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Abstract

Coordinated attacks, where the tasks involved in an at-
tack are distributed amongst multiple sources, can be used
by an adversary to obfuscate his incursion. In this paper we
present an approach to detecting coordinated attacks that
is based on adversary modeling of the desired information
gain. A detection algorithm is developed that is based on
solutions to the set covering problem, where we aim to rec-
ognize coordinated activity by combining events such that a
large portion of the information space is covered with mini-
mal overlap. We demonstrate this approach by developing a
coordinated scan detector, where the targets of a port scan
are distributed amongst multiple coordinating sources. In
this case, the adversary wishes to gain information about
the active hosts and ports on a particular network. We pro-
vide an algorithm that is capable of detecting horizontal
and strobe scans against contiguous address spaces. We
present experimental results from testing this algorithm in
a controlled environment, demonstrating that it has an ac-
ceptably low false positive rate, discussing the conditions
required to maximize the detection rate and the limitations
of the approach.

1 Introduction

Adversaries have developed numerous techniques to
avoid the detection of their activities by defenders. One
such technique is the use of a coordinated attack. Braynov
and Jadliwala [3] defined two types of co-operation that can
be used in a coordinated attack: action correlation and task
correlation. Action correlation refers to how the actions of
one user can interact with the actions of another user. For
example, a coordinated attack may require that one user per-
form a particular action so that another user can perform
the actual attack. Task correlation, however, refers to the
division of a task amongst multiple users, where a paral-
lel (or coordinated) port scan is provided as an example.
Braynov and Jadliwala focused their model on action corre-
lation, whereas we address task correlation.

A security administrator might be interested in knowing
about coordinated attacks against his system for two rea-
sons: (1) he would want to know about this attack in much
the same manner as he would want to know about any attack
of this type, and (2) he might be even more interested in the
attack given the lengths that the adversary has taken in or-
der to remain undetected. Performing a coordinated attack
requires greater resources and potentially greater technical
skill, which might provide some indication to a defender as
to the skill and motivation of the adversary.

A common example of a coordinated attack where the
tasks have been distributed amongst multiple sources is the
coordinated port scan. A port scan is a reconnaissance
method used by an adversary to gather information about
the responding computers and open ports on a target net-
work. During a coordinated port scan, the adversary em-
ploys multiple sources, each scanning a portion of the target
network. To the target, it appears as if multiple sources are
each interested in some small portion of the network. While
intrusion detection systems can be configured to recognize
and report single-source port scanning activity, current sys-
tems do not recognize if any of these sources are collabo-
rating.

This paper focuses on coordinated scan detection be-
cause it represents the form of coordinated attack that has
been discussed most extensively. Section 2 describes the
general problem of coordinated scan detection and provides
some definitions. Our approach to solving the problem
is presented in Section 3. Unlike previous detection ap-
proaches, which largely try to cluster packets according to
similar features, we define various scan footprint patterns in
the context of an adversary and the information he wishes
to gain. We then develop an algorithm that takes advantage
of the footprints that particular goals will generate. We ex-
plore the effects of parameters on our algorithm in Section
4, reporting on the overall results and discussing the limi-
tations of our approach. We further discuss how the effects
of time should be measured — as opposed to time itself —
as a subsection on future work. A comparison to related
work on detecting coordinated scans is provided in Section
5. Concluding comments are provided in Section 6.



2 Problem Description

The purpose of a port scan is to determine if a particu-
lar service(s) is available on a particular host(s). In order
to avoid detection, stealth port scans were used, with early
versions focusing on abusing the TCP protocol in order to
avoid having the activity logged [6]. Later methods for
avoiding detection included randomizing the order in which
IPs are scanned, inserting time delays between scans and/or
randomizing the length of the time delay between scans, and
randomizing TCP packet field values (e.g., sequence num-
bers, source ports) [12]. Scanners will also avoid detection
by distributing their scan amongst multiple sources, each
scanning a portion of the target network [18]. In addition to
stealth, coordinated port scans can also gather information
more quickly than single-source port scans by employing a
parallel approach [12].

The definitions we use in this paper are:

Definition 2.1 A target is a single port at a single IP ad-
dress.

Definition 2.2 A scan is a set of connection attempts from
a single source to a set of targets during some time interval.

Definition 2.3 A source is a computer system from which a
scan originates.

Definition 2.4 A coordinated scan is a collection of scans
from multiple sources where there is a single instigator be-
hind the set of sources.

Definition 2.3 specifies the physical origin of a scan,
and not the IP number. Therefore, if the source of a scan
changes its IP address in the middle of a scan, it is still a
single source. However, as IP addresses are commonly used
to represent a source, and as it is often difficult to determine
if two different IP addresses represent the same source, in
this paper we will use IP addresses to indicate the source,
recognizing that we may do so erroneously in some cases.

The definition of coordinated scan presented here is con-
sistent with those presented in both the hacker and academic
literature. The first definition was presented by Staniford-
Chen et al. [24], who defined coordinated attacks as “multi-
step exploitations using parallel sessions where the distri-
bution of steps between sessions is designed to obscure the
unified nature of the attack or to allow the attack to pro-
ceed more quickly (e.g. several simultaneous sweep attacks
from multiple sources).” Green et al. [10] later defined the
term coordinated attack as “multiple IP addresses working
together toward a common goal”, and used this definition to
describe behaviour they were observing on their network.
Both of these definitions, as well as the definitions provided
in other research (e.g., [20], [29]), imply some level of co-
ordination between the individual sources used in the scan.

Given that each source within the coordinated scan is it-
self performing a scan, coordinated scans essentially con-
sist of multiple single-source scans. This is consistent with
those definitions used by previous researchers, as described
above. By distributing a scan amongst multiple sources,
coordinated scans provide the advantage of speed, as vari-
ous portions of the target network can be scanned in paral-
lel, and discreteness, as the scan will appear to the target as
multiple small scans, rather than one large scan [10][24].

