
494 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

9.1 CORBA

We start our study of distributed object-based systems by taking a look at the
Common Object Request Broker Architecture , simply referred to as CORBA.
As its name suggests, CORBA is not so much a distributed system but rather the
specification of one. These specifications have been drawn up by the Object
Management Group (OMG), a nonprofit organization with over 800 members,
primarily from industry. An important goal of the OMG with respect to CORBA
was to define a distributed system that could overcome many of the interoperabil-
ity problems with integrating networked applications. The first CORBA specifica-
tions became available in the beginning of the 1990s. At present, implementations
of CORBA version 2.4 are widely deployed, whereas the first CORBA version 3
systems are becoming available.

Like many other systems that are the result of the work of committees,
CORBA has features and facilities in abundance. The core specifications consist
of well over 700 pages, and another 1,200 are used to specify the various services
that are built on top of that core. And naturally, each CORBA implementation has
its own extensions because there is always something that each vendor feels can-
not be missed but was not included in the specifications. CORBA illustrates again
that making a distributed system that is simple may be a somewhat overwhelm-
ingly difficult exercise.

In the following pages, we will not discuss all the things that CORBA has to
offer, but instead concentrate only on the parts that are essential to it as a distri-
buted system and that characterize it with respect to other object-based distributed
systems. The specifications of CORBA can be found in (OMG, 2001b), which is
publicly available at http://www.omg.org. A high-level overview of CORBA is
described in (Vinoski, 1997), whereas Pope (1998) provides a more detailed
description derived from the original specifications. Information on building
applications in C++ using CORBA can be found in (Baker, 1997) and (Henning
and Vinoski, 1999).

9.1.1 Overview of CORBA

The global architecture of CORBA adheres to a reference model of the OMG
that was laid down in (OMG, 1997). This reference model, shown in Fig. 9-1,
consists of four groups of architectural elements connected to what is called the
Object Request Broker (ORB). The ORB forms the core of any CORBA distri-
buted system; it is responsible for enabling communication between objects and
their clients while hiding issues related to distribution and heterogeneity. In many
systems, the ORB is implemented as libraries that are linked with a client and
server application, and that offers basic communication services. We return to the
ORB below when discussing CORBA’s object model.

Besides objects that are built as part of specific applications, the reference



SEC. 9.1 CORBA 495

Application
objects

Common
Object

Services

Horizontal
facilities

(general purpose)

Vertical
facilities

(domain specific)

Object Request Broker

Figure 9-1. The global architecture of CORBA.

model also distinguishes what are known as CORBA facilities. Facilities are
constructed as compositions of CORBA services (which we discuss below), and
are split into two different groups. Horizontal facilities consist of general-
purpose high-level services that are independent of application domains. Such ser-
vices currently include those for user interfaces, information management, system
management, and task management (which is used to define workflow systems).
Vertical facilities consist of high-level services that are targeted to a specific ap-
plication domain such as electronic commerce, banking, manufacturing, etc.

We will not discuss application objects and CORBA facilities in any detail,
but rather concentrate on the basic services and the ORB.

Object Model

CORBA uses the remote-object model that we described in Chap. 2. In this
model, the implementation of an object resides in the address space of a server. It
is interesting to note that the CORBA specifications never explicitly state that
objects should be implemented only as remote objects. However, virtually all
CORBA systems support only this model. In addition, the specifications often
suggest that distributed objects in CORBA are actually remote objects. Later,
when discussing the Globe object model, we show how a completely different
model of an object could, in principle, be equally well supported by CORBA.

Objects and services are specified in the CORBA Interface Definition
Language (IDL). CORBA IDL is similar to other interface definition languages
in that it provides a precise syntax for expressing methods and their parameters. It
is not possible to describe semantics in CORBA IDL. An interface is a collection
of methods, and objects specify which interfaces they implement.

Interface specifications can be given only by means of IDL. As we shall see
later, in systems such as Distributed COM and Globe, interfaces are specified at a
lower level in the form of tables. These so-called binary interfaces are by their
nature independent of any programming language. In CORBA, however, it is
necessary to provide exact rules concerning the mapping of IDL specifications to
existing programming languages. At present, such rules have been given for a
number of languages, including C, C++, Java, Smalltalk, Ada, and COBOL.

Given that CORBA is organized as a collection of clients and object servers,
the general organization of a CORBA system is shown in Fig. 9-2.



496 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

Client application

Static
IDL

proxy

Dynamic
Invocation
Interface

Client ORB Server ORB

Skeleton Dynamic
Skeleton
Interface

Object
adapter

Object implementation

ORB
interface

ORB
interface

Local OS Local OS

Client machine Server machine

Network

Figure 9-2. The general organization of a CORBA system.

Underlying any process in CORBA, be it a client or server, is the ORB. The
ORB can best be seen as the runtime system that is responsible for handling the
basic communication between a client and an object. This basic communication
consists of ensuring that an invocation is sent to the object’s server and that the
reply is passed back to the client.

From the perspective of a process, the ORB offers only a few services itself.
One of these services is manipulating object references. Such references are gen-
erally dependent on a particular ORB. An ORB will therefore offer operations to
marshal and unmarshal object references so that they can be exchanged between
processes, as well as operations for comparing references. Object references are
discussed in detail below.

Other operations offered by an ORB deal with initially finding the services
that are available to a process. In general, it provides a means to obtain an initial
reference to an object implementing a specific CORBA service. For example, in
order to make use of a naming service, it is necessary that a process knows how to
refer to that service. These initialization aspects apply equally well to other ser-
vices.

Besides the ORB interface, clients and servers see hardly anything of the
ORB. Instead, they generally see only stubs for handling method invocations for
specific objects. A client application usually has a proxy available that imple-
ments the same interface as each object it is using. As we explained in Chap. 2, a
proxy is a client-side stub that merely marshals an invocation request and sends
that request to the server. A response from that server is unmarshaled and passed
back to the client.

Note that the interface between a proxy and the ORB does not have to be
standardized. Because CORBA assumes that all interfaces are given in IDL,
CORBA implementations offer an IDL compiler to developers that generates the
necessary code to handle communication between the client and server ORB.

However, there are occasions in which statically defined interfaces are simply



SEC. 9.1 CORBA 497

not available to a client. Instead, what it needs is to find out during runtime what
the interface to a specific object looks like, and subsequently compose an invoca-
tion request for that object. For this purpose, CORBA offers a Dynamic Invoca-
tion Interface (DII) to clients, which allows them to construct an invocation
request at runtime. In essence, the DII provides a generic invoke operation, which
takes an object reference, a method identifier, and a list of input values as parame-
ters, and returns its result in a list of output variables provided by the caller.

Object servers are organized in the way we described in Chap. 3. As shown in
Fig. 9-2, a CORBA system provides an object adapter, which takes care of for-
warding incoming requests to the proper object. The actual unmarshaling at the
server side is done by means of stubs, called skeletons in CORBA, but it is also
possible that the object implementation takes care of unmarshaling. As in the case
of clients, server-side stubs can either be statically compiled from IDL specifica-
tions, or be available in the form a generic dynamic skeleton. When using a
dynamic skeleton, an object will have to provide the proper implementation of the
invoke function as offered to the client. We return to object servers below.

Interface and Implementation Repository

To allow the dynamic construction of invocation requests, it is important that
a process can find out during runtime what an interface looks like. CORBA offers
an interface repository, which stores all interface definitions. In many systems,
the interface repository is implemented by means of a separate process offering a
standard interface to store and retrieve interface definitions. An interface reposi-
tory can also be viewed as that part of CORBA that assists in runtime type check-
ing facilities.

Whenever an interface definition is compiled, the IDL compiler assigns a
repository identifier to that interface. This repository ID is the basic means to
retrieve an interface definition from the repository. The identifier is by default
derived from the name of the interface and its methods, implying that no guaran-
tees are given with respect to its uniqueness. If uniqueness is required, the default
can be overridden.

