
Software Engineering Topic 1 Page 9

A Comparison of Software Production vs. that of other Engineered Products

2· Software doesn't "wear out. "

Hardware Failure Rates

The illustration below depicts failure rate as a function of time for hardware. The
relationship, often called the "bathtub curve," indicates the typical failure rate of
individual components within a large batch. It shows that in say a batch of 100
products, a relatively large number will fail early on before settling down to a steady
rate. Eventually, age and wear and tear get the better of all them and failure rates rise
again near the end of the products life. To assist in quality control, many new batches
of products are ‘soak’ tested for maybe 24 hours in a hostile environment
(temperature/humidity/variation etc.) to pinpoint those that are likely to fail early on
in their life, this also highlights any inherent design/production weaknesses.

These early failure rates can be attributed to two things

• Poor or unrefined initial design. Correcting this, results in much lower failure
rates for successive batches of the product.

• Manufacturing defects i.e. defects in the product brought about by poor
assembly/materials etc. during production.

Both types of failure can be corrected (either by refining the design, or by replacing
broken components out in the field), which lead to the failure rate dropping to a
steady-state level for some period of time.

As time passes, however, the failure rates rise again as hardware components suffer
from the cumulative effects of dust, vibration, abuse, temperature extremes and many
other environmental maladies. Stated simply,

“…The hardware begins to wear out.”

Paul
Software doesn't "wear out. "

Paul
bathtub curve,"

Paul
failure

Paul
rate

Paul
time

Paul
function

Paul
hardware.

Paul
100

Paul
products,

Paul
fail early

Paul
steady

Paul
rate.

Paul
soak’

Paul
or unrefined

Paul
initial

Paul
design.

Paul
successive

Paul
batches

Paul
lower

Paul
failure

Paul
poor

Paul
assembly/

Paul
materials

Paul
dust,

Paul
vibration,

Paul
abuse,

Paul
temperature

Paul
extremes

Paul
“…The hardware begins to wear out.”

Software Engineering Topic 1 Page 10

Software Failure Rates

Software is not susceptible to the same environmental problems that cause hardware
to wear out. In theory, therefore, the failure rate curve for software should take the
form shown below.

Undiscovered defects in the first engineered version of the software will cause high
failure rates early in the life of a program. However, these are corrected (hopefully
without introducing other errors) and the curve flattens as shown. The implication is
clear. Software doesn't wear out. However, it does deteriorate with maintenance as
shown below.

During its life, software will undergo changes and it is likely that some new defects
will be introduced as a result of this, causing the failure rate curve to spike as shown
above. Before the curve can return to the original steady-state failure rate (i.e. before
the new bugs have been removed), another change is requested, causing the curve to
spike again. Slowly, the minimum failure rate level begins to rise-- the software is
deteriorating due to change.

Paul
Software doesn't wear out.

Paul
deteriorate

Paul
maintenance

Paul
undergo

Paul
changes

Paul
new

Paul
defects

Paul
spike

Paul
the software is
deteriorating due to change.

Software Engineering Topic 1 Page 11

The Software Crisis/Chronic Affliction

In the late 70’s early 80’s software development was still in its infancy, having had
less than 30 years to develop as an engineering discipline. However, the cracks in the
development process were already beginning to be noticed and software
development had reached a crisis. Some would describe it as a “Chronic Affliction”
which is defined as

“…Something causing repeated and long lasting pain and distress”

In effect, the use of software had grown beyond the ability of the discipline to
develop it. In essence the techniques for producing software that had been sufficient
in the 50’s, 60’s and perhaps 70’s were no longer sufficient for the 80’s and 90’s and
there was a need to develop a more “structured approach” to software analysis,
design, programming, test and maintenance. This can be seen by the graph below
(seen earlier), that shows the suitability of software procured by the American
Department of defence.

To understand how this problem arose, compare the situation in the 60’s with the
situation we have today.

Delivered
but Never
Used 47%

Paid for but
not Delivered
29%

Used but
Later
Abandoned
19%

Usable after
Changes 3%

Could be
used as
delivered 2%

Software Engineering Topic 1 Page 12

The Evolving Nature of Software Development

Early 50’s/60’s

1. In the early days the customer was the developer of the application, they wrote
the program, fixed it and maintained it when it broke down. Because of low
staff mobility in a fledgling market, companies felt secure that they could
maintain software using existing staff, thus there was no need for too much
design and documentation.

