
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Benchmarking the Effect of Flow Exporters and
Protocol Filters on Botnet Traffic Classification

Fariba Haddadi, Student Member, IEEE, and A. Nur Zincir-Heywood, Member, IEEE

Abstract—Botnets represent one of the most aggressive threats
against cyber security. Different techniques using different feature
sets have been proposed for botnet traffic analysis and classifica-
tion. However, no work has been performed to study the effect of
such differences. In this paper, we perform a study on the effect of
(if any) the feature sets of network traffic flow exporters. To this
end, we explore five different traffic flow exporters (each with a
different set of flow features) using two different protocol filters
[Hypertext Transfer Protocol (HTTP) and Domain Name System
(DNS)] and five different classifiers. We evaluate all these on eight
different botnet traffic data sets. Our results indicate that the use
of a flow exporter and a protocol filter indeed has an effect on the
performance of botnet traffic classification. Experimental results
show that the best performance is achieved using Tranalyzer flow
exporter and HTTP filter with the C4.5 classifier.

Index Terms—Botnet, flow exporters, protocol filters, traffic
classification, traffic flow analysis.

I. INTRODUCTION

A BOTNET is a network of compromised hosts that are re-
motely controlled by a master (aka botmaster). Different

types of botnets have been created to perform various malicious
tasks such as spreading spam, conducting distributed denial-of-
service (DDoS) attacks, identity theft, or simply taking advan-
tage of victims’ computational resources [1]. Hence, with the
high reported infection rate, the vast range of illegal activities,
and powerful comebacks, botnets are one of the main threats
against cyber security.

The communication scheme is the main characteristic of
the botnet architecture, which evolved over time to enhance
botnet functionality and avoid botnet classification (detection)
systems. In the architecture, compromised bots interact with the
command and control (C&C) server to receive the instructions
of the master. Until 2003, the Internet Relay Chat (IRC) pro-
tocol was the most common botnet communication protocol
using centralized topology [2]. In the botnet arms race, security
systems adapted to use solutions (such as firewalls) to block
ports such as IRC ports or to perform content analysis/filtering,
which can reveal botnets communication information. Since
2003, not only botnets have started to use more ubiquitous

Manuscript received February 15, 2014; revised June 20, 2014 and
August 19, 2014; accepted October 5, 2014. This work was supported by a
grant from the Natural Sciences and Engineering Research Council of Canada.

The authors are with the Faculty of Computer Science, Dalhousie University,
Halifax, NS B3H 4R2, Canada (e-mail: haddadi@cs.dal.ca; zincir@cs.dal.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2014.2364743

protocols such as HTTP and DNS and a decentralized topology
such as peer-to-peer (P2P) but they also have started to employ
techniques such as fluxing and encryption to avoid detection.
Therefore, identifying the botnets and detecting them have
become very challenging.

Many proposed detection approaches rely on network traffic
analysis classification to detect the botnets. Some of the works
in this category focus on specific types of botnets, whereas oth-
ers attempt to build a general model for more than one botnet.
In early 2000, most of the proposed systems were specifically
focused on botnets utilizing IRC (e.g., [3]), whereas recent
research has been more focused on P2P- and HTTP-based
botnets (e.g., [4]–[6]). Given that botnets use automatic update
mechanisms, botnet monitoring and detection approaches need
to be active and continuous as well. This could potentially
enable them to learn new patterns and adapt to the changes in
the botnet evolution. Hence, machine learning techniques (i.e.,
classification and clustering) are one of the highly employed
techniques in this field. The clustering and classification tech-
niques that are used for traffic analysis require the network traf-
fic to be represented in a meaningful way to enable automatic
pattern recognition. Thus, an important component for such
systems is extracting the meaningful features (attributes) from
the network traffic. However, feature extraction has always
been a challenge. To this end, different botnet detection and
analysis systems have come up with their own sets of features
to represent the network traffic consisting of network packets.
Network packets include two main parts: 1) packet header,
which includes the control information of the protocols used on
the network, and 2) packet payload, which includes the appli-
cation information used on the network. Hence, some detection
and analysis systems only use network packet headers (e.g.,
[5], [6], and [8]) as the basis for their features, whereas others
take advantage of packet payloads (e.g., [9] and [10]). Among
the group using packet headers, flow-based feature extraction
methods are highly employed in the recent literature [6], [8],
[11], [12]. In such methods, communication packets are aggre-
gated into flows, and then, statistics are calculated. Systems
that generate flows and extract such features are called flow
exporters. Given that botnets employ encryption techniques to
avoid the detection systems that analyze the communication
information embedded in the packet payload, flow exporters
can be very effective since they summarize the traffic utilizing
only network packet headers. In this paper, our aim is to
investigate the magnitude of the effect of flow exporters in
botnet traffic detection and analysis systems. Thus, five open-
source flow exporters, namely, Maji, Yet Another Flow Sensor
(YAF), Softflowd, Tranalyzer, and Network Measurement and

1932-8184 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto: haddadi@cs.dal.ca
mailto: zincir@cs.dal.ca

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

Accounting System (Netmate), along with five highly employed
machine learning techniques, namely, C4.5, support vector
machine (SVM), Naive Bayes, Bayesian networks, and artificial
neural networks (ANNs), are utilized. Moreover, to study the
effect of protocol filters, we conduct three sets of experiments;
the first set of experiments studies the analysis and classification
of botnet traffic using all of the traffic flows, the second set
performs the same study using only the HTTP traffic flows, i.e.,
employing an HTTP protocol filter, and the third set uses only
the DNS traffic flows utilizing a DNS protocol filter. Last but
not the least, we have evaluated all of these systems and their
combinations on eight different botnet data sets.

The remainder of this paper is organized as follows. The
botnet traffic analysis and classification systems reported in
the literature are summarized in Section II. All the tools, the
data sets, and the methodology employed are presented in
Section III. Evaluation and results are discussed in Section IV.
Finally, conclusions are drawn and future work is discussed in
Section V.

II. BACKGROUND AND RELATED WORK

A bot program is a self-propagating malware that infects
vulnerable hosts known as bots and is designed to perform a
malicious task after being triggered. The infected bots network
is referred as a botnet, which is under the remote control of a
master called the botmaster. Usually, bots receive commands
from the master through C&C channel and carry out malicious
tasks such as DDoS, spamming, phishing, and identity theft
attacks [1].

Today, a typical advanced bot uses five stages to create and
maintain a botnet [1]. The first stage is the initial infection
stage. In this stage, attacker infects the victim using several
exploitation techniques to find its existing vulnerabilities. In
the second stage, i.e., secondary injection, the shell code is
executed on the infected victim to fetch the image of the bot
binary. The bot binary then installs itself on the victim. At
this time, the infected machine is completely converted into a
bot. The next stage is the connection stage. In this stage, the
bot binary establishes the C&C channel to be used by the bot
master. Once the connection is established, then the malicious
C&C stage, i.e., the fourth stage, starts. This is when the
master sends the commands to the botnet, short for bot network.
Finally, when the master needs to update the bots for one reason
or another, the update and the maintenance stage start.

A. Related Work

Over time, botnets have employed different protocols,
topologies, and techniques to implement the aforementioned
five stages while avoiding detection. Hence, an arms race has
started between the botnets and the detection systems.

