
Software Engineering Topic 2 Page 1

Software Engineering Processes

A software engineering process is the model chosen for managing the creation of
software from initial customer inception to the release of the finished product.
The chosen process usually involves techniques such as

• Analysis,
• Design,
• Coding,
• Testing and
• Maintenance

Several different process models exist and vary mainly in the frequency, application
and implementation of the above techniques, for example, different process models
use different analysis techniques, other models attempt to implement the solution to a
problem in one big-bang approach, while others adopt an iterative approach whereby
successively larger and more complete versions of the software are built with each
iteration of the process model.

The Software Engineering Process - The Software Life Cycle

The illustration below highlights the various phases of what is probably the oldest
software development process in existence, namely the classic life-cycle paradigm,
sometimes called the "waterfall model,". This paradigm implies a systematic,
sequential approach (rarely achieved in practice) to software development that
begins at the system level and progresses through analysis, design, coding, testing
and maintenance.

Modelled after the conventional engineering cycle, the life-cycle paradigm
encompasses the above activities. Let’s take a look at each of these phases in turn
and explain what is involved.

Paul
process

Paul
inception

Paul
managing

Paul
creation

Paul
release

Paul
Analysis,

Paul
Design,

Paul
Coding,

Paul
Testing

Paul
Maintenance

Paul
models

Paul
frequency,

Paul
application

Paul
implementation

Paul
big-

Paul
bang

Paul
iterative

Paul
approach

Paul
The Software Life Cycle

Paul
oldest

Paul
software

Paul
development

Paul
process

Paul
existence,

Paul
life-cycle

Paul
waterfall

Paul
model,".

Paul
sequential

Paul
conventional

Paul
Engineering Topic 2 Page 1

Software Engineering Topic 2 Page 2

System Engineering and Analysis.

Because software almost always forms part of a much larger system, work begins by
establishing requirements for all components of the system, identifying not only the
role played by the software but, more importantly, its interface and interaction with
the outside world.

This ‘system view’ is essential when software must interface with other elements
such as hardware, people, databases and computers outside of, and beyond the
control of the system designer. In essence Systems engineering involves exploring
some of the following issues:

1. Where does the software solution fit into the overall picture? The software
being proposed may be one small cog in a very large wheel. Maybe the
software is a calculating employee pay or tax, or perhaps has to co-ordinate
the activities of several distributed systems controlling a
production/manufacturing plant or warehouse distribution system. Until the
overall picture is clear, no analysis of the software can begin.

2. What does the system do? Is it required to control or monitor some process or
activity or is it simply performing analysis of data?

3. What environment will the system be placed in?

• Hostile, such as an elevator subject to vibration and dust, or friendly,

such as a cosy air-conditioned office?
• Will the system be ‘real time’, ‘on-line’, ‘batch’, ‘safety critical’, ‘fault

tolerant?’
• Is it required to be mobile or does it require an electricity main outlet?
• Is it embedded?
• Does it require a man-machine interface?
• Who or what does it interact with

All of these factors could severely influence, restrict and or dictate the form
of the solution.

4. What inputs and outputs are required/produced and what is the form of that
data: Paper, Database, Disk file, Graphics, Network, Analogue to digital
converter outputs?

In answering the above question, a list of external devices is uncovered and can be
explored further, e.g. what size of paper, what resolution graphics, what format is the
data accepted/displayed, what capacity of disk, what resolution of Analogue to
digital converter etc.

Paul
interface

Paul
interaction

Paul
part

Paul
larger

Paul
system,

Paul
system

Paul
view’

Paul
Where

Paul
does the software solution fit into the overall picture?

Paul
overall picture

Paul
clear,

Paul
What does the system do?

Paul
Hostile,

Paul
environment

Paul
real

Paul
time’,

Paul
on-

Paul
line’,

Paul
batch’,

Paul
safety

Paul
critical’,

Paul
fault

Paul
tolerant?’

Paul
mobile

Paul
embedded?

Paul
man-

Paul
machine

Paul
Who

Paul
what

Paul
inputs

Paul
outputs

Paul
form

Paul
data:

Paul
hardware,

Paul
people,

Paul
databases

Paul
computers

Paul
interact

Paul
influence,

Paul
restrict

Paul
dictate

Paul
external

Paul
devices

Paul
employee pay

Paul
tax,

Paul
warehouse distribution

Software Engineering Topic 2 Page 3

System Engineering and Analysis…(cont.)

5. Is the system a completely new product, or is it designed to replace a

mechanical/human activity? Once this is established, the designer can assess
the suitability or otherwise of a software solution to the proposed problem.

6. What user interface is needed and how is it used. For example, mouse,

keyboard, buttons on control panel, touch-screen, graphics etc?

7. Does the system impose performance requirements? For example real-time
systems often specify maximum response times to events under their control,
batch system do not.

8. Does the system interact with other computers and if so, what is the
relationship between them in terms of what does each expect of the other?

9. What operating system and or programming languages might be
required/imposed?

10. What time schedule has been proposed and how critical is it. What budget

does the customer have and is it realistic. What are the cost/benefits
tradeoffs to the user in automating some manual procedure.

Of course once these questions have been answered, the developer is in a good
position to assess the RISK involved in implementing the system. For example,

• Does the developer have the necessary experience and skills to implement the
system or will he/she have to learn a lot of new skills?.

• Can the development be carried out with existing staff or will
contractors/new staff have to be hired?

• Can the project be completed on time and within budget.

Once the systems engineering and analysis phase has been completed, and a picture
of the role the software plays in the overall system has been established, the analysis
can now focus specifically on the software and its requirements.

Paul
new

Paul
product,

Paul
replace

Paul
human

Paul
activity?

Paul
user

Paul
interface

Paul
performance

Paul
requirements?

Paul
response

Paul
times

Paul
interact

Paul
computers

Paul
operating

Paul
system

Paul
programming

Paul
languages

Paul
time

Paul
schedule

Paul
necessary

Paul
experience

Paul
skills

Paul
existing

Paul
staff

Paul
new

Paul
staff

Paul
hired?

Paul
time

Paul
budget.

Paul
software

Paul
plays

Paul
overall

Paul
system

Paul
suitability

Paul
what does each expect of the other?

Paul
critical

Paul
contractors/

Paul
budget

Paul
realistic.

Paul
cost/benefits

Paul
RISK

Software Engineering Topic 2 Page 4

Software Requirements Analysis.

