Figure 7 and Table 7). At the same time, regardless of the fraction of the content
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FIGURE 12. Different numbers of document seeds (constraints for COP K-means and COPFes K-means
are generated from document seeds; refer to Section 5.4 for details). (a) sector-multi-10-100 and (b) reuters-
multi-10-100. NMI, normalized mutual information.

read (at least 10% in our experiments), the performance of semi-supervised clustering with
feature supervision is much better than that of the method with only defined constraints. In
fact, the clustering performance only increases moderately with more than 10% of the con-
tent of a document being read. Therefore, the user does not need to read the whole content
of a document for effective feature supervision, just as the user does not have to read the
whole content to define a document.

5.5.4. Noisy Feature Fraction pn. Assuming the whole content of a defined doc-
ument being read, we study the behavior of the noisy feature oracle, which can make
mistakes in labeling features. Through the experiments, we find that the clustering per-
formance decreases as more noisy features are introduced by the feature oracle, namely,
the more mistakes the feature oracle makes, the worse the performance is (Figure 8 and
Table 8). However, even with some incorrect features being labeled as “accepted,” the per-
formance of semi-supervised clustering with feature supervision can still improve over the
pure document supervision. In fact, it is demonstrated that our algorithms have high tol-
erance of mistakes in labeling features (Figure 8). It may be because very few accepted
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TABLE 9. Different Numbers of Document Seeds (Constraints for COPK-means and
COPFesK-means Are Generated from Document Seeds; Refer to Section 5.4 for Details).

No. of seeds

0 10 20 30 40 50

news-similar-3-100

Seeded 0.07 0.32 0.39 0.49 0.55 0.63
Seeded Fes 0.07 0.54 0.57 0.64 0.68 0.75
Constrained 0.07 0.33 0.39 0.50 0.56 0.64
Constrained Fes 0.07 0.54 0.59 0.66 0.70 0.78
COP 0.07 0.08 0.11 0.16 0.22 0.30
COPFes 0.07 0.24 0.33 0.41 0.53 0.63

news-multi-7-100

Seeded 0.53 0.70 0.76 0.77 0.80 0.83
Seeded Fes 0.53 0.71 0.75 0.76 0.78 0.79
Constrained 0.53 0.71 0.77 0.80 0.83 0.86
Constrained Fes 0.53 0.73 0.78 0.82 0.85 0.87
COP 0.53 0.53 0.56 0.69 0.78 0.83
COPFes 0.53 0.63 0.66 0.76 0.80 0.85

news-multi-10-100

Seeded 0.49 0.70 0.74 0.78 0.81 0.83
Seeded Fes 0.49 0.83 0.84 0.86 0.87 0.88
Constrained 0.49 0.71 0.77 0.81 0.85 0.89
Constrained Fes 0.49 0.85 0.87 0.89 0.91 0.93
COP 0.49 0.48 0.52 0.61 0.72 0.80
COPFes 0.49 0.71 0.76 0.84 0.86 0.93

webkb-sfcp-4-250

Seeded 0.27 0.32 0.34 0.36 0.37 0.37
Seeded Fes 0.27 0.39 0.41 0.40 0.41 0.41
Constrained 0.27 0.34 0.37 0.42 0.46 0.48
Constrained Fes 0.27 0.42 0.45 0.47 0.51 0.54
COP 0.27 0.27 0.27 0.30 0.34 0.35
COPFes 0.27 0.33 0.35 0.40 0.40 0.45

sector-multi-10-100

Seeded 0.32 0.53 0.62 0.64 0.67 0.67
Seeded Fes 0.32 0.56 0.62 0.66 0.67 0.66
Constrained 0.32 0.56 0.72 0.76 0.82 0.87
Constrained Fes 0.32 0.59 0.43 0.79 0.84 0.87
COP 0.32 0.35 0.43 0.55 0.68 0.78
COPFes 0.32 0.43 0.48 0.59 0.70 0.80

reuters-multi-10-100

Seeded 0.66 0.76 0.77 0.78 0.79 0.79
Seeded Fes 0.66 0.78 0.80 0.80 0.81 0.80
Constrained 0.66 0.78 0.81 0.84 0.86 0.88
Constrained Fes 0.66 0.80 0.83 0.85 0.87 0.89
COP 0.66 0.66 0.68 0.74 0.80 0.81
COPFes 0.66 0.70 0.71 0.77 0.82 0.84
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TABLE 10. Metric Learning Method and Feature Supervision Method.