Given that all interface definitions stored in an interface repository adhere to
IDL syntax, it becomes possible to organize each definition in a standard way. (In
database terminology, this means that the conceptual schema associated with an
interface repository is the same for every repository.) As a consequence, the inter-
face repositories in CORBA systems offer the same operations for navigating
through interface definitions.

Besides an interface repository, a CORBA system generally offers also an
implementation repository. Conceptually, an implementation repository con-
tains all that is needed to implement and activate objects. Because such func-
tionality is intimately related to the ORB itself and the underlying operating sys-
tem, it is difficult to provide a standard implementation.



498 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

An implementation repository is also tightly coupled to the organization and
implementation of object servers. As we explained in Chap. 3, an object adapter
has the responsibility for activating an object by ensuring that it is running in the
address space of a server so that its methods can be invoked. Given an object
reference, an adapter could contact the implementation repository to find out
exactly what needs to be done.

For example, the implementation repository could maintain a table specifying
that a new server should be started and also to which port number the new server
should be listening for the specified object. The repository would furthermore
have information about which executable file (i.e., binary progra) the server
should load and execute.

Alternatively, it may not be necessary to start a separate server, but the
current one need merely link to a specific library containing the requested method
or object. Again, such information would typically be stored in an implementation
repository. These two examples illustrate that such a repository is indeed closely
tied to an ORB and the platform on which it is running.

CORBA Services

An important part of CORBA’s reference model is formed by the collection
of CORBA services. A CORBA service is best thought of as being general pur-
pose and independent of the application for which CORBA is being used. As
such, CORBA services strongly resemble the types of services commonly pro-
vided by operating systems. There is a whole list of services specified for
CORBA, as shown in Fig. 9-3. Unfortunately, it is not always possible to draw a
clear line between the different services, as they often have overlapping func-
tionality. Let us briefly describe each service so that we can later make a better
comparison to services as offered by DCOM and Globe.

The collection service provides the means to group objects into lists, queues,
stacks, sets, and so on. Depending on the nature of the group, various access
mechanisms are offered. For example, lists can be inspected elementwise through
what is generally referred to as an iterator. There are also facilities to select
objects by specifying a key value. In a sense, the collection service comes close to
what is generally offered by class libraries for object-oriented programming
languages.

There is also a separate query service that provides the means to construct
collections of objects that can be queried using a declarative query language. A
query may return a reference to an object or to a collection of objects. The query
service augments the collection service with advanced queries. It differs from the
collection service in that the latter offers various types of collections.

There is also a concurrency control service. It offers advanced locking
mechanisms by which clients can access shared objects. This service can be used
to implement transactions, which are offered by a separate service. The



SEC. 9.1 CORBA 499

transaction service allows a client to define a series of method invocations across
multiple objects in a single transaction. The service supports flat and nested tran-
sactions.
222222222222222222222222222222222222222222222222222222222222222222222222222222

Service Description222222222222222222222222222222222222222222222222222222222222222222222222222222
Collection Facilities for grouping objects into lists, queue, sets, etc.222222222222222222222222222222222222222222222222222222222222222222222222222222
Query Facilities for querying collections of objects in a declarative manner222222222222222222222222222222222222222222222222222222222222222222222222222222
Concurrency Facilities to allow concurrent access to shared objects222222222222222222222222222222222222222222222222222222222222222222222222222222
Transaction Flat and nested transactions on method calls over multiple objects222222222222222222222222222222222222222222222222222222222222222222222222222222
Event Facilities for asynchronous communication through events222222222222222222222222222222222222222222222222222222222222222222222222222222
Notification Advanced facilities for event-based asynchronous communication222222222222222222222222222222222222222222222222222222222222222222222222222222
Externalization Facilities for marshaling and unmarshaling of objects222222222222222222222222222222222222222222222222222222222222222222222222222222
Life cycle Facilities for creation, deletion, copying, and moving of objects222222222222222222222222222222222222222222222222222222222222222222222222222222
Licensing Facilities for attaching a license to an object222222222222222222222222222222222222222222222222222222222222222222222222222222
Naming Facilities for systemwide naming of objects222222222222222222222222222222222222222222222222222222222222222222222222222222
Property Facilities for associating (attribute, value) pairs with objects222222222222222222222222222222222222222222222222222222222222222222222222222222
Trading Facilities to publish and find the services an object has to offer222222222222222222222222222222222222222222222222222222222222222222222222222222
Persistence Facilities for persistently storing objects222222222222222222222222222222222222222222222222222222222222222222222222222222
Relationship Facilities for expressing relationships between objects222222222222222222222222222222222222222222222222222222222222222222222222222222
Security Mechanisms for secure channels, authorization, and auditing222222222222222222222222222222222222222222222222222222222222222222222222222222
Time Provides the current time within specified error margins2222222222222222222222222222222222222222222222222222222222222222222222222222221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 9-3. Overview of CORBA services.

Normally, clients invoke methods on objects and wait for the result of that
invocation. To support asynchronous communication, CORBA supports an event
service by which clients and objects can be interrupted upon the occurrence of a
specified event. Advanced facilities for asynchronous communication are pro-
vided by a separate notification service. We describe these services in more
detail below.

Externalization deals with marshaling objects in such a way that they can be
stored on disk or sent across a network. It is comparable to the serialization facili-
ties offered by Java, allowing objects to be written to a data stream as a series of
bytes.

The life cycle service provides the means to create, destroy, copy, and move
objects. A key concept is that of a factory object, which is a special object used
to create other objects (Gamma et al., 1994). Practice indicates that only the crea-
tion of objects needs to be handled by a separate service. However, destroying,
copying, and moving objects is often conveniently defined by objects themselves.
The reason is that these operations often affect an object’s state in an object-
specific way.



500 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

The licensing service allows developers of objects to attach a license to their
object and enforce a specific licensing policy. A license expresses the rights a
client has with respect to using an object. For example, a license attached to an
object may enforce that the object can be used by only a single client at a time.
Another license may ensure that an object is automatically disabled after a certain
expiration time.

CORBA offers a separate naming service by which objects can be given a
human-readable name that maps to the object’s identifier. The basic facilities for
describing objects is provided by a separate property service. This service al-
lows clients to associate (attribute, value)-pairs with objects. Note that these attri-
butes are not part of the object’s state, but instead are used to describe the object.
In other words, they provide information about the object instead of being part of
it. Related to these two services is a trading service that allows objects to adver-
tise what they have to offer (by means of their interfaces), and to allow clients to
find services using a special language that supports the description of constraints.

A separate persistence service offers the facilities for storing information on
disk in the form of storage objects. An important issue here is that persistence
transparency is provided; a client need not explicitly transfer the data in a storage
object between a disk and available main memory.

None of the services so far offer the facilities to explicitly relate two or more
objects. These facilities are provided by a relationship service, which essentially
provides support for organizing objects according to a conceptual schema like the
ones used in databases.

Security is provided in a security service. The implementation of this service
is comparable to security systems such as SESAME and Kerberos. The CORBA
security service provides facilities for authentication, authorization, auditing,
secure communication, nonrepudiation, and administration. We return to security
in detail below.

Finally, CORBA offers a time service that returns the current time within
specified error ranges.

As explained by Pope (1998), the CORBA services have been designed with
CORBA’s object model as their basis. This means that all services are specified in
CORBA IDL, and that a separation between interface specification and imple-
mentation is made. Another important design principle is that services should be
minimal and simple. In the following sections we discuss a number of these ser-
vices in more detail. From those descriptions, it can be argued to what extent this
last principle has been successfully applied.

9.1.2 Communication

Originally, CORBA had a simple model of communication: a client invokes a
method on an object and waits for an answer. This model was thought to be too



SEC. 9.1 CORBA 501

simple and soon additional communication facilities were added. In the following,
we take a closer look at invocation facilities in CORBA, and also consider its
alternatives to these object invocations. As we will see, the extensions to the basic
object invocation model are motivated by the need for asynchronous communica-
tion. This motivation also led to the alternative message-passing models that we
discussed in Chap. 2.