Requirements Analysis is the 1st essential step towards creating a specification and a
design. Attempting to design a solution to a (perceived) problem without fully
understanding the nature and needs of the user, will surely end in tears. It has been
shown that more than 90% of all software that is rejected by the customer after
delivery, is done so because the software does not meet the customer needs,
expectation or requirements so it is important to understand these fully. Furthermore,
50+% of all money spent on a project relates to the maintenance of it after it has been
delivered. So what is requirements analysis?

• Requirements analysis is an iterative process conducted jointly by an analyst
and the customer and represents an attempt, to uncover the customer’s needs,
whilst at the same time assessing the viability of a software solution.

• Analysis provides the designer with a representation of the information
processed by the system and the nature of the processing. That is, what does the
system do with/to the information it processes. After all a computer can be
thought of as nothing more than a system that takes in data, transforms or
processes it and produces output.

• Analysis enables the designer to pinpoint the software’s function and
performance. For example how is analogue data gathered from an A/D
converter used to control a manufacturing process? What range of data is
acceptable, how fast should the system respond?

• Where the customer is not too sure how the system will eventually behave, the
analyst may explore the concept of a prototype. This is a part functional model
of the software solution for the customer to assess.

• Where safety critical software is being designed, a more formal specification
may be required in terms of mathematical notation such as ‘Z’ or VDM, so that
the resultant code can be shown to comply with the agreed specification.

• The analyst may, where appropriate, require the customer to produce
‘verification’ data. That is, data which can be used to test the program. The
customer would have to provide test inputs and corresponding results, which
could be used to assess the correctness of the software.

• Analysis is often complicated by the fact that the customer may only be able to
express the problem in terms that he/she understands. That is, they can only
express the problem from a ‘users point of view’. Indeed, they may have little
or no understanding of computers or software and may not even have a
complete picture of how the system will behave at the initial stages of analysis.

Once the analysis is complete, a project plan can be drawn up to include, estimates of
cost, manpower, resources, time scales etc.

Paul
specification

Paul
design.

Paul
90%

Paul
software

Paul
rejected

Paul
software

Paul
does

Paul
not

Paul
meet

Paul
the

Paul
customer

Paul
needs,

Paul
expectation

Paul
requirements

Paul
iterative

Paul
process

Paul
analyst

Paul
customer

Paul
customer’s

Paul
needs,

Paul
viability

Paul
software

Paul
solution.

Paul
representation

Paul
information

Paul
nature

Paul
processing,

Paul
what

Paul
do

Paul
information

Paul
software’s

Paul
function

Paul
performance.

Paul
fast

Paul
range

Paul
data

Paul
data

Paul
A/D

Paul
control

Paul
process?

Paul
prototype.

Paul
part

Paul
functional

Paul
model

Paul
formal

Paul
specification

Paul
Z’

Paul
VDM,

Paul
verification’

Paul
customer

Paul
produce

Paul
data

Paul
test

Paul
test

Paul
inputs

Paul
results,

Paul
users

Paul
point

Paul
view’.

Paul
of

Paul
project

Paul
plan

Paul
Software

Paul
Requirements

Paul
Analysis.

Paul
perceived)

Paul
solution

Paul
customer

Paul
because the software

Paul
no understanding

Paul
complete

Paul
picture

Paul
cost, manpower, resources, time scales

Paul
shown

Software Engineering Topic 2 Page 5

Analysis Summary
The objective of requirements analysis then, is to create a “requirements
specification document” or a “target document”, that describes in as much detail and
in an unambiguous a manner as possible, exactly what the product should do. This
requirements document will then form the basis of the subsequent design phase. The
requirements document may well contain

• A Project plan including details of delivery times and cost estimates.
• A model of the software’s functionality and behaviour in the form of ‘data flow/

UML diagrams’ and, where appropriate, any performance and data
considerations, any input/output details etc.

• The results of any prototyping so that the appearance of the software and how
it should behave can be shown to the designer. This may include a users
manual.

• Any formal Z/VDM specifications for the system requirements.
• Any verification test data that may be used to determine that the finished

product conforms to the agreed specification.

Analysis then can be summed by the activities in the following diagram

The Importance of Correct Analysis

The effects of incorrect or inaccurate analysis can have far reaching/devastating
effects on the software time scale, usefulness and cost. This can be seen below,
where the cost of maintaining or fixing incorrect software can be 100 times greater
than the original cost of getting it right.

Paul
requirements

Paul
specification

Paul
document”

Paul
target

Paul
document”,

Paul
Project

Paul
plan

Paul
delivery

Paul
times

Paul
cost

Paul
estimates.

Paul
model

Paul
software’s

Paul
functionality

Paul
data

Paul
flow

Paul
diagrams’

Paul
prototyping

Paul
users

Paul
manual.

Paul
Z/VDM

Paul
verification

Paul
test

Paul
data

Paul
diagrams’

Paul
much

Paul
detail

Paul
what the product should do.

Software Engineering Topic 2 Page 6

Design and Coding

Once the analysis of the system has been completed, design or development can
begin. This is an attempt to translate a set of requirements and program/data models
that were laid down in the “requirements document” into a well designed and
engineering software solution. Design is best summarised by the following sequence
of steps

• The data flow/UML diagrams that represent the system model are converted
into a suitable hierarchical, modular program and data structure/architecture.

• Each program module is converted into an appropriate cohesive function
subroutine or class, that is designed to perform a single well-defined task.

• Design then focuses on the implementation of each module/class. The
sometimes loose and vague, perhaps English like, description of the
modules role/function within the program is expanded and translated into
an algorithm, which describes in detail exactly what, when and how the
module/class carries out its task. The interfaces and its interaction
with other modules/objects are also considered and assessed for good design
(see coupling and cohesion in future lectures).

• The modules algorithm can then be translated into a flowchart, which is a
step-by-step graphical representation of the actions carried out by the
module expressed in terms of sequence, selection and repetition.

• The flowchart can then be translated into Pseudocode, which conveys the
same information as a flowchart, but presents it a way that is more
amenable to translation into program code.

• Finally, the Pseudocode for each module is translated into a chosen
programming language and the various modules entered, compiled,
integrated into a system ready for testing.

At each stage, the process is documented so that if changes are required in the future,
the design pertinent to each stage is available for consultation and discussion. The
end result of design and coding is most definitely not just the program listing. It
includes the architecture data structures, algorithms, flowcharts, Pseudocode and all
program source code listings, as shown below.

Paul
Design

Paul
and

Paul
Coding

Paul
translate a set of requirements and program/data models

Paul
requirements

Paul
document”

Paul
well designed and
engineering software solution.

Paul
data

Paul
flow

Paul
diagrams

Paul
modular

Paul
program

Paul
structure.

Paul
implementation

Paul
algorithm,

Paul
module.