Gu et al. developed a system called BotMiner based on
the group behavior analysis to detect botnets [13]. BotMiner
uses a clustering approach to find similar C&C communication
behaviors, which form clusters, and then employs Snort to find
the type of activity in the detected clusters. They evaluated
BotMiner on traffic data sets. These data sets included their

campus network traffic, which represented the normal behav-
ior. Moreover, it included the Honeynet traffic and the traffic
captured by running bot binaries in a sandbox environment.
These represented the attack behavior. Then, they converted
their captured traffic files into flows using a tool they developed.
This flow exporter included features such as the number of
packets per flow, the average number of bytes per packet, and
the average number of bytes per second. Their results showed
that BotMiner could detect botnets with detection rates (DRs)
between 75% and 100% on different types of botnets.

Strayer et al. developed an IRC botnet detection system that
made use of machine learning techniques (classification and
clustering) [3]. First, they used a classification technique to
filter the chat type of traffic and then a clustering technique to
find the group activities in the filtered traffic. Finally, a topology
analyzer was applied to the clusters to detect the botnets. In
this three-layer approach, they employed flow-based features
extracted from packet headers. Data employed in this work
were gathered from a controlled testbed running bot binaries.
They employed and evaluated Naive Bayes, C4.5, and Bayesian
networks as the classifiers against a multidimensional flow
correlation technique that was designed and proposed.

Wurzinger et al. proposed an approach to detect botnets
based on the correlation of commands and responses in the
monitored network traces [9]. To identify traffic responses, they
located the corresponding commands in the preceding traffic.
Then, using these command and response pairs, the detection
model was built focusing on IRC, HTTP, and P2P botnets. Data
sets used in this work were collected by running bot binaries in
a controlled environment. Traffic features such as the number of
non-ASCII bytes in the payload were analyzed to characterize
bot behavior.

Zeidanloo et al. proposed a detection system with a focus on
P2P- and IRC-based botnets [10]. Using filtering, classification,
and clustering techniques, they aimed to detect the group behav-
ior of botnets in a given traffic file (trace). To analyze the traffic,
a flow-based approach was utilized, whereas payload inspection
was employed for traffic filtering.

Perdisci et al. proposed a network-level malware clustering
system focusing on HTTP-based malwares [7]. The similarity
metrics among HTTP traffic traces are defined and used to de-
velop the malware clustering system where the clusters resulted
in the signatures. Specifically, to decrease the computational
cost and obtain high-quality clusters, multilevel clustering was
employed. The malware samples employed for system eval-
uation were collected in six months using different malware
sources such as MWCollect.

Celik et al. proposed a flow-based botnet C&C activity
detection system using only headers of traffic packets [8].
Specifically, they investigated the effect of calibration of time-
based flow features. They employed machine learning algo-
rithms such as C4.5, Naive Bayes, and logistic regression.
For the evaluation, they employed Lawrence Berkeley National
Laboratory (LBNL) traces representing the normal traffic and
the IRC-based simulated botnet traffic representing the attack
traffic.

Francois et al. proposed a NetFlow monitoring frame-
work that leveraged a simple host dependence model to track

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HADDADI AND ZINCIR-HEYWOOD: BENCHMARKING THE EFFECT OF FLOW EXPORTERS AND PROTOCOL FILTERS 3

communication patterns and employed linkage analysis and
clustering techniques to identify similar botnet traffic patterns
[11]. They obtained the traffic data from an Internet operator
company. To analyze the traffic, a flow-based approach was
utilized. In addition to the traffic flows, Google web search
engine was employed for linkage analysis.

Wang et al. proposed a fuzzy pattern recognition approach
(called BBDP) to detect HTTP and IRC botnets behavioral
patterns [12]. It is known that botnets query several domain
names in a given period of time to identify their C&C server and
then form a Transmission Control Protocol (TCP) connection
with the C&C server. Hence, Wang et al. analyzed the features
of DNS queries (such as the number of failed DNS responses)
and TCP flows to detect botnet malicious domain names and
IP addresses. To accelerate the detection process and be able
to detect botnets in real time, traffic reduction and parallel
processing were utilized. To evaluate the proposed approach,
malicious bot binaries were collected using Honeytrap and were
run in a controlled environment to generate bot traffic. Their
results showed up to 95% DR for their system.

Zhao et al. investigated a botnet detection system based on
flow intervals [5]. Flow features of traffic packets were utilized
with Bayesian networks and decision tree classifiers to detect
botnets. They focused on P2P botnets (such as Waledac) that
employ the HTTP protocol and a fast-flux-based DNS tech-
nique. To evaluate their system, they employed a combination
of normal and attack traffic, some of which was generated in the
laboratory, some was from Honeynet project traces, and some
was from LBNL (normal traffic) data sets. Their results showed
DRs over 90% with false positive rates (FPRs) under 5%.

Kirubavathi et al. specifically designed an HTTP-based bot-
net detection system using a multilayer feedforward neural
network [4]. Given that HTTP-based botnets do not maintain
a connection with the C&C server but periodically make a
request to the C&C server (over the HTTP) to download the
instructions, they extracted features related to TCP connections
in specific time intervals based on the packet headers. To collect
data to evaluate their system, botnets were simulated in the
laboratory.

Haddadi et al. designed a botnet detection approach based on
botnet traffic analysis [6]. Network traces representing normal
and attack traffic were generated by initializing HTTP and
DNS communication with publicly available domain names of
botnet C&C servers and legitimate web servers. NetFlow-based
feature extraction (only from packet headers) was used, and
machine learning algorithms (C4.5 and Naive Bayes) were then
employed to detect the botnets. Their results achieved up to
97% DR with 3% FPR.

In short, most of the recent detection systems reported in the
literature focuses on P2P and HTTP protocols [4]–[6], [12].
Given that botnets employ DNS protocol to locate the C&C
servers, DNS traffic is also analyzed regardless of the utilized
C&C protocol or topology [6], [12]. They employ different
data mining or machine learning techniques such as decision
trees, neural networks, or statistical methods for which mostly
flow features were utilized. Most of the time, they integrate
some normal traffic file (in the laboratory) with the generated
attack traffic file to be able to evaluate the performance of the

proposed detection systems. Last but not the least, most of the
works in the literature propose a specific set of flow features
for the detection purposes [5], [8]–[10]. However, to the best of
our knowledge, there is no previous work comparing different
flow features and analyzing which ones are selected more by
different classifiers. Hence, in this paper, we aim to use all
the features exported by different flow exporters employed to
analyze if different flow exporter features have any effect on
the performance of the botnet classifiers employed.

III. METHODOLOGY

As discussed in Section II, almost all of the botnet traffic
analysis related works reported in the literature employ some
form of network flow information, which is based on packet
headers. Moreover, most of them focus on certain type of
botnets for detection purposes. This means that they focus on
certain type of protocols such as HTTP or DNS. This, in return,
indicates the utilization of protocol filtering in the analyzed
traffic data. Therefore, in this paper, we aim to study the effect
(if any) of the flow exporters and the protocol filtering for sep-
arating botnet behavior from normal behavior in a given traffic
log file. To be able to generalize our research to encrypted traffic
as well, we do not have any packet payload (application level)
based information in our study. Thus, we explore the possibility
of detecting botnets by only using the features extracted from
a flow.

To achieve our aim, we benchmark the effect of five different
well-known flow exporters using two widely used protocols
filters and five popular learning classifiers. We evaluated the
performances of different combinations of these tools using
eight different botnet traffic log files.

