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Abstract

Stereo camera is a very important sensor for mo-
bile robot localization and mapping. Its consecutive
images can be used to estimate the location of the
robot with respect to its environment. This estimate
will be fused with location estimates from other
sensors for a globally optimal location estimate. In
the data fusion context, it is important to compute
the uncertainty of the stereo-based localization. In
this paper, we propose an approach to obtain the
uncertainty of localization when a correspondence-
based method is used to estimate the robot pose.
The computational complexity of this approach
is O(n), where n is the number of corresponding
image points. Experimental results shows that this
approach is promising.

Keywords: localization, error propagation, uncer-
tainty, registration.

1 Introduction

Simultaneous localization and mapping (SLAM) for
autonomous robots is still a challenge, especially in
outdoor 3D environment. More and more systems
are equipped with many sensors, such as stereo
camera, inertial navigation sensor (INS), laser
range finder, global positioning system (GPS), to
implement their goal. Appropriate sensor fusion
methods will be used to integrate the measurements
from all the sensors on the robot to obtain a globally
optimized solution. As a very important and
frequently used sensor, stereo camera can provide a
full view of environment, and also self-localization
information. Generally, the self-localization algo-

rithm can be classified as correspondence-based and
flow-based. In the correspondence-based method,
a set of 3D points is obtained from each robot
position. Self-localization requires the establishment
of correspondence and registration between sets
of 3D points from consecutive robot positions.
But the localization from the registration cannot
be directly used for the sensor fusion, because the
uncertainty of the localization is required in addition.

In this paper, we present an approach to calculate
the self-localization uncertainty which is suitable for
the correspondence-based method. This approach
uses the error propagation theory based on the im-
plicit function theorem. Robot navigation experi-
ment is implemented to show the uncertainty of its
location.

2 Previous Work

Approaches for extracting motion information from
image sequences can be classified as correspondence-
based and flow-based. Correspondence meth-
ods [17, 9] track distinct features such as corner,
line, high curvature point, SIFT, etc., through
the image sequence and compute 3D structure by
triangulation. Flow-based methods [3, 21] treat
the image sequence as function f(x, y, t), where
(x, y) are image pixel coordinates and t is time,
restrict the motion between frames to be small, and
compute shape and motion in terms of differential
changes in the function f .

In the correspondence-based method, the most
important step is to register the two sets of data
according to the correspondence. Once we obtain



the estimate registration values, we face the question
that how precise is it.

Lowe [13] used least-squares minimization
procedure to obtain the robot pose as well as its
covariance. Based on this method, Se, Lowe and
Little [19] presented a method for mobile robot
localization and mapping with uncertainty by fusion
of robot odometry information and visual estimation
information with Kalman filter. Davison [5] also
used Kalman filter to solve the robot pose and its
uncertainty problem with a single camera.

Another way to estimate robot pose uncertainty
is statistical analysis method which is based on
the implicit function theorem [6, 3]. Jokinen [12]
used this method to derive more general strategies
to analyze the propagation of measurement and
calibration errors to the registration parameters and
further to the reconstructed model of the scene con-
sisting of planar patches. Ma,et al [16] addressed the
issues of sensitivity and robustness in their motion
recovery algorithm from the image velocities. Sun,
et al [20] have proposed an error characterization
of the factorization method for 3-D shape and
motion recovery from image sequences using matrix
perturbation theory. All of the methods are used in
the application area of flow-based.

In this paper, we develop a procedure for esti-
mating the uncertainty of the robot pose obtained
via a correspondence-based method. Our method
uses the implicit function theorem to derive the pose
uncertainty from a maximum likelihood formulation,
which has a similar idea as the above flow-based
method.

The accuracy analysis of the estimated loca-
tion by using statistical method for the robot self-
localization based on stereo vision is the main con-
tribution in this paper. The paper is organized as fol-
lows. In section 3, we briefly introduce the method to
estimate the self-localization from the stereo images.
In section 4, we present an approach to calculate the
registration parameter’s accuracy based on the im-
plicit function theorem and Taylor formula. In sec-
tion 5, we implement experiment for the uncertainty
analysis of robot navigation. In the last section, we
present a summary of our proposal and conclusions.