We note that there is one publicly-available distributed
scanner — Unicornscan [16] — that does not meet this
definition of a coordinated scan. In this case the scanner
distributes the various pieces of the TCP handshake across
multiple agents; however, each agent needs to spoof the
same source IP address and so, from the target’s perspec-
tive, the scan appears to be a single source scan. We there-
fore do not consider this scanner to meet our definition.

The detection of single-source scans has been addressed
by a number of different approaches in the literature (e.g.,
[13], [15]). However, the recognition of a coordinated port
scan (as a single entity, rather than recognizing solely the
constituent parts) is a more difficult problem due to the lack
of information on which to cluster. For example, in the case
of detecting single-source scans, it is known that all pack-
ets will originate from the same source. Thus there is an a
priori method for clustering packets into a set from which a
decision can be made. However, in the case of coordinated
port scans, no such obvious grouping based on one or more
packet variables exists. In general, as stated by Braynov
and Jadliwala [3], “cooperation through task correlation is
difficult to discover. It is often the case that sensor data is
insufficient to find correlation between agents’ tasks. User
intentions are, in general, not directly observable and a sys-
tem trace could be intentionally ambiguous. The problem is
further complicated by the presence of a strategic adversary
who is aware that he has been monitored.”

3 Detection Approach

Previous approaches to detecting coordinated port scans
have focused on one of three methods (described in more
detail in Section 5):

1. defining a coordinated port scan as having very spe-
cific characteristics so that scans can be easily clus-
tered (e.g., [29] [20] [28]),

2. clustering packets or alerts based on feature similar-
ity using a machine learning approach (e.g., simulated
annealing [22], neural networks [25]), and

3. a manual analysis of network traffic, often aided by vi-
sualization approaches, to detect patterns in the traffic
that are representative of coordinated scanning activity
(e.g., [4] [19]).



In the first instance, it becomes easy for an adversary to
“game” the system if he knows how the defender has de-
fined a coordinated scan. The second case is based on
the assumption that coordinated scans will cluster together
based on similarities between scans or packets; this assump-
tion has never been verified. In fact, in [21], Staniford iden-
tified that the approach used in [22] clustered events, includ-
ing denial-of-service attacks and misconfigurations as well
as coordinated scans. The third case is reliant on having
a person perform a manual analysis of the network traffic.
It, too, can be gamed by generating enough events that the
attack (coordinated scan) is obscured [5].

Rather than taking any of these three approaches, we in-
stead base our approach on adversary modeling, building on
the comments made by Braynov and Jadliwala [3] who state
that “in order to detect such cooperation, one needs a clear
understanding of agents’ incentives, benefits, and criteria of
efficiency.” In the case of performing a port scan, an adver-
sary is interested in gaining information about the existence
of a particular service(s) on a particular host(s).

3.1 Adversary Representation

We observe that the primary goal of a scan is to gather
information about the target network. One of the observ-
ables this generates for the defender is a footprint pattern.
A footprint was defined by Staniford et al. [22] as “the set
of port/IP combinations which the attacker is interested in
characterizing.” From the defender’s perspective, the foot-
print is the set of IP/port pairs that he observes a particu-
lar source connecting to. We can characterize the footprint
pattern generated by a scan C based on the following four
characteristics: number of ports targeted (|P |), number of
IP addresses targeted (|A|), the selection algorithm for how
the IP addresses were selected (ς), and what camouflage (if
any) is used to obfuscate the true target (κ).

The number of ports can be represented as either one
or multiple, while the number of IP addresses can be simi-
larly represented as one, multiple or all. The adversary can
choose his targets based on one of three general approaches:

• randomly selected IP addresses, Ψ,

• based on some pattern in the IP addresses (such as only
hosts known to exist, or only IP addresses that have a
zero for the last octet), Φ, or

• some contiguous space, Σ.

Thus the selection algorithm can be chosen from the set
{Ψ,Φ,Σ}. The adversary can also choose to camouflage
his true intent by scanning additional target IP addresses.
These additional targets can be chosen using one of the fol-
lowing approaches:

• randomly scanning additional IP addresses, Ψ,

• scanning extra IP addresses that meet some property
(e.g., those IP addresses that are known to contain web
servers), Φ, or

• scanning all IP addresses in some contiguous space or
subnet, Σ.

Thus camouflage can be chosen from the set {∅,Ψ,Φ,Σ},
where ∅ represents that no camouflage was used.

Given these four characteristics, we can define a set of
adversaries based on common values for each of the charac-
teristics. These are presented in Table 1 (we will discuss the
“Footprint Pattern” column shortly). Given that we defined
2 values for the number of ports, 3 for the number of IP ad-
dresses, 3 for the selection algorithm, and 4 for camouflage,
this leaves us with 72 potential adversaries. However, not
all combinations are sensible. For example, if someone is
probing a single port on a single IP address, then there is no
choice for selection algorithm, nor for camouflage. (While
it is possible for an adversary to use camouflage here, it is
highly unlikely that they would do so given that a probe is
far less likely to be noticed than the increased activity from
using camouflage.) Removing all of the combinations that
are non-sensible results in only 21 adversaries. (More de-
tails on why particular adversaries were removed is avail-
able in [7].)

In addition to the four characteristics that define the scan
footprint, and information goal, of the adversary, there are
two additional characteristics of the footprint that can be
derived and used from the defender’s perspective: cover-
age and hit rate. That is, while the adversary can determine
the selection algorithm and camouflage being used, the de-
fender can only observe the IP/port pairs that are targeted
by the scan without knowing which might be the target and
which might be camouflage. Based on this overall scanning
activity, the defender can observe the percent of his network
that is targeted by the adversary (coverage), and the hit rate
that the scan has within that targeted range. The coverage is
calculated as

ζ(C)% =
an − a1 + 1
|A|

where |A| is the number of IP addresses in the defender
network, a1 is the first IP address scanned (in IP space, not
time) and an is the last IP address scanned. Given that the
scan covered this portion of the network, the hit rate is then
defined as the percentage of IP addresses within the scanned
space that were actually targeted, and is defined as

H(C) =
|AC |

an − a1 + 1

where |AC | is the number of IP addresses on the monitored
network that were targeted by scan C.



