Internet Network Layer Model

CS 3171

Layer		Function		
5	Application	Performs end-user communication-based tasks		
		Connects applications to applications		
4	Transport	Provides logical communication between processes on different hosts [1, p. 167]		
		Connects processes to processes (e.g. video & audio streams in an application)		
3	Network	Transfers 'transport-layer segments from one host to another' [1, p. 271]		
	Service	Connects end-hosts to end-hosts		
2	Data Link	Transfers datagrams across individual physical links [1, p. 379]		
		Connects physical links (point-to-point)		
1	Physical	Transfers sequences of bits without awareness of meaning		
		Connects nodes using a physical medium		

	Layer	Value (added to layer below) & Protocols		
5	Application	Type of connection		
		Many protocols, for example HTTP, SMTP, FTP, & Telnet		
4	Transport	Flow control, congestion control, & error correction		
		Protocol is one of TCP or UDP		
3	Network	Routing		
	Service	Protocol is Internet Protocol (IP)		
2	Data Link	Frame formatting & hardware addressing		
2		Many protocols, for example Ethernet & PPP		
		Many protocols, for example intinent & FFF		
1	Physical	(none)		
	-	Many protocols for cabling, connectors, signaling, etc.		

Continues on other side ...

		Protocol	
	Layer	Data Unit	Typical Implementation and Components
5	Application	Message	(Application software in host, at network edge, e.g. gateway*)
4	Transport	${\tt Segment}^\dagger$	(System software in host, at network edge)
3	Network Service	$Datagram^\dagger$	Router (Hardware & Software, in network core)
2	Data Link	Frame	Switch or Bridge [‡] (Hardware & Software, in network core)
1	Physical	1-PDU	Network interface card, cable, wire, repeater, modem (Hardware)

 *Gateways convert application data with one protocol to a different but equivalent protocol. They can span the top three layers.

[†]The 'Internet literature (for example, the RFCs)' refer to 4-PDUs for TCP as *segments* but often refer to the PDU for UDP as *datagrams*. [1, p. 171] It may help to think of a datagram as an independent informational message. If a datagram is lost, something must take care of it. A segment, however is part of a larger unit and so cannot be lost.

[†]A *bridge* (aka a *hub*) is responsible only for signal regeneration, but a *switch* segments traffic and reduces broadcast domain. When a switch is saturated with traffic it acts as a bridge and begins to *flood*.

Reference

^[1] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach Featuring the Internet. Addison-Wesley Longman, Inc., 2001. ISBN 0-201-47711-4.