A. Traffic Employed

In this paper, we utilize traffic files from botnets that employ
HTTP protocol as their communication protocol or HTTP-
based P2P topologies that look like normal HTTP traffic. There
are several botnet traffic captures available at NETRESEC [14]
and Snort [15] web sites that we employed in this paper. These
traffic captures, which represent the real-world botnets, are
related to Citadel, Cutwail (Pushdo), Kelihos, and Zeus botnets.
The Snort web site provides three sample traffic log files of
the Zeus botnet [15]. It also provides a report describing these
samples. Unfortunately, two of these samples are very small
(only 110 and 1105 number of packets) and therefore could
not be used in our experiments. Hence, “Sample_1” is the
only Zeus traffic file that we utilized from Snort archive in
this paper. On the other hand, NETRESEC provides Citadel,
Cutwail, Kelihos, and Zeus botnet traffic log files (one for each)
but does not provide any information with regard to these files.
Hence, we investigated the employed protocols, domain names,
and the communication patterns in these files and matched them
with the published characteristics of these botnets and verified
that the data are correct. Therefore, we use all of these botnet
traffic files in this paper.

However, since there were not many traffic captures publicly
available (aforementioned ones are the only ones we are aware

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

of), we had to generate additional representative traffic (as most
of the works in the literature did) to be able to generalize our
analysis. Although, in this case, rather than running botnet
binaries in sandbox environments to generate representative
botnet traffic, we employed publicly available (from legitimate
resources) lists of C&C domain names to generate the repre-
sentative botnet traffic. Moreover, to generate the representative
normal traffic, we employed the Alexa domain name list. This
ensures that attack and normal traffic were generated using the
most recent and publicly available domain name lists and avoids
the possibility of representing old botnet behavior when old
binaries are used. The generated data employed in this paper are
analyzed and confirmed to be similar to the real-world botnet
data provided by Snort and NETRESEC [6], [16].

In this case, the data are generated by a program we devel-
oped to establish HTTP connections with the domain names
(both C&C servers and legitimate web servers) from the afore-
mentioned lists to generate the traffic. First, the program sends
DNS queries for the domain names in the lists. Then, if it
receives a proper DNS response indicating that the domain
name is registered and is associated with a valid IP address, it
attempts to establish an HTTP connection with that IP address.
More information on the botnets and the domain name lists that
we employed is given in the following.

1) Alexa: Alexa Internet, Inc. [17] ranks the web sites based
on their page views and unique site users. Then, this ranking is
published as the list of the most popular web sites.

2) Zeus: Zeus is a well-known botnet that made a big came
back (after a takedown in 2012) with a new variant in 2013
[18]. This botnet has been collecting banking data by using
man-in-the-browser keystroke logging and form grabbing but
can be configured for any type of identity theft attack. There
are the ZeusTracker site [19] and the DNS-BH site [20] actively
monitoring the Zeus botnet. These are the sites from where we
downloaded the C&C domain name lists that were employed
to generate the representative traffic for Zeus botnet. Moreover,
Snort and NETRESEC have traffic files of this botnet that we
also utilized in this paper.

3) Citadel: Citadel botnet is the improved version of Zeus,
where the Zeus bugs are fixed, and it is adapted to the newest
security platforms [21]. It is believed that Citadel stole more
than $500 million and infected more than 5 million personal
computers in different countries. In June 2013, Microsoft and
the U.S. Federal Bureau of Investigation took down almost 90%
of the Citadel botnet based on a court order in an operation.
However, there are news of Citadel making a bold comeback
[22]. We obtained the Citadel C&C domain name lists from the
Citadel botnet section of the ZeusTracker and DNS-BH web
sites. In addition, captured traffic files from NETRESEC are
also employed in this paper.

4) Conficker: Speculations about Conficker’s purpose range
from DDoS attacks or using distributed computing resources
to stealing banking credentials. In 2009 and 2010, Conficker
botnet was listed in Damballa top 10 botnets of the year. As
of 2013, it is reported [23] that Conficker botnet has infected
many medical devices. The Conficker C&C domain name lists
published by the University of Bonn [24] and DNS-BH [20]
web sites are employed in this paper.

5) Cutwail: Pushdo trojan is originally used to distribute
other malwares such as Zeus. It comes with its own spam mod-
ule, known as Cutwail, which is responsible for a large portion
of the world’s daily spam traffic. In 2013, this botnet evolved
using domain generation algorithms (DGAs) and became more
resilient to takedown attempts [25]. Some variants of Pushdo
utilize HTTP on top of the Secure Sockets Layer/Transport
Layer Security protocol for C&C communication [26]. Cap-
tured traffic available at NETRESEC is used in this paper.

6) Kelihos: Kelihos is mainly involved in DDoS attacks and
email spam attacks. Capabilities of stealing Bitcoin wallets
and spreading malicious links over social network sites such
as Facebook were added to its latest versions. This botnet is
first discovered in December 2010 and sent billions of spam
messages in one day. Since then, three versions of Kelihos
have been detected. The first two versions use well-formed
HTTP, whereas the latest version employs an HTTP-based P2P
topology along with the fast-flux method [27]. NETRESEC
provides a Kelihos botnet captured traffic file, which is utilized
in this paper.

B. Flow Generation

Flow generation tools summarize traffic utilizing the network
packet headers. These tools collect packet information with
common characteristics such as IP addresses and port numbers,
aggregate them into flows, and then calculate some statistics
such as the number of packets per flow. In RFC 2722, a traffic
flow is defined as a logical equivalent for a call or a connection
in association with a user-specified group of elements [28].
The most common way to identify a traffic flow is to use a
combination of five properties from the packet header, includ-
ing the network and the transport layer headers of the TCP/IP
network protocol stack. These are as follows: source IP address,
destination IP address, source port number, destination port
number, and protocol. Hereafter, we will refer to this as 5-tuple
information.

Companies producing and managing network equipment
such as routers and switches provide different types of flow ex-
porters to summarize the network traffic in terms of flows using
the 5-tuple information. Moreover, they provide flow analysis
tools to analyze the flow streams. Some examples of com-
mercial off-the-shelf flow exporter and analysis techniques are
Cisco systems NetFlow [29], Juniper systems J-Flow [30], and
InMon systems S-Flow [31]. On the other hand, there are some
open-source publicly available exporters such as Maji [32] by
the WAND research group from The University of Waikato
or YAF [33] by the CERT Network Situational Awareness
(NetSA) research group.

However, over time, different versions of NetFlow were
developed, and the very recent version is now the IETF standard
for flow exporters as IP Flow Information Export (IPFIX;
RFC 5101). To collect and analyze traffic flow data, three
network elements should work together (see Fig. 1): 1) flow
exporter, which generates the flow data; 2) flow collector,
which collects (stores) the flow data from the exporter; and,
finally, 3) flow analyzer, which analyzes the collected data. A
variety of network devices (e.g., routers and switches) support

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HADDADI AND ZINCIR-HEYWOOD: BENCHMARKING THE EFFECT OF FLOW EXPORTERS AND PROTOCOL FILTERS 5

Fig. 1. Flow exporting mechanism.

different versions of flow data. Therefore, in this paper, we
employ different open-source flow exporters and collectors on
the aforementioned precaptured data sets. Then, we employ the
five machine learning classifiers to analyze the exported and
collected flows. Here, our objective is to see the effect of the
flow exporter and collector tools on the performance of the
analyzers.

The exporters that we employ in this paper are as follows.

1) Maji [32] is an open-source implementation of IPFIX
supported by the WAND research group at The University
of Waikato. This tool exports unidirectional flows from
live Packet CAPture (PCAP) interfaces and the most
common trace file formats. Maji is designed to support
custom template definition and can relay the IPFIX in-
formation to TCP, User Datagram Protocol, and Stream
Control Transmission Protocol collectors. Additionally,
it has a simple exporting method that outputs the flow
information in the standard output. Therefore, we did not
use any IPFIX collector for this tool.