Adversary Ports Addresses Selection Camouflage Footprint Pattern
1 One One — None < 1, 1, 1/|A|, 1.0,Φ, ∅ >
2 One Some Subnet None < x, 1, x/|A|, ∗,Σ, ∅ >
3 Subnet < x, 1, x/|A|, ∗,Σ,Σ >
4 Some None < x, 1, x/|A|, ∗,Φ, ∅ >
5 Some < x, 1, x/|A|, ∗,Φ,Φ >
6 Subnet < x, 1, x/|A|, ∗,Φ,Σ >
7 Random < x, 1, x/|A|, ∗,Φ,Ψ >
8 Random None < x, 1, x/|A|, ∗,Ψ, ∅ >
9 One All — None < |A|, 1, 1.0, 1.0,Σ, ∅ >
10 Multiple One — None < 1, y, 1/|A|, 1.0,Φ, ∅ >
11 — Some < 1, y, 1/|A|, 1.0,Φ,Φ >
12 — Subnet < 1, y, 1/|A|, 1.0,Φ,Σ >
13 — Random < 1, y, 1/|A|, 1.0,Φ,Ψ >
14 Multiple Some Subnet None < x, y, x/|A|, ∗,Σ, ∅ >
15 Subnet < x, y, x/|A|, ∗,Σ,Σ >
16 Some None < x, y, x/|A|, ∗,Φ, ∅ >
17 Some < x, y, x/|A|, ∗,Φ,Φ >
18 Subnet < x, y, x/|A|, ∗,Φ,Σ >
19 Random < x, y, x/|A|, ∗,Φ,Ψ >
20 Random None < x, y, x/|A|, ∗,Ψ, ∅ >
21 Multiple All — None < |A|, y, 1.0, 1.0,Σ, ∅ >

Table 1. The footprint patterns for the 21 types of adversaries, where x represents some number of
IP addresses, y represents some number of ports, |A| represents the number of IP addresses in the
monitored network, and ∗ represents an unknown value.

We therefore define a characterization of the scan foot-
print using these six characteristics so that both the adver-
sary’s and defender’s perspectives are included. We repre-
sent the footprint using the following tuple:

F =< |P |, |A|, ζ(C),H(C), ς, κ >

where |P | is the number of ports, |A| is the number of IP
addresses, ζ(C) is the coverage for scan C,H(C) is the hit
rate for scan C, ς is the selection algorithm (chosen from
the set {Ψ,Φ,Σ}) and κ is the camouflage approach (cho-
sen from the set {∅,Ψ,Φ,Σ}). This footprint characteri-
zation can represent horizontal, vertical, strobe and block
scans, as defined by Staniford et al. [22], as well as probes.
A generic form of a scan footprint is < x, y, x

|A| , ∗, ∗, ∅ >
where ∗ represents an unknown value, x ≥ 1 and y ≥ 1.
For a more specific example, a horizontal scan targets a sin-
gle port across multiple IP addresses and is represented by
the tuple < x, 1, x

|A| , ∗, ς, κ > where x ≥ m and m is a
user-defined minimum number of IP addresses required for
a scan to be considered as a horizontal scan. (For example,
this tuple can represent the definition of a horizontal scan
used by Yegneswaran et al. [29] by setting m = 5.)

The footprint characterization presented represents the
footprint information for all scans, including coordinated

scans. In the case of coordinated scans, the overall footprint
results from combining each of the individual scans. How-
ever, there are three additional characteristics for coordi-
nated scans that are not in single-source scans: the number
of sources, the amount of overlap and the algorithm used to
distribute the targets amongst the sources. Thus a coordi-
nated scan can be represented by the tuple < F , |S|, θ,A >
where F is the overall footprint characterization, |S| is the
number of scan sources, θ is the overlap and A is the scan-
ning algorithm. Overlap is defined as the number of targets
in common between two sources:

θ(C0, C1) =
|A0 ∩A1|
|A0 ∪A1|

where Ai is the set of target IP addresses for scan Ci.
The scanning algorithm, A, is the algorithm used to de-
termine how the targets are distributed amongst the scan-
ning sources, and includes an interleaved series of length n,
randomly distributed, and sequential blocks. The overlap,
scanning algorithm and number of sources are included in
the representation of a coordinated scan because they affect
the footprints observed (of both the single-source scans and
the overall coordinated scan) by the defender.



3.2 Set Covering Approach

We take advantage of the footprint information to gener-
ate an approach to detecting coordinated scans. As a coordi-
nated scan consists of multiple single-source scans, we first
use some approach to detecting single-source scans. The
set of all scans detected during some time period provides
us with our input set.

Given a set of scans and the adversary models given
above, the problem can be reduced to finding a subset of
scans such that one of the footprint patterns is detected.
We focus here on detecting nine of the 21 adversary types.
Specifically, we restrict our problem space to detecting
those adversaries who perform either a horizontal or strobe
scan of a large enough contiguous space. Thus we can de-
tect adversaries 2, 3, 6, 9, 12, 14, 15, 18 and 21.

The result of restricting the problem space in this manner
is that we can also reduce the footprint information required
to consist of only the ports and IP addresses targeted by the
scan, rather than needing to specifically define, for exam-
ple, the selection algorithm or camouflage approaches used.
This is an important aggregation because, from the network
border, a defender can only determine what target IP/port
pairs a source attempted to access, and reduces a scan foot-
print to be the same as that defined by Staniford et al. [22].
The end result is that the input required for each scan is just
the set of IP/port pairs targeted by that source, and the input
set consists of the set of all scans during some time period.

We assume that the scans are detected using traffic col-
lected from the border of the monitored network. This as-
sumption provides us with the view required to determine
the scan footprint geometry required as input to the coordi-
nated scan detection algorithm.