3 Self-localization Estimation
via Stereo

With the stereo camera system, it is possible to
get a rectified image(the distortion in the original
image has been modified) It and a 3D cloud Ct

at time t, for all t. From the image It, we can
extract a set of SIFT (Scale Invariant Feature
Transform) features [14] F i

t , (i = 1, · · · , Nt). In the
sequence of images, SIFT feature correspondence
can be established between any two adjacent images.
RANSAC method [8] is implemented to delete the
outliers in the previous initial matching. For any
matched feature, its 3D point could be obtained
from the associated 3D cloud. Since the SIFT
feature gives a sub-pixel position in the image, it is
necessary to use bilinear interpolation to obtain an
accurate 3D position. So it is possible to obtain,
for a 3D point M i

t in Ct, a corresponding 3D point
M i

t−1 ∈ R3, i = 1, . . . , n, in Ct−1. Since the two
data sets are derived from different image frames,
their covariance will be changed with the image’s
depth. Therefore, the corresponding points will
have different error covariance. We assume that the
error for every point i at time t can be expressed as
σMi

t
(see Appendix B).

In order to obtain the self-localization informa-
tion between time step t − 1 and t, we can directly
register the cloud Ct−1 to cloud Ct by using the cor-
responding data M i

t−1 and M i
t . Gaussian based max-

imum likelihood (ML) method can be used for this
problem [1, 17]. The maximum-likelihood estimate
for rotation R ( since q is a quaternion of rotation, q
and R will be used for rotation when it is required)
and translation T is obtained by minimizing the fol-
lowing objective function

min
R,T

E(R, T ) =
n∑

i=1

ν′iS
−1
i νi (1)

where νi = M i
t −RM i

t−1−T is called innovation, and
Si = RσMi

t−1
R′ + σMi

t
is its associated covariance.

Before the registration process, we can obtain the
centroid of the two sets of data as M c

t =
∑n

i=1 M i
t/n

and M c
t−1 =

∑n
i=1 M i

t−1/n. By subtracting the cen-
troid from each point, we obtain two new data sets
M̂ i

t = M i
t − M c

t and M̂ i
t−1 = M i

t−1 − M c
t−1. Sub-

stituting the new data sets M̂ i
t and M̂ i

t−1 into in
the innovation νi, the objective function (1) can be



changed to

min E =
n∑

i=1

(M̂ i
t −RM̂ i

t−1)
′S−1

i (M̂ i
t −RM̂ i

t−1)

(2)
This is a non-linear function, and we solve this

optimization problem through linearization and iter-
ation, which was applied by Lu and Milios [15] and
Olson et al [18]. To make it simple, we express the
rotation R in the form of quaternion R = R(q) and
q = (q0, q1, q2, q3). We linearize the problem by tak-
ing the first-order expansion with respect to the ro-
tation in the quaternion expression. Let q0 be the
initial rotation estimates and R0 be the correspond-
ing rotation matrix. The first-order expansion is:

E =
n∑

i=1

(Gi
t − J i

tq)
′S−1

i (Gi
t − J i

tq) (3)

where J i
t = [ ∂R

∂q0
M̂ i

t−1,
∂R
∂q1

M̂ i
t−1,

∂R
∂q2

M̂ i
t−1,

∂R
∂q3

M̂ i
t−1]

(see Appendix A), and Gi
t = M̂ i

t − R0M̂
i
t−1 − J i

tq
0.