2) YAF [33] is a bidirectional flow exporter designed by the
NetSA group at CERT. This tool collects and exports
IPFIX-based flows. Similar to Maji, YAF can process
packet data from precaptured traffic files or live captures
from an interface to export flows. Although YAF package
comes with a YAFAscii that outputs NetFlow packet
information in an ASCII format (which is employed in
this paper), any other NetFlow collector can be used for
this purpose, too.

3) Softflowd [34] is a lightweight unidirectional flow ex-
porter that supports different versions of NetFlow. This
tool exports NetFlow data using the traffic on a simple
device interface or a precaptured traffic (pcap format) file.
In this paper, once we export the network packets into
flows using Softflowd, we employed NfDump as the flow
collector. NfDump is an open-source flow collector tool,
which is fast and easy to use. NfDump supports different
versions of NetFlow, too [35].

4) Tranalyzer [36] is a lightweight unidirectional flow ex-
porter and analyzer that employs an extended version of
NetFlow feature set. This tool exports both the binary and
ASCII formats and therefore does not require any collec-
tor (such as NfDump). This makes it very easy to use.

5) Netmate [37] is a bidirectional flow exporter and analyzer.
This exporter can process live captures and precaptured
traffic and use different rule sets to control the exported
flow format. One of our former NIMS Lab members
has developed “Netmate-flowcalc,” which is a bundle
including Netmate v.0.9.5 packaged with NetAI modules
from v0.1 [38]. Not only does this open-source program
ease the installation process but also the NetAI module
has been extended for additional output features. We have
employed this latest version in this paper.

Table I summarizes the properties of the flow exporters
employed in this paper. The fifth column indicates if the ex-
porter requires a collector (if so, does the tool provide it in the
package) or it directly exports the flow information in a human
readable format. In this column of the table, “included” means
a collector is included in the package, but can be replaced
with another one if wanted. On the other hand, “embedded”
means a collector is embedded in the exporter and no external
collector can be used. The seventh column shows if the tool
supports specific categories of features. These categories are
defined based on the features that are frequently used in the
literature [5], [13], [16], [39]. Time category refers to the
features indicating start time, end time, and duration of the flow.
Time-based category is important when flow aggregation or
window-based analysis is employed. Interarrival category refers
to the statistics calculated over a flow, such as the average inter-
arrival time, which represents the average number of millisec-
onds between consecutive packets of a flow. Packets&Bytes
category refers to the features computed based on the number
of packets that form the flow and their size (in byte) such as
the average number of bytes per packet. Flags category refers
to any feature related to the packet header flags such as the TCP
SYN flag.

C. Flow Analysis: Classifying the Flows

In this paper, five well-known machine learning algorithms
that are widely used in the literature ([3], [5], [6], [8], [39], and
[40]) are employed: C4.5, SVM, ANN, Bayesian networks, and
Naive Bayes.

1) C4.5: C4.5 is a decision tree algorithm. A decision tree
is a tree-structured graph (model) where internal nodes repre-
sent conditions applied to attributes (features), the leaf nodes
represent the class labels, and the paths from root to leaves
represent the classification rules. C4.5 algorithm is an extension
to ID3 algorithm, which aims to find the small decision trees
(using pruning) and then convert the trained tree into an If-Then
rule set. Decision trees are constructed through a process of
deterministically splitting the training partition based on the se-
lection of the attribute maximizing the normalized information
gain. Each branch of the tree partitions the (training) data into
subsets, where the goal is to identify subsets that have the same
label. Recursive application of this process incrementally con-
structs the decision tree until leaf nodes appear with sufficiently
high normalized information gain.

2) SVM: SVM is a binary learning algorithm that can be
used for classification and rule regression. The goal of this clas-
sification algorithm is to build an N -dimensional hyperplane

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

TABLE I
PROPERTIES OF FLOW EXPORTERS EMPLOYED

that optimally separates the samples of data into two classes
with maximal margin. The classifier can easily be extended
to K-class classification by constructing k two-class (binary)
classifiers. In order to use an SVM to solve a classification
problem on nonlinearly separable data, a nonlinear mapping
of the input data into a high-dimensional feature space is
required. Then, an optimal hyperplane for separating the high-
dimensional features of input data can be constructed, which
maximizes the separation margin. Finally, a linear mapping
from the feature space to the output space is required.

3) ANNs: ANN algorithm is inspired by the structure of
the biological neural network. It is composed of neurons and the
connections between them. Back-propagation network is the
most frequently used version of this algorithm, which consists
of an input layer, an output layer, and at least one hidden
layer. All the neurons of each layer (except the output layer)
are connected to all the neurons of the next layer by an axon
associated with a weight factor. Each training iteration modifies
the neurons’ weight factors in order to minimize the error rate.
The training process stops after reaching the maximum epoch
(time step) or meeting a specific stopping criterion (e.g., error
rate increases).

4) Naive Bayes: A Naive Bayes classifier is a simple prob-
abilistic classifier based on the Bayes theorem. Bayes the-
orem assumes that the presence of an attribute in a given
class is independent of other attributes. The classifier uses the
maximum-likelihood (probability) method for parameter esti-
mation. Given a training set, the classifier predicts the training
set samples that belong to the class C, having the highest
posteriori.

5) Bayesian Networks: Given a set X of discrete attributes,
Bayesian networks are graphical representations for probabilis-
tic relationships among the variables of the set. In other words,
a Bayesian network is a directed acyclic graph that represents
the probability distribution over X . The graph nodes that are
associated with the attributes are connected through the links
that correspond to the direct influence from one attribute to the
other. Given the Bayesian networks structure (with nodes and
direct influence links), the conditional probability distribution
of the graph is then computed. The learning process aims to
find a Bayesian network structure that describes the training
data in the best possible way. To this end, two categories of
approaches are proposed: score-and-search-based and greedy-
based approaches.

Detailed information on the five machine learning techniques
that are used in this paper can be found in [41].

IV. EVALUATIONS

As discussed earlier, in this paper, our goal is to evaluate the
effect (if any) of flow exporters for the representation of net-
work traffic in botnet detection. To achieve this, we benchmark
five open-source flow exporters on eight different botnet traces
using five different machine learning algorithms. In this case,
we have benchmarked the effect of flow exporters Maji, YAF,
Softflowd, Netmate, and Tranalyzer. We have employed eight
different traffic traces for the botnets Citadel, Zeus, Conficker,
Kelihos, and Cutwail. Last but not the least, we have employed
the machine learning algorithms C4.5, SVM, ANN, Bayesian
networks, and Naive Bayes as the classifiers for the botnet
traffic identification.

A. Data Sets

Data sets employed in this paper can be grouped into two
different categories: 1) traffic log files captured in the wild and
made publicly available and 2) traffic log files captured by the
authors (these are also made publicly available [16]). In the first
group, a Zeus data set was obtained from the Snort web site
and another one from the NETRESEC repository. Moreover,
one Citadel, one Kelihos, and one Cutwail traffic data sets were
also obtained from the NETRESEC repository.