No. of constraints

0 1,000 2,000 3,000 4,000 5,000

sector-multi-10-100
Xing 0.32 0.27 0.26 0.29 0.28 0.30
Fes 0.32 0.41 0.41 0.41 0.41 0.41
Xing Fes 0.32 0.41 0.42 0.42 0.40 0.41

webkb-multi-4-250
Xing 0.27 0.17 0.17 0.26 0.24 0.28
Fes 0.27 0.33 0.33 0.33 0.33 0.33
Xing Fes 0.27 0.35 0.36 0.35 0.35 0.38

FIGURE 13. Metric learning method and feature supervision method. (a) sector-multi-10-100 and (b)
webkb-sfcp-4-250. NMI, normalized mutual information.
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FIGURE 14. Seeded Fes K-means with varying content being read for feature oracle with different noisy
feature levels. Each curve represents a feature oracle with the corresponding level of noisy features. (a) sector-
multi- 10-100 and (b) news-multi-10-100. NMI, normalized mutual information.

features that are highly discriminative dominate the clustering despite the presence of many
nondiscriminative features.

5.5.5. Number of Seeds or Constraints per Cluster. Feature supervision with only
a few documents defined can improve the clustering performance significantly compared
with the pure document supervision method (Figures 9–12 and Table 9). To achieve the
same performance without feature supervision, many more documents have to be defined.
For example, 20 documents per cluster have to be defined as seeds to achieve the same
performance as 15 documents per cluster defined with feature supervision (Figure 12(a)).
With more documents defined, feature supervision becomes less important than when there
are only few defined documents. This implies that feature supervision can help us save user
effort from defining unnecessary documents. Because the user labels features while defining
documents, feature supervision in our proposed methods does not have to involve much
extra effort.
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FIGURE 15. Seeded Fes K-means with feature oracle with different noisy feature levels with varying con-
tent being read. Each curve represents a certain percentage of content being read. (a) news-diff-3-100 and (b)
news-related-3-100. NMI, normalized mutual information.

5.5.6. Feature Supervision versus Document Supervision. Besides the semi-
supervised clustering with/without feature supervision, we also ran the random K-means
only with the accepted features, i.e., Fes K-means, the algorithm used by Hu et al. (2011)
to incorporate accepted features. Random K-means with feature supervision works better
than COP K-means and comparatively with COPFes K-means (Figure 8 and Table 10).
Although FesK-means works worse than seededK-means and constrainedK-means, semi-
supervised clustering with feature supervision always works better than without feature
supervision on all data sets. The distance metric learning method based on defined docu-
ment constraints works much worse than random K-means even when quite a large number
of constraints are given (Figure 13). Our explanation is that the high-dimensional and sparse
document vectors require too many document constraints to learn a correct distance met-
ric. With only a few document constraints, some unimportant features are unavoidably
overweighted. However, randomK-means with feature supervision only requires a few con-
straints and features to be defined to improve the clustering performance. Note that Xing
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TABLE 11. Seeded Fes K-means with Varying Content Being Read for
Feature Oracle with Different Noisy Feature Levels.

Content fraction

0.0 0.2 0.4 0.6 0.8 1.0

sector-multi-10-100

10% 0.53 0.55 0.56 0.56 0.56 0.56
20% 0.53 0.55 0.55 0.55 0.55 0.56
30% 0.53 0.54 0.55 0.55 0.55 0.55
40% 0.53 0.55 0.55 0.55 0.56 0.56
50% 0.53 0.55 0.54 0.54 0.55 0.55
60% 0.53 0.53 0.53 0.53 0.53 0.54
70% 0.53 0.51 0.51 0.51 0.51 0.51
80% 0.53 0.51 0.51 0.51 0.51 0.51
90% 0.53 0.51 0.50 0.50 0.50 0.50
100% 0.53 0.50 0.50 0.50 0.49 0.49

new-multi-10-100

10% 0.70 0.80 0.80 0.81 0.82 0.82
20% 0.70 0.79 0.80 0.81 0.81 0.81
30% 0.70 0.77 0.78 0.78 0.78 0.78
40% 0.70 0.76 0.76 0.76 0.76 0.76
50% 0.70 0.76 0.75 0.75 0.75 0.75
60% 0.70 0.73 0.72 0.72 0.72 0.72
70% 0.70 0.71 0.69 0.69 0.69 0.69
80% 0.70 0.68 0.67 0.67 0.67 0.67
90% 0.70 0.66 0.65 0.64 0.63 0.63
100% 0.70 0.64 0.62 0.60 0.60 0.59

Each row represents a feature oracle with the corresponding level of noisy
features.

Fes K-means can still improve the clustering performance further compared with Fes K-
means. However, the Euclidean distance metric learning algorithm is quite computationally
expensive (hours for metric learning versus seconds for feature reweighting for labeled fea-
tures) even when a diagonal matrix is assumed because of the high-dimensional vector
representation of documents.