Differentiating the objective function with respect to
q and setting the derivatives to zero yields:

q = (
n∑

i=1

J i
t

′
S−1

i J i
t )
−1

n∑
i=1

(J i
t

′
S−1

i Gi
t) (4)

After solving (4), this estimated rotation is used as
an initial estimate of the next step, and the process
is iterated until it converges. Then the translation
can be obtained by

T = RM c
t−1 −M c

t (5)

4 Uncertainty of Localization
Estimate

During the registration step, we obtain the robot
pose: rotation q and translation T . But what is
the reliability of this estimate? From the objective
function (3) we knew that the rotation q and the
measurement M (= [M i

t−1,M
i
t ]
′), (i = 1, . . . , N) are

related through an implicit function.

Ψ(q, M) = 0 (6)

According to the implicit function theorem [6, 7],
there has

∂q

∂M
= −(

∂Ψ
∂q

)−1 ∂Ψ
∂M

(7)

We express the rotation as a function of the mea-
surements

q = f(M) (8)

Expanding f in a Taylor series around E[M ] yields

f(M) = f(E[M ])+(M−E[M ])
∂q

∂M
+O(M−E[M ])2

(9)
where O(.)2 denotes terms of order 2 or higher in M
and ∂q

∂M . Up to a first-order approximation, then the
covariance of q can be obtained as

σq =
∂q

∂M
σM (

∂q

∂M
)′ (10)

If we define Φ = ∂E′

∂q , then there will have

∂Φ
∂q

=
∂2E

∂q2
and

∂Φ
∂M

=
∂2E

∂M∂q
(11)

Substituting equation (11) into equation (10), the
covariance σq will be

σq = (
∂2E

∂q2
)−1(

∂2E

∂M∂q
)σM (

∂2E

∂M∂q
)′(

∂2E

∂q2
)′−1 (12)

From the definition of the objective function
(Eq.(3)), we have

∂E

∂q
=

n∑
i=1

(−∂R

∂q
M̂ i

t−1)
′S−1

i (M̂ i
t −RM̂ i

t−1) (13)

∂2E

∂qs∂qt
=

n∑
i=1

[
(− ∂R2

∂qs∂qt
M̂ i

t−1)
′S−1

i (M̂ i
t −RM̂ i

t−1)

+ (
∂R

∂qs
M̂ i

t−1)
′S−1

i

∂R

∂qt
M̂ i

t−1

]
(14)

where s and t equal to 0, 1, 2, 3.

∂2E

∂M i
t−1∂qs

=(− ∂R

∂qs
)′S−1

i (M̂ i
t −RM̂ i

t−1)

+ (
∂R

∂qs
M̂ i

t−1)
′S−1

i R (15)

∂2E

∂M i
t∂qs

= (− ∂R

∂qs
M̂ i

t−1)
′S−1

i (16)

∂2E

∂Mi∂qs
=

(
∂2E

∂Mi
t−1∂qs

∂2E
∂Mi

t ∂qs

)
(17)

where i = 1, · · · , n and s = 0, 1, 2, 3. Substituting
the Eq. (14) and (17) into (12), the covariance of q
can be obtained. The covariance for the translation
can be calculated by

σT = σc
Mt−1

+ RσMc
t
R′ (18)



Table 1: Algorithm for 3D data registration and its uncertainty
Input:two adjacent images It−1 and It, and their 3D

cloud Ct−1 and Ct and Image pixel error
Output: transformation q, T; variance σq, σT

1 Extract SIFT feature from images It−1, It

2 Establish feature correspondences
3 Implement RANSAC to delete outliers
4 Estimate robot pose by eq. (4) and (5)
5 Calculate rotation uncertainty by eq. (12)
6 Calculate translation uncertainty by eq. (18)
7 output q, T, and σq and σT

where σMc
t−1

and σMc
t

are the covariance of the
center point of data set Mt−1 and Mt, respectively.

The computational complexity of this algorithm
is O(n), where n is the number of corresponding
points. The algorithm for the registration of 3D data
and its uncertainty estimation is shown in Table 1.