Object Invocation Models

By default, when a client invokes an object, it sends a request to the
corresponding object server and blocks until it receives a response. In the absence
of failures, these semantics correspond exactly to a normal method invocation
when the caller and callee reside in the same address space.

However, matters become somewhat more complicated in the presence of
failures. In the case of a synchronous invocation, as just described, a client will
eventually receive an exception indicating that the invocation did not fully com-
plete. CORBA specifies that in this case, the invocation should follow at-most-
once semantics, implying that the invoked method may have been invoked once,
or not at all. Note that it is up to an implementation to provide these semantics.

Synchronous invocation is therefore useful when the client expects an answer.
If a proper response is returned, CORBA guarantees that the method has been
invoked exactly once. However, in those cases where no response is needed, it
would be better for the client to simply invoke the method and continue with its
own execution as soon as possible. This type of invocation is similar to the asyn-
chronous RPCs we discussed in Chap. 2.

In CORBA, this form of asynchronous invocation is called a one-way
request. A method can be specified as being one-way only if it is specified to
return no results. However, unlike the guaranteed delivery of asynchronous RPCs,
one-way requests in CORBA offer only a best-effort delivery service. In other
words, no guarantees are given to the caller that the invocation request is
delivered to the object’s server.

Besides one-way requests, CORBA also supports what is known as a
deferred synchronous request. Such a request is, in fact, a combination of a
one-way request and letting the server asynchronously send the result back to the
client. As soon as the client sends its request to the server, it continues without
waiting for any response from the server. In other words, the client can never
know for sure whether its request is actually delivered to the server.

These three different invocation models are summarized in Fig. 9-4.



502 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

22222222222222222222222222222222222222222222222222222222222222222222222222222
Request type Failure semantics Description22222222222222222222222222222222222222222222222222222222222222222222222222222
Synchronous At-most-once Caller blocks until a response is returned or

an exception is raised22222222222222222222222222222222222222222222222222222222222222222222222222222
One-way Best effort delivery Caller continues immediately without waiting

for any response from the server22222222222222222222222222222222222222222222222222222222222222222222222222222
Deferred At-most-once Caller continues immediately and can later
synchronous block until response is delivered2222222222222222222222222222222222222222222222222222222222222222222222222222211

1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

Figure 9-4. Invocation models supported in CORBA.

Event and Notification Services

Although the invocation models offered by CORBA should normally cover
most of the communication requirements in an object-based distributed system, it
was felt that having only method invocations was not enough. In particular, there
was a need to provide a service that could simply signal the occurrence of an
event. Clients amenable to that event could take appropriate action.

The result is the definition of an event service. The basic model for events in
CORBA is quite simple. Each event is associated with a single data item, gen-
erally represented by means of an object reference, or otherwise an application-
specific value. An event is produced by a supplier and received by a consumer.
Events are delivered through an event channel, which is logically placed between
suppliers and consumers, as shown in Fig. 9-5.

Event channel
Consumer

Consumer

Supplier

Supplier

Supplier

Push event to consumers

Figure 9-5. The logical organization of suppliers and consumers of events, fol-
lowing the push-style model.

Fig. 9-5 shows what is referred to as the push model. In this model, when-
ever an event occurs, the supplier produces the event and pushes it through the
event channel, which then passes the event on to its consumers. The push model
comes closest to the asynchronous behavior that most people associate with
events. In effect, consumers passively wait for event propagation, and expect to be
interrupted one way or the other when an event happens.

An alternative model, also supported by CORBA, is the pull model shown in
Fig. 9-6. In this model, consumers poll the event channel to check whether an
event has happened. The event channel, in turn, polls the various suppliers.

Although the event service provides a simple and straightforward way for



SEC. 9.1 CORBA 503

Event channel
Consumer

Consumer

Supplier

Supplier

Supplier

Ask suppliers for new event

Figure 9-6. The pull-style model for event delivery in CORBA.

event propagation, it has a number of serious drawbacks. In order to propagate
events, it is necessary that suppliers and consumers are connected to the event
channel. This also means that when a consumer connects to an event channel after
the occurrence of an event, that afterward, the event will be lost. In other words,
CORBA’s event service does not support persistence of events.

More serious is that consumers have hardly any means to filter events; each
event is, in principle, passed to every consumer. If different event types need to be
distinguished, it is necessary to set a separate event channel for each type. Filter-
ing capabilities have been added to an extension called the notification service
(OMG, 2000a). In addition, this service offers facilities to prevent event propaga-
tion when no consumers are interested in a specific event.

Finally, event propagation is inherently unreliable. The CORBA specifica-
tions state that no guarantees need to be given concerning the delivery of events.
As we will discuss in Chap. 12, applications exist for which reliable event propa-
gation is important. Such applications should not use the CORBA event service,
but should resort to other means of communication.

Messaging

All communication in CORBA as described so far is transient. This means
that a message is stored by the underlying communication system only as long as
both its sender and its receivers are executing. As we discussed in Chap. 2, there
are many applications that require persistent communication so that a message is
stored until it can be delivered. With persistent communication, it does not matter
whether the sender or receiver is executing after the message has been sent; in all
cases, it will be stored as long as necessary.

A well-known model for persistent communication is the message-queuing
model. CORBA supports this model as an additional messaging service. What
makes messaging in CORBA different from other systems is its inherent object-
based approach to communication. In particular, the designers of the messaging
service needed to retain the model that all communication takes place by invoking
an object. In the case of messaging, this design constraint resulted in two addi-
tional forms of asynchronous method invocations.

In the callback model, a client provides an object that implements an inter-
face containing callback methods. These methods can be called by the underlying



504 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

communication system to pass the result of an asynchronous invocation. An
important design issue is that asynchronous method invocations do not affect the
original implementation of an object. In other words, it is the client’s responsibil-
ity to transform the original synchronous invocation into an asynchronous one; the
server is presented a normal (synchronous) invocation request.

Constructing an asynchronous invocation is done in two steps. First, the origi-
nal interface as implemented by the object is replaced by two new interfaces that
are to be implemented by client-side software only. One interface contains the
specification of methods that the client can call. None of these methods returns a
value or has any output parameter. The second interface is the callback interface.
For each operation in the original interface, it contains a method that will be
called by the client’s ORB to pass the results of the associated method as called
by the client.

As an example, consider an object implementing a simple interface with just
one method:

int add(in int i, in int j, out int k);

Assume that this method (which we expressed in CORBA IDL) takes two nonne-
gative integers i and j and returns i + j as output parameter k. The operation is
assumed to return −1 if the operation did not successfully complete. Transforming
the original (synchronous) method invocation into an asynchronous one with
call%backs is achieved by first generating the following pair of method specifica-
tions (for our purposes, we choose convenient names instead of following the
strict rules as specified in OMG, 2001b):

void sendcb3add(in int i, in int j); // Called by the client
void replycb3add(in int ret3val, in int k); // Called by the client’s ORB

In effect, all output parameters from the original method specification are
removed from the method that is to be called by the client, and returned as input
parameters of the callback operations. Likewise, if the original method specified a
return value, that value is passed as an input parameter to the callback operation.

The second step consists of simply compiling the generated interfaces. As a
result, the client is offered a stub that allows it to asynchronously invoke
sendcb3add. However, the client will need to provide an implementation for the
callback interface, in our example containing the method replycb3add. Note that
these changes do not affect the server-side implementation of the object. Using
this example, the callback model is summarized in Fig. 9-7.

As an alternative to callbacks, CORBA provides a polling model. In this
model, the client is offered a collection of operations to poll its ORB for incoming
results. As in the callback model, the client is responsible for transforming the ori-
ginal synchronous method invocations into asynchronous ones. Again, most of the
work can be done by automatically deriving the appropriate method specifications
from the original interface as implemented by the object.