Paul
algorithm

Paul
translated

Paul
flowchart,

Paul
flowchart

Paul
translated

Paul
Pseudocode,

Paul
Pseudocode

Paul
module

Paul
chosen

Paul
programming

Paul
language

Paul
not

Paul
just

Paul
the

Paul
program

Paul
listing.

Paul
diagrams

Paul
model

Paul
architecture.

Paul
object.

Paul
architecture.

Paul
design and coding

Paul
algorithms, flowcharts, Pseudocode

Paul
program source code listings,

Software Engineering Topic 2 Page 7

A structured illustration of the design process is shown above. The results of
analysis, that is, the specification and model, feed into the design stage
where an attempt is made to turn the ‘model’ the system into a data structure and program,
architecture which can be translated eventually into code

Paul
model’

Software Engineering Topic 2 Page 9

Software Testing and Debugging

Once the constituent software components/modules have been written, testing and
debugging can begin. Testing involves the following techniques (amongst others)

• Verification and Validation. That is, checking that the software meets the
agreed specification and checking that the software is correct in its operation.

• Black and white box testing techniques. That is, testing the insides of the
modules for correct operation and testing the interfaces to the module.

• Integration Testing: Testing that the modules all work together.
• Acceptance Testing: Letting the customer test the product.
• Debugging: The ‘art’ of identifying the cause of failure in a piece of software

and correcting it.

Software Maintenance
Software maintenance reapplies each of the preceding life cycle steps to an existing
program rather than a new one in order to correct or add new functionality.

Life Cycle Summary
The classic life cycle model of software development is perhaps the oldest and the
most widely used technique for software engineering. However, it has a number of
drawbacks:

1. Real projects rarely follow the sequential flow that the classic life cycle
model proposes. Iteration always seems to occur and creates problems in the
application of the technique. Primarily, because development takes a finite
amount of time and the customers needs change during that time. For example,
the laws relating to tax are subject to change with every budget, while new
competitors and even the company itself may change the way things are done.

2. It is often difficult for the customer to state all requirements explicitly. The

classic life cycle requires this and has difficulty accommodating the natural
uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program will not
be available until late in the project time span. A major blunder, if undetected
until the working program is reviewed, can be disastrous.

However, the classic life-cycle technique has a definite and important place in
software engineering work. It provides a template into which methods for analysis,
design, coding, testing, and maintenance can be placed and remains the most widely
used procedural model for software engineering. While it does have weaknesses, it is
significantly better than a haphazard approach to software development.

Paul
Software

Paul
Testing

Paul
Debugging

Paul
Verification

Paul
Validation.

Paul
specification

Paul
correct

Paul
Black

Paul
white

Paul
Integration

Paul
Testing:

Paul
Acceptance

Paul
Testing:

Paul
Debugging:

Paul
Real

Paul
projects

Paul
sequential

Paul
flow

Paul
Iteration

Paul
customer

Paul
needs

Paul
change

Paul
customer

Paul
state

Paul
requirements

Paul
explicitly.

Paul
interfaces

Paul
patience.

Paul
art’

Paul
tax

Paul
uncertainty

Paul
major

Paul
blunder,

Paul
undetected

Paul
disastrous.

Paul
definite

Paul
important

Software Engineering Topic 2 Page 10

Other Process Models – The Iterative/Evolutionary Model

There is growing recognition that software doesn’t just happen once with the release
of a full and finished product, rather it evolves over a period of time. All too often
this happens during the development of the solution itself where the requirements
can change such as the business rules of the company, or the window of opportunity
to deploy a specific solution may be small if a company is to open up a lead over
competitive products. For this reason, the big bang approach to software
development proposed by the Software life cycle or waterfall model is probably
unrealistic to today’s applications

Evolutionary models, unlike the classic waterfall model are iterative in nature. They
are characterised by a process that attempts to engineer software as a series of
smaller builds (rather than one big complete one) with each build adding
progressively more and more functionality to the system. In essence the process is an
iterative application of the software life cycle model. The illustration below
demonstrates the process.

When an incremental approach is adopted, the 1st increment often concentrates on
core products, that is, the essential workings of the solution, with many fancy
features and extras often omitted. For example, the 1st release of a library booking
system might concentrate simply on loaning and returning books, while subsequent
iterations of the software might for example add facilities to issue fines, reserve a
book, produce a profile of a particular persons loan history, search for other libraries
with that book etc.

One of the hardest aspects of the iterative model is getting the customer to prioritise
the functionality so that it can be released iteratively. In other words what do they
want first, and what can wait until later? That is can they generate a must have,
should have and would like list of features.

Paul
Iterative/

Paul
Evolutionary

Paul
once

Paul
full

Paul
finished

Paul
evolves

Paul
big

Paul
bang

Paul
unrealistic

Paul
iterative

Paul
smaller

Paul
builds

Paul
more

Paul
functionality

Paul
core

Paul
products,

Paul
library

Paul
booking

Paul
loaning

Paul
returning

Paul
fines,

Paul
reserve

Paul
prioritise

Paul
first,

Paul
later?

Paul
must

Paul
have,

Paul
should

Paul
have

Paul
would

Paul
like

Paul
more

Paul
and

Paul
iterative application of the software life cycle model.

Software Engineering Topic 2 Page 11

The benefit of the iterative model is the customer gets a core set of functions
delivered early and thus can work with them quicker than if he/she waits for delivery
of the whole system. Furthermore, software can be customer tested more quickly and
thus any obvious errors in say the business models are detected early. Perhaps the
best know iterative development processes are typified by the Extreme programming
paradigm and the Rational Unified Process. Payment to the developer is also incremental

Paul
core set of functions

Paul
delivered

Paul
early

Paul
tested

Paul
Extreme

Paul
programming

Paul
Rational

Paul
Unified

Paul
Process

Paul
incremental

Software Engineering Topic 2 Page 12

Iterative/Evolutionary Models – The Spiral Model

The spiral model for software engineering has been developed to encompass the best
features of the iterative classic life cycle, while at the same time adding a new
element, risk analysis. The model, represented by the spiral below, defines four
major activities represented by the four quadrants:

1. Planning-- determination of objectives, alternatives and constraints for the release
2. Risk analysis--analysis of alternatives and identification/resolution of risks
3. Engineering-- development of the "next-iteration/level" of the product
4. Customer evaluation -- assessment of the results of engineering

With each iteration around the spiral (beginning at the centre and working outward),
progressively more complete versions of the software are built. In other words, the
product is delivered not as one complete monolithic monster, but as a series of
iterative developments each of which delivers to the customer an executable program
comprising progressively more functionality than the previous iteration.