In the second group, as discussed in Section III, we have
captured traffic data sets as a result of the communications
with Alexa, Zeus, Citadel, and Conficker servers where the
domain names of these servers were published in the publicly
available lists. Given that even Alexa lists (representing normal
traffic) might have malicious domain names [42], we manu-
ally extracted 500 benign domain names from Alexa lists to
generate the normal traffic data sets employed in this paper.1

As discussed in Section III-A, for Zeus botnet, we employed
the domain name list provided by ZeusTracker and DNS-BH
blocklists [19], [20]. The domain names from the ZeusTracker
Citadel list forms the basis for Citadel botnet. These are the
domain names that were still active (after Microsoft’s Citadel
botnet takedown operation in June 2013). Finally, Conficker
domain names were obtained from the University of Bonn and
DNS-BH published Conficker domain name lists [20], [24].
Collecting the domain name lists, we attempted to establish an
HTTP-based communication with the domain names (they rep-
resent the potential C&C servers) and capture the traffic in the

1http://web.cs.dal.ca/~haddadi/data-analysis.htm

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HADDADI AND ZINCIR-HEYWOOD: BENCHMARKING THE EFFECT OF FLOW EXPORTERS AND PROTOCOL FILTERS 7

TABLE II
NIMS DATA SPECIFICATIONS

Fig. 2. Number of extracted flows.

process. Table II shows the number of domain names that we
attempted to communicate. It should be noted here that we did
not use any sampling while capturing the traffic. In other words,
we captured all of the transmitted/received packets. Hereafter,
we will refer to our generated data sets as NIMS data sets.

Once we captured the traffic data sets, the aforementioned
five flow exporters are applied on the traffic captures. Fig. 2
presents the number of extracted flows by each of the tools
on all of the data sets: one nonmalicious and eight malicious
data sets. However, Conficker (NIMS) data (approximately
15 million packets) are actually much bigger than the other
data sets; thus, we only presented 0.5% of it (i.e., about 10 000
number of flows for Softflowd) to be able to have a readable
Fig. 2. As shown in Fig. 2, Tranalyzer, Maji, and Softflowd
tools export almost the same number of flows for all of the data
sets. They also provide the highest number of flows for a given
traffic data set. This is not surprising since all three of these
tools are unidirectional flow exporters. On the other hand, YAF
and Netmate did not show any consistent behavior over the data
sets. This might be caused by the rules defined by the tools.
For example, Netmate did not export any flow for Kelihos (NE-
TRESEC) because, in that data set, the number of out-of-order
packets was higher than the acceptable threshold defined in
Netmate. A comparison between the numbers of exported flows
by uni- and bidirectional exporters shows that the number of
exported flows by unidirectional exporters is almost two times
higher than the number of flows by bidirectional exporters for
all of the data sets, except for Citadel (NIMS) and Zeus (NIMS).
This shows that Citadel (NIMS) and Zeus (NIMS) have more
one-way communications than the other data sets, which can
be caused by the number of unsuccessful connection requests
or long (unclosed) connections that are split into multiple flows
by the exporters according to the maximum lifetime threshold.

Table I shows the number of features supported by each
of the exporters. Due to space limitations, we cannot give

the full list of these attributes in this paper, but interested
readers can visit the web site for each tool and see the full
list of these attributes. We employed all of features provided
by the exporters/collectors as inputs to our machine learning
classifiers, except the IP addresses, port numbers, and any
nonnumeric features. The reasons behind these are as follows:
IP addresses can be anonymized, whereas port numbers can
be assigned dynamically. Thus, employing such features may
decrease the generalization abilities of the detection systems for
unseen behaviors. Moreover, the presentation of nonnumeric
features may introduce other biases to the classifiers [43]; thus,
it is left to future work to introduce such features.

B. Performance Criteria for Botnet Classification

In traffic classification, two metrics are typically used in
order to quantify the performance of the classifier: DR and FPR.

1) DR: In this case, DR reflects the number of the correctly
classified specific botnet flows in a given traffic file. It is
calculated using

DR =
TP

TP + FN
(1)

where TP (true positive) is the number of botnet flows that are
classified correctly, and FN (false negative) is the number of
botnet flows that are classified incorrectly (as normal flows).

2) False Positive: In this case, FPR shows the number of
normal traffic flows that are classified incorrectly as the botnet
flows, i.e.,

FPR =
FP

FP + TN
(2)

where TN (true negative) is the number of normal traffic flows
that are classified correctly.

3) Time Complexity: Complexity can be measured on differ-
ent criteria such as memory consumption, time, or solution. In
this case, we employ computation time as the time complexity,
which is an important metric for machine learning classifiers to
measure their computational cost during the training phase.

Naturally, a high DR, a low FPR, and a low time complexity
are the desirable outcomes.

C. Results

The aforementioned classification algorithms were selected
in this paper because of their high performance reported in
the literature with regard to the network traffic classification,
specifically in botnet detection [3], [5], [6], [8], [39], [40].
We employed these classification techniques via Weka, a well-
known open-source tool in this field [44]. In general, a machine
learning classifier requires a number of steps. First, a matrix of
instances (in this paper, instances are flows) versus features (at-
tributes) is needed to describe the data set. A vector of features
describes each instance (flow) in a given traffic file. The features
are used as values to quantify different characteristics of a flow
such as the average packet size or the minimum interarrival
time. Second, a label (ground truth) is provided for each flow,
which is the class description. In this paper, the label for a flow

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

TABLE III
AVERAGE TRAINING TIME (IN SECONDS)

in the Alexa traffic file is “normal,” whereas in a Zeus traffic
file, it is “Zeus botnet.” Finally, a classifier needs to be trained
using a data set. This is called the training phase. This phase
produces a solution as the output. This solution can be then
verified on a test data set (unseen instances). Hence, to evaluate
these classifiers on our traffic flows, first, a balanced training
data set is formed by randomly selecting (uniform random
selection) from the nonmalicious (Alexa) flow data set and from
each of the malicious data sets. Classifiers were then run on
each balanced training data set using tenfold cross validation to
further avoid any data set biases that might affect the results.

After analyzing the NIMS generated traffic, we observed that
successful DNS responses were received from 95% of Alexa,
75% of Zeus, 25% of Citadel, and 1% of Conficker domain
names. In a real-life botnet communication, a bot queries the
C&C domain names provided by the DGA (or the botmaster),
and only one of them is resolved as the alive C&C server at
the time of the communication. We have confirmed the data
generated using such an approach in our previous research
[6], [16]. Therefore, the combination of these resolved and
unresolved domain names of the list we employed can be
considered as the representation of a real botnet behavior.

Fig. 3 shows the classification results of the five classifiers
on the traffic flows generated by the five flow exporters. These
results demonstrate that the performance of a classifier does
indeed change depending on which flow exporter is used. For
example, on these data sets, it seems that each classifier works
better if the flow exporter is Tranalyzer or Maji. In particular,
the performance of C4.5 and ANN on Maji and Tranalyzer
indicates that ANN did perform better (but not statistically
significantly better) than C4.5. However, the C4.5 decision-
tree-based classifier performs not only competitively but also
with a considerable low time complexity (see Table III). It
should be noted here that these time measurements are taken
on a computer that is used for these evaluations, where it
has 16-GB random access memory and Core i7-2600 central
processing unit, 3.40 Ghz. In short, if the time criterion is an
important factor in an environment, the C4.5 classifier has an
advantage over ANN.

Moreover, C4.5 has the ability to perform attribute selection
as an implicit property of constructing the classifier. In other
words, it has the ability of choosing the most appropriate
features from all the features given to it. Such ability enriches
any analysis that can be done post classification. This enables
the human expert (security analyst/system administrator) em-
ploying this system for a better understanding of the solution
and the botnet behavior. These properties of the decision tree
classifier along with the results imply that the C4.5 classifier
seems to be a better choice for our purposes in terms of the
performance metrics used and the data sets employed.