SEC. 9.1 CORBA 505

Client
proxy

Callback
interface

Client
ORB

Client application

2. Request to server

4. Call by the ORB

1. Call by the
application

3. Response from server

Figure 9-7. CORBA’s callback model for asynchronous method invocation.

Returning to our example, the method add will lead to the following two gen-
erated method specifications (again, we conveniently adopt our own naming con-
ventions):

void sendpoll3add(in int i, in int j); // Called by the client
void replypoll3add(out int ret3val, out int k); // Also called by the client

The most important difference with the callback model is that the method
replypoll3add will have to be implemented by the client’s ORB. This implementa-
tion can be automatically generated by an IDL compiler. The polling model is
summarized in Fig. 9-8. Again, notice that the original implementation of the
object as it appears at the server’s side does not have to be changed.

Client
proxy

Polling
interface

Client
ORB

Client application

2. Request to server

1. Call by the
application

3. Response from server

4. Call by the
application

Figure 9-8. CORBA’s polling model for asynchronous method invocation.

What is missing from the models described so far is that the messages sent
between a client and a server, including the response to an asynchronous invoca-
tion, are stored by the underlying system in case the client or server is not yet run-
ning. Fortunately, most of the issues concerning such persistent communication
do not affect the asynchronous invocation model discussed so far. What is needed
is to set up a collection of message servers that will allow messages (be they invo-
cation requests or responses), to be temporarily stored until delivery can take
place. The approach proposed in (OMG, 2001b) is analogous to IBM’s message-



506 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

queuing system, which we discussed in Sec. 2.4.4 and will not be repeated here.

Interoperability

The early versions of CORBA left many issues open to actual implementa-
tions. The result was that CORBA systems from different manufacturers each had
their own way of enabling communication between clients and object servers. In
particular, only if a client and object server were using the same ORB was it pos-
sible for the client to invoke one of the server’s objects.

This lack of interoperability was solved by the introduction of a standard
inter-ORB protocol, in combination with a uniform way of referencing objects.
Returning to Fig. 9-2, this means that the communication shown between the
client and server adheres to a standard protocol, which, in CORBA, is also known
as the General Inter-ORB Protocol (GIOP).

GIOP is actually a framework for a protocol; it assumes that an actual realiza-
tion is executed on top of an existing transport protocol. That transport protocol
should be reliable, connection-oriented, and provide the notion of a byte stream,
along with a few other features. Not entirely surprising, TCP satisfies these
requirements, but so do other transport protocols. The realization of GIOP running
on top of TCP is called the Internet Inter-ORB Protocol or simply IIOP.

GIOP (and thus IIOP or any other realization of GIOP), recognizes eight dif-
ferent message types, shown in Fig. 9-9. The two most important message types
are Request and Reply, which jointly form part of the actual implementation of a
remote method invocation.

A Request message contains a complete marshaled invocation request,
comprising an object reference, the name of the method that is to be invoked, and
all the necessary input parameters. The object reference and method name are part
of the header. Each Request message also has its own request identifier, which is
later used to match its corresponding incoming reply.

A Reply message contains the marshaled return values and output parameters
associated with the method that was previously invoked. There is no need to
explicitly identify the object or method; simply returning the same request identif-
ier as used in the corresponding Request message is enough.

As we discuss below, a client can request an implementation repository to
provide details on where a specific object can be reached. Such a request is sent
by means of a LocateRequest message. The implementation repository will
respond with a LocateReply message, which normally identifies the object’s
current server to which invocation requests can be sent.

The CancelRequest message can be sent by a client to a server when the client
wants to cancel a previously sent Request or LocateRequest message. Canceling a
request means that the client is no longer prepared to wait for a response from the
server. There may be different reasons why a client wants to cancel the reply to a



SEC. 9.1 CORBA 507

2222222222222222222222222222222222222222222222222222222222222222222222222222222
Message type Originator Description2222222222222222222222222222222222222222222222222222222222222222222222222222222

Request Client Contains an invocation request2222222222222222222222222222222222222222222222222222222222222222222222222222222
Reply Server Contains the response to an invocation2222222222222222222222222222222222222222222222222222222222222222222222222222222
LocateRequest Client Contains a request on the exact location of an object2222222222222222222222222222222222222222222222222222222222222222222222222222222
LocateReply Server Contains location information on an object2222222222222222222222222222222222222222222222222222222222222222222222222222222
CancelRequest Client Indicates client no longer expects a reply2222222222222222222222222222222222222222222222222222222222222222222222222222222
CloseConnection Both Indication that connection will be closed2222222222222222222222222222222222222222222222222222222222222222222222222222222
MessageError Both Contains information on an error2222222222222222222222222222222222222222222222222222222222222222222222222222222
Fragment Both Part (fragment) of a larger message222222222222222222222222222222222222222222222222222222222222222222222222222222211
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 9-9. GIOP message types.

request, but it is usually caused by a timeout in the client’s application. It is
important to note that canceling a request does not imply that the associated
request will not be carried out. It is up to the client’s application to cope with this
situation.

In GIOP, a client always sets up a connection to a server. Servers are
expected to only accept or reject incoming connection requests, but will not by
themselves set up a connection to a client. However, both a client and a server are
entitled to close a connection, for which they can send a CloseConnection mes-
sage to the other communicating party.

If a failure occurs, the other party is notified by sending a message of type
MessageError. Such a message contains the header of the GIOP message that
caused the failure. (This approach is similar to ICMP messages in the Internet
protocol that are used to return error information when something went wrong. In
that case, the header of the IP packet that caused an error is sent as data in the
ICMP message.)

Finally, GIOP also allows the various request and reply messages to be frag-
mented. In this way, invocations requiring that much data be shipped between a
client and a server can easily be supported. Fragments are sent as special Frag-
ment messages identifying the original message and allowing reassembly of that
message at the receiver’s side.

9.1.3 Processes

CORBA distinguishes two types of processes: clients and servers. An impor-
tant design goal of CORBA is to make clients as simple as possible. The underly-
ing thought is that it should be easy for application developers to make use of
existing services as implemented on the servers.

Servers, on the other hand, were initially left open to a variety of



508 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

implementations and were given minimal support in the form of a basic object
adapter. Unfortunately, this minimal support also led to portability problems,
which by now have been solved by giving a more complete and better specifica-
tion of what an object adapter should offer. Below, we take a closer look at
client-side and server-side software in CORBA.

Clients

As previously mentioned, CORBA’s client-side software is kept to a
minimum. The IDL specifications of an object are simply compiled into a proxy
that marshals invocation requests into, for example, IIOP Request messages, and
unmarshals the corresponding Reply messages into results that can are handed
back to the invoking client.

Proxies in CORBA have no other task than to connect a client application to
the underlying ORB. Instead of generating an object-specific proxy, a client can
also dynamically invoke objects through the DII.

The consequence of this approach is that if an object requires a specific
client-side implementation of its interfaces, it will have to either instruct the
developer to use an IDL compiler that generates that software, or provide the
client’s proxy itself. For example, an object implementation could be accom-
panied by a set of proxies that implement an object-specific client-side caching
strategy. Of course, the latter approach is totally out of line with CORBA’s objec-
tive of portability and distribution transparency.

Another approach is to forget about object-specific matters and to rely on a
client-side ORB that provides the necessary support. For example, instead of pro-
viding a cache contained in the client’s proxy, an object implementation could
assume that caching is handled in a general way by the client’s ORB. Again, it
should be clear that such an approach has inherent limitations.

What is needed is a mechanism to use the proxies as generated by an IDL
compiler in combination with an existing client-side ORB, but nevertheless be
able to adapt the client-side software when needed. CORBA’s solution to this
problem is to use interceptors. As its name suggests, an interceptor is a mechan-
ism by which an invocation can be intercepted on its way from client to server,
and adapted as necessary before letting it continue. In essence, an interceptor is a
piece of code that modifies an invocation request on its way from client to server,
and accordingly adapts the associated response. There may be various interceptors
added to an ORB. Which one is actually activated depends on the object or server
that is referenced in an invocation request.