2. Software was often only a few hundred lines of batch processing, perhaps
analysing a mathematical problem e.g. statistics. Remember that calculators
hadn’t evolved yet and the slide rule was the most common method of
calculation.

3. The software was tailor made and never went outside the company. Because
the software was so small and specialised, the need to distribute it never arose.

4. Software of the day ran on large mainframes, whose hardware cost far
outweighed the cost of any software development. Large disks and memory
storage was virtually unheard of. Programs were loaded from punched paper
tape or cards. The operating system was often booted via switches on the front
panel, with just enough code being entered to allow the rest of the system to be
loaded from paper tape etc. Storage was usually either punched paper tape or,
in later years, magnetic tape. Printouts were slow 3 characters per second
teletypes if you were lucky.

5. Programming was a “seat of the pants” technique without discipline or design
techniques where anything could be tried and justified if it got the application
to work, this was like trying to build a bridge out of matchsticks, as long as it
stayed up, who cared what it looked like. In essence it was hacking and
practitioners of the day, often academics wearing white overcoats, revelled in
the mystique and aura that surrounded any job title relating to computing.

Paul
customer

Paul
developer

Paul
existing

Paul
maintain

Paul
staff,

Paul
few hundred lines

Paul
tailor made

Paul
outside

Paul
large mainframes,

Paul
hardware

Paul
cost

Paul
outweighed

Paul
software

Paul
cost

Paul
seat of the pants”

Paul
without

Paul
discipline

Paul
anything

Paul
tried

Paul
justified

Paul
hacking

Software Engineering Topic 1 Page 13

Mid 60’s/70’s

As the cost of hardware fell and the technology and power of the computer
developed to the point where it was able to run more sophisticated programs. New
operating systems such as UNIX, amongst others, evolved to take advantage of
developments in processing power, memory, disk storage and of course computer
science. These systems allowed the processing capabilities of the computer to be
shared by several users in a multi-user, multi-tasking environment.

More interactive approaches to programming and data processing evolved principally
through the use of VDU’s, printers and online disk storage. New applications such as
databases and mathematical analysis packages evolved. New languages sprang forth
to harness the power of the new technology and make software creation more
productive.

Real time applications became feasible, where the power of the computer could be
used to solve problems requiring an extremely rapid response to changes of data, e.g.
process control, rockets etc.

With developments in IC technology increasing at a fantastic pace, the early 70’s
saw Intel developed the first programmable logic controller ‘4004’ which later
became known as the microprocessor. New ram and I/O devices rapidly followed
allowing for the first time, small cheap computers to be used in control applications
and intelligent instruments. The 1st electronic calculator was born based around an
Intel chip.

Paul
UNIX,

Paul
processing power, memory, disk storage

Paul
shared

Paul
several

Paul
users

Paul
multi-user, multi-tasking

Paul
interactive

Paul
applications

Paul
databases

Paul
mathematical

Paul
analysis

Paul
languages

Paul
Real time applications

Software Engineering Topic 1 Page 14

Mid 70’s/80’s

Microprocessor technology evolved and their application and use became more wide
spread, distributed or networked systems became more common allowing
microprocessors to control vastly more sophisticated processes.

Small dedicated microprocessors evolved into complete ‘computers on a chip’
offering single chip solutions to many data processing control applications.

It is estimated that today, such single chip microprocessors out number processors
such as the Pentium by at least 100:1. For example, the typical modern day luxury
Motor Car typically has 12 or more microprocessors. Here are some examples

• ABS,
• Traction Control,
• Engine Management/Emission Control,
• Automatic Gearbox Control,
• Air conditioning/Climate Control,
• Radio/CD,
• Satellite navigation,
• Engine/vehicle condition monitoring,
• Active suspension,
• Intelligent instrumentation,
• Seat memory,
• Alarm and Immobiliser

New intelligent instruments and controller were designed to take advantage of the
small compact microprocessor, e.g. lifts, traffic lights, machinery etc and the effect
on the consumer society was just beginning to take off. Today microprocessors are
commonplace in all the following systems.

Burglar alarms, Television, Video recorders, Camcorders, Calculators, Telephones,
Clocks, Watches, Washing Machines, Central Heating Controllers, Hi-Fi.