Fig. 3. DRs of the five classifiers on five flow exporters on all data sets.
(a) C4.5. (b) SVM. (c) Naive Bayes. (d) Bayesian networks. (e) ANN.

While detection systems with low DR are important in un-
derstanding and identifying the behavior of interest, the effect
of FPR can be very important, too. In the case of botnet classifi-
cation (detection), any normal behavior that is mistakenly iden-
tified as botnet not only increases the false positive (alarm) rate
but also decreases the trust to the detection system. Therefore,
we analyzed the FPR of the five classifiers, as well as the effect
(if any) of the flow exporters, on this performance metric. Fig. 4
shows the FPRs of C4.5 and ANN. Due to space limitations, we
only present the results for the best two classifiers. However,
the trend is the same for all classifiers. These two classifiers
were also the best performers in terms of minimizing the FPR
among all the classifiers employed in this paper on all the
exporters and data sets. These results demonstrate that the flow

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HADDADI AND ZINCIR-HEYWOOD: BENCHMARKING THE EFFECT OF FLOW EXPORTERS AND PROTOCOL FILTERS 9

Fig. 4. FPRs of the C4.5 and ANN classifiers on the five flow exporters on all
data sets. (a) C4.5. (b) ANN.

exporter used also has an effect on the FPR obtained for all
classifiers. On these data sets, the lowest FPRs are provided by
ANN using Maji as the exporter. However, still some of the
FPRs obtained even using Maji feature set are high to accept in
practice. Hence, in the following, we study this phenomenon in
more detail.

In the evaluations presented above, we used all the network
packets available in the networks traces to convert them to
flows. As the next step, we want to analyze how the per-
formance of the aforementioned systems would change (if
any) when traffic filters are in place on a given network. In
practice, almost all network operation centers run packet filters
to analyze and shape their traffic according to their organiza-
tional needs and policies. To this end, we conduct a series of
experiments applying HTTP and DNS filters on the data sets
before classifying them for botnet detection.

1) HTTP Filtering: Given the wide range of the HTTP us-
age on the Internet, most recent botnets employ HTTP protocol
to hide their malicious activities among the normal web traffic
[45]. This way, they can easily bypass firewalls and avoid
botnet detection mechanisms. The botnets that we employed
in this paper also utilize HTTP protocol to communicate with
their bots. Thus, to investigate the effect of protocol filtering
on botnet detection via machine learning approaches using
different flow exporters, we filtered the HTTP traffic flows and
forwarded them to our botnet classifiers. Then, we repeated our
approach presented above to train our classifiers.

Fig. 5 shows the botnet classification results versus the
normal traffic using the HTTP filter. Due to space limitations,
we again choose the two best performing classifiers (in terms
of DR and FPR) and present their performances here. Similar
to the traffic classification without any packet filtering, C4.5
and ANN outperformed the other classifiers. The results also
support our observations that the classifiers could differentiate
botnet behavior with higher performances when a specific flow
exporter is used as opposed to the others. Almost all of the five
classifiers showed performance increases in terms of average
DR and FPR when Tranalyzer and Maji were in use on all

Fig. 5. DRs of the C4.5 and ANN classifiers on five flow exporters using
HTTP traffic only on all data sets. (a) C4.5. (b) ANN.

data sets, except one. In this case, the classifiers showed a
decrease in DR on Zeus data sets when using Maji, whereas
an average 2% increase is observed with Tranalyzer on Zeus
data set. Therefore, in these experiments where the HTTP filter
is used, we have a clear winner in terms of flow exporters used.
This is Tranalyzer. This observation might imply that HTTP
traffic could be better presented by Tranalyzer flow features
rather than the other flow exporters features. A close look at
the features that the C4.5 classifier employed using Tranalyzer
demonstrates that interarrival-based features are the ones that
are highly employed in the decision tree solutions. Hence, we
speculate that the supported features by Tranalyzer are very
useful in terms of representing HTTP traffic, which are also
introduced by Moore et al. for flow classification [46]. On the
other hand, such features are not supported by Maji and Soft-
flowd. These two exporters are open-source versions of IPFIX
and Netflow V9, respectively. It is a concern that, although
interarrival-based features are very important for botnet traffic
analysis, they are not supported by mostly used exporter tools
such as Netflow and IPFIX.

As discussed earlier, DR is not the only parameter that should
be analyzed to evaluate the performance of a classifier. Fig. 6
shows the FPRs of the two classifiers. Compared with Fig. 4,
both classifiers showed at least 1% reduction in the FPR on all
data sets. Moreover, these results indicate that, although the DR
of the classifiers might not change significantly when traffic
filtering is in place, the FPR (misclassification) can change
significantly (lowered false alarm rates). This is evidence on
how useful the traffic filtering can be when employed to refine
the data, which could be the center of focus specifically for the
challenging botnet detection research. To investigate the effect
of protocol filtering on botnet detection furthermore, we run
a series of experiments on DNS filtering given that DNS is
another essential protocol in botnet communication.

2) DNS Filtering: In addition to its many legitimate uses,
DNS is also used by botnets to manage their infrastruc-
tures. Botnets employ the DNS protocol along with fluxing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

Fig. 6. FPRs of the C4.5 and ANN classifiers on five flow exporters using
HTTP traffic only on all data sets. (a) C4.5. (b) ANN.

Fig. 7. DRs of the C4.5 and ANN classifiers on five flow exporters using DNS
traffic only on all data sets. (a) C4.5. (b) ANN.

techniques to solve the single point of failure problem of their
C&C servers and to achieve mobility [2]. Many botnets use the
DNS legitimate infrastructure to locate their C&C servers to
avoid static configuration of C&C servers IP addresses such as
Zeus, Conficker, and Pushdo.

Thus, we also evaluate the aforementioned systems using
only the DNS traffic flows via the DNS filters we set on the
captured traffic. In this case, some of the data sets (Cutwail,
Kelisos, and Zeus from Snort and NETRESEC) are very short
traces; thus, they do not have DNS packets to generate enough
DNS flows when the filters are in process. Thus, in Fig. 7, where
the results of this evaluation are presented, there are no perfor-
mance indicators for these data sets. Although, on the rest of the
data sets, all of the classifiers showed some level of improve-
ment in their performances when DNS filters were set, com-
pared with the classification performance of the traffic without
filtering (see Fig. 3). As shown in Figs. 7 and 8, the performance

Fig. 8. FPRs of the C4.5 and ANN classifiers on five flow exporters using
DNS traffic only on all data sets. (a) C4.5. (b) ANN.

TABLE IV
C4.5 CLASSIFICATION RESULTS USING THE TRANALYZER

FEATURE SET WITH HTTP FILTER

of C4.5 (as the best performing classifier in this experiment) is
improved by DNS filtering by an average of 3% in terms of DR
and 4% in terms of FPR using all five exporters. However, these
results suggest that, again, Tranalyzer is the winner when DNS
filtering is in use with better DR and acceptable FPR.