An interceptor in CORBA can be placed at either one of two different logical
levels, as shown in Fig. 9-10. A request-level interceptor is logically placed
between a client’s proxy and the ORB. Before an invocation request is passed to
the ORB, it first passes through an interceptor, which may modify the request. On
the server side, a request-level interceptor is placed between the ORB and the



SEC. 9.1 CORBA 509

object adapter.

Client
proxy

Client
ORB

Client application

Request-level
interceptor

Message-level
interceptor

To server

Local OS

Invocation request

Figure 9-10. Logical placement of interceptors in CORBA.

In contrast, message-level interceptors are placed between an ORB and the
underlying network. A message-level interceptor knows nothing about the mes-
sage that is to be sent; it only has GIOP messages at its disposal that it may wish
to modify. A typical example of a message-level interceptor is one that imple-
ments fragmentation at the sending side, and reassembly of the original GIOP
message at the receiver side, for example, using the special Fragment messages.

Interceptors are seen only by an ORB, that is, it is the ORB’s responsibility to
invoke an interceptor. Clients and servers hardly ever see interceptors, except at
the time a client binds to a server. Note that an ORB may make use of both types
of interceptors at the same time. An overview of the use of interceptors in
CORBA can be found in (Narasimhan et al., 1999), whereas the exact specifica-
tions are given in (OMG, 2001b).

Although the idea of an interceptor seems attractive at first sight, it can also
be argued that it is a mechanism for breaking into an implementation to fix things
that are apparently missing. For example, if CORBA had provided mechanisms to
support developing and using object-specific proxies, there would be less need for
interceptors. However, what is really needed are ORBs that can be easily
extended. Interceptors provide a general mechanism to support extensibility, but
the question is whether the two types of interceptors as provided in CORBA are
really the ones we need. More on interceptors from a software architecture point
of view can be found in (Schmidt et al., 2000).

Portable Object Adapter

In Chap. 3, we described in detail the notion of an object adapter, which is a
mechanism that implements a specific activation policy for a group of objects. For
example, one adapter may implement a method invocation using a separate thread
for each invocation, whereas another one uses only a single thread for all the



510 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

objects it manages.
In general, an object adapter does more than just call a method on an object.

As its name suggests, an object adapter is responsible for providing a consistent
image of what an object is; it adapts a program such that clients can see that pro-
gram as an object. Adapters are also called wrappers.

In CORBA, the Portable Object Adapter (POA) is a component that is
responsible for making server-side code appear as CORBA objects to clients. The
POA has been defined in such a way that server-side code can be written indepen-
dently of a specific ORB.

To support portability across different ORBs, CORBA assumes that object
implementations are partly provided by what are called servants. A servant is that
part of an object that implements the methods that clients can invoke. Servants are
necessarily programming-language dependent. For example, implementing a ser-
vant in C++ or Java would typically be done by providing an instance of a class.
On the other hand, a servant written in C or any other procedural language typi-
cally consists of a collection of functions operating on data structures that
represent the state of an object.

How does a POA use a servant to build the image of a CORBA object? In the
first place, each POA offers the following operation:

ObjectId activate3object(in Servant p3servant);

that we have specified in CORBA IDL. This operation takes a pointer to a servant
as input parameter and returns a CORBA object identifier as a result. There is no
universal definition of type Servant; instead, it is mapped to a language-dependent
data type. For example, in C++, Servant is mapped to a pointer to the predefined
ServantBase class. This class contains a number of method definitions that each
C++ servant should implement.

The object identifier returned by the operation activate3object is generated by
the POA. It is used as an index into the POA’s Active Object Map, which points
to servants as shown in Fig. 9-11(a). In this case, the POA implements a separate
servant for each object it supports. To make matters more concrete, assume an
application developer has written a subclass of ServantBase, called My3Servant.
A C++ object that is created as an instance of the My3Servant class can be turned
into a CORBA object as shown in Fig. 9-12.

In the code in Fig. 9-12, we first declare a reference to a C++ object. To
create a CORBA identifier, we make use of CORBA::ObjectId3var, which is
predefined C++ data type for all standard C++ implementations of CORBA. After
these declarations, my3object can be instantiated as a true C++ object. In CORBA
terminology, this C++ object corresponds to a servant. Turning the C++ object
into a CORBA object proceeds by registering it at the POA (which we assume to
be available through the variable poa). Registration returns a CORBA identifier.

It is important to note that if a second object of type My3Servant were
created, the registration of that C++ object at the POA would lead to an almost



SEC. 9.1 CORBA 511

Servant

Servant

Servant

Servant

OID1
OID2
OID3
OID4
OID5
OID6

Servant

Servant

Active Object Map

OID1
OID2
OID3
OID4
OID5
OID6

Servant

Active Object Map

(a) (b)

Figure 9-11. Mapping of CORBA object identifiers to servants. (a) The POA
supports multiple servants. (b) The POA supports a single servant.

My3Servant ∗ my3object; // Declare a reference to a C++ object
CORBA::ObjectId3var oid; // Declare a CORBA identifier
my3object = new My3Servant; // Create a new C++ object

// Now register the C++ object as a CORBA object
oid = poa→activate3object(my3object);

Figure 9-12. Changing a C++ object into a CORBA object.

identical servant, although operating on a different state. In those cases that a
POA has to support objects that are derived from the same class definition, it is
more efficient to register only a single servant, and distinguish the various objects
only by their state. This principle is shown in Fig. 9-11(b), where each object
identifier refers to the same servant. In this case, whenever an object is invoked,
the object’s identifier will be passed (implicitly) to the servant so that it can
operate on only that data that are uniquely associated with the identified object.

This example also illustrates another important issue: a CORBA object iden-
tifier is uniquely associated with a POA. Whenever a servant is registered with a
POA, the POA returns an object identifier for that servant. An alternative that we
have not shown is that an application developer first generates an identifier and
passes that to a POA. However, in both cases, this identifier will be encapsulated
into a larger data structure that functions as a systemwide object reference, and
that also identifies the POA and the server where that POA is located.

Whether or not a POA supports one servant per object, or one servant for all
its objects, is just one kind of policy that can be associated with a POA. There are



512 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

many other policies that can be supported. For example, a POA can support tran-
sient as well as persistent objects. Likewise, there are different policies with
respect to the use of threads. We omit details on these policies, which are further
described in (Henning and Vinoski, 1999)

Agents

To facilitate agent-based applications, CORBA adopts a model in which
agents from different kinds of systems can cooperate. Instead of specifying its
own model of an agent, CORBA prescribes standard interfaces that an agent sys-
tem should implement. This approach has the potential advantage that different
types of agents can be used in a single distributed application. For example, in
CORBA it is possible to let a Java applet create a Tcl agent on a D’Agents plat-
form. (We described the D’Agents system in Chap. 3.)

In CORBA, agents are always defined with respect to an agent system. An
agent system is defined as a platform that allows the creation, execution, transfer,
and termination of agents. Each agent system has an associated profile describing
exactly what the agent system looks like. For example, there will be a profile for a
D’Agents agent system, prescribing its type (‘‘D’Agents’’), the supported lang-
uage (e.g., Tcl), and the way agents are serialized when moving between systems.

An agent is always located at a particular place in an agent system. A place
corresponds to a server where an agent resides. There can be multiple places in an
agent system. In other words, CORBA assumes that a single agent system may
consist of multiple processes, each hosting one or more agents. This organization
has been adopted in order to group several agent hosts into a single administrative
domain, and be able to refer to that group as a whole, namely as an agent system.

Agent systems, in turn, can be grouped into a region, where a region
represents the administrative domain in which an agent system resides. For exam-
ple, a university department could have several agent systems, each of a different
type. Each agent system could be distributed across multiple hosts, or places,
where each host may run several agents. This model is shown in Fig. 9-13.

