[image: image8.png]

TMA Training Center
	TMA Training Center
	 TITLE
	Code: <Document Code>

	Assign Date
	
	Version:
<Version>

Software Design Specification
	Class Name
	

	Class Code
	

	Group
	

	Teacher
	

	Project Manager
	

	Assign Date
	

	Complete Date
	

	Author
	

	Version
	

	Approved By
	

	Approved Date
	

 Table of Contents

31.
Introduction

31.1
Purpose

31.2
Scope

31.3
Definitions, Acronyms and Abbreviations

31.4
References

42.
Hight Level Design

42.1
Design Considerations

42.1.1
Design Options

42.1.2
Assumptions

42.1.3
Constraints

42.2
System Level Desired Behavior

52.3
Logical Representation of the Architecture

52.4
Architectural Component Overview

62.4.1
Software Dependencies

62.4.2
Party Component Description

62.5
Process Architecture

72.6
Deployment Architecture

83.
Detailed Design (Component Design)

83.1
Component/Feature: <Component/Feature #1 (Use the name)>

83.1.1
Object Model

83.1.2
Scenarios

93.1.3
Class Summary

93.1.3.1
Class: <Class#1 (Use the class name)>

103.1.4
Algorithms

103.1.5
Interfaces

103.1.6
Dependencies

103.1.7
Error Handling

103.1.8
GUI Mockups

114.
Open Issues

1. Introduction

1.1 Purpose

<Provide a brief summary indicating the purpose, scope and use of this document.>

1.2 Scope

<Describe the boundaries of the design here. State what functionality is included and what is excluded. This statement is given in terms of business functions.>

1.3 Definitions, Acronyms and Abbreviations

<This section includes terms, acronyms and abbreviations herein>

1.4 References

<The following references are cited in this document:

· [SRS]
Please refer to the latest approved version of the document <Put SRS title here>. <Please provide the hyperlink to the library containing this SRS for the SRS title>

· [RTM] Please refer to the latest approved version of the document. RTM can be use to trace all requirements related to the component.<Put RTM title here>. <Please provide the hyperlink to the library containing this RTM for the RTM title>

(Optional) – Note any references or related materials here.(Some other technical documents like: IETF, RFC… that you mentioned above.)>

2. Hight Level Design

2.1 Design Considerations

In this section, consider high-level design options. Consider non-functional (product or technology) requirements which push your design in a specific direction.

2.1.1 Design Options

At a high-level, describe the design direction and rationale. Also, describe alternative approaches considered and rationale for them not being chosen.

2.1.2 Assumptions

Document the assumptions, open issues, concerns that guide the design or have the possibility of affecting the design.

Open issues should be addressed before the design is completed. If assumptions are invalidated or change, the design must be revisited to ensure design changes are made as necessary.

2.1.3 Constraints

Indicate the constraints that affect the design, i.e. restrictions imposed on the design that force the design decisions a certain way. Once again, this is driven by non-functional requirements, such as real-time, memory, reliability, scalability etc.

2.2 System Level Desired Behavior

This is equivalent to the Scenario View as per the 4+1 model.

At the very highest level, describe how the requirements will be shown at the system level. If the design involves messaging or similar behavior, a basic overview would be a good idea.

If you are using an object oriented design methodology, document key Use Cases which describe how the hardware modules or nodes work together to satisfy the feature requirements.

Diagrams are highly recommended.

Sample:

This sample shows a fragment of a scenario for the small PABX. The corresponding script reads:

1. The controller of Joe’s phone detects and validate the transition from on-hook to off-hook and sends a

message to wake up the corresponding terminal object.

2. The terminal allocates some resources, and tells the controller to emit some dial-tone.

3. The controller receives digits and transmits them to the terminal.

4. The terminal uses the numbering plan to analyze the digit flow.

5. When a valid sequence of digits has been entered, the terminal opens a conversation.
[image: image1.png](1) Of-Hook

- Qdiltone

(4) digit

Joe:Controller

(5) open
conversation

Embryo of a scenario for a local call—selection phase

2.3 Logical Representation of the Architecture

This is equivalent to the Logical View as per the 4+1 model.

At the very highest level, describe a logical representation of the architecture that will be used to satisfy the functional requirements. This representation is not constrained by existing software architectures, product requirements or target hardware platforms upon which the functional requirements will be satisfied.

Sample:

[image: image2.png]I(conversation ,

i

M Translation

Services

Display &

Veer
Inteface
Exernal
Intetsces
Simuiaion Gaewaye
andTraining
Fight A Trafe
mansgement Mansgement
neronauticsl
formaton

e

Mechanisms

a Log\ca\ blueprint for the Télic PABX . b Blueprint for an Air Traffic Control System

2.4 Architectural Component Overview

This is equivalent to the Implementation View as per the 4+1 model.

Identify and describe the software components that make up the architecture and their relationships.. Identify new, changed, and if applicable, deleted software components required to satisfy the functional requirements.

It is important to take into account non-functional requirements (such as real-time, redundancy etc.) when describing the architecture at this level.