The problem of detecting a coordinated port scan based
on footprint geometry can be compared to the set covering
problem. The set covering problem is defined as: given all
the sets that are available in some space, choose the mini-
mum number of sets such that the entire space is covered.

Grossman and Wool [11] surveyed eight approaches to
solving the set covering problem, implementing and testing
them on a series of set covering problems. The algorithm
that generally performed the best was “Altgreedy”, which
is a variation on the greedy algorithm. Altgreedy works by
first choosing the variable with the largest number of un-
satisfied inequalities, ∆j , and adding it to the solution set.
(That is, Altgreedy chooses the set that covers the largest
number of elements that are still not covered by some other
set in the solution). Ties in variables are broken by choos-
ing the variable with the smallest index. At this point, Alt-
greedy diverges from the traditional greedy algorithm to re-
ject variables from the solution set. It chooses the variable
that is the “most redundant” (covers the most elements that
are also covered by other sets) in the solution set and re-

moves it. This process repeats until the number of unsatis-
fied inequalities in the solution set is either equal to ∆j −1,
or is as close to this value as possible while not exceeding
it.

It should be noted that the problem of detecting coordi-
nated port scans deviates from the set covering problem in
the following ways:

1. We are interested in minimizing the overlap between
each of the sets (scans). The distributed scanning tools
that we analyzed — DScan [2] and NSAT [17] — did
not exhibit any overlap in the target footprint between
scanning sources.

2. We do not require that the entire space be covered, but
rather focus on some minimum amount of contiguous
coverage. This is because a coordinated scan might fo-
cus on some subset of the monitored network. We note
that the tools that we analyzed scanned contiguous net-
work space.

3. We do not require that every IP within the (contigu-
ous) space be covered. This is because our algorithm
takes into consideration the possibility of missing data
or dropped packets.

Thus we are not interested in detecting the smallest num-
ber of sets (scans) that cover the largest amount of space
space. Rather, we are interested in detecting that multiple
sets (scans) fit together in such a manner that some large
portion of the entire space is covered while minimizing the
amount of overlap between each of the sets. We therefore
modify and extend the algorithms for solving the set cover-
ing problem, in particular the Altgreedy approach, to con-
sider these additional restrictions.

To support our usage of the set covering paradigm, we
demonstrate the detection capabilities of our algorithm in
Section 4, which evaluates the algorithm. We note that
we used two distributed scanning tools — available “in the
wild” and not developed by the authors — to test our use of
the set covering approach to coordinated scan detection.

3.3 Algorithm

Like the Altgreedy approach, our approach consists of
slowly building a subset through the addition of new scans
and the removal of scans that are the most redundant. How-
ever, while Altgreedy chooses the set that covers the most
space, we instead choose the scan that covers the least num-
ber of destination IP addresses. Thus, rather than building
our set by continually adding in the largest sets, we instead
add in the smallest sets first. We make this change because
we find it more likely that small scans will be part of a coor-
dinated scan. This is because a large scan is likely to already
cover all or most of the IP space, as it is likely that in any



given set of scans there was at least one horizontal scan that
covered most of the space. In contrast, since we are looking
for coordinated scans, the adversary will have divided the IP
space amongst multiple sources, and so it is likely to consist
of several smaller scans. We therefore start by adding in the
smaller scans first.

In fact, we add a condition on the scan that is added to
the set. We choose the next scan based on two contrast-
ing goals: to maximize coverage while minimizing overlap.
Thus we actually choose to add the smallest scan that also
has the smallest overlap with any other scans in the set. We
choose to minimize the overlap based on the assumption
that an adversary will not want to scan the same target mul-
tiple times as it provides no additional information. How-
ever, they might add some overlap to their scans in order to
decrease the likelihood that their activity will be detected.

After adding a new scan to the set containing a possi-
ble coordinated scan, we check to see if it “covers” some
other scan in the set. If there is another scan that substan-
tially overlaps with the scan that we are about to add (where
substantial is arbitrarily defined as 95% of the IP addresses
also being present in the newly added scan — future work
should investigate the effect of varying this value), then we
remove the covered scan from the set. We check the en-
tire set to determine if the amount of overlap has exceeded
some threshold. If the overlap is too large, then we remove
the scan with the largest overlap with other scans in the set.
The overall Altgreedy-inspired portion of the algorithm is
presented in Figure 1.

When we remove a scan from the set, we do not imme-
diately remove it from further consideration. Instead, we
“remember” that it has been rejected once already, and if it
is added to the set again later and then rejected again, we re-
ject it permanently from further consideration. This portion
of the algorithm is presented in Figure 2.

We continue to loop, adding and removing scans, until
all of the scans have been examined and either added to
the set or permanently rejected. The resulting set is then
examined for the presence of a coordinated port scan, which
means that the set meets the following four conditions:

1. there is more than one scan (i) in the set, |S| > 1,

2. the contiguous coverage of the network is greater than
the minimum acceptable network coverage, ζ(C) >
X%,

3. the overlap in the set is less than the maximum accept-
able overlap, θ < Y%,

4. the hit rate within the covered area is at least some user
defined minimum,H(C) ≥ Z%,

where X , Y and Z are defined by the user. (Section 4 dis-
cusses the effect of different values for these three variables
given different environments and scan characteristics.)

Input: A set of scans A
Input: Maximum percent of overlap MAXOVERLAP
Input: Minimum percent of network covered MINCOVER-

AGE
Output: Set S of scans forming a coordinated scan

S ← smallestScan(A)
rejected← ∅
rejectedOnce← ∅
repeat

i ← smallestOverlap(A − rejected, S) {get scan with
smallest amount of overlap}
if newlyCoveredIPs(S,i) > 0 then

S ← S ∪ {i} {add scan to solution set if it covers at
least 1 new IP}

else
Run rejection algorithm(rejected, rejectedOnce, i)
{possibly reject scan }

end if
if overlap(S) > MAXOVERLAP then

i ← greatestOverlap(S) {get scan with most overlap
with other scans }
S ← S − {i} {reject scan from solution set}
Run rejection algorithm(rejected, rejectedOnce, i)
{possibly reject scan }

end if
until S ∪ rejected == A

Figure 1. Altgreedy [11] portion of algorithm.