An agent in CORBA is assumed to be constructed from a collection of
classes, or at the very least from a file containing the necessary program text. In
either case, it should be possible to name an agent’s implementation, and pass that
name to an agent system to allow the creation or transfer of an agent.

Each agent system in CORBA must implement a number of standard opera-
tions. For example, an agent system must offer operations to create or terminate
an agent, to receive an agent for execution, to list its current set of agents, to list
the places where an agent may reside, and operations to suspend and resume an
agent. Note that the implementation of these operations depends entirely on the
actual agent system. However, CORBA does require that each agent system ad-
heres to the overall model. This means that if an existing agent system does not



SEC. 9.1 CORBA 513

Agent
system A

Agent
system B

Agent
system C

A
ge

nt

A
ge

nt

A
ge

nt

A
ge

nt

A
ge

nt

A
ge

nt

A
ge

nt

A
ge

nt

A
ge

nt

Region

Standard CORBA interface

Communication
with agent systems
in other regions

Figure 9-13. CORBA’s overall model of agents, agent systems, and regions.

originally support a notion of place, it should nevertheless provide one.
Each region will have an associated finder, which allows it to find the loca-

tion of the agents, places, and agent systems within that region. The finder offers a
number of standard operations for registering and unregistering agents, places,
and agent systems. In essence, a finder is nothing but a simple directory service
for a region.

Further details on mobile agents in CORBA can be found in (OMG, 2000e).

9.1.4 Naming

CORBA supports different types of names. The most basic type of naming
appears in the form of object references and character-based names as supported
by the CORBA naming service. In addition, there are a number of advanced nam-
ing facilities, whereby objects can be found based on associated properties. In the
following, we take a closer look at basic naming in CORBA, concentrating on
object references. For advanced naming facilities as available through CORBA’s
trading service, the reader is referred to (OMG, 2001a; OMG, 2000b).

Object References

Fundamental to CORBA is the way its objects are referenced. When a client
holds an object reference, it can invoke the methods implemented by the refer-
enced object. It is important to distinguish the object reference that a client pro-
cess uses to invoke a method, and the one implemented by the underlying ORB.

A process (be it client or server) can use only a language-specific implemen-
tation of an object reference. In most cases, this takes the form of a pointer to a
local representation of the object. That reference cannot be passed from process A
to process B, as it has meaning only within the address space of process A.



514 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

Instead, process A will first have to marshal the pointer into a process-independent
representation. The operation to do so is provided by its ORB. Once marshaled,
the reference can be passed to process B, which can unmarshal it again. Note that
processes A and B may be executing programs written in different languages.

In contrast, the underlying ORB will have its own language-independent
representation of an object reference. This representation may even differ from
the marshaled version it hands over to processes that want to exchange a refer-
ence. The important thing is that when a process refers to an object, its underlying
ORB is implicitly passed enough information to know which object is actually
being referenced. Such information is normally passed by the client and server-
side stubs that are generated from the IDL specifications of an object.

One of the problems that early versions of CORBA had was that each ORB
could decide on how it represented an object reference. Consequently, if process
A wanted to pass a reference to process B as described above, this would gen-
erally succeed only if both processes were executing on top of the same ORB.
Otherwise, the marshaled version of the reference held by process A would be
meaningless to the ORB underlying process B.

Current CORBA systems all support the same language-independent
representation of an object reference, which is called Interoperable Object
Reference or IOR. Whether or not an ORB uses IORs internally is not impor-
tant. However, when passing an object reference between two different ORBs, it
is passed as an IOR. An IOR contains all the information needed to identify an
object. The general layout of an IOR is shown in Fig. 9-14, along with specific
information for IIOP, which we next explain in detail.

Repository
identifier

IIOP
version Host Port Object key Components

Profile
ID

Tagged Profile

Object
identifier

POA
identifier

Other server-
specific information

Profile

Interoperable Object Reference (IOR)

Figure 9-14. The organization of an IOR with specific information for IIOP.

Each IOR starts with a repository identifier. As we explained, this identifier is
assigned to an interface when that interface is stored in the interface repository. It
is used to retrieve information on an interface during runtime, and can assist in,
for example, type checking or dynamically constructing an invocation. Note that
if this identifier is to be useful, both the client and server must have access to the



SEC. 9.1 CORBA 515

same interface repository, or at least use the same identifier to identify interfaces.
The most important part of each IOR is formed by what are called tagged

profiles. Each such profile contains the complete information to invoke an
object. If the object server supports several protocols, information on each proto-
col can be included in a separate tagged profile. Details on the profile used for
IIOP are also shown in Fig. 9-14.

The IIOP profile is identified by a ProfileID field in the tagged profile. Its
body consists of five fields. The IIOP version field identifies the version of IIOP
that is used in this profile.

The Host field is a string identifying exactly on which host the object is
located. The host can be specified either by means of a complete DNS domain
name (such as soling.cs.vu.nl, or by using the string representation of that host’s
IP address, such as 130.37.24.11.

The Port field contains the port number to which the object’s server is listen-
ing for incoming requests.

The Object key field contains server-specific information for demultiplexing
incoming requests to the appropriate object. For example, a POA-generated object
identifier will generally be part of such an object key. Also, this key will identify
the POA.

Finally, there is a Components field that optionally contains additional infor-
mation needed for properly invoking the referenced object. For example, the com-
ponents field may contain security information indicating how the reference
should be handled, or what to do in the case the referenced server is (temporarily)
unavailable. We return to these matters below.

Now that we have explained the details of an object reference, it is not diffi-
cult to see how a client binds to an object to subsequently invoke a method. Recall
from Chap. 2 that binding a client to an object is the process by which a connec-
tion is set up to an object so that the client can invoke that object’s methods. Bind-
ing is possible only if the client has a reference to that object.

Anticipating our discussion on the CORBA naming service, assume a client
has requested the naming service to resolve a human-readable name. The naming
service will return a language-dependent implementation of the IOR as stored in
the naming service. Such an implementation can be returned only if the client’s
ORB has carried out the complete binding process. It does so as follows.

The client ORB takes the IOR returned to it by the naming service, and by
inspecting the repository ID contained in the IOR, it can place a proxy at the
client and return a pointer p to that proxy. Internally, the ORB will store the fact
that p is associated with the object’s IOR.

Different ORBs have different implementations, but one typical scenario is as
follows. Before passing p to the client, the client’s ORB inspects the tagged pro-
files contained in the IOR. Assume that the object can be invoked using IIOP. In
that case, the client ORB may set up a TCP connection with the object’s server,
using the host address and port number found in the IOR. At that point, it can pass



516 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

p to the client.
Whenever the client invokes one of the object’s methods, the client ORB

marshals the invocation request into an IIOP Request message. This message con-
tains the server-specific object key that was also stored in the IOR. The message
is sent through the TCP connection to the server, where it can subsequently be
passed to the proper POA associated with the object key. The POA will then for-
ward the request to the proper servant where it is first unmarshaled and
transformed into an actual method call.

In this scenario, an IOR refers directly to an object, leading to what is known
as direct binding. An alternative to direct binding is indirect binding by which
a binding request is first sent to an implementation repository. The implementa-
tion repository is just another process, identified in the object’s IOR. It acts as a
registry by which the referenced object can be located and activated before send-
ing invocation requests to it. In practice, indirect binding is used primarily for per-
sistent objects, that is, objects controlled by a POA that follows the persistent
lifespan policy.

When a client ORB uses an IOR based on indirect binding, it simply starts
binding to the implementation repository. The repository will notice that the
request is actually intended for another server, and will look into its tables to see
whether the server is already running, and if so, where it can be located. If the
server is not yet running, the implementation repository can start it, although this
depends on whether or not automatic start-up is supported.

When the client invokes the referenced object for the first time, the invocation
request is sent to the implementation repository, which responds by giving the
details where the object’s server can actually be reached, as shown in Fig. 9-15.
From there on, invocation requests are forwarded to the proper server.