Even the PC has at least half a dozen microprocessors (beside the Pentium) to control
things like keyboard, monitor, printer, scanner, disk drives, modem, tape streamers,
force feedback joystick/steering wheel, sound/midi/games ports etc.

Paul
Mid 70’s/80’s

Paul
computers on a chip’

Paul
distributed

Paul
networked

Paul
single chip microprocessors

Paul
out

Paul
number

Paul
100:1.

Paul
Pentium

Paul
Burglar alarms, Television, Video recorders, Camcorders, Calculators, Telephones,
Clocks, Watches, Washing Machines, Central Heating Controllers, Hi-Fi.

Paul
PC

Paul
half a dozen

Paul
microprocessors

Software Engineering Topic 1 Page 15

Current situation - early 2000

Today the situation is very different to the early 50’s/60’. In summary:

1. The customer is almost never the person who develops the software. More and
more software is “outsourced” to other companies to develop, which are often
composed of teams of developers. The need for discipline, communication
between developer and customer, documentation and a thorough understanding
of the specification is essential.

2. Software complexity has escalated and is now frequently multi-tasking, often
real-time and sometimes embedded into dedicated systems e.g. fuel injection in
car systems etc. Programs with 100,000+ lines of code are the “norm” rather
than the exception. User interfaces are more sophisticated with graphics and
mouse based “windows” application replacing simple dumb terminal.

3. Software breadth has grown, as there has been a trend to develop more
specialised and more general software. The availability of new hardware has
facilitated the creation of completely new kinds of applications e.g. Distributed
systems, Web programming, e-mail, reusable libraries and components.

4. Software is now written with mass appeal, so that millions of copies can be
sold, e.g. spreadsheets, databases, wordprocessors etc.

5. The cost of software development now vastly exceeds the cost of hardware.

6. Software evolves more and is used for longer than before. Maintenance of
software is now far more important. Witness the Millennium bug introduced
30-40 years ago.

All of these developments have meant that the techniques of the 50/60’s no longer
work. Software development times cannot simply be scaled up and there is not a
linear relationship between the number of lines of code and the time scale of the
project.

Paul
never

Paul
develops

Paul
outsourced”

Paul
discipline,

Paul
communication

Paul
documentation

Paul
understanding

Paul
specification

Paul
multi-

Paul
tasking,

Paul
real-

Paul
time

Paul
embedded

Paul
100,000+

Paul
norm”

Paul
User

Paul
interfaces

Paul
sophisticated

Paul
breadth

Paul
specialised

Paul
general

Paul
Distributed

Paul
systems,

Paul
Web

Paul
programming,

Paul
mail,

Paul
mass appeal,

Paul
cost of software

Paul
development

Paul
exceeds

Paul
hardware.

Paul
evolves

Paul
more

Paul
for

Paul
longer

Paul
50/60’s no longer

Paul
scaled up

Software Engineering Topic 1 Page 16

Problems with Software Development

What factors have contributed to the crisis?

• Manager’s estimates of productivity, cost and time scales for software
development have proven time and time again to be wildly inaccurate. Cost
overruns and slipped schedules of a factor of x10 are not uncommon.
Furthermore, Middle or Upper managers with no experience of software were
often given the job of managing it and adopted project management techniques
that were wholly inappropriate for large-scale software.

• In the early days, project management costing estimates all too often centred
on the cost of the hardware, as this easily dwarfed the cost of software
development. Inaccurate software development estimation could easily be
swept under the carpet and offset against an expensive piece of hardware.
These days this is almost impossible and a more accurate analysis of software
development costs is required.

• There was no accurate way to gauge the productivity of a programmer.
Managers used the crude “count the number of lines produced per day”
formulas as a guide to how productive their programmers were, regardless of
the complexity of the software or how many bugs that code had. In essence
programmers were forced to hack code rather than design/engineer a complete
system.

• Quality of software was difficult to judge against a specification? Such metrics
are only just beginning to be developed using mathematical specifications such
as ‘Z’ to allow comparisons between specification and implementation.

• The productivity of software developers has failed to keep pace with the
demands for their services, leading to software being rushed and delivered
early, often exacerbated by fierce competition and the need to be first to market
with a new product. Short cuts may have been taken in the development and
the product was probably inadequately specified, designed and tested. The
customer was then left to highlight (or debug) the software’s inadequacies,
leading to a lack of confidence in the product and customer dissatisfaction.