If the set does not form a coordinated scan, we check to
see if it might be due to the influence of noise (single-source
scans that are not actually part of the coordinated scan) on
a coordinated scan that does not span the entire monitored
network. In order to address this, the largest gap in the mon-
itored space (largest contiguous space of IP addresses not
covered by a scan in the set) is found, and the set split into
two halves. All those scans in the smallest half are removed
from the set, and the remainder is checked for the presence
of a coordinated port scan. This process continues until ei-
ther a coordinated scan is found or there are not enough IP
addresses covered to form a coordinated scan. This algo-
rithm is provided in Figure 3.

We extended the basic algorithm in Figure 1 to detect the
presence of strobe scans (Adversaries 14, 15, 18 and 21).
We do this by first checking for the presence of any coordi-
nated scans on each individual port, and then combining the
ports. The scans for two different ports are combined into a
single coordinated scan if they meet one of two conditions:

1. the two sets of scans cover nearly the same set of tar-
get IP addresses (with an agreement of 95% or better,
allowing for the possibility of missing data), or

2. the two sets contain nearly the same scan sources (with
an agreement of 95% or better).



Input: A set of scans rejected
Input: A set of scans rejectedOnce
Input: A scan i
Output: Set of scans rejected (possibly modified)
Output: Set of scans rejectedOnce (possibly modified)

if i ∈ rejectedOnce then
rejected← rejected ∪ {i} {reject scan so it can no longer
be used }

else
rejectedOnce ← rejectedOnce ∪ {i} {mark scan as re-
jected, but allow further use }

end if

Figure 2. Rejection algorithm.

This process is repeated for each set of ports (so a strobe
scan can be recognized even when it consists of more than
two ports). The resulting aggregated sets are then examined
for the presence of a coordinated scan using the same four
criteria that were defined earlier.

If a coordinated scan is found, we provide the source
IP addresses of the scan to the user and then remove those
scans from the set of all scans. We repeat the algorithm to
determine if there is a second coordinated scan in the set.
The algorithm exits when no more coordinated scans are
found. This algorithm is provided in Figure 4.

4 Experimental Results

4.1 Metrics

The usual metrics for measuring the performance of an
intrusion detection system consist of true and false positive
rates, indicating the probability that an intrusion would be
detected (or that a non-intrusion would cause an alert). The
detection rate is the conditional probability that an alert A
was generated given that there was intrusive behaviour I ,
P (A|I). The false positive rate is the conditional probabil-
ity of an alertA given that intrusive behaviour is not present
¬I , P (A|¬I). However, coordinated scans consist of multi-
ple events that need to be detected, and so this metric needs
to be modified. We choose as our unit of analysis the scan,
and define true positives as those scans that were correctly
flagged as being part of a coordinated scan. Similarly, we
define a false positive as a scan that was not part of a coor-
dinated scan, but was flagged as being so.

We also define an “effective” false positive rate, which is
the average number of coordinated scans that are reported
per data set that are not “correct”. We define correct here to
mean that we included at least 50% of the correct sources
in the reported coordinated scan. As the true impact of the
false positive rate is on the amount of wasted effort by the

Input: A set of scans A
Input: Maximum percent of overlap MAXOVERLAP
Input: Minimum percent of network covered MINCOVER-

AGE
Output: Set results containing a coordinated scan

results← ∅
S ← Altgreedy Portion of Algorithm( A, MAXOVERLAP,
MINCOVERAGE )
while overlap(S) > MAXOVERLAP do

i← greatestOverlap(S) {remove scans with too much over-
lap }
S ← S − i

end while
{ while we have not found a coordinated scan, and the cover-
age is still large enough that there might be one, keep looking
}
while ( ! isDPS(S) ) && ( coverage(S) > MINCOVERAGE
) do

gap← largest set of contiguous IP addresses not covered in
S
S ← scans in largest subset of S when split into two sets
separated by gap

end while
if isDPS(S) then

results← S
end if

Figure 3. Detection Algorithm

system administrator, we use these values to indicate how
many incidents a defender can be expected to investigate.

4.2 Experimental Design

Our experiments consist of performing coordinated
scans in an isolated environment and capturing the network
traffic for later analysis [8]. This provides us with ground
truth. We then inject the results from these scans into a
set of noise data, described in more detail below. The iso-
lated test environment we use is the DETER network [26],
which uses the Emulab software [27]. We were able to use
up to 100 agents in this environment, along with using two
nodes to act as a /16 subnet. A monitoring node running
tcpdump was inserted between the agents and the /16 sub-
net in order to capture all scan traffic entering the monitored
subnet. The scan information was extracted using the algo-
rithm provided by Gates et al. [9]. This scan information
was then injected into a set of “noise” scans gathered from
a live network.

We use two scanning algorithms — DScan [2] and
NSAT [17] — that are available “in the wild” in order to
avoid injecting our personal biases into how a coordinated
scan algorithm should perform. DScan distributes target
IP/port pairs randomly among the different sources, while



Input: A set of scans A
Input: Maximum percent of overlap MAXOVERLAP
Input: Minimum percent of network covered MINCOVER-

AGE
Output: A set S of coordinated scans

S ← ∅
P ← all unique ports in A
repeat

for every p ∈ P do
resultsp ← Detection Algorithm( A, MAXOVERLAP,
MINCOVERAGE )

end for
{Check for strobe scan — 2 ports mostly cover same IPs or
have same sources}
for every {i, j} ∈ P, i 6= j do

if (coverage(i, resultsi) ≈ coverage(j, resultsj)) ||
(resultsi ≈ resultsj) then

resultsi ← resultsi + resultsj

resultsj ← ∅
end if

end for
for every p ∈ P do

S ← S∪ { resultsp }
A← A - resultsp

end for
until resultsp = ∅ ∀ p ∈ P

Figure 4. Strobe Algorithm

NSAT uses an interleaving pattern of length n where there
are n sources. Neither algorithm had the ability to specify
any overlap, and so we added this feature to DScan in or-
der to test the ability of our detection algorithm to perform
given this camouflage behaviour.

