
Notes to Accompany Debugging Lecture

Jamie Blustein

28 April 2002

Introduction

This lecture was originally written for Turbo Pascal, then updated for the �rst

ANSI C standard, then object-free C++. It does not address anything speci�c

about object-oriented or real-time programming. I am con�dent that the general

advice will apply well to those types of programming too.

When you wrote your program you thought it would work, but now you've

found that it doesn't. `What's wrong? How can you �x it?' That's debugging.

Debugging is not the same as �xing syntax errors that prevent compilation.

`The term originated with the �rst tube computers': Talk about Grace Hop-

per and the moth (from 1947). [photo of moth]

To Solve a Problem You Must Understand It

Tracing the execution will help you to understand what is happening with your

program. If you know which part is wrong then you can trace just that part.

Clarity

We call the written form of our program `code', as in di�cult-to-understand.

It must be written in a language that the computer can process but that does

not mean that is has to be written so that we cannot understand it too. It is

hard enough to read code when we think we know what we are instructing the

computer to do. But especially when we know that the program doesn't work

right then we need to have clear code and clear output.

Always print to standard error

Your output will appear `immediately' | it won't get muddled up with some

other output. If you use cout for debugging then you can be misled easily.

Always print the function name

See story about Bill (on page 4).

1

http://www.csd.uwo.ca/~jamie/C/Debug/LectureNotes/moth.html

See also annotated example (on page 6).

DEBUG levels

Use larger numbers for more detail or for parts you think work now (but you

don't want to remove the DEBUG code just in case you're wrong).

Debuggers

Debuggers can be mesmerizing. I've seen it happen.

Programs will sometimes behave di�erently in a debugger than in real-life.

2

There’s never time. . .

It sounds trite but it is true.

Programmers will jump into writing a program or trying to �x a broken one

without thinking. You can save yourself much fruitless labour and frustration

by planning ahead. The better your plan the less likely your program will be

to fail and the more likely you'll be to �x it if it does fail.

3

Trace Statements

A true-life story

My friend Bill didn't do this and spent 1 1
2
days debugging the wrong part of his

program. He was printing `Hi' or something to show when the
ow-of-control

had reached a statement. The problem was that he had two `Hi's in di�erent

parts of the program. He was seeing the second one { the �rst was never reached.

I found the problem in one minute by changing `Hi' to something more

descriptive (`inner for loop' or something). Bill had to buy me lunch and I

didn't even know the language he was programming in.

If that technique can help a professional programmer save 11
2
days, think

how the power of debugging can help you.

4

An ounce of analysis. . .

Another true-life tale

I was in a computer lab working on a brutal assignment (a recursive BNF parser

in Modula 2 | don't ask, trust me it's not super easy) and the grader comes

in every 2 or 3 hours to say that he's changing the assignment (again!). Never

mind that is beyond his authority. Su�ce it to say that I was stressed and could

not get my program to work right.

By the way I was sitting beside a fellow who was also in the class. I'll call

him Stu Dent (not his real name). Stu was a rower and had practice at 6 the

next morning.

Anyway, for some reason I noticed that the program was not due the next

day but rather the day after that. It was late and I was tired. I printed a copy

of my program took it with me and left. I slept.

In the morning, I scribbled an outline of a correct program on a piece of

paper, while I waited for my cereal to stop making noise. Then, on my printout

I crossed o� the lines that did not belong and added the ones that were missing.

When I got back to school, Stu was at the same terminal | he'd been there all

night, and still didn't have a working program. I typed in my changes and it

was perfect. Stu �nished his a day later | a 10% penalty | and missed rowing

practice.

What's the moral of this true story? Not sleep whenever you have a problem

but :

� work away from the computer screen

it is too demanding and you can't see the whole program at once

� think about your program and what it should do

� get enough sleep

– sleep deprivation is a common torture technique (no joke)!

– Don't do it to yourself. It is very di�cult to think clearly when you

are so deprived.

5

int question(int left, int op, int right) {

/* question()

* PRE: ... details omitted ...

* POST: The user has been prompted to enter ...

* RETURNS: 0 => they entered the wrong answer

* 1 => they entered the right answer

* -1 => something went wrong (bad op)

* NOTES: Called by add(), divide(), ...

*/

int answer; // the correct answer

int guess; // what the user enters as the right answer

if (DEBUG > 1) {
cerr << "question(): called with left==" << left

<< "right==" << right << " op==" << op << endl;

}
switch(op) {
case 1: answer = left + right;

if (DEBUG)

cerr << " question(): op says add " << endl;

break;

// ... other cases omitted ... //

default:

cerr << "ERROR In question(): impossible op "

<< "(op==" << op << ")" << endl;

return -1;

} // switch

if (DEBUG)

cerr << " question(): answer==" << answer << endl;

// ... code omitted ...

if (DEBUG > 1)

cerr << endl << endl;

return (guess == answer);

} // question()

6

This example is from an old C++ assignment (a child`s arithmetic quiz)

Good documentation habits include always explaining the purpose of variables` and using sensible names that are not too similar. I like to see pre` and post`conditions in code that I grade. The exact form of these documentation habits are a matter of style but you should always provide the same information. (Kernighan and Pike`s The Practice of Programming (Addison`Wesley` 1999) has another good style.)

It is sometimes useful to show the parameters passed to a function. When you do` also show the names so you can`t accidentally pass them in the wrong order. D`óh!

Note the continuation in the cout

I prefer to use {}s for all if statements. That way I can easily insert more code without forgetting the {.

There`s no { in one of the if statements. That`s a problem waiting to happen.

Notice that I always use a default case with a switch. It takes very little time to code but can save a great deal of time later.

	Introduction
	To Solve a Problem You Must Understand It
	Clarity
	Always print to standard error
	Always print the function name
	DEBUG levels

	Debuggers

	There's never time...
	Trace Statements
	A true-life story

	An ounce of analysis...
	Another true-life tale