• Customers often assumed that the programmer knew what was required, while
programmers assumed that customers would be happy with whatever was
delivered. In essence, customer and programmer did not talk to each other to
thrash out the specification accurately enough. In essence “Communication
between Customer and developer was poor”.

• Existing software could be extremely difficult to maintain, devouring millions
of pounds and months/years of effort. The maintenance of software was often
not considered (or given a high enough priority) when embarking on any new
software development.

• Many programmers often adopted “The structure is in my head” approach to
disguise the fact that they are making it up as they go along and that the
structure was changing daily. When they left, that structure went with them.

Paul
Manager’s estimates of productivity, cost and time scales for software
development have proven time and time again to be wildly inaccurate.

Paul
x10

Paul
no

Paul
experience

Paul
software

Paul
costing

Paul
estimates

Paul
cost

Paul
hardware,

Paul
accurate

Paul
way

Paul
gauge

Paul
productivity

Paul
programmer.

Paul
count the number of lines produced per day”

Paul
programmers

Paul
forced

Paul
hack

Paul
code

Paul
design/

Paul
engineer

Paul
Quality

Paul
difficult

Paul
judge

Paul
productivity

Paul
failed to keep pace

Paul
fierce competition

Paul
rushed

Paul
software

Paul
confidence

Paul
lack

Paul
customer

Paul
dissatisfaction.

Paul
debug)

Paul
customer

Paul
assumed

Paul
programmer

Paul
talk

Paul
maintenance

Paul
not

Paul
considered

Paul
The structure is in my head”

Paul
making

Paul
it

Paul
up

Software Engineering Topic 1 Page 17

Software Myths and the Software Crisis

Many of these software development problems can be traced to a number of
mythologies that arose during the early history of software development, which
propagated misinformation and confusion.

Software myths appear to contain reasonable statements of fact and have an almost
intuitive feel to them and which experienced practitioners who “knew the score”
often promulgated.

Today, most knowledgeable professionals recognise myths for what they are -
misleading attitudes that have caused serious problems for managers and technical
people alike. However, old attitudes and habits are difficult to modify, and remnants
of software myths are still believed as we move toward the fifth decade of software.

Paul
old

Paul
attitudes

Paul
habits

Software Engineering Topic 1 Page 18

Customer Myths

In many cases, a customer believes myths about software because software
responsible managers and practitioners do little to correct misinformation. Myths
lead to false expectations (by the customer) and, ultimately, to dissatisfaction with
the developer.

Customer Myth 1: A general statement of objectives is sufficient to begin writing
programs--we can fill in the details later.

Reality: Poor up-front definition is the major cause of failed software efforts. A
formal and detailed description of information domain, function, performance,
interfaces, design constraints, and validation criteria is essential. These
characteristics can be determined only after thorough communication between
customer and developer.

Customer Myth 2: Project requirements continually change, but change can be
easily accommodated because software is flexible.

Reality: It is true that software requirements do change, but the impact of change
varies with the time at which it is introduced. The illustration below demonstrates the
impact of change. If serious attention is given to up-front definition, early requests
for change can be accommodated easily. The customer can review requirements and
recommend modifications with relatively little impact on cost.

When changes are requested during software design, cost impact grows rapidly.
Resources have been committed and a design framework has been established.

• Change can cause upheaval that requires additional resources and major
design modification, i.e., additional cost.

• Changes in function, performance, interfaces, or other characteristics during
implementation (code and test) have a severe impact on cost.

• Change, when requested late in a project, can be more than an order-of-
magnitude more expensive than the same change requested early.

Paul
A general statement of objectives is sufficient to begin writing
programs--we can fill in the details later.

Paul
Project requirements continually change, but change can be
easily accommodated because software is flexible.

Paul
Customer Myth 2: Project

Paul
Customer Myth 1: A general

Paul
information

Paul
function,

Paul
performance,

Paul
interfaces,

Paul
constraints,

Paul
validation

Paul
thorough

Paul
impact

Paul
time

Paul
introduced.

Software Engineering Topic 1 Page 19

Programmers Myths

Myths that are still believed by software programmers have been fostered by four
decades of programming culture. As we noted earlier, during the early days of
software, programming was viewed as an art form surrounded by mystique. Old ways
and attitudes, die-hard.