D. Highlights

Overall, here are the highlights of the evaluation results we
presented above: 1) Although some of the flow exporters in this
paper are based on the same standard (i.e., IPFIX), the number
of features they support varies, e.g., Maji has 59, whereas
YAF has 46 features. Some of these features are the ones that
are employed in the machine learning solutions. For example,
“MinimumIPTotalLength” is utilized by C4.5 on Maji feature
set, whereas YAF does not support such a feature. 2) Since
flow exporters have different mechanisms to generate flows
(based on the standard they follow), these tools export a differ-
ent number of flows for a given traffic file. In this case, not only
is the number of exported flows different but also, sometimes,
the exporter might not generate any flows due to its prede-
fined rules, e.g., Netmate on Kelihos traffic trace. 3) Among
the five flow exporters, all of the classifiers performed better
when Tranalyzer and Maji were employed, whereas the third
place belongs to Netmate. Therefore, this demonstrates that
the tool employed for flow exporting analysis does have an

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HADDADI AND ZINCIR-HEYWOOD: BENCHMARKING THE EFFECT OF FLOW EXPORTERS AND PROTOCOL FILTERS 11

TABLE V
TRANALYZER FEATURES EMPLOYED BY C4.5 FOR BOTNET CLASSIFICATION—ALL BOTNETS

TABLE VI
PERFORMANCES REPORTED IN THE LITERATURE

effect on the traffic classification performance. 4) On the other
hand, the protocol filtering experiments show that such filtering
improves the botnet classification by focusing the classifier
on a specific portion of the traffic in more detail (e.g., HTTP
connections only). As indicated by the results in the two sets
of filtering experiments, the Tranalyzer flow exporter and the
C4.5 classifier are the winners among the exporters and the
classifiers, respectively, with almost no exception. Then, ANN
comes next as the second best performing classifier. 5) Compar-
ing HTTP filtering versus DNS filtering shows that the FPRs
and DRs did not change significantly in terms of focusing
on one filtering versus the other. However, HTTP filtering
seems to increase the performance more than the DNS filtering.
This might be because all of the botnets we included in our
evaluations employ HTTP as their communication protocol,
whereas DNS protocol is used only to find the C&C servers
by the botnets employed in this paper. Tables IV and V show
the classification results and the features employed by C4.5 on
all of the eight botnet data sets while using HTTP filtering,
respectively. These 50 features are the automatically selected
features by C4.5 based on the information gain criterion from
the complete feature set given to it. As shown in the table, C4.5
could obtain a DR of up to 99.9% and FPR of up to 0.1% by
using only 50 features out of the 93 features (complete set)
of the Tranalyzer feature set on the HTTP filtered traffic. This
performance of the proposed combination is higher (e.g., [7]
and [9]) or similar (e.g., [4], [5], and [13]) to the results reported
on the HTTP-based botnets (not necessarily the botnets or even
the data sets employed in this paper) in the literature (see
Table VI).

The bold features in Table V show the highly utilized fea-
tures, indicating the importance of interarrival and Packets&
Bytes feature categories, which are also supported by other
works in the literature [5], [8]. Moreover, Tranalyzer has com-
bined the most important features that are required for detecting
various types of botnets reported in the literature [5], [8],
[10], [13]. Hence, we believe that the proposed feature set by
Tranalyzer can be useful for other types of botnets as well,
which can be used for a real-time detection system.

V. CONCLUSION

Botnets are considered as one of the main security threats
on the Internet due to their high reported infection rate and
extensive range of malicious activities with active update ca-
pability. Hence, the need for botnet detection approaches that
can adapt to the botnet evolution is very important. To this end,
many automatic botnet detection approaches applying network
traffic analysis are proposed in the literature. Each of these
systems utilizes particular network traffic features based on
flows (packet headers) in their analysis of the traffic. Hence,
in this paper, we have benchmarked five different feature sets
extracted by open-source flow exporters and investigated the
effect of these flow (packet header based) features in botnet
detection. To this end, five machine learning classifiers that are
frequently used in network traffic classification were employed.
Given that botnet communication can be divided into different
parts (such as locating the C&C server and establishing a
connection) and for each of these parts different protocols are
utilized based on the type of botnets, we also investigated
the effect of protocol filters with the main focus on HTTP-
based botnets. As the results show, the choice of feature set
and protocol filter is very important and can greatly affect
the performance of the botnet detection system. Our results
suggest that open-source flow exporters Tranalyzer and Maji
enable the classifiers to identify different botnet behaviors with
significantly higher performances on all the data sets employed
in our work. For the evaluations performed in this paper, the
combination of the Tranalyzer tool with the C4.5 classifier
using the HTTP filter gives the best performance in terms of DR
and FPR on all the botnet data sets employed. Future work will
explore the effect of nonnumeric features and other protocol
filters for botnet traffic analysis. Moreover, the role of time and
interarrival-based features will be analyzed in more detail.

ACKNOWLEDGMENT

This research is conducted as part of the Dalhousie Uni-
versity Network Information Management and Security Lab at
http://projects.cs.dal.ca/projectx/.

REFERENCES

[1] M. Feily and A. Shahrestani, “A survey of botnet and botnet detec-
tion. Emerging security information,” in Proc. Syst. Technol., 2009,
pp. 268–273.

[2] Open DNS Inc., Whitepaper, The Role of DNS in Botnet Command &
Control, 2012.

[3] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, “Botnet detection
based on network behavior,” Adv. Inf. Security, vol. 36, pp. 1–24, 2008.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

[4] V. Kirubavathi and R. A. Nadarajan, “HTTP botnet detection using adap-
tive learning rate multilayer feed-forward neural network,” in Proc. Inf.
Security Theory Practice, Security, Privacy Trust Comput. Syst. Ambient
Intell. Ecosyst., 2012, pp. 38–48.

[5] D. Zhao et al., “Peer-to-peer botnet detection based on flow intervals,” in
Proc. IFIP Int. Inf. Security Privacy, 2012, pp. 87–102.

[6] F. Haddadi, J. Morgan, E. G. Filho, and A. Nur Zincir-Heywood, “Botnet
behaviour analysis using IP flows with HTTP filters using classifiers,” in
Proc. 28th WAINA, 2014, pp. 7–12.

[7] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of HTTP-
based malware and signature generation using malicious network traces,”
in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation, 2010, p. 26.

[8] Z. B. Celik, J. Raghuram, G. Kesidis, and D. J. Miller, “Salting pub-
lic traces with attack traffic to test flow classifiers,” in Proc. CSET ,
2011, p. 3.

[9] P. Wurzinger et al., “Automatically generating models for botnet detec-
tion,” in Proc. 14th ESORICS, 2009, pp. 232–249.

[10] H. R. Zeidanloo, A. Bt. Manaf, P. Vahdani, F. Tabatabaei, and M. Zamani,
“Botnet detection based on traffic monitoring,” in Proc. ICNIT , 2010,
pp. 97–101.

[11] J. Francois, S. Wang, R. State, and T. Engel, “BotTrack: Tracking botnets
using Netflow and PageRank,” Networking, vol. 6640, pp. 1–14, 2011.

[12] K. Wang, C. Huang, S. Lin, and Y. Lin, “A fuzzy pattern-based filtering
algorithm for botnet detection,” Comput. Netw., vol. 55, no. 15, pp. 3275–
3286, Oct. 2011.

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering analysis
of network traffic for protocol- and structure-independent botnet detec-
tion,” in Proc. 17th USNIX Security Symp., 2008, pp. 139–154.

[14] Publicly Available PCAP Files. [Online]. Available: http://www.netresec.
com/?page=PcapFiles

[15] Zeus Trojan Analysis. [Online]. Available: https://labs.snort.org/papers/
zeus.html

[16] F. Haddadi and A. Nur Zincir-Heywood, “Data confirmation for botnet
traffic analysis,” in Proc. 7th Int. Symp. FPS, to be published.

[17] Alexa. [Online]. Available: http://www.alexa.com/topsites
[18] Zeus/ZBot Malware Shapes up in 2013, May 2013. [Online].