Sample:

[image: image3.png]S 5
CAATS, MAATS, ete Man-Machine Interface Offline tools
Extemal systems. Test hamesses
HATS Components | 4 1 Eunctional areas: Flight manag- &
ement, Sector Management, etc. <
> £
ATC Framework | 3 a
Aeronautical classes
ATC classes
Distributed Virtual Machine Support Mechanioms
Communication, Tme, Storage, ®
Resource management. stc 3
i
Basic elements | 1 Ex
Common utiites 5N9ngs o=
Low-level services

HardWare, OS, COTS

The 5 layers of Hughes Air Traffic Systems (HATS)

omer

o

mmon AT

2.4.1 Software Dependencies

At a high-level, describe software upon which this design depends. If applicable, reference other features which are being done in parallel to support a larger project or other features which may have impact due to interactions or known changes in the same software being changed by this feature.

2.4.2 Party Component Description

If your design includes the use of third party software, document build versus buy analysis and rationale for the decision around adoption of this approach and describe how it will be integrated into the rest of the design.

Please note that we should be strongly encouraging use of existing software in order to avoid licensing costs incurred as a result of using 3rd party S/W.

2.5 Process Architecture

<This section is optional>

This is equivalent to the Process View as per the 4+1 model.

At a high-level, describe the process architecture required to satisfy the functional requirements. Identify new tasks or processes needed and/or changes to existing tasks to support the necessary execution flows.

If the design is within a single task or process and/or is completely task unaware, simply state this.

Sample:

[image: image4.png]Controller \
process.

Vain
controlier
task

Contol
Figh rate

Controlertask
Lowrate

Process blueprint for the Télic PABX (partial)

2.6 Deployment Architecture

<This section is optional>

This is equivalent to the Deployment View as per the 4+1 model.

At a high-level, map the software components to the hardware which will be used to deliver the functional requirements.

If the functional requirements are contained within a single hardware element or unaware of hardware, simply state this.

Sample:
[image: image5.png]PCE"V“‘ Back-up nodes

I
F

rsation

Teminal
Process
more K.

processors

K K h.
Conroler Conroler p—
Process Process Coniote

T T

[irccass] [ieorse] [imecam]

Physical blueprint for a larger PABX showing process allocation

3. Detailed Design (Component Design)

<This section and its subsections specify internal details of components/modules. They also design algorithms, data types, and data structures for components and interfaces>

<Typical activities include

- Allocate all software requirements to modules

- Select algorithms, data types, and data structures for modules

- Specify data types for module interfaces

>

3.1 Component/Feature: <Component/Feature #1 (Use the name)>

<Supply a detailed description of the constituent classes of each component. List the important attributes of each class, and describe the purpose and processing of each major method within each class. Suitable UML diagrams should be provided to illustrate the relationships between each class within the component and any interactions between classes within separate components>

3.1.1 Object Model

<This subsection includes the class diagram required for this component.

[image: image6.png]

>

3.1.2 Scenarios

<This subsection includes the scenarios relevant to the design of this component but at the next level of detail.

[image: image7.png]IR A ik
Ve of g,;pﬂ;ﬂ y
| ! |

>

3.1.3 Class Summary

<This subsection includes a complete description of each class: methods, attributes, operations. Also, for a class which already exists, highlight here the changes made. ><Repeat for each class>

3.1.3.1 Class: <Class#1 (Use the class name)>

	Attributes:
	<(Data elements/variables)>

	<Method #1 (Use the method name)>
	<

1. Pre-condition:

<List any assumptions that must be true in order for Component 1 to operate correctly. A good example is that Component 1 may assume that certain files are open or that a certain Internet connection has been established.>

2. Post-condition:

<Describe the changes to the state of the system that have occurred as a result of the execution of this module. Note: This is the "what" requirement of the module.>

3. Algorithm:

<List the steps (pseudocode, perhaps) taken by this component to achieve its intended purpose.>

4. Error handling/Exception processing:

<Describe any error processing that is not made clear in the description of the algorithm.>

>

	<Method #2>
	<

1. Pre-condition:

<List any assumptions that must be true in order for Component 1 to operate correctly. A good example is that Component 1 may assume that certain files are open or that a certain Internet connection has been established.>

2. Post-condition:

<Describe the changes to the state of the system that have occurred as a result of the execution of this module. Note: This is the "what" requirement of the module.>

3. Algorithm:

<List the steps (pseudocode, perhaps) taken by this component to achieve its intended purpose.>

4. Error handling/Exception processing:

<Describe any error processing that is not made clear in the description of the algorithm.>

>

	…
	…

3.1.4 Algorithms

<Include a description of the designed algorithms>

3.1.5 Interfaces

<Include a description of the coding unit interfaces >

3.1.6 Dependencies

<Identify and describe the nature of dependencies upon other components of this design or other areas of the architecture in which this feature will reside>

3.1.7 Error Handling

<Include any debug commands, settings to enable extended debugging information, error messages and log files associated with this component. >

3.1.8 GUI Mockups

<Include any screen layouts or user interface mockups for this component.>

4. Open Issues

<List out any open issues herein>

---------- End of Document ----------

	Confidential
	TMA Solutions
	Page 11 of 11