The noise set was gathered from four sparsely populated
/16 subnets on the same /8 network in the .gov domain.
Flow level network traffic was gathered at the border of
the network for the month of March, 2005, and analysed
for the presence of single-source scans using the algorithm
by Gates et al. [9]. The number of scans on each network
ranged from 1069 to 1253, the majority of which were hori-
zontal (74%) or strobe (25%). The result was four different
data sets, each consisting of scans that were detected using
the same algorithm as on the isolated network and that con-
tained the same information needed for input to the detec-
tion algorithm (that is, a source IP address and its footprint
geometry).

Noise sets of the desired size were extracted by first ran-
domly choosing which of the four data sets to use, and then
randomly choosing a start point within that data set, taking
the next x scans in order to generate a noise set of size x.
This procedure was performed rather than a random sam-
pling in order to preserve any temporal relationships that
might exist within the data.

In these experiments we control six different variables
(the size of the subnet being scanned — a /16 subnet in these
experiments — is actually a seventh variable): the coverage
and overlap of the scans, the scanning algorithm, the num-
ber of scanning sources, the number of ports scanned, and
the number of noise scans. The range of values for cov-
erage is 10% to 100%, overlap is 0% to 20% (for DScan
only), number of sources is 2 to 100, number of ports is 1
to 5 and the number of noise scans is 100 to 1000 (in sets of
100).

We note that time is not a variable that is considered
here, as it is not part of the detection algorithm. The im-
pact of time, in particular as it relates to single-source scan
detection and real-time or near real-time coordinated scan
detection, is discussed further in Section 4.6.

We performed 48 experiments using the extreme values.
That is, for NSAT, which has no overlap, we performed
experiments where the coverage was 10% and 100%, the
number of scanning sources was 2 and 100, the number of
scanned ports was 1 and 5, and the number of noise scans
was 100 and 1000. This resulted in 16 experiments. An-
other 16 were performed for DScan with no overlap, and
a further 16 for DScan with 20% overlap. We performed
an additional 39 experiments where the values were chosen
randomly from the ranges provided.

4.3 Results

We ran our detection algorithm on the 87 data sets that
were generated for experimental validation. We defined a
correct detection as at least 50% of the single-source scans
that were identified as part of the coordinated scan being
true positives. The detector recognized 61 of the 87 coor-
dinated scans (70%). In 47 of the 61 cases, every scan that
was part of the coordinated activity was detected, with only
14 “partial” detections (with the percentage of the sources
that were recognized ranging from 86.4% to 99.0%). For
the remaining 26 cases, none of the sources were recog-
nized as being part of a coordinated scan. Thus this ap-
proach tends to perform either very well or not at all.

Examining the results in greater detail, we find that the
detector performed poorly at detecting some of the ex-
tremes. In particular, of the 48 cases where the extreme
values for the ranges were used, only 28 of the scans were
detected (58%). However, for the 39 cases where the val-
ues for each variable were chosen randomly, 33 of the scans
were detected (85%).

We can examine the performance of the detector by
building a regression model. We use a logistic regression
because the results are so strongly bimodal. The result from
the model can be interpreted as the probability that the co-
ordinated scan will be detected given the values of the vari-
ables. We then use the Akaike Information Criterion [1] in



order to remove variables that do not contribute to the de-
tection rate. The resulting model is:

P̂ (coordinated scan is detected) =
eŷ

1 + eŷ

where

ŷ = −1.5920551 + 0.0312865x1 − 0.0026240x4+
0.0205417x5 + 0.5760024x6

where x1 is the coverage of the network, x4 is the number
of noise scans, x5 is the number of scanning sources, and x6

is the number of scanned ports. The two variables that were
removed were the amount of overlap (x2) and the scanning
algorithm (x3), indicating that they have little impact on the
detection rate. Every variable in the equation is significant
at p < 0.05. The positive co-efficients for x1, x5 and x6

indicate that as these values increase, so does the detection
rate. However, as the number of noise scans increases (x4),
the probability of detection decreases. An example of how
the detection rate varies with changes in the network cover-
age (x1) and number of noise scans (x4) using this equation
is provided in Figure 5. This graph shows that the scan
needs to cover at least 68% of the network, and the input
set contain at most 500 scans, in order to obtain a detection
rate of at least 80%. For the false positive rate, there were
27 experiments that had no false positives and 76 experi-
ments (87%) where the false positive rate was ≤ 0.01. The
maximum value was 0.08, with the median = 0.0025 and the
mean = 0.0068. We model this using a linear regression:

fp = −0.007494 + 0.00005559x1 + 0.0004216x2+
0.00005877x5 + 0.001903x6

where x1 is the percentage of the network covered, x2 is
the overlap, x5 is the number of sources and x6 is the num-
ber of ports. This indicates that an increase in any of these
variables results in an increased false positive rate.

The false positive rate does not provide a true indication
of administrator overhead. This is because the overhead
from examining 5 coordinated scans with 3 sources each
is greater than the overhead of examining a single scan with
15 sources, even though the false positive rate for both sets
is the same. A false positive in this case is any coordinated
scan where fewer than 50% of the sources are true positives.
For our 87 examples, there were 39 cases (45%) where the
effective false positive rate was zero. That is, any false posi-
tives that occurred were added to a correctly recognized co-
ordinated scan. In 36 cases the effective false positive rate
was 1, and the largest rate observed was 8, giving an aver-
age effective false positive rate of 0.95 and a median rate of
1. Thus on average an administrator will examine one scan
that was not coordinated for each use of the detector. These
values indicate that the administrative overhead from false
positives is low.