5 Experiment and Analysis

5.1 Lab Experiment

We performed the lab experiment with a BumbleBee
camera system mounted on a Mitsubishi PA10-7CE
Robot. The robot arm has a maximum speed of
3.33 meters per second and a payload of 10 kilograms
(Fig. 1). The camera connects via an IEEE 1394 link
to a PC. The stereo camera captures two 320× 240
color images when the robot is stationary. Functions
of a library provided by the company process the
original images and return the associated rectified
color images and a list of 3D cloud points associated
with of its rectified pixels. Points farther than four
meters are discarded during the stereo processing in
this test environment.

5.2 Self-localization estimation

During the lab experiment, we did not use any arti-
ficial landmarks. The features used in this paper are
SIFT features [14], which are extracted from the im-
age in every time step. Two adjacent images are
matched for robot self-localization. We used the
RANSAC method [8] to delete the outliers. From
the matched image points, their associated 3D points
could be obtained from the associated 3D cloud. Af-
ter this processing, we obtain two sets of 3D points
which are matched correctly, and then data regis-
tration is implemented by the method described in

Figure 1: The Bumblebee stereo camera from Point
Grey Research mounted at the tip of the PA10-7CE robot
arm.

Figure 2: Robot trajectory displayed in 3D in test case 1.
Ground truth is obtained by the internal position sensors
of the robot arm.



Figure 3: Robot trajectory of Fig. 2 displayed in the
horizontal plane (x-y).

section 3 to get rotation R and translation T . Sup-
pose that the robot’s start position is P0, and the
translation at time t is Tt, and rotation is Rt, then
the absolute position of the robot can be obtained
by

Pt = Pt−1 + Rt ∗ Tt (19)

where t = 1, · · · , N , and N is the number of mea-
surements in the circle. The robot’s build-in high
precision position system provides ground truth of
the robot motion trajectory. The estimated trajec-
tory in 3D and 2D on the x-y plane are showed in Fig.
2 and Fig. 3. The image based self-localization esti-
mation is a 6 DOF problem, even though the robot
moves in a plane, the estimated trajectory is not pla-
nar (Fig. 3) due to the estimation error.

5.3 Uncertainty analysis

By using equations (12) and (18), the uncertainty
of robot localization in every step can be obtained
together with robot pose estimation. For the ro-
tation, the uncertainty is a 4 × 4 matrix since the
rotation is expressed as quaternion during pose es-
timation. And the uncertainty of translation is a 3
matrix, which can be expressed graphically with el-
lipsoid [4]. In our test, we just took the x-y plane to
show the estimation uncertainty with the associated
ellipse in every robot position. In Fig. 4, the small
ellipses are the estimated uncertainty in every robot
position. We knew from the results that in every
time step, the location uncertainty is almost similar,
but its direction changes in different position.

The robot trajectory calculation by Eq.(19) is an
iterative process. The uncertainty of absolute posi-

Figure 4: Estimated robot trajectory in x-y plane with
associated uncertainty in test case 1

tion can be calculated as

σpt = σpt−1 + RσTtR
′ (20)

where t = 1, · · · , N and σp0 = I3, and I3 is an
identical matrix with a dimension of 3. Therefore,
the uncertainty of the robot position increase with
time. This is displayed in ellipses as shown in Fig. 4.
In order to control the uncertainty growth with the
time increasing, some techniques, such as Kalman
filter, should be used, but it is beyond the scope of
this paper.

We present another experimental result shown in
Fig. 5. In this case, we took more images in the circu-
lar trajectory of the robot arm than in the previous
case. The uncertainty in every robot position (small
ellipses in Fig. 5) is almost similar to that of Fig. 4,
since both of the experiments had the same envi-
ronment set-up, and used the same camera with the
same calibration parameters. But the uncertainty of
the robot position is larger than in Fig. 4, because
we used more steps to obtain the robot trajectory in
this case than in the previous case and this increased
the error propagation. As we said, this kind of error
propagation can be avoided using Kalman filter.