IOR

Implementation
repository

Object
server

Client

1. First invocation
or binding request

2. Activate/start object
3. Ack object is active

4. Redirect message

5. Actual invocation

IOR refers to implementation repository

Figure 9-15. Indirect binding in CORBA.



SEC. 9.1 CORBA 517

The CORBA Naming Service

Like any other distributed system, CORBA offers a naming service that
allows clients to look up object references using a character-based name. For-
mally, a name in CORBA is a sequence of name components, each taking the
form of a (id, kind)-pair, where id and kind are both strings. Normally, id is used
to name an object by means of a character string such as ‘‘steen’’ or ‘‘elke.’’ The
kind attribute is a simple indication of the named object, similar to using exten-
sions in file names. For example, the object named ‘‘steen’’ could have kind ‘‘dir’’
telling that it is a directory object.

There is no way to represent the equivalent of a path name as a single string.
In other words, CORBA does not define a separator between name components.
Instead, names are to be passed explicitly as a sequence of name components. The
representation of a sequence is language dependent, but remains opaque to a client
that calls the naming service.

There are no restrictions with respect to the structure of a naming graph. Each
node in a naming graph is treated as an object. A naming context is an object that
stores a table mapping name components to object references. A naming context
is thus the same as what we called a directory node in Chap. 4. Note that an object
reference in a naming context may refer to another naming context.

A naming graph does not have a root context. However, each ORB is required
to provide an initial naming context, which effectively operates as the root in a
naming graph. Names are always resolved with respect to a given naming context.
In other words, if a client wants to resolve a name, it is necessary that it does so
by invoking the resolve method on a specific naming context. If name resolution
succeeds, it always returns either a reference to a naming context or a reference to
a named object. In this sense, name resolution proceeds exactly as explained in
Chap. 4; for that reason we shall not repeat it here.

9.1.5 Synchronization

The two most important services that facilitate synchronization in CORBA
are its concurrency control service and its transaction service. The two services
collaborate to implement distributed and nested transactions using two-phase
locking.

The model underlying transactions in CORBA is as follows. A transaction is
initiated by a client and consists of a series of invocations on objects. When such
an object is invoked for the first time, it automatically becomes part of the tran-
saction. As a consequence, the object’s server is notified that it is now participat-
ing in a transaction. This information is implicitly passed to the server when
invoking the object.

There are essentially two types of objects that can be part of a transaction. A
recoverable object is an object that is executed by an object server capable of



518 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

participating in a two-phase commit protocol. In particular, the server for such an
object can support the abort of a transaction by rolling back all the changes that
were made as the result of invoking one of its recoverable objects. However, it is
also possible to invoke objects as part of a transaction that cannot be rolled back
to a state before the transaction started. In particular, these transactional objects
are executed by servers that do not participate in a transaction’s two-phase com-
mit protocol. Transactional objects are typically read-only objects.

Thus it is seen that CORBA transactions are similar to the distributed transac-
tions and their protocols as we discussed in Chaps. 5 and 7.

Likewise, the locking services provided by the concurrency control service
are very much what one would expect. In practice, the service is implemented
using a central lock manager; it does not use distributed locking techniques. The
service distinguishes read from write locks, and is also capable of supporting
locks at different granularities as is often needed in databases. For example, it
makes sense to distinguish locking an entire table from locking only a single
record. See (Gray and Reuter, 1993; or Garcia-Molina et al. 2000) for further
information on granular locking.

9.1.6 Caching and Replication

CORBA offers no support for generic caching and replication. Only the repli-
cation of objects for fault tolerance as we describe in the next section is included
in version 3 of CORBA. The lack of support for generic replication implies that
application developers will have to resort to an ad-hoc approach when replication
is needed. In most cases, such approaches are based on using interceptors.

Let us consider one example of how replication for performance can be incor-
porated into CORBA. This objective is met by CASCADE. In the CASCADE
system, the goal is to provide a generic, scalable mechanism that allows any kind
of CORBA object to be cached (Chockler et al., 2000). CASCADE offers a cach-
ing service that is implemented as a potentially large collection of object servers
each referred to as a Domain Caching Server (DCS). Each DCS is an object
server running on a CORBA ORB. The collection of DCSs may be spread across
a wide-area network such as the Internet.

Cached copies of the same object are organized into a hierarchy. It is assumed
that a single client, such as the owner of an object, can register that object with a
local DCS. That DCS becomes the root of the hierarchy. Other clients can request
their local DCS to cache a copy of the object, for which that DCS will first join
the current hierarchy of DCSs that already cache the object.

CASCADE supports the client-centric consistency models we discussed in
Chap. 6. In addition, it supports total ordering by which all updates are guaranteed
to be performed in the same order everywhere. Each object may have its own as-
sociated consistency model; there is no systemwide policy for maintaining the
consistency of cached objects. As we argued in Chap. 6, when replicating for



SEC. 9.1 CORBA 519

performance it is important that different consistency models can be simultane-
ously supported, because the applicability of a model strongly depends on the
usage and access patterns of an object. CASCADE meets this requirement.

As a CORBA service, CASCADE relies heavily on interceptors. To a client,
CASCADE is virtually invisible; all issues dealing with consistency are hidden
behind the interfaces that an object normally provides. The only time a client has
explicit access to CASCADE is when it requests its local DCS to start caching a
specific object. Whenever such an object is invoked, the invocation is intercepted
at the client ORB and subsequently forwarded to that DCS.

Depending on the consistency model for the referenced object, additional
information is added to the invocation request before sending it off to the DCS.
For example, when a client requires read-your-writes consistency, it is necessary
to tell what the last write operation was that the client has seen.

Local OS

Interceptors

Cached
object

Cached
object

Cached
object

Cached
object

CASCADE RTS

Server ORB

Object Method
invocation

control

Policy
object

Invocation
request

Invocation

Figure 9-16. The (simplified) organization of a DCS.

The general organization of a DCS is shown in Fig. 9-16. A DCS manages a
number of copies of an object. Such a copy consists of the state and the imple-
mentations of the operations on that state. In CORBA terminology, a DCS has the
same servant as the original copy of the object. The interceptor underlying the
DCS intercepts an incoming invocation request and extracts the information that,
for example, the client interceptor has added. The request is then forwarded to a
method invocation control module uniquely associated with the referenced object.
As shown in Fig. 9-16, each cached object has its own policy object that contains
specific information to control method invocations. The additional information
that was extracted by the interceptor is passed separately to this policy object.

Although CASCADE offers more or less transparent caching of object
servers, it is seen that the more effort is needed to implement such a caching ser-
vice for CORBA. Although interceptors allow invocations to be changed as neces-
sary to implement such a service, no other support is provided by CORBA.



520 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

9.1.7 Fault Tolerance

CORBA systems have long lacked real support for fault tolerance. In most
cases, a failure was simply reported to the client, and the system undertook no
further action. For example, if a referenced object could not be reached because
its associated server was (temporarily) unavailable, a client was left on its own. In
CORBA version 3, fault tolerance is explicitly addressed. The specification of a
fault-tolerant CORBA can be found in (OMG, 2000d).

Object Groups

The basic approach for dealing with failures in CORBA is to replicate objects
into object groups. Such a group consists of one or more identical copies of the
same object. However, an object group can be referenced as if it were a single
object. A group offers the same interface as the replicas it contains. In other
words, replication is transparent to clients. Different replication strategies are sup-
ported, including primary-backup replication, active replication, and quorum-
based replication. These strategies have all been discussed in Chap. 6. There are
various other properties associated with object groups, the details of which can be
found in (OMG, 2000d).

To provide replication and failure transparency as much as possible, object
groups should not be distinguishable from normal CORBA objects, unless an
application prefers otherwise. An important issue, in this respect, is how object
groups are referenced. The approach followed is to use a special kind of IOR,
called an Interoperable Object Group Reference (IOGR). The key difference
with a normal IOR is that an IOGR contains multiple references to different
objects, notably replicas in the same object group. In contrast, an IOR may also
contain multiple references, but all of them will refer to the same object, although
possibly using a different access protocol.