4.4 Gaming the System

To avoid detection, the adversary needs to take one (or
more) of the five steps described below. For each approach
to avoiding detection (all of which consist of ensuring that
the detection thresholds are not exceeded), we describe the
loss of information suffered by the adversary in order to
avoid detection.

scanning fewer ports: As the number of ports included in
the scan increases, so does the detection rate. Thus to
reduce the chances of detection, an adversary can only
scan a single port, potentially reducing his information
gain.

using fewer scanning sources: As the number of sources
used in a scan increases, so does the probability that
the scan will be detected. In order to avoid this, an
adversary needs to use fewer sources. The tradeoff is
that it will now take longer for the adversary to scan the
target space, thus increasing his workload. In addition,
this goes against the principal of using a coordinated
scan if the original intention was stealth.

scanning less of the network: The larger the portion of
the network that is scanned by the adversary, the
greater the probability that he will be detected. This
reduces the information gain by the adversary.

Figure 5. The effect of the network coverage
(x-axis) and number of noise scans (z-axis) on
the overall detection rate (y-axis), where the
number of ports scanned = 2 and the number
of scanning sources = 50.



scanning under the hit rate: The adversary can choose to
randomly drop enough targets from the scan list that
his scan will not be detected. However, this reduces the
amount of information that the adversary then obtains.
Additionally, if the targets are not dropped in a uniform
random fashion, it is still possible that a subpart of his
scan will be detected.

scanning more slowly: The adversary can have each
source scan with enough time between the start of each
scan that not all of the sources will fall in the same
scan window being analysed. This increases the time
required to perform the scan, and therefore adversary
workload.

4.5 Limitations and Future Work

The input for this algorithm consists of single-source
port scans. Thus, if an attacker can avoid detection by the
single-source scan detector, then he also avoids detection
by the coordinated scan detector. In fact, this idea underlies
the paper by Kang et al. [14], where they use a coordinated
scan, called z-scan, to gather information while avoiding
detection by the Threshold Random Walk algorithm of Jung
et al. [13] (which can detect a single-source scan in as few
as five targets).

However, while the algorithm presented in this paper was
tested using the input from a single-source scan detection
approach based on grouping packets by the source IP ad-
dress, this is not a required input algorithm. If a different
approach to detecting scans were employed, such as that by
Whyte et al. [28] who use exposure maps, where any hit
of a non-existing IP/service is recorded, this would avoid
the limitation identified. Similarly, the input could consist
of all activity from any source that targeted even a single
non-responsive IP/service pair, regardless of the number of
valid connection attempts performed. However, testing the
performance of this algorithm given a different underlying
structure for determining the input remains as future work.

4.6 The Effect of Time and Future Work

The algorithm in this paper abstracts away the notion of
time as the analysis was performed in an off-line manner us-
ing a month as the time scale of interest. In this subsection,
we argue that time itself is not a valid variable to be con-
sidered; rather, the other characteristics that are generally
thought to be time-related are the correct parameters to use.
For example, our training and testing data sets covered one
month of data; however, this time frame was chosen because
it provided over 1000 scans for use in testing. (In fact, the
number of scans ranged from 1069 in one data set to 1253
in another.) On other networks, it might be the case that

1000 scans occur over either much shorter or much greater
time periods. It is for this reason that our testing methodol-
ogy did not include time as a variable, but rather the num-
ber of scans being tested. In fact, in order to make valid
comparisons between networks, and to be able to make any
comment on how well the algorithm will perform, we must
abstract away the notion of time, focusing instead on those
aspects of the environment that affect the detection rate re-
gardless of the time frame used.

This observation refocuses the issue of time. At its sim-
plest, the question being asked is: how much of the coor-
dinated scan is required before it can be detected? This
question has been partially addressed in this paper — we
have examined how much of the network needs to be cov-
ered in order to detect the coordinated scan (using the val-
ues of 10% of contiguous network space up to 100% cover-
age of the network). Additionally, detection is affected by
the amount of data that can be “missing”. We identify here
three aspects to missing data:

1. Assuming that each source scans at approximately the
same time (that is, with few or no noise scans occurring
in between the individual scans of the co-ordinated
scan), how much of each scan is required before they
can be recognized as forming a coordinated scan? This
relates to the variable that was intended to allow for
missing data, and that was arbitrarily set at 95% for
these experiments. The effect of different values for
this variable on the detection and false positive rates
needs to be evaluated.

2. Assuming that each scan occurs sequentially, and as-
suming again that there are few or no noise scans oc-
curring at the same time, how many scans are required
before the co-ordinated scan can be detected? This
is related to the scanning algorithm. (For example,
are targets distributed randomly among the scanning
sources? Or, does each source scan a contiguous block
of network space?)

3. What is the impact of removing the assumption above
that there are few noise scans occurring at the same
time as the coordinated scan? What is the impact of
the number of noise scans occurring at the same time,
and the number of detected targets for each of those
scans?

Ideally, we would like to evaluate is how well the al-
gorithm performs “in real time” in an operational setting.
Given an operational setting, the algorithm needs an addi-
tional layer that represents a sliding window over the de-
tected scans. This adds the following complexity:

• Once a (single source) scan has been detected, we need
to continue to record the targets of the scan for the du-



ration of the scan. This continuous updating poten-
tially impacts when and how often the detection al-
gorithm should be used. For example, the algorithm
could be run every time a currently recorded scan is
updated with some number of new targets, or it might
only be used when a new scan is detected.

• The impact on the detection rate of adding scan infor-
mation as it occurs needs to be examined. More specif-
ically, how does the completeness of the noise scans
impact the detection rate? For example, if we have a
completed coordinated scan in our sliding window, is
it more easily detected if all of the other scans have
also completed (representing fast scans), or if we have
only a few targets for each of the noise scans (repre-
senting low and slow scans)? 1 What is the interaction
between the completeness of the noise scans and the
completeness of the coordinated scan?

• We need to determine how the scans in the sliding win-
dow should be ordered, as this impacts when a scan is
removed from the window and replaced with a “newer”
scan. For example, the ordering could be by the time
of detection for the scan; however, this does not ad-
dress slower versus faster scans. Thus it might be the
case that the sliding window should be ordered by the
most recent scan update (that is, by the time that each
source scanned its most recent target).