5.5.7. Noisy Feature Oracle and Content Fraction. Instead of assuming a noise-free
feature oracle and that the user reads the whole content of a document to define it, we
explore the behavior of the noisy feature oracle while only part of content is read to define a
document. In Figure 14, each curve represents the clustering performance of a noisy feature
oracle with different noise levels when different fractions of content are read. It is verified
that the clustering performance improves as the user reads more content of a defined doc-
ument and when the feature oracle is less noisy (Figures 14 and 15 and Tables 11 and 12).
More importantly, those figures demonstrate that a noisy feature oracle still works very well
even when only a small amount of content of a document is read. This observation allows
human users to make mistakes in feature supervision while reading only part of the con-
tent for defining a document and validates the practicality of our feature supervision model
that feature supervision during document supervision can improve clustering performance.
However, for a very noisy feature oracle, such as one with 80% noisy features (Figure 14),
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TABLE 12. Seeded FesK-means with Feature Oracle with Different Noisy
Feature Levels with Varying Content Being Read.

Content fraction

0.0 0.2 0.4 0.6 0.8 1.0

sector-multi-10-100

10% 0.56 0.54 0.53 0.52 0.51 0.51
20% 0.56 0.55 0.55 0.53 0.51 0.50
30% 0.56 0.55 0.56 0.53 0.51 0.49
40% 0.56 0.55 0.55 0.53 0.51 0.50
50% 0.56 0.55 0.55 0.53 0.51 0.49
60% 0.56 0.55 0.55 0.53 0.51 0.50
70% 0.56 0.55 0.56 0.53 0.51 0.49
80% 0.56 0.55 0.56 0.53 0.51 0.49
90% 0.56 0.55 0.56 0.53 0.51 0.49

100% 0.56 0.56 0.56 0.54 0.51 0.49

reuters-multi-10-100

10% 0.76 0.74 0.73 0.72 0.71 0.75
20% 0.78 0.75 0.72 0.71 0.70 0.75
30% 0.78 0.75 0.73 0.72 0.69 0.75
40% 0.78 0.75 0.73 0.72 0.70 0.75
50% 0.78 0.75 0.73 0.72 0.69 0.75
60% 0.78 0.75 0.73 0.72 0.70 0.75
70% 0.78 0.77 0.73 0.72 0.70 0.74
80% 0.78 0.76 0.73 0.72 0.70 0.74
90% 0.78 0.76 0.73 0.72 0.70 0.74

100% 0.78 0.76 0.73 0.72 0.70 0.74

Each row represents a certain percentage of content being read.

the clustering performance decreases when more content of a document is read, because the
more content is read, the more noisy features are introduced. Because of the limit of space,
only the results for seeded K-means are presented. The results for Fes K-means, COPFes
K-means, and constrained Fes K-means have similar patterns.

6. CONCLUSIONS AND FUTURE WORK

In this article, we enhance the traditional semi-supervised document clustering with
feature supervision, which asks the user to label features by indicating whether they dis-
criminate among clusters. We make the assumption that the user can label features while
he is defining a document so that the discriminating features are obtained without too much
extra work. The labeled features are incorporated into semi-supervised clustering by fea-
ture reweighting, which explicitly gives more weight to the features that, according to the
user, discriminate among clusters. We explore this enhancement by employing different
types of semi-supervised clustering algorithms. Experimental results demonstrate that all
types of semi-supervised clustering algorithms enhanced with feature supervision improved
clustering performance significantly. Specifically, the distance metric learned using feature
supervision on top of document constraints works significantly better than the one learned
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based only on document constraints. We also find that feature supervision improves clus-
tering performance even when only a small amount of content of the defined documents is
read and some mistakes are made in labeling features.

In this article, we discuss how to augment semi-supervised clustering based on
document-level supervision with feature-level supervision. We experimented with three
different types of traditional semi-supervised clustering algorithms: (1) constraint-based
methods, (2) seeding methods, and (3) distance-based methods. To complete this work, we
would experiment with one hybrid method (Basu et al. 2004).

By applying distance metric learning to text clustering, we found that too many con-
straints are needed before effective weights are learned. Therefore, we conjecture that it is
not suitable to use metric learning based on defined document constraints when there are
not enough constraints for the high-dimensional space vectors. We plan to experiment with
more algorithms involving metric learning based on document constraints only (Bar-Hillel
et al. 2003) or both constraints and intermediate clusters (Basu et al. 2004). In this article,
we assume the feature supervision takes place during document supervision. We can sepa-
rate those two processes and interleave active document selection (Huang and Lam 2009)
and active feature selection (Hu et al. 2011).
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