Available: http://blog.trendmicro.com/trendlabs-security-intelligence/
zeuszbot-malware-shapes-up-in-2013/

[19] Zeus Tracker. [Online]. Available: https://zeustracker.abuse.ch/
[20] DNS-BH- Malware Domain Blocklist. [Online]. Available: http://www.

malwaredomains.com/
[21] Citadel Zeus bot. [Online]. Available: https://www.botnets.fr/index.php/

Citadel_ZeuS_bot
[22] Citadel Makes a Comeback, Targets Japan Users, Sep. 2013. [Online].

Available: http://blog.trendmicro.com/trendlabs-security-intelligence/
citadel-makes-a-comeback-targets-japan-users/

[23] K. Fu and J. Blum, “Controlling for cyber security risks of medical device
software,” Commun. ACM, vol. 56, no. 10, pp. 35–37, Oct. 2013.

[24] Conficker Domain List. [Online]. Available: http://net.cs.uni-bonn.de/
uploads/media/c_domains_april2009.zip

[25] Pushdo botnet is evolving, becomes more resilient to takedown attempts,
May 2013. [Online]. Available: http://www.pcworld.com/article/2038893/
pushdobotnetisevolvingbecomesmoreresilienttotakedownattempts.html

[26] Infiltering Pushdo Part 2, Aug. 2010. [Online]. Available: http://www.
fireeye.com/blog/technical/botnet-activities-research/2010/08/infiltrating-
pushdo-part-2-2.html

[27] It’s (Already) Baaack: Kelihos Botnet Rebounds With New Variant,
Mar. 2012. [Online]. Available: http://www.darkreading.com/attacks-
breaches/its-already-baaack-kelihos-botnet-reboun/232700540

[28] RFC 2722, Oct. 1999. [Online]. Available: http://tools.ietf.org/html/
rfc2722

[29] Cisco IOS NetFlow. [Online]. Available: http://www.cisco.com/en/US/
products/ps6601/products_ios_protocol_group_home.html

[30] Juniper J-Flow. [Online]. Available: http://www.juniper.net/techpubs/
software/erx/junose82/swconfig-ip-services/html/ip-jflow-stats-config2.
html

[31] S-Flow. [Online]. Available: http://www.inmon.com/technology/
index.php

[32] Maji. [Online]. Available: http://research.wand.net.nz/software/maji.php
[33] YAF. [Online]. Available: http://tools.netsa.cert.org/yaf/index.html
[34] Softflowd. [Online]. Available: http://www.mindrot.org/projects/

softflowd
[35] NfDump. [Online]. Available: http://nfdump.sourceforge.net/
[36] Tranalyzer. [Online]. Available: http://tranalyzer.com/
[37] Netmate. [Online]. Available: http://ipmeasurement.org/index.phpoption=

com_content&view=article&id=10&Itemid=9
[38] Netmate FlowCalc. [Online]. Available: http://dan.arndt.ca/nims/

calculating-flow-statistics-using-netmate/
[39] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. Vasilakos, “An effective

network classification method with unknown flow detection,” IEEE Trans.
Netw. Serv. Manag., vol. 10, no. 2, pp. 133–147, Jun. 2013.

[40] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate
flow-based network traffic classification: Evaluation and comparison,”
Performance Eval., vol. 67, no. 6, pp. 451–467, Jun. 2010.

[41] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2004.

[42] P. Royal, Maliciousness in Top-Ranked Alexa Domains. [Online]. Avail-
able: https://www.barracudanetworks.com/blogs/labsblog?bid=2438

[43] A. Makanju, A. N. Zincir-Heywood, and E. Milios, “Robust learning
intrusion detection for DoS attacks on wireless networks,” Int. J. Intell.
Data Anal., vol. 15, no. 5, pp. 801–823, 2011, IOS Press.

[44] WEKA. [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/
[45] HTTP-Botnets: The dark side of a standard protocol (2013, Apr.). [On-

line]. Available: http://securityaffairs.co/wordpress/13747/cyber-crime/
http-botnets-the-dark-side-of-an-standard-protocol.html

[46] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based
classification,” Intel Research-Cambridge, Cambridge, U.K., Tech. Rep.,
2005.

Fariba Haddadi (S’12) received the B.Eng. and M.Sc. degrees from Yazd
University, Yazd, Iran, in 2006 and 2010, respectively. She is currently working
toward the Ph.D. degree with the Faculty of Computer Science, Dalhousie
University, Halifax, NS, Canada.

Her research interests include network traffic analysis, intrusion detection,
data mining, and machine learning.

A. Nur Zincir-Heywood (M’01) received the Ph.D.
degree in computer science and engineering from
Ege University, Izmir, Turkey, in 1998.

She is currently a Full Professor of computer
science with Dalhousie University, Halifax, NS,
Canada. Prior to moving to Dalhousie University in
2000, she was a Researcher with Sussex University,
Brighton, U.K., and the University of Karlsruhe,
Karlsruhe, Germany, and an Instructor at the In-
ternet Society Network Management workshops.
Her research interests include network operations,

computer and network security, information extraction, and computational
intelligence.

Dr. Zincir-Heywood is a member of the Association for Computing Machinery.

http://www.netresec.com/?page=PcapFiles
http://www.netresec.com/?page=PcapFiles
https://labs.snort.org/papers/zeus.html
https://labs.snort.org/papers/zeus.html
http://www.alexa.com/topsites
http://blog.trendmicro.com/trendlabs-security-intelligence/zeuszbot-malware-shapes-up-in-2013/
http://blog.trendmicro.com/trendlabs-security-intelligence/zeuszbot-malware-shapes-up-in-2013/
https://zeustracker.abuse.ch/
http://www.malwaredomains.com/
http://www.malwaredomains.com/
https://www.botnets.fr/index.php/Citadel_ZeuS_bot
https://www.botnets.fr/index.php/Citadel_ZeuS_bot
http://blog.trendmicro.com/trendlabs-security-intelligence/citadel-makes-a-comeback-targets-japan-users/
http://blog.trendmicro.com/trendlabs-security-intelligence/citadel-makes-a-comeback-targets-japan-users/
http://net.cs.uni-bonn.de/uploads/media/c_domains_april2009.zip
http://net.cs.uni-bonn.de/uploads/media/c_domains_april2009.zip
http://www.pcworld.com/article/2038893/
http://www.
http://www.darkreading.com/attacks-
http://tools.ietf.org/html/rfc2722
http://tools.ietf.org/html/rfc2722
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.juniper.net/techpubs/software/erx/junose82/swconfig-ip-services/html/ip-jflow-stats-config2.html
http://www.juniper.net/techpubs/software/erx/junose82/swconfig-ip-services/html/ip-jflow-stats-config2.html
http://www.juniper.net/techpubs/software/erx/junose82/swconfig-ip-services/html/ip-jflow-stats-config2.html
http://www.inmon.com/technology/
index.php
http://research.wand.net.nz/software/maji.php
http://tools.netsa.cert.org/yaf/index.html
http://www.mindrot.org/projects/softflowd
http://www.mindrot.org/projects/softflowd
http://tranalyzer.com/
http://ipmeasurement.org/index.phpoption=
http://dan.arndt.ca/nims/calculating-flow-statistics-using-netmate/
http://dan.arndt.ca/nims/calculating-flow-statistics-using-netmate/
https://www.barracudanetworks.com/blogs/labsblog?bid=2438
http://www.cs.waikato.ac.nz/ml/weka/
http://securityaffairs.co/wordpress/13747/cyber-crime/http-botnets-the-dark-side-of-an-standard-protocol.html
http://securityaffairs.co/wordpress/13747/cyber-crime/http-botnets-the-dark-side-of-an-standard-protocol.html