6 Conclusions

The stereo camera is a very frequently used sensor
for autonomous robot localization and mapping.
The stereo image will be used to estimated the pose
of a robot. This estimation will be fused with other
sensor measurements or and associated location
estimates in a global optimization framework.
Therefore, it is required to provide the uncertainty
of the localization for the sensor fusion. For the



Figure 5: Estimated robot trajectory in x-y plane with
associated uncertainty in test case 2, where the density
of sampling along the circular trajectory is higher than
in test case 1

correspondence-based self-localization estimation
method, we propose an approach to obtain the
uncertainty of the localization, which is based on
the error propagation theory. The computational
complexity of this approach is O(n) (where n is
the number of corresponding points). Experiment
shows that this approach has potential.

Fusing the results from visual camera with other
senors to obtain a globally optimized robot local-
ization and map is our next research target for the
underwater walking robot. Our method will be com-
pared with the method of Lowe [13] and Se, et al [19].
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A Relationship between Rota-

tion Matrix and Quaternion

Quaternion q consists of four components
(q0, q1, q2, q3). It has the following relationship
with rotation matrix [10]

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (21)

where r11 = q2
0 + q2

1 − q2
2 − q2

3 , r12 = 2(q1q2 − q0q3),
r13 = 2(q1q3 + q0q2), r21 = 2(q1q2 + q0q3), r22 = q2

0 −
q2
1+q2

2−q2
3 , r23 = 2(q2q3−q0q1), r31 = 2(q3q1−q0q2),

r32 = 2(q3q2 + q0q1), and r33 = q2
0 − q2

1 − q2
2 + q2

3 .
And

∂R

∂q0
=

 2q0 −2q3 2q2

2q3 2q0 −2q1

2q2 2q1 2q0

 (22)

∂R

∂q1
=

 2q1 2q2 2q3

2q2 −2q1 −2q0

2q3 2q0 −2q1

 (23)

Figure 6: Stereo geometry for triangulation

operation[11]

∂R

∂q2
=

 −2q2 2q1 2q0

2q1 2q2 2q3

−2q0 2q3 −2q2

 (24)

∂R

∂q3
=

 −2q3 −2q0 2q1

2q0 −2q3 2q2

2q1 2q2 2q3

 (25)

B The Covariance of Esti-

mated 3D Point from Stereo

Image

Assume that the measured image coordinates in
2D and inferred 3D points by triangulation from
stereo images have normally distributed (Gaussian)
error. The Gaussian distribution model to express
the error of image coordinates is a common and
convenient approximation that will give adequate
performance [2]. For the 3D points, the true
distribution is a non-Gaussian because triangulation
is a non-linear operation [17]. If the distance to the
point is not extreme, the Gaussian distribution for
3D is acceptable.

In the properly calibrated stereo system, it is pos-
sible to assume that the cameras have parallel image
plane, aligned epipolar lines. In Fig. 6 the 3D point
M = [X, Y, Z] is observed at points ml = [xl, yl] and
mr = [xr, yr] in the left and right image planes, re-
spectively. Without lost of generality, let us assume
that the origin of the coordinate system coincides
with the left lens center. By using the simple noise-
free triangulation operation, we have

X = bxl/(xl − xr) (26)



Y = byl/(xl − xr) (27)

Z = bf/(xl − xr) (28)

Due to the error in image coordinates, the covari-
ance for the 3D point M = f(ml,mr) will be

σM = J

[
σml

0
0 σmr

]
J ′ (29)

where J is the matrix of first partial derivatives of
f respect to the random vectors ml and mr, and is
called Jacobian.

J =

 −bxr/d2 0 bxl/d2 0
−byl/d2 b/d byl/d2 0
−bf/d2 0 bf/d2 0

 (30)

where d = xl − xr. And σml
= diag(σl

x, σl
y), and

σmr = diag(σr
x, σr

y). Where σl
x, σl

y, σr
x, and σr

y

are determined by camera calibration error statis-
tics. Usually they are in the range from 0.01 to 0.5.
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