Programmer Myth 1: Once we write the program and get it to work, our job is
done.

Reality: Someone once said "the sooner you begin 'writing code,' the longer it'll take
you to get it finished." Industry data indicates that between 50 and 70 percent of all
effort expended on a program will be expended after it is delivered to the customer
for the first time.

Programmer Myth 2: Until I get the program "running" I really have no way of
assessing its quality.

Reality: One of the most effective quality assurance mechanisms can be applied
from the inception of a project -- the formal technical review. Software reviews are a
"quality filter" that have been found to be more effective than testing for finding
certain classes of software defects.

Programmer Myth 3: I can’t justify spending 20-30% of the project time scale
doing analysis, I’ll need that time at the end to sort out all the bugs.

Reality: If there isn’t time to do it right, there certainly isn’t time to do it wrong.
Experience has shown that developers often rush the analysis because they fear that
they will need the time at the end to sort out the bugs which, had they done the
analysis in the first place would not have occurred. A case of catch-22.

Programmer Myth 4: The only deliverable for a successful project is the executable
program.

Reality: An executable program is only one part of a software configuration that
includes all the elements illustrated below. Documentation forms the foundation for
successful development and, more importantly, provides guidance for the software
maintenance task.

As Page-Jones says, “trying to analyse the structure of a program when all you have
is the source code listing, is akin to analysing the structure of an elephant while
stood 2 inches away from it, all you can tell is that it is grey”. The illustration below
gives some indication of the documentation that will be required for successful
maintenance.

Paul
Once we write the program and get it to work, our job is
done.

Paul
the sooner you begin 'writing code,' the longer it'll take
you to get it finished."

Paul
50

Paul
70

Paul
percent

Paul
after

Paul
Until I get the program "running" I really have no way of
assessing its quality.

Paul
Programmer Myth 1: Once we

Paul
Programmer Myth 2: Until I

Paul
formal technical

Paul
Programmer Myth 3: I can’t justify spending 20-30% of the project time scale
doing analysis, I’ll need that time at the end to sort out all the bugs.

Paul
isn’t time to do it right,

Paul
isn’t time to do it wrong.

Paul
The only deliverable for a successful project is the executable
program.

Paul
Programmer Myth 4: The

Paul
trying to analyse the structure of a program when all you have
is the source code listing, is akin to analysing the structure of an elephant while
stood 2 inches away from it, all you can tell is that it is grey”.

Software Engineering Topic 1 Page 20

Software Management Myths

Like a drowning person who grasps at a straw, a software manager often grasps at
belief in a software myth, if that belief will lessen the pressure (even temporarily).

Management Myth 1: We already have a book that's full of standards and
procedures for building software. Won't that provide my people with everything they
need to know?

Reality: The book of standards may very well exist, but is it used? Are software
practitioners aware of its existence? Does it reflect modern software development
practice? Is it complete? In many cases, the answer to all of these questions is "no."

Management Myth 2: My people do have state-of-the-art software development
tools; after all, we buy them the newest computers.

Reality: It takes much more than the latest model mainframe, workstation, or PC to
do high-quality software development. Computer-aided software engineering
(CASE) tools are more important than hardware for achieving good quality and
productivity, yet the majority of software developers still do not use them.

Paul
Management Myth 1: We already have a book that's full of standards and
procedures for building software. Won't that provide my people with everything they
need to know?

Paul
exist,

Paul
used?

Paul
no."

Paul
Management Myth 2: My people do have state-of-the-art software development
tools; after all, we buy them the newest computers.

Paul
mainframe,

Paul
workstation,

Paul
PC

Paul
latest

Paul
model

Paul
CASE)

Paul
important

Software Engineering Topic 1 Page 21

Management Myth 3: If we get behind schedule, we can add more programmers
and catch up

Reality: Software development is not a mechanistic process like manufacturing. In
the words of Brooks:

"... Adding people to a late software project makes it later."

At first, this statement may seem counter intuitive. However, as new people are
added, people who were working on the project must now stop what they are doing
and spend time educating the newcomers and bringing them up to speed so that they
can be of assistance, thereby reducing the amount of time spent on productive
development effort. People can be added, but only in a planned and well co-ordinated
manner.

Paul
Management Myth 3: If we get behind schedule, we can add more programmers
and catch up

Paul
Adding people to a late software project makes it later."