Whenever a client passes an IOGR to its ORB, that ORB attempts to bind to
one of the referenced replicas. In the case of IIOP, the ORB may possibly use
additional information it finds in one of the IIOP profiles of the IOGR. Such infor-
mation can be stored in the Components field we discussed previously. For exam-
ple, a specific IIOP profile may refer to the primary or a backup of an object
group, as shown in Fig. 9-17, by means of the separate tags TAG3PRIMARY and
TAG3BACKUP, respectively.

If binding to one of the replicas fails, the client ORB may continue by
attempting to bind to another replica, thereby following any policy for next select-
ing a replica that it suits to best. To the client, the binding procedure is completely
transparent; it appears as if the client is binding to a regular CORBA object.



SEC. 9.1 CORBA 521

Repository
identifier

IIOP
ver.

IIOP
ver.Host-1 Host-NPort-1 Port-N

Object
key-1

Object
key-NComponents Components

Profile
ID

Profile
ID

TAG
PRIMARY

TAG
BACKUP

Other group-
specific information

Other group-
specific information

Profile-1 Profile-N

Interoperable Object Group Reference (IOGR)

Figure 9-17. A possible organization of an IOGR for an object group having a
primary and backups.

An Example Architecture

To support object groups and to handle additional failure management, it is
necessary to add components to CORBA. One possible architecture of a fault-
tolerant version of CORBA is shown in Fig. 9-18. This architecture is derived
from the Eternal system (Moser et al., 1998; Narasimhan et al., 2000), which pro-
vides a fault tolerance infrastructure constructed on top of the Totem reliable
group communication system (Moser et al., 1996).

Replication
manager

Object group
manager

Property
manager

ORB

Object

Interceptor

Replication

Reliable multicasting

Logging &
Recovery

Log

To other replicas

Client or
object server

Figure 9-18. An example architecture of a fault-tolerant CORBA system.

There are several components that play an important role in this architecture.
By far the most important one is the replication manager, which is responsible
for creating and managing a group of replicated objects. In principle, there is only
one replication manager, although it may be replicated for fault tolerance.



522 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

As we have stated, to a client there is no difference between an object group
and any other type of CORBA object. To create an object group, a client simply
invokes the normal create3object operation as offered, in this case, by the replica-
tion manager, specifying the type of object to create. The client remains unaware
of the fact that it is implicitly creating an object group. The number of replicas
that are created when starting a new object group is normally determined by the
system-dependent default value. The replica manager is also responsible for
replacing a replica in the case of a failure, thereby ensuring that the number of
replicas does not drop below a specified minimum.

The architecture also shows the use of message-level interceptors. In the case
of the Eternal system, each invocation is intercepted and passed to a separate
replication component that maintains the required consistency for an object group
and which ensures that messages are logged to enable recovery.

Invocations are subsequently sent to the other group members using reliable,
totally-ordered multicasting. In the case of active replication, an invocation
request is passed to each replica object by handing it to that object’s underlying
ORB. However, in the case of passive replication, an invocation request is passed
only to the ORB of the primary, whereas the other servers only log the invocation
request for recovery purposes. When the primary has completed the invocation, its
state is then multicast to the backups.

9.1.8 Security

CORBA security has a long history. The initial versions of the CORBA
specifications hardly touched upon the subject for the simple reason that several
attempts to specify a security service failed. In CORBA version 2.4, the security
services take over 400 pages to specify and to make clear how security should fit
into CORBA systems. Let us now take a closer look at CORBA security. An over-
view of these matters can be found in (Blakley, 2000), which was written by one
of the authors of the original CORBA security specifications.

An important specification issue for security in CORBA is that services
should provide an appropriate collection of mechanisms that can be used to imple-
ment a variety of security policies. What complicates matters is that these services
should be offered at different points in time and space. For example, if a client
wants to securely invoke an object, we need to decide when security mechanisms
are to be used (e.g., at binding time, invocation time, or both), and where these
mechanisms should be used (e.g., at the level of an application, inside an ORB, or
during message transfer).

The heart of CORBA security is formed by the support for secure object invo-
cations. The underlying idea is that application-level objects should be unaware of
the various security services that are used. However, if a client has specific secu-
rity requirements, the client should be allowed to specify those requirements so
that they can be taken into account when an object is invoked. An analogous



SEC. 9.1 CORBA 523

situation occurs for an object that is to be invoked. This approach leads to the gen-
eral organization shown in Fig. 9-19.

Client application Object implementation

Policy
object

Policy
object

Security
service

Security
service

Policy
object

Policy
object

Security
service

Security
service

Set of
client-specific
policy objects

Set of
object-specific
policy objects

Set of relevant
ORB security

servicesLocal OS Local OS

Client ORB Server ORB

Network
Invocation

Figure 9-19. The general organization for secure object invocation in CORBA.

When a client binds to an object in order to invoke that object, the client ORB
determines which security services are needed at the client side to support secure
invocations. The selection of services is determined by the security policies asso-
ciated with the administrative domain in which the client is executing, but also by
the specific policies of that client.

Security policies are specified by means of policy objects that are associated
with the client. In practice, the domain in which a client is executing will make its
security policies available to the ORB of that client by means of a specific set of
policy objects. Default policies are automatically associated to clients. Example
policy objects include those that specify the type of message protection that is
required, and objects that have a list of trusted parties. Other examples and details
can be found in (Blakley, 2000).

A similar structure is followed at the server side. Again, the administrative
domain in which the invoked object is executing will require that a specific set of
security services is used. Likewise, the invoked object will have its own set of
associated policy objects in which object-specific information is stored.

Various approaches can be followed to implement security in CORBA. In
particular, to make ORBs as general as possible, it is desirable to specify different
security services by means of standard interfaces that hide the implementation of
those services. Services that can be specified in this way are called replaceable in
CORBA.

Replaceable security services are assumed to be implemented in combination
with two different interceptors, as shown in Fig. 9-20. The access control inter-
ceptor is a request-level interceptor that checks the access rights associated with



524 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 9

an invocation. In addition, there is also a message-level secure invocation inter-
ceptor that takes care of implementing the message protection. In other words,
this interceptor is able to encrypt requests and responses for integrity and confi-
dentiality.

Client application Object implementation

Local OS Local OS

Network

Access
control

interceptor

Secure
invocation
interceptor

Access
objects

Security
context

Vault
object

Access
control

interceptor

Secure
invocation
interceptor

Access
objects

Security
context

Vault
objectVault object

creates
security context

Invocation

Figure 9-20. The role of security interceptors in CORBA.

The secure invocation interceptor plays a crucial role, as it is responsible for
setting up a security context for the client that will allow secure invocations of
the target object. This security context, represented by means of a security context
object, contains all the necessary information and methods for securely invoking
the target object. For example, it describes which mechanism to use, offers me-
thods to encrypt and decrypt messages, stores references to credentials, and so on.

The object’s server will also have to create its own security context object.
The client interceptor will therefore generally first send a message to the object
server containing the necessary information to authenticate the client and to let the
server create a security context for subsequent invocations. Note that the secure
invocation interceptor at the object’s server will check the object-specific policy
objects to see whether and how all security requirements can be met. The
response returned to the client may include additional information that will allow
the client to authenticate the server.

After this initial exchange of messages, the client will be bound to the target
object, and the two will have established what is generally referred to as a secu-
rity association. From there on, secure invocations can take place by which the
secure invocation interceptors protect the request and response messages follow-
ing the policy agreed upon between the client and object server.

A crucial role in setting up a security association is played by a separate
object with a standardized interface, called the vault object. The vault object is
called by the secure invocation interceptors to create a security context object.



SEC. 9.1 CORBA 525

The interceptor first reads the policy information from the client’s associated pol-
icy objects, and passes this information to the vault object. Clearly, the vault
object must be implemented as part of the ORB in a tamper-proof way and
belongs to the trusted computing base of any CORBA system.