During the first circuit around the spiral, objectives, alternatives, and constraints are
defined and risks are identified and analysed. If risk analysis indicates that there is
uncertainty in requirements, prototyping may be used in the engineering quadrant to
assist both the developer and the customer. Simulations and other models may be
used to further define the problem and refine requirements.

The customer evaluates the engineering work (the customer evaluation quadrant) and
makes suggestions for modifications. Based on customer input, the next phase of
planning and risk analysis occur. At each loop around the spiral, the culmination of
risk analysis results in a "go, no-go" decision. If risks are too great, the project can be
terminated. The spiral model paradigm for software engineering is currently the most
realistic approach to the development for large-scale systems and software. It uses an
evolutionary approach to software engineering, enabling the developer and customer
to understand and react to risks at each evolutionary level.

Paul
risk

Paul
analysis.

Paul
Planning--

Paul
Risk

Paul
analysis--

Paul
Engineering--

Paul
Customer

Paul
evaluation

Paul
prototyping

Paul
objectives,

Paul
alternatives,

Paul
constraints

Paul
risks

Paul
go,

Paul
no-

Paul
go"

Paul
complete

Paul
versions

Paul
monolithic

Paul
monster,

Software Engineering Topic 2 Page 13

Iterative/Evolutionary Models - The Rapid Application Development (RAD)
Model

This particular model emphasizes an extremely short development cycle and is a
high speed iterative model. It is particularly (only?) applicable when requirements
are well understood by the customer and developer, particularly in the field of
Information Systems, for example databases and management information systems.

The techniques rely heavily on component based development i.e. the reuse of
existing tried and tested, application specific code along with 4th generation
development tools that allow the developer to capture the system graphically and
generate highly specific code targeted at the application area.

A good example of this technique is Microsoft Access database which provides a
graphical front end to model data relationships and a code generation tool to produce
the Visual Basic or SQL code to run the application.

In essence the developer concentrates only on the code that differentiates one
application from another, as much as 90% of the code is common or re-used between
applications. For example, the development of a database to record a library booking
system might only differ from a database used to record Patient Heart Monitoring
services by as little as 10 %.

Paul
extremely

Paul
short

Paul
development

Paul
cycle

Paul
understood

Paul
well

Paul
databases

Paul
management

Paul
information

Paul
systems.

Paul
component

Paul
development

Paul
based

Paul
4th generation

Paul
development

Paul
tools

Paul
graphical

Paul
front

Paul
end

Paul
data

Paul
relationships

Paul
code

Paul
generation

Paul
tool

Paul
differentiates

Paul
one

Paul
application

Paul
from

Paul
another,

Paul
90% of the code

Software Engineering Topic 2 Page 14

Overview of the Rational Unified Process (RUP)

The RUP is both an iterative and an incremental process. What does this mean?

Iterative and incremental approaches treat software development as a number of
small mini-projects or “roll outs”, each of which results in a working version of the
software that can be delivered to the customer for use or test. In other words, it is not
an attempt to build a complete system, but one that gradually evolves.

Each iteration is an attempt to add additional functionality to the system as dictated
by a prioritised list of requirements. In UML terminology we refer to these as use-
cases and they document the systems operation from the point of view of a user
interacting with the system with some measurable return, i.e. the user gets value out
of the interaction. For example, a cash dispenser (ATM) can be specified in terms of
a number of use-cases such as

 Withdraw Cash
 Check Balance
 Order new check book
 Order Statement

Each of these use-cases represents major functionality and is thus a good candidate
for an iteration. The 1st roll out of the software might only implement the ‘Withdraw
Cash’ use case while subsequent releases implement the others.

What are the various Phases of the RUP?

 Inception
 Elaboration
 Construction
 Transition

Paul
prioritised

Paul
usecases

Paul
Withdraw

Paul
Cash’

Software Engineering Topic 2 Page 15

What is meant by Inception?

Inception establishes the case for the viability of the proposed system, e.g.

 What are the objectives of the project?
 Can we make it?
 How much will it cost?
 What risks are involved?
 What is the window of opportunity for the product?
 What return will the customer see on their investment?
 Does it make sense from a business point of view?

It also attempts to produce an outline architecture for the system, in other words,
what components will be used to build the system and how will they interact?

What is meant by Elaboration?

Elaboration expands upon the work done during inception and attempts to

 Establish if the system can meet the expectations outlined during inception,
e.g. deal with risk, cost, effect of technology and constraints.

 Capture full functional requirements, i.e. get a detailed description of what
the system mush do.

 Create a detailed architecture to realise the requirements
 Prioritise risks and come up with a plan to address them (higher risks are

usually dealt with earlier in the project)
 Finalise a business case, i.e. convince the customer you can deliver the goods

on time and on budget.

What is meant by Construction?

Simply build a system, i.e. design and code a solution to the problems of inception
and elaboration, prioritise the requirements and produce and decide on the
functionality of the 1st release of the software.

What is meant by Transition?

Roll out the next version of the system to the customer
Correct defects and unidentified problems

Paul
outline

Paul
architecture

Paul
full

Paul
functional

Paul
requirements,

Paul
risk,

Paul
cost,

Paul
constraints.

Paul
technology

Paul
detailed

Paul
architecture

Paul
business

Paul
case,

Paul
Correct

Paul
defects

Paul
next

Paul
version

Paul
build

Paul
system,

Software Engineering Topic 2 Page 16

Extreme Programming (XP)

XP is a fairly new process model for software development and is summarised in
Kent Beck’s book. Some of the important (some might say novel) aspects of XP are

 It encourages very fast iterative development cycles leading to frequent
releases of the code, typically in less than 1 week.

 It attempts to instil into the mind of the programmer the idea that change is
not something to be feared. This is based on the idea that object oriented
technology has given rise to libraries of components that can be substituted
and changed to meet different requirements with minimal knock on effects
within the rest of the system. This is analogous to changing a light bulb in
your house from 60 watt to 100 watt, the effect is minimal and the effects are
limited to the lamp so the change should not be feared.

 It attempts to instil in the programmer the idea that code should not be written
until you have a test procedure to validate it against, in other words create
your test cases first.

 It encourages frequent rebuilding of the developing code base, sometimes
maybe a dozen times a day. The purpose here is to perform almost continuous
validation of the developed code against the previously written test suite.
This gives encouragement to the programmer that they are doing it right and
quickly picks up situations when they are doing it wrong.

 It encourages an approach of “program for the here and know – not for the
future”. In other words, if faced with a problem today, solve it today using
the quickest (dirtiest ?) approach you can rather than research three different
approaches before selecting the best. The success of this approach rests
totally on the idea that the code can always be restructured and changed
quickly (because of object based technology) if the algorithm/approach
chosen was not sufficient for the task.

 It encourages the placement of a customer on site during development to sit
alongside the development team. The idea here is that the customer is a
“domain expert”, i.e. someone who knows a lot about the business for which
we are providing a solution and can act as a sounding board for developers.

 Perhaps the most controversial aspect of the process is that it encourages
pair-programming, i.e. developers working together rather than individually.
Typically one types in the code and is thus focused on syntax, grammar,
typing etc, while the other acts on strategy, algorithms and approach. He/she
can also observe the other programmer as they type. This approach promotes
several things

 Communication and consideration of alternative strategies.
 Confidence and trust to try alternatives that they might not feel

justified in doing if working alone.
 Pair learning and debugging, i.e. each can learn from and assist the

other
This should all lead to a better solution than if one person alone performed the task
(well that’s the theory, some say it’s paying two people to do one persons job).

Paul
fast

Paul
iterative

Paul
development

Paul
1

Paul
week.

Paul
frequent

Paul
releases

Paul
change

Paul
is

Paul
not

Paul
something

Paul
feared.

Paul
test procedure to validate it against,

Paul
test

Paul
cases

Paul
first.

Paul
create

Paul
your

Paul
dozen

Paul
times

Paul
day.

Paul
rebuilding

Paul
code

Paul
base,

Paul
doing

Paul
it

Paul
right

Paul
doing

Paul
it

Paul
wrong.

Paul
Engineering Topic 2 Page 16

Paul
program for the here and know – not for the

Paul
future”.

Paul
totally

Paul
customer

Paul
on

Paul
site

Paul
domain

Paul
expert”,

Paul
sounding

Paul
board

Paul
developers.

Paul
pair-

Paul
programming,

Paul
syntax,

Paul
grammar,

Paul
typing

Paul
strategy,

Paul
algorithms

Paul
approach.

Paul
Communication

Paul
Confidence

Paul
Pair

Paul
learning

Paul
paying

Paul
two

Paul
people

Paul
do

Paul
one

Paul
persons

Paul
job).

Paul
libraries

Paul
of

Paul
components

Paul
consideration

Software Engineering Topic 2 Page 17

Analysis Techniques

Now that we have seen each phase of the engineering design process described in
simple terms, let us explore each phase in more detail.

The chances of a product being developed on time and within budget are somewhat
slim unless the members of the software development team agree on what the
software product will do. Only after a clear picture of the present situation has been
gained can the team attempt to answer the critical question:

“What must the new product be able to do?”

The real objective of the requirements phase is to determine what software the client
needs. This problem is exacerbated by the fact that many clients do not know what
they need.

Furthermore, even if the client has a good idea of what is needed, he or she may have
difficulty in articulating these ideas to the developers, because most clients are less
computer literate than the members of the development team. There is a famous
quote uttered by a US politician back in the 60’s as he realised he’d dropped a gaff
and was rapidly trying to back-peddle his way out.

"…I know you believe you understood what you think I
said, but I am not sure you realise that what you heard
is not what I meant!"

This excuse applies equally well to the issue of requirements analysis. The
developers hear their client's requests, but what they hear is not what the client
should be saying.

Analysis Techniques

The principle objective of analysis is to uncover an understanding of the flow of
information or data in the system, and/or its behaviour. That is, we seek an
understanding of how information is transformed by the system, during its passage
from input to output. We also seek to understand the systems interface characteristics
and constraints e.g. this vending machine does not accept 'quarters'.

Analysis then attempts to uncover ‘what’ the product does, and ‘how it should behave’ it
does not concentrate in any way on how the software will be implemented. That
comes later. For example, analysis might concentrate on the following issues

• What data or events are input/recognised by the system?
• What functions/transformations must the system provide?
• What interfaces have been defined?
• What constraints/limits apply?

Paul
What must the new product be able to do?”

Paul
"…I know you believe you understood what you think I
said, but I am not sure you realise that what you heard
is not what I meant!"

Paul
what software the client
needs.

Paul
articulating

Paul
Analysis Techniques

Paul
flow

Paul
information

Paul
data

Paul
behaviour.

Paul
of

Paul
transformed

Paul
passage

Paul
characteristics

Paul
constraints

Paul
what’

Paul
how

Paul
it

Paul
behaves’

Paul
behave’

Paul
not

Paul
how

Paul
the

Paul
software

Paul
will

Paul
be

Paul
implemented.

Paul
events

Paul
functions/

Paul
transformations

Paul
interfaces

Paul
constraints/

Paul
data

Paul
do not know

Paul
interface

Paul
limits

Paul
on time

Paul
within budget

Paul
quarters'.

Software Engineering Topic 2 Page 18

Analysis Techniques

There is no one single analysis technique that is guaranteed to work and lead to a
professional developed end product. Rather, several different techniques exist that
are often combined, with each yielding up new information and understanding to the
analyst. Here are some the most popular techniques that have a proven track record.

Technique 1 - Meetings and Discussions

One of the best initial analysis techniques is communication. Hold frequent
discussions and reviews with the customer. This may sound obvious, but it is
important to ask the right questions if it is going to be of use. Try using a combination
of both open and closed questions with your customer. For example, an open
question might ask them to explain what is wrong with their present arrangement, or
to explain how the system should work. This will get them talking about the system
and its solution from their point of view. You could also ask them to take you through a
step-by-step sequence of typical operations, actions and/or calculations performed by the
system, from initial input to final output to help understand the flow and sequence of data.

Closed questions are designed to seek detailed clarification of specific points. For
example, what resolution graphics card will be required? What is the format of the
report produced by the program? How fast should the system be in dealing with
data? As your understanding of the system grows, you will be able to pose lots of
‘What should happen when ‘X’ takes place’ questions to uncover the systems
behaviour.

Both types of questions can lead to an increased understanding of the system for both
customer and developer alike. The result of such meetings is usually a written report,
which the developer and customer agree or refine.

Most important of all, don’t make assumptions about how the software should work,
in the absence of a clear explanation. If necessary, go back to the customer, discuss
any problems with them and seek clarification of any ambiguities.

Technique 2 - Generate a Questionnaire

Another way of gaining understanding is to send a questionnaire to the relevant
members of the client organisation. This technique is useful when the opinions of,
say, hundreds of individuals need to be determined like a microsoft product.

Furthermore, a carefully thought-out written answer may be more accurate than an
immediate verbal response to a question posed by an analyst. However, a meeting
conducted by a methodical interviewer who listens carefully and poses questions that
expand on initial responses will usually yield far better information than a
thoughtfully worded questionnaire. However, because questionnaires are not
interactive, there is no way that a new or modified question can be posed in response
to an answer.

Paul
one single analysis technique

Paul
combined,

Paul
Meetings and Discussions

Paul
discussions

Paul
reviews

Paul
open

Paul
and

Paul
closed

Paul
questions

Paul
typical

Paul
operations,

Paul
actions

Paul
calculations

Paul
detailed

Paul
clarification

Paul
written report,

Paul
increased

Paul
understanding

Paul
customer

Paul
developer

Paul
assumptions

Paul
don’t

Paul
make

Paul
Generate a Questionnaire

Paul
hundreds

Paul
individuals

Paul
written

Paul
answer

Paul
accurate

Paul
verbal

Paul
response

Paul
interactive,

Paul
not

Paul
initial

Paul
communication.

Paul
resolution graphics

Paul
format

Paul
report

Paul
fast

Paul
clarification

Paul
far better information

Paul
‘What should happen when ‘X’ takes place’

Software Engineering Topic 2 Page 19

Technique 3 - Analyse the Customers Current Methods

A different way of obtaining information, particularly in a business, production, or
process control environment, is to examine the various forms, both input and output
that are used by the client. For example, a form in a print shop might reflect press
number, paper roll size, humidity, ink temperature, paper tension, and so on. A form
used in a test facility might include a graphical print out for each component. This
information exists for a reason and will help you to construct questions about its
origin, purpose and importance to the system.

Other documents, such as operating procedures and job descriptions, can also be
powerful tools for finding out exactly how and what is done. Comprehensive
information regarding how the client currently does business, can be extraordinarily
helpful in determining the client's needs.

Another method of obtaining such information is to set up video cameras within the
workplace to record exactly what is being done.

Technique 4 - Facilities, Application, Specification Techniques or FAST

This technique encourages the customer and developer to work as a team to promote
a rapid understanding of the system and its behaviour, the problems it poses and to
propose solutions to them. The attraction of this scheme is that it produces
information, which is of assistance in modelling the software, and will thus be useful
to the designer/programmer later

• Stage 1- The customer and analyst develop a “product request” which is

essentially a brief description of the system and what it will do in fairly loose
terms.

• Stage 2- Before a meeting is held, each member of the team, which includes the

customer, is asked to examine the “product request” to create a list of objects
(nouns) that are evident in the proposal. For example, consider the following
extract:

“The user enters their data via a keyboard and the invoice

appears on the printer”.

The objects thus identify the things the system will interact with i.e. the external
devices, people or data in the system. Next, a list of operations are identified (verbs). For
example

“The system processes the data, prior to formatting and
displaying on the printer”.

Paul
Analyse the Customers Current Methods

Paul
forms,

Paul
used

Paul
by

Paul
the

Paul
client.

Paul
print

Paul
shop

Paul
press

Paul
number,

Paul
paper

Paul
roll

Paul
size,

Paul
humidity,

Paul
ink

Paul
temperature,

Paul
paper

Paul
tension,

Paul
exists for a reason

Paul
origin,

Paul
purpose

Paul
importance

Paul
operating

Paul
procedures

Paul
job

Paul
descriptions,

Paul
currently does business,

Paul
video

Paul
cameras

Paul
record

Paul
Facilities, Application, Specification Techniques or FAST

Paul
work as a team

Paul
rapid

Paul
understanding

Paul
modelling

Paul
the

Paul
software,

Paul
product

Paul
request”

Paul
examine

Paul
objects

Paul
keyboard

Paul
invoice

Paul
printer”.

Paul
interact

Paul
user

Paul
operations

Paul
nouns)

Paul
verbs).

Paul
processes

Paul
formatting

Paul
displaying

Paul
brief

Paul
description

Paul
devices,

Paul
people

Paul
data

Software Engineering Topic 2 Page 20

In essence these things identify the operations the software must perform and act on
the objects identified previously. A similar process occurs in an attempt to identify
any constraints imposed on the system for example:

 “The system only accepts 5, 10, 20 and 50p coins”.

Lastly, performance criteria are assessed, For example:

“The system must generate a response within 20mS”.

• Stage 3 - The members of the team (users, customers and developers) then meet
and sit around a table and each in turn presents their findings. Common elements
of each list are grouped together and refined into more detail in an attempt to
elaborate the description of the item.

This process may help uncover new objects,behaviour, constraints and
performance criteria, or highlights ambiguities and/or deficiencies in existing
elements. The discussion may raise issues that may not be answerable at that
meeting, thus an issues list is kept to record all unresolved details or questions for
future meetings.

• Stage 4 - Each member of the team then produces validation criteria against
which the finished product can be assessed. That is data and results that can be
used to check that the system performs according to the specification.

• Stage 5 - Finally, someone from the team is given the job of drafting a mini-

specification taking on board all aspects of the meeting.

The outcome of a FAST meeting is a mini-specification document as shown below.

Paul
operations

Paul
objects

Paul
constraints

Paul
performance

Paul
criteria

Paul
each in turn presents their findings.

Paul
grouped

Paul
refined

Paul
objects,

Paul
behaviour,

Paul
constraints

Paul
performance

Paul
ambiguities

Paul
deficiencies

Paul
issues

Paul
list

Paul
validation

Paul
criteria

Paul
assessed.

Paul
finished

Paul
product

Paul
data

Paul
results

Paul
specification.

Paul
performs

Paul
drafting

Paul
minispecification

Paul
mini-

Paul
specification

Paul
Common

Paul
elements

Software Engineering Topic 2 Page 21

Technique 5 - Design a Prototype.

A powerful technique for uncovering detail from the customer is to explore the
concept of a prototype. Here the analyst presents a prototype model for the customer
to evaluate. This could be something as simple as a paper and pencil model of the
system showing how the user interacts with it. It could include a sequence of screen
shots showing the appearance of the system performing critical operations, and
perhaps the users input and the system responses to it.

At a more detailed level, it could include a part-working prototype showing how the
system might behave (although you should be careful to ensure that the customer
realises that this is not the finished product). If the system is an enhanced version of
a previous one, the prototype might then consist simply of a discussion of the
enhancements/changes to the product.

Prototyping begins with requirements gathering. Developer and customer meet and
define the overall objectives for the software, identify whatever requirements are
known, and outline areas where further definition is required. A "quick design" then
occurs. The quick design focuses on a representation of those aspects of the software
that will be visible to the user. For example, inputs, outputs, operation and
behaviour. Performance is not usually assessed at this stage.

The quick design leads to the construction of a prototype. The prototype is evaluated
by the customer/user and is used to refine requirements for the software to be
developed. A process of iteration occurs

Reasons for Prototyping

• Customers often understand (or think they understand) the problem domain, that
is, what they want to achieve with the system, but often have little appreciation of
what the finished product will look like or how it will behave. Creating a
prototype educates the customer and gives them an indication of what they can
expect from the finished system.

• Customers hate surprises and frequently reject software based on how they see
the software working and how effectively it solves their problems, not on how
clever the code or the designers have been in creating it. Again, creating a
prototype educates the customer and gives them an indication of what they can
expect from the finished system.

• Seeing a prototype often serves to enhance an understanding of the problem
domain and to uncover anomalies and ambiguities in its behaviour/operation. The
earlier this is detected, the better for everyone.

Paul
prototype.

Paul
Design a Prototype.

Paul
prototype

Paul
model

Paul
customer

Paul
evaluate.

Paul
paper and pencil model

Paul
sequence of screen

Paul
shots

Paul
input

Paul
responses

Paul
part-

Paul
working

Paul
prototype

Paul
Prototyping

Paul
requirements

Paul
gathering.

Paul
quick design"

Paul
representation

Paul
aspects

Paul
software

Paul
visible

Paul
user.

Paul
of those

Paul
problem

Paul
domain,

Paul
what the finished product will look like or how it will behave.

Paul
educates

Paul
expect

Paul
finished

Paul
system.

Paul
hate

Paul
surprises

Paul
reject

Paul
software

Paul
not

Paul
expect

Paul
finished

Paul
system.

Paul
serves

Paul
enhance

Paul
understanding

Paul
uncover

Paul
anomalies

Paul
ambiguities

Paul
educates

Software Engineering Topic 2 Page 22

Prototyping Techniques

Step 1- Evaluate the suitability of the product for prototyping.

Not all software is suitable. Those that are best are usually those that interact heavily
with an operator, presenting/displaying data graphically and/or those that involve a
large amount of combinatorial processing.

The usefulness of a prototype must be weighed against the cost, time and effort
required producing it, which after all is only a prototype, not the basis of the final
product. For example if the simulation/prototype requires 50,000+ lines of code it is
unlikely to be suitable.

Step 2 - Develop a simplified representation of the system in terms of its

requirements and specification.

Before the prototype can be built, a simplified model of the software must be
developed so that certain aspects of it can be modelled without getting involved in
the complexities of otherwise hidden detail. Prototypes for the other components can
follow later.

For example, the development of a prototype car would only attempt to model the
aspects of the car the user interacts with. Essential but otherwise hidden details such
as the engine gearbox etc. can be hidden or simplified..

Step 3 – Develop the prototype and present it to the customer.

The customer will examine the design and propose modifications and or
enhancements to functionality, operation, behaviour etc. which will then lead to the
design being refined. Step 3 is then repeated iteratively until the customer is happy
with the design. The sequence of events for the prototyping technique is illustrated
below.

Paul
suitability

Paul
product

Paul
prototyping.

Paul
interact

Paul
heavily

Paul
with

Paul
an

Paul
operator,

Paul
graphically

Paul
combinatorial

Paul
processing.

Paul
cost,

Paul
time

Paul
effort

Paul
required

Paul
usefulness

Paul
simplified representation

Paul
requirements

Paul
specification.

Paul
simplified

Paul
model

Paul
complexities

Paul
hidden

Paul
detail.

Paul
Develop

Paul
present

Software Engineering Topic 2 Page 23

The introduction of 4th Generation programming tools can help here to provide a
rapid user interface for the user to view and see how the system looks e.g. Visual
basic and Visual C++ are both rapid development tools and quickly generate a user
interface.

Step 4 - Throw away the prototype

The results of prototyping can be very important to the final design of the software.
In fact, if the prototype is accurate enough in modelling the behaviour and
functionality of the required system, it may only be necessary to say to the designer,
“design a system that work like this”.

However, it is important to appreciate that if the prototype was in the form of
software it has to be “thrown away”, as it was probably only held together by luck
and flaky code in the first place.

It is vital that we do not lead the customer (or the developer) to believe that with a bit
of effort, the prototype can be coerced into becoming the finished product. This
would raise false expectations about delivery dates of the finished product and might
ask them to question how you can justify charging so much for developing the
finished product when with just a few weeks of effort the product looks like it might
already exist.

Analysis Technique 6 – Data and Function Modelling

One of the more powerful analysis techniques that can be applied, usually after other
preliminary analysis techniques have been completed and the developer/analyst has
acquired a sound understanding of the functionality and behaviour of the system, is
to model the flow of information during its passage through our system. This aspect
of analysis was touched on briefly in analysis technique 4 – FAST

To understand the technique, sit back and think of a computer system as nothing
more than a black box with inputs and outputs. With this in mind, it becomes
possible to view the system as nothing more than one large ‘transform’. That is, it
takes data in, processes or transforms it into new data and then outputs it.

For example, the action of calculating the area of a circle could be thought of as a
single transform, which takes in data about the radius of the circle and transforms it
via simple mathematical operation into data, which represents the area. Two such
transforms could thus be employed to calculate both the area and the circumference.
Getting slightly more sophisticated, the outputs of these transforms could then
become the inputs of further transforms that modify the data further. For example, it
is easy to envisage a transform that formats data prior to displaying it.

A way useful method of modelling this flow, graphically, is to represent it in the
form of Data Flow Diagrams (DFD’s) which identify the various data flows and
transformations that occur as data enters and leaves the our system. Data flow

Paul
Throw away the prototype

Paul
design a system that work like this”.

Paul
important

Paul
results

Paul
prototyping

Paul
accurate

Paul
thrown

Paul
away”,

Paul
luck

Paul
flaky

Paul
code

Paul
customer

Paul
coerced

Paul
prototype

Paul
finished

Paul
product.

Paul
Data and Function Modelling

Paul
model

Paul
flow

Paul
information

Paul
the

Paul
of

Paul
during

Paul
its

Paul
passage

Paul
through

Paul
our

Paul
system.

Paul
black box

Paul
inputs

Paul
outputs.

Paul
transform’.

Paul
takes data in,

Paul
processes

Paul
transforms

Paul
new

Paul
data

Paul
then

Paul
outputs

Paul
calculating the area of a circle

Paul
radius

Paul
mathematical

Paul
operation

Paul
represents

Paul
area.

Paul
area

Paul
circumference.

Paul
formats

Paul
Data Flow Diagrams

Software Engineering Topic 2 Page 24

diagram are often supplemented by Control flow diagrams (CFD’s) when the system
is essentially event driven, that is, transforms are activated by external events.

A good example of an event driven system is a Stopwatch, VCR, or CD player. Here
the user’s interaction triggers new operations and behaviour. We shall see this
technique in use later in the course. It is important because there exist techniques to
translate the resultant DFD and CFD models into a program structure, which is after
all, the name of the game.

Analysis Technique 7 - Write a Specification for the system

Whichever of the previous analysis techniques are ultimately chosen or combined, a
specification or requirement document must ultimately be drawn up. Ideally the
customer would provide this, but it is more often developed jointly. The specification
should include the following, which should hopefully have been uncovered during
analysis:

• Behaviour, I/O, functionality, performance,
• User interfaces, any formal specifications and any prototype models.
• Verification and Validation data should also be included

Verification and Validation data is important in assessing the developed product and
is usually developed by the customer. In simple terms such data will include.

1. Sample inputs that can be used to exercise the working system.

2. Sample expected outputs that can be used to measure the effectiveness of the
implementation.

3. Sample errors or events that the system is expected to process.

The validation data could be in the form of a formula, print outs, special case
descriptions, and error trapping and responses to events. The way a system deals
with errors or unexpected data is just as important as the way it deals with correct or
predicted input and should be part of the specification.

Ideally sufficient validation data should be produced to completely exercise the
machine and this could be used to determine if the system meets the specification.
This is very important, as it effectively gives the analyst and designer a ‘rod’ to beat
each other with if the system doesn’t work.

In other words, it is a means of checking that the system behaves in a way agreed by
both parties, either of which could be liable if the system fails.

Paul
Control flow diagrams

Paul
event

Paul
driven,

Paul
Stopwatch,

Paul
VCR,

Paul
CD

Paul
event

Paul
interaction

Paul
Write a Specification for the system

Paul
specification

Paul
requirement

Paul
document

Paul
• Behaviour, I/O, functionality, performance,
• User interfaces, any formal specifications and any prototype models.
• Verification and Validation data should also be included

Paul
Verification

Paul
Validation

Paul
inputs

Paul
exercise

Paul
outputs

Paul
effectiveness

Paul
errors

Paul
events

Paul
gives the analyst and designer a ‘rod’ to beat

Paul
each

Paul
other

Paul
validation

Paul
data

Software Engineering Topic 2 Page 25

Creating the Specification Document

There is nothing worse for a system developer than an inaccurate or incomplete
specification. It leads to frustration, low productivity, increased development cost
and slipping time scales. The resultant quality of the software also suffers as a result.
So how do you draft a system specification?

1. Separate functionality from implementation

The specification should only describe what the system should do, not how it will
be done in the system.

2. The specification must encompass all aspects of the system, particularly the
environment in which the software will work.

The specification must relate how the software interacts with the entire system. It
is not sufficient to say that it

“Reads a product code”.

It must say things like

“It reads the product code as a two digit letter/number code in the range a-f,0-9
from a 16 key ‘product selection’ data entry keyboard fixed to the front panel of
the system”

3. The specification must describe the system from the user point of view.

For example it might state things like.

“In order to request an elevator, the user has two options. i) They can press either or
both of the up of down request arrows situated outside the elevator, on each floor, or ii)
they can press one or more of the floor request buttons located inside each elevator,

4. The specification must be precise enough for the designer to be able to build
the system from the results of the modelling.

5. The specification must be loosely coupled. That is it must be structured such

that changes to one aspect of the specification have minimal effect on the
specification elsewhere.

For example, if the specification repeatedly makes reference to a 16 digit LCD
display and then says things like, “the results will be formulated such that the
product code uses the 1st 8 digits and the price occupies the last 4 digits with 4
spaces between”, then, the effect of changing the specification for the LCD has a
ripple effect right through the specification

Paul
system

Paul
developer

Paul
inaccurate

Paul
incomplete

Paul
specification.

Paul
what

Paul
not

Paul
how

Paul
interacts

Paul
Reads a product code”.

Paul
It reads the product code as a two digit letter/number code in the range a-f,0-9
from a 16 key ‘product selection’ data entry keyboard fixed to the front panel of
the system”

Paul
user

Paul
point

Paul
of

Paul
view.

Paul
all aspects

Paul
environment

Paul
functionality

Paul
implementation

Paul
designer

Paul
build

Paul
system

Paul
DFD

Paul
modelling.

Paul
loosely

Paul
coupled.

Paul
changes

Paul
one

Paul
aspect

Paul
minimal

Paul
effect

Paul
repeatedly

Paul
makes

Paul
reference

Paul
1st 8 digits

Paul
last 4 digits

Paul
4
spaces between”,

Paul
changing

Paul
specification

Paul
LCD

Paul
ripple

Paul
effect

Paul
up

Paul
down

Software Engineering Topic 2 Page 26

Requirement specification - Draft a User Manual

It might seem a little premature at this stage, but it is actually very profitable to
produce a user manual early on. However, this forces both parties to focus attention
on the user interface and behaviour of the system as perceived by its eventual users
and this will have a profound effect on the design.

Draw up a Contract

Finally, once the analysis has been completed, the specification is “signed-off” and a
contract is drawn up for software development. Changes in requirements requested
after the specification has been finalised will not be eliminated, but the customer
must realise that each modification made after the ‘sign-off’ date is an extension of
the agreed specification and therefore can lead to increased costs and delays in
delivery

Paul
Draft a User Manual

Paul
Contract

Paul
user

Paul
manual

Paul
user

Paul
interface

Paul
behaviour

Paul
system

Paul
perceived

Paul
users

Paul
signed-off”

Paul
Changes

Paul
requirements

Paul
finalised

Paul
after

Paul
eliminated,

Paul
specification

Software Engineering Topic 2 Page 27

The Software Requirements Document

The Naional Bureau of Standards, IEEE and the US Department of Defence has
proposed candidate formats for a software requirements specification. To this end the
Table below may be used as a framework for generating the specification document.

(Note: It must be appreciated that some of these points have not yet been covered in
the lectures.)

Software Requirements Specification Outline
I Introduction

A. System reference
B. Overall description
C. Software project constraints.

II Information description
A. Information flow representation

1. Data flow
2. Control flow

B. Information content representation
C. System interface description

III Functional description
A. Functional partitioning
B. Functional description

1. Processing narrative
2. Restrictions/limitations
3. Performance requirements
4. Design constraints
5. Supporting diagrams

C. Control description
1. Control specification
2. 2. Design constraints

IV. Behavioural description
A. System states
B. B. Events and actions

V Validation criteria
A. Performance bounds
B. Classes of tests
C. Expected software response
D. Special considerations

VI Bibliography
VII Appendix.