• Related to ordering the scans in the sliding window
is the impact on the detection rate of the aging out of
older scans. This might, for example, age out portions
of the coordinated scan. That is, if the sources scan
sequentially, then it is possible that some of the indi-
vidual scans will be removed from the sliding window
and so not be used as input to the detection algorithm.
This relates back to the issue identified above of how
to detect a coordinated scan in the presence of missing
data.

The algorithm presented in this paper requires that some
contiguous portion of the network space be covered. De-
ploying this in an operational setting implies a notion of
time; however, we abstract this notion into the core ques-
tion of: How many targets of the coordinated scan must be
observed in order to make a positive identification of the
coordinated scan? We have identified some of the complex-
ities behind providing a comprehensive answer to this ques-
tion, and note that addressing this issue remains as future
work.

1In our noise data sets, the shortest scan occurred over only a few sec-
onds, while the longest scan was over seven days in duration.

5 Comparison to Related Work

Robertson et al. [20] contend that their method detects
coordinated port scans. However, this detection is based on
the assumption that port scans that originate from source IP
addresses that are located close together (e.g., as part of the
same class C subnet) are related, rather than assuming that
the scanner may have compromised a number of machines
on various subnets.

Yegneswaran et al. [29] also claim to detect coordinated
port scans. They define a coordinated (or distributed) port
scan as “scans from multiple sources (five or more) aimed
at a particular port of destinations in the same /24 subnet
within a one hour window”. This definition misses several
possible coordinated scans, such as scans from fewer than
five sources, or scans where each source scans in a sepa-
rate hour. In addition, completely unrelated sources might
scan the same port on the same /24 subnet within the same
hour, simply by chance. The probability of this happening
increases with the number of scans observed on a subnet
and the release of new exploits.

We do not provide a comparison of our approach to the
above two approaches because the definition of coordinated
scans differs significantly. In each of the previous cases the
coordinated scans as defined are a subset of our definition of
coordinated scans. The result is that any comparison using
our data set would be unfair due to these different defini-
tions.

Conti and Abdullah [4] also claim to have a method for
detecting coordinated scanning activity. They have devel-
oped an approach to visualizing network traffic, which they
have tested on human subjects to determine the features that
are recognizable in the traffic. In addition to identifying
scans, they claim that coordinated scans are easily recog-
nized by the pattern they create. However, they did not pro-
vide any experimental evidence for this, nor any example
visualizations. In addition, they have not published any in-
vestigation of how well such scans can be recognized given
a background of other scanning activity as well as legitimate
network activity. While this work may possibly detect the
same types of coordinated scans as our approach, it is not
an automated technique but rather requires human analysis.

Staniford et al. [22] present a method for the detection
of stealth port scans, where stealthy port scans are defined
as port scans with properties that would elude traditional
intrusion detection systems, such as long delays between
scans and using numerous source IPs in a coordinated port
scan. Their approach can be divided into two distinct sec-
tions: the network anomaly detector (called Spade) and the
correlation engine (called Spice). The network anomaly
detector determines how anomalous a packet is (using an
entropy-based measure), passing it on to the correlation en-
gine, Spice, if it is sufficiently anomalous. Spice inserts



the packet into a graph, where the nodes represent packets
and the connections between nodes contain weights indicat-
ing the strength of the relationship between the two nodes
(packets). The weights are based on a combination of four
feature characteristics (equality, proximity, separation, and
covariance). A simulated annealing procedure is used on
each of four connections to generate clusters. In the final
graph, all edges with weights less than a certain threshold
are dropped, and the remaining subgraphs represent inter-
esting network events.

Spice was not designed specifically to detect coordinated
port scans. Rather, it clusters together network packets that
have similar properties. Each cluster can represent a variety
of events, including coordinated port scans, port scans with
long delays between each scan, distributed denial of service
attacks, and network misconfigurations [21]. The true and
false negative and positive rates for this approach have not
been reported in the literature.

Staniford et al. state in [23] that “Such distributed scan-
ning has already been seen in the wild—Lawrence Berkeley
National Laboratory received 10 during the past year.” The
scans in this paper were recognized by security analysts due
to the sudden increase in the number of sources scanning,
and the small amount of overlap between the scans [19].

While the approach by Staniford et al. [22] is likely to
detect coordinated scans following the same definition as
provided in this paper (as opposed to only a subset of pos-
sible coordinated scans), they have not provided sufficient
detail in their paper to replicate their results.

6 Conclusions

In this paper we presented an approach to detecting co-
ordinated port scans. Unlike previous approaches, which
have been based on clustering and manual analysis, our ap-
proach uses adversary modeling. We define a set of adver-
saries based on the information that they are attempting to
acquire, and then use a set covering approach to recognize
when multiple sources, when pooled together, will have ob-
tained that information.

We developed an algorithm capable of detecting coordi-
nated scans that have a horizontal or strobe footprint across
a contiguous network address space. We tested this algo-
rithm through 87 different experiments where coordinated
scans were performed in an isolated environment, combin-
ing the network traffic traces with those collected from live
networks. We controlled for six different variables in these
tests, providing regression equations that model our results.
The detection rate varies considerably with four of the six
variables, while the false positive rate remains generally low
(less than 1%). We defined a new measure, the effective
false positive rate, which measures the number of false pos-
itive coordinated scans detected that an administrator would

need to investigate, and found that our approach has an av-
erage of 1 false coordinated scan per data set. We identified
the limitations of this approach and discussed how an ad-
versary can remain undetected and the cost (in terms of the
lack of information gain) for doing so.

Finally, we discussed the effect of time on our detection
rate, arguing that time should not be considered as a vari-
able; rather, the other characteristics that are generally con-
sidered to be related to time should be identified and tested
further. Such an abstraction will allow the results to be gen-
eralizable to other environments (such as networks that see
many more or many fewer scans during some time period,
or networks that see primarily fast scans versus primarily
low-and-slow scans